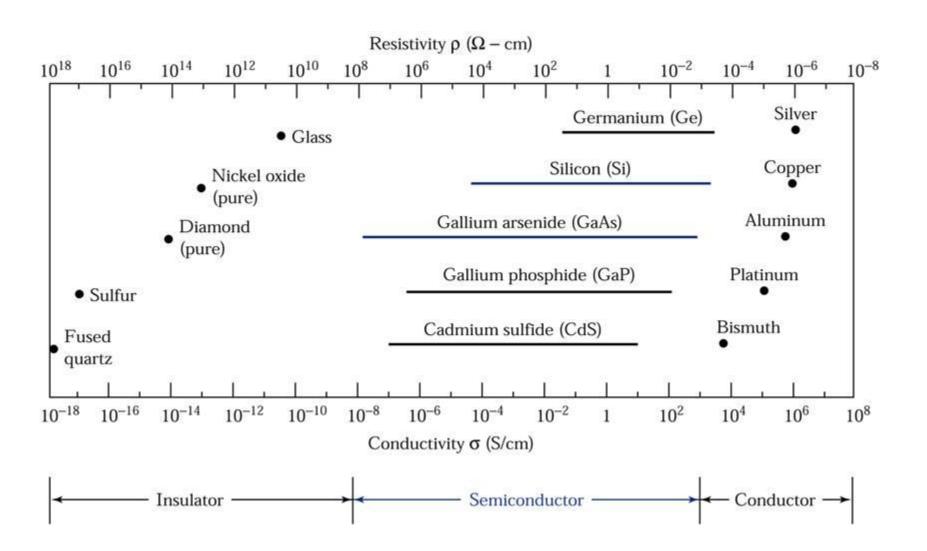
Dr. Joel Molina

INAOE coordinación de electrónica

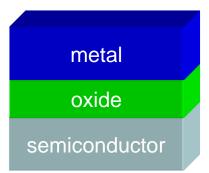
jmolina@inaoep.mx

Contenido de la presentacion


- 1. ¿Qué es Nanoelectrónica?
- 2. Invenciones clave en la Electrónica
- 3. El escalamiento geométrico de los transistores continúa
- 4. Tecnología de Fabricación de Circuitos Integrados
- 5. Laboratorio Nacional de Nanoelectrónica

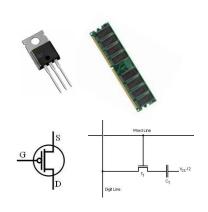
La nanoelectrónica se encarga de estudiar el diseño, fabricación, medición, operación y optimización de materiales, dispositivos y sistemas electrónicos (Cl's) muy avanzados y con dimensiones muy pequeñas.

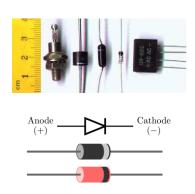
1 nanómetro= 1e-9m = 1mm / 1000000

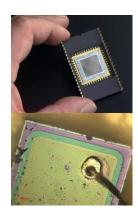

La nanoelectrónica se encarga de estudiar el diseño, fabricación, medición, operación y optimización de <u>materiales</u>, <u>dispositivos y sistemas electrónicos</u> (Cl's) muy avanzados y con dimensiones muy pequeñas.

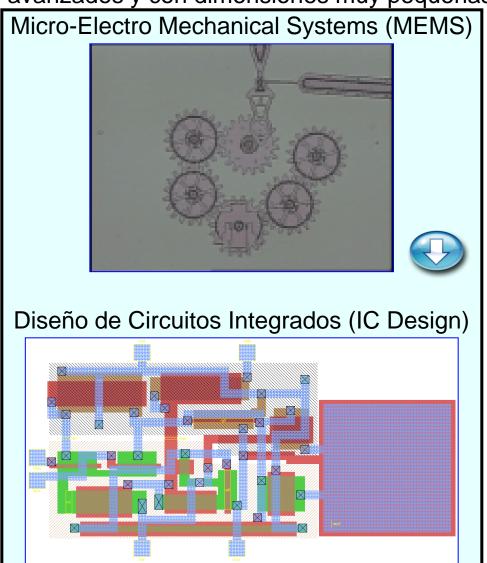
La nanoelectrónica se encarga de estudiar el diseño, fabricación, medición, operación y optimización de materiales, dispositivos y sistemas electrónicos (Cl's) muy avanzados y con dimensiones muy pequeñas.

