Magneto-modulation of gate leakage current in 65 nm nMOS transistors: Experimental, modeling, and simulation results

E.A. Gutierrez-Da,*, J. Molina-Ra, P. Garcia-Rb, J. Martinez-Cb, F. Guarinc

a National Institute for Astrophysics, Optics and Electronics (INAOE), Department of Electronics, L. E. Erro Nr. 1, Tonantzintla, Puebla, Z.P. 72000, Mexico
b Universidad Veracruzana, C. Ruiz-Cortines Nr. 455, Veracruz, Z.P. 561, Mexico
c IBM Microelectronics, B-330C-1R23, Zip20A 2070 Route 52, Hopewell Junction, NY 12533, USA

\begin{abstract}
We introduce experimental results that reveal a small static and a slowly varying-dynamic magnetic field B induces a magneto-modulation of the gate leakage current of a 65 nm nMOSFET. For the case of a 100 mT (mili-Tesla) static B field a variation of the 6\% (1.5 nA/27 nA) of the gate current is observed. For a 5 Hz slowly varying (±100 mT) square pulsed magnetic field, the gate current dynamic variation raises up to 18\% (4.8 nA/27 nA). These experimental observations are explained in terms of space and time modulation of the two-dimensional surface inversion layer charge. The static B field dependent model is validated through Minimos-NT numerical simulations, while the dynamic B field experimental observations are reproduced with a SPICE macro-model, which uses the static device model as initial condition for the dynamic model. With this model we are able to predict the impact of small static and dynamic B fields on the gate leakage current and channel current interference of low-dimensional MOS transistors. We also propose this electro-magnetic experimental technique as an alternative for detailed exploration of the Si–SiO\textsubscript{2} interface properties for 2 nm or thinner gate oxides, as well as for low-dimensional semiconductor devices.
\end{abstract}

1. Introduction

Modern integrated circuits contain millions of transistors that are continuously switching currents at different amplitudes and at different frequencies as well, which lead to the generation of on-chip magnetic fields in the range of tens of mili-Teslas (mT) \cite{1}. Such a mixture of static and dynamic switching currents results also in an on-chip mixed static and dynamic magnetic B field. The tri-dimensional nature of the B field lines, and the way the metal layer interconnections and circuits are distributed on the silicon chip, causes some of the B field lines to cross through the channel of the MOS transistors, which can result in a modification of the electrical performance. Therefore, it is the aim of this work to study the influence of magnetic B fields on the electrical performance of 65 nm nMOS transistors. For this purpose we perform a series of experiments where a controlled static and dynamic magnetic field is externally applied to the transistor. A description of the MOS transistor technology used for the experimental part as well as the experimental setup, together with the obtained experimental results are given in Section 2. In Section 3 we introduce and describe the proposed model that explains the experimental results for both static and dynamic B fields. The numerical simulations that validate the static B field model, which are based on Minimos-NT \cite{2}, are also described in this section. The dynamic B field simulations, which are based on a static–dynamic mixed macro-model, are also described in detail at the end of this section. The implications and conclusions of this work are reviewed in Section 4, where we infer a potentially larger impact of the on-chip magnetic field as the MOS transistor cell approaches a low-dimensional semiconductor system, which is the case for MOS technologies with minimum dimensions below 65 nm and gate oxides thinner than 2 nm.

2. Experimental results

An nMOS transistor fabricated in 65 nm CMOS technology with a Nitrogen-doped Silicon Oxide (Si\textsubscript{3}N\textsubscript{4}) gate oxide thickness T_{ox} of 1.9 nm, a \((W/L)\) ratio of (2 μm/65 nm), and a S/D-B junction of 15 nm was used in the experiments. The nMOS transistor was inserted in between the poles of a GMW 5403AC electromagnet that produced the static and dynamic B field, while the electrical test was performed with an Agilent B1500A Semiconductor Device Analyzer. The magnetometer has a large inductance value that impeded the generation of fast time-varying B fields. Therefore...
the experiments were only conducted at a maximum frequency of 50 Hz.

We define the x-axis along the channel length L, the y-axis along the transistor width W, and the z-axis normal to the x-y plane. A positive normal magnetic field Bz comes from above the gate into the bulk, while a positive parallel magnetic field By is defined as entering from y = 0 into the width W of the transistor. As a first approach an squared magnetic By pulse of an amplitude varying from –100 mT to +100 mT, switched at a frequency of 5 Hz and with a raising/falling feature (dBz/dt) of 10 mT/ms, was applied to the transistor biased at Vgs = 0.1 V and Vds = 1.0 V. From the experimental results shown in Fig. 1 We readily see the gate current Ig shows a positive peak ΔIg = 4.0 nA for the negative transient of By and a negative peak ΔIg = 3.4 nA for the positive transient. At the steady or static state there is also a modulation of Ig. The first experimental finding is that the transient (dynamic) By field leads to a larger ΔIg current modulation than the By static case. Therefore we proceed with an additional experiment by applying a By field with three different (dBz/dt) rates of 5.0, 6.6, and 10 mT/ms. The dynamic magneto-modulation of the gate current ΔIg increases with the increase of the (dBz/dt) rate as shown in Fig. 2. At By field intensities close to ±100 mT the Ig current show instabilities that we believe are because of “lattice disorders” at the Si–SiO2 interface [3] that lead to longitudinal optical (LO) magneto-phonon oscillations [4]. A first interpretation of the experimental results is that the surface electron concentration is being spatially and time modulated. Therefore, we should expect a channel current Ids magnetic modulation as well, which is confirmed by the experimental results shown in Fig. 3. At the transient of the By field the Ids current shows also a peak excursion, while at the steady-state there is a positive increase Ids = 227.72 μA for a +100 mT and a negative decrease Ids = 227.6 μA for −100 mT. In order to understand the experimental results we proceed to the analysis of the data, and the development of an analytical model supported by electro-magnetic numerical simulations.

3. Analysis, modeling and simulations

Under the experimental conditions used in this work, the dynamic modulation of ΔIg follows a behavior modeled by Eq. (1).

\[
\Delta I_g = \Delta I_{g0} + \left[I + \kappa \left(\frac{\partial B_z}{\partial t} \right) \right] \cdot B_z
\]

(1)

where ΔIg0 has a value that, for this particular conditions, ranges between 0.18 and 0.27 nA but it depends on the bias conditions as governed by tunneling [5], \(\chi = -0.00156 \text{ nA/mT} \), and \(\kappa = 0.00465 \text{ nA s/T}^2 \). The Ig current is also linearly dependent on the static By field, with a modulation rate of 60 pA/mT as shown in Fig. 2.

Depending on the direction, the steady-state magnetic field, applied perpendicular to the surface and to channel current, pushes electrons either to the right or the left side along the width axis, which induces a two-dimensional space modulation of the surface electron concentration on the transistor channel. When a time-varying By field is also applied perpendicular to the surface and to the channel current, an electromotive force on the surface channel is induced, which either reduces or increases the channel current. The space static magneto-modulation of the channel electron concentration ΔI is proportional to the magnitude of the time-varying By field, while the induced electromotive voltage \(V_{em} \) is proportional to the time-varying rate (dBz/dt). Therefore the induced \(V_{em} \) voltage changes the effective channel voltage \(V_{doff} \) as:

\[
V_{doff} = V_{ds} \pm (W \times L) \cdot \frac{\partial B}{\partial t}
\]

(2)
Both, the space and time-magneto-modulation of the electron channel concentration induce a two-dimensional and time space potential modulation, or in other words a sort of ‘sea-wave of electrons’ causes an image force oxide barrier modulation that leads to the gate current modulation and channel current interference.

Numerical simulations of the static magneto-redistribution of the surface electron inversion channel along the width are shown in Fig. 4. In this case a B_z field of $+100$ mT is applied to the transistor biased at $V_{GS} = 0.1$ V and $V_{DS} = 1.0$ V. This leads electrons to accumulate at the left side and depopulate the right side. The electrons are space-modulated with a Gaussian distribution, with its peak Δns located at 35 nm from the width edge, and with an average broader V_{acc} of 70 nm. Ideally one should expect the inversion layer charge to end at the gate edge, but because gate edge effects, such as fringing fields and thickening of the gate oxide, the maximum of the magneto-modulated surface channel occurs under the gate at 35 nm from the gate edge. The peak value Δns of this electron modulation is a linear function of B_z that increases at a rate of 1.8×10^{16} cm$^{-2}$mT$^{-1}$. This static magneto-modulation of the surface inversion charge also leads to a modulation of the oxide potential barrier ϕ_0 at a rate of 11 μeV/mT.

When B_z becomes dynamic, with a switching rate (dB_z/dt), the Δn charge not only changes in space but in time as well. Such a space- and time-magneto-modulation induces a gate current $\Delta I_D = \mu C_{ox} n (dB_z/dt)$. The induced ΔI_D current increases (ΔI_D^+) or decreases (ΔI_D^-) with respect to its value at $B_z = 0$ because of the induced electromotive voltage Vem and the capacitive coupling with the gate electrode.