4 bloques de construcción fundamentales

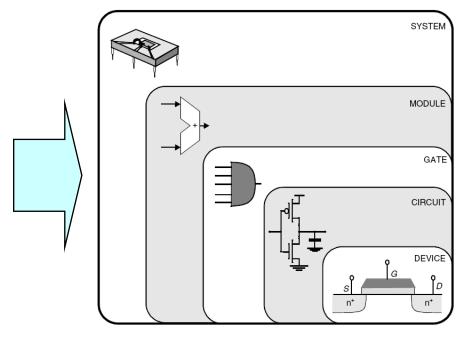





semiconductor tipo p semiconductor tipo n


Diodos Schottky
Detectores de μ-ondas

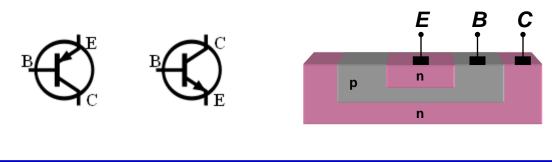
MOSFET DRAM


Diodo de unión p-n Transistores bipolares SCR

Optoelectrónica Diodos Láser HEMT, CCD

La nanoelectrónica se encarga de estudiar el diseño, fabricación, medición, operación y optimización de materiales, dispositivos y <u>sistemas electrónicos</u> (Cl's) muy avanzados y con dimensiones muy pequeñas.

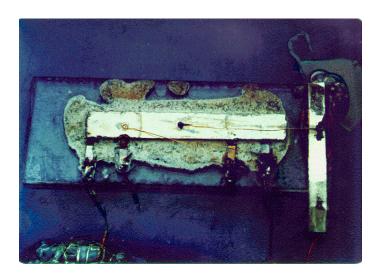
Actualmente, la electrónica se ha orientado a la combinación de sistemas tipo MEMS junto con la electrónica de procesamiento o lectura en un mismo chip de silicio.

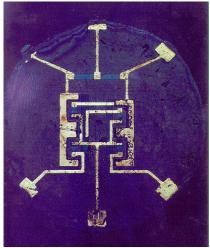


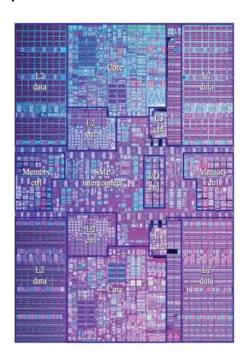
Year	Semiconductor Device ^a	Author(s)/Inventor(s)	Ref.
1874	Metal-semiconductor contact ^b	Braun	5
1907	Light emitting diode ^b	Round	6
1947	Bipolar transistor	Bardeen, Brattain, and Shockley	7
1949	p-n junction ^b	Shockley	8
1952	Thyristor	Ebers	9
1954	Solar cell ^b	Chapin, Fuller, and Pearson	10
1957	Heterojunction bipolar transistor	Kroemer	11
1958	Tunnel diode ^b	Esaki	12
1960	MOSFET	Kahng and Atalla	13
1962	Laser ^b	Hall et al	15
1963	Heterostructure laser ^b	Kroemer, Alferov and Kazarinov	16,1
1963	Transferred-electron diode ^b	Gunn	18
1965	IMPATT diode ^b	Johnston, DeLoach, and Cohen	19

TABLE 1	(continued)		
Year	Semiconductor Device ^a	Author(s)/Inventor(s)	Ref.
1966	MESFET	Mead	20
1967	Nonvolatile semiconductor memory	Kahng and Sze	21
1970	Charge-coupled device	Boyle and Smith	23
1974	Resonant tunneling diodeb	Chang, Esaki, and Tsu	24
1980	MODFET	Mimura et al.	25
1994	Room-temperature single-electron memory cell	Yano et al.	22
2001	20 nm MOSFET	Chau	14

En Diciembre de 1947, tres físicos norteamericanos John Bardeen, Walter Brattain y William Shockley inventarían el bloque fundamental de la electrónica moderna: el primer transistor.