For this case the induced drain current variation ΔI_D is not only dependent on (dB_z/dt) but on the magnitude of B_z as well. In the linear regime the effective drain current $I_{D_{eff}}$ is roughly approximated by the following equation:

$$I_{D_{eff}} = \left[1 + \left(\frac{q}{m^*} \cdot \tau \cdot B_z\right)^2\right]^{-1} \frac{W}{L} \mu C_{ox}(V_{GS} - V_T) V_{DS}$$

where τ is the scattering time. Notice from Fig. 3 that for the steady-state value of $+B_z = 100$ mT I_D increases to I^+_D, while for $-B_z = 100$ mT I_D reduces to I^-_D. These variations are in the range of hundreds of nano-amperes and have a parabolic behavior with respect to B_z as shown in Fig. 5. This parabolic behavior is the result of a classical Hall magneto-resistance [6]. The curvature of the parabola (see Eq. (2)) depends on the scattering time τ, which is a complex function of both V_{GS} and V_{DS}. For the particular case of $V_{GS} = 1.0$ V and $V_{DS} = 0.1$ V τ is equal to 1.029 ps, which is in the range (0.8–1.2 ps) reported for a two-dimensional electron gas on (1 1 1) silicon [7].

When the magnetic field is also applied perpendicular to the channel current flow, but parallel to the surface (B_y), the inversion channel charge experiences a vertical deflection (along the z-axis). For positive $+B_y$ electrons are pushed towards the Si–SiO$_2$ interface, while for $-B_y$ electrons are pulled down the substrate.

The experimental results of the modulated drain current ΔI_D (I_D under applied magnetic field minus I_D with no applied magnetic field) are also shown in Fig. 5. From measurements and simulations at different V_{GS} and V_{DS} conditions we found out that in general the scattering time τ gets larger than 1 ps as V_{DS} gets closer to 0, which is an indication of a reduction of the scattering process at very low V_{DS}. For large values of V_{GS} τ reduces down to 0.2 ps at $V_{DS} = 0.1$ V. For the magnetic field B_y range from 0 to 50 mT I_D increases and gets a maximum value at 25 mT. This increase is due to the increase in electron concentration at and near the surface. The centroid [8] of the quantized inversion layer, which in this simulations is placed 0.2 nm below the surface, have a variation of about 15% at $B_y = 25$ mT, which indicates the differential vertical increase of the surface electron concentration n_s is responsible for the increase of I_D. The larger vertical modulation of the surface electron concentration is responsible for the larger ΔI_D vertical modulation when compared to horizontal ΔI_D modulation. For $B_y > 25$ mT the surface scattering process increases, which results in a reduction of the carrier mobility μ that compensates the increase, and thus results in a reduction of I_D at larger B_y. The induced gate current modulation ΔI_g has the same behavior as the case of a perpendicular magnetic field B_z, but its magnitude is about three times larger. According to Minimos-NT simulations this increase of ΔI_g is due to the larger vertical surface modulation of the electron concentration (see Fig. 6). The modified version of Minimos-NT [9] allows the steady-state calculation of space-varying electron concentration in the inversion channel of the MOS transistor. For the applied B_z field, the electron inversion channel is vertically modulated as shown in Fig. 6. A positive $+B_z$ pushes electrons towards the surface, while a negative $-B_z$ pull electrons down the bulk.

The vertical modulation depends on the position along the channel as seen in Fig. 7. From the source-bulk metallurgical
junction ($x = \Delta Ls$) up to approximately $x = 85\text{nm}$ stays in the range of around $1 \times 10^{14}\text{cm}^{-2}$. However, in and near the high longitudinal electric field region ($x = 85–100\text{nm}$) the D_n concentration goes up to levels of $1 \times 10^{16}\text{cm}^{-2}$. The larger D_n modulation at the drain side implies a higher gate current injection at the drain side. This space-modulated electron inversion charge qD_n is then used to develop a non-quasi-static electro-magnetic (nqsem) macro-model. This “nqsem” model is implemented in Spice by considering the inversion channel layer as a current source i_{em} given by the following model:

$$i_{em} = q\frac{\partial D_n}{\partial t}$$

For sufficiently long and wide MOS transistors, and for V_{gs} values above the threshold voltage V_T, one should expect the transversal and longitudinal electric fields E_T and E_l to be homogeneously distributed on the Si–SiO$_2$ interface, and thus the inversion channel charge to be also homogeneously distributed on the channel surface. Under this condition, the magneto-modulation of the inversion charge Δn should produce homogeneous stripes of depopulated or accumulated electrons either at the left or right side of the channel. However, for short devices, these stripes do not have a homogeneous distribution along the channel as can be seen from Fig. 8, where the simulations of a ($W/L) = (1 \mu\text{m/65 nm})$ nMOS transistor are shown. Electrons are magneto-deflected to the right creating an accumulated stripe of electrons along the right side of the transistor, while at the left side there is a stripe of depopulated electrons. The largest magneto-modulation occurs close to the drain ($x = 60\text{nm}$) and source sides ($x = 10\text{nm}$), while the lowest one occurs at the middle of the channel ($x = 30$ and 40nm). From the numerical simulation results the Δn charge can be modeled as

$$q\Delta n = q(a + bl_{ds})e^{-E_l/E_c}$$

where a, b, and E_c are factors that depend on the geometry and bias conditions. But, in general we found out that the shorter the transistor the smaller the value of E_c, the critical longitudinal electric field at which the electric field dominates over the injection of electrons driven by the channel current I_{ds}.

As the Δn charge is x-dependent, then one should take the integral from the source to the drain to calculate the total magneto-modulated charge $q\Delta n$.

$$i_{em} = \int_{x=0}^{x=L} q\frac{\partial}{\partial t} \left((a + bl_{ds})e^{-E_l/E_c} \right) dx$$

Fig. 6. Simulated electron concentration vertical modulation Δn for a ($W/L) = (2\mu\text{m/65 nm})$ nMOS transistor biased at $V_{gs} = V_{ds} = 1.0\text{V}$. The S^+ symbol means Δn extracted at the source edge of the channel for a field $B_y = +100\text{mT}$. S^- means Δn extracted at the source side at $B_y = -100\text{mT}$. D^+ means Δn extracted at the drain side under $B_y = +100\text{mT}$, and D^- means Δn extracted at the drain side under $B_y = -100\text{mT}$.

Fig. 7. Simulated electron magneto-modulation Δn along the channel axis x for $V_{gs} = V_{ds} = 1.0\text{V}$.

Fig. 8. Simulated electron magneto-modulation Δn along the width axis y at five different distances x (10, 20, 30, 40, 50, and 60 nm) from the source. A ($W/L) = (1 \mu\text{m/65 nm})$ nMOSFET biased at $V_{gs} = 0.5\text{V}$ and $V_{ds} = 0.1\text{V}$ was simulated under a B_y field of $+100\text{mT}$.

Fig. 9. Measured (symbols) and spice simulation (line) results of the gate and bulk currents I_{gate} and I_{bulk}.
The inversion channel, where the magneto-current source I_{em} is generated by the influence of a time-varying magnetic field, is surrounded by a network of gate C_{gem} and bulk C_{bem} capacitors. The value of the C_{gem} is determined by the gate oxide thickness and the transistor area ($W \times L$), while the value of the bulk capacitor C_{bem} is given by the inversion channel layer-bulk depletion region. Both capacitors are bias-dependent. Therefore, their values used for the Spice macro-model need to be updated for the different bias conditions. In our particular case we implemented a network of 10 distributed I_{em} sources along the channel, 10 C_{gem} capacitors, 10 C_{bem} capacitors for the bottom plate, and five C_{bem} capacitors for each lateral side of the transistor. The result of this distributed "ngsem" macro-model is shown compared to experimental results in Fig. 9. The measured pulsed bulk current probes the magnetic induction of bulk currents through the C_{bem} capacitors, and validates the Spice macro-model.

4. Conclusions

For the first time a variation or magneto-modulation of the gate leakage current (in a 65 nm nMOS transistor) induced by a pulsed magnetic field is reported. This experimental observation is explained in terms of the magnetically induced space and time modulation of the surface electron inversion charge. The space and time magnetic modulation of the surface inversion electron charge also results in an electro-magnetic interference with the channel current. The interference of the steady-state magnetic field is attributed to the magnetic modulation of the channel conductance, while the transient interference is attributed to the induced electromotive voltage along the channel axis. The theoretical explanation is validated with composed Minimos-NT and Spice simulations. The minimum magnetic field that the transistor was able to detect was about 500 μT, a magnitude that is in the range of on-chip generated magnetic fields [10,11]. This is an indication that on-chip magnetic fields are self-inducing both channel current noise and gate leakage current. This preliminary report is the foundation for a future development of a full electro-magnetic model for nano-meter MOS technologies. It is also remarkable the high-speed reaction of both $\frac{dI_{g}}{dB} / dt$ and $\frac{dI_{d}}{dB} / dt$, which indicates the 65 nm nMOS transistor is capable to sense very high-speed on-chip magnetic fluctuations.

Acknowledgments

E. Gutiérrez thanks Intel and CONACyT (through Grant 100028) for their partial fundings, and IBM for providing the test samples.

References