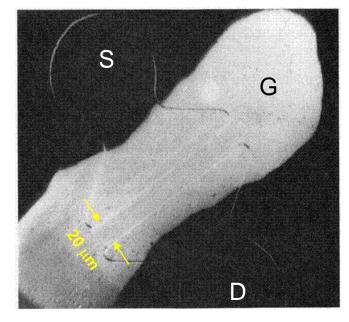


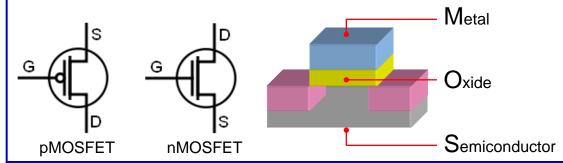

Year	Semiconductor Device ^a	Author(s)/Inventor(s)	Ref.
1874	Metal-semiconductor contact ^b	Braun	5
1907	Light emitting diode ^b	Round	6
1947	Bipolar transistor	Bardeen, Brattain, and Shockley	7
1949	p– n junction ^b	Shockley	8
1952	Thyristor	Ebers	9
1954	Solar cell ^b	Chapin, Fuller, and Pearson	10
1957	Heterojunction bipolar transistor	Kroemer	11
1958	Tunnel diode ^b	Esaki	12
1960	MOSFET	Kahng and Atalla	13
1962	Laser ^b	Hall et al	15
1963	Heterostructure laser ^b	Kroemer, Alferov and Kazarinov	16,17
1963	Transferred-electron diodeb	Gunn	18
1965	IMPATT diode ^b	Johnston, DeLoach, and Cohen	19


TABLE 1	(continued)		
Year	Semiconductor Device ^a	Author(s)/Inventor(s)	Ref.
1966	MESFET	Mead	20
1967	Nonvolatile semiconductor memory	Kahng and Sze	21
1970	Charge-coupled device	Boyle and Smith	23
1974	Resonant tunneling diode ^b	Chang, Esaki, and Tsu	24
1980	MODFET	Mimura et al.	25
1994	Room-temperature single-electron memory cell	Yano et al.	22
2001	20 nm MOSFET	Chau	14

Invención del circuito integrado

En 1958, Jack Kilby y Robert Noyce demostraron que era posible integrar e interconectar varios dispositivos semiconductores sobre un mismo substrato con lo que nace el CI.

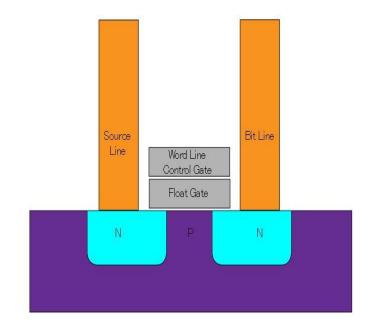


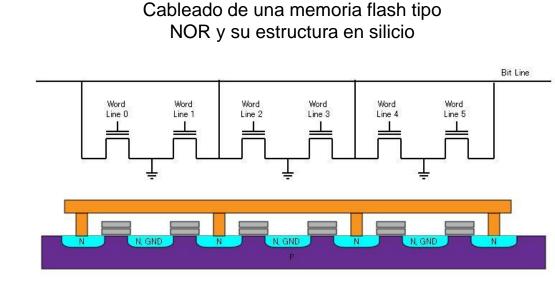

Kilby, Noyce, Hoerni

Year	Semiconductor Device ^a	Author(s)/Inventor(s)	Ref.
1874	Metal-semiconductor contact ^b	Braun	5
1907	Light emitting diode ^b	Round	6
1947	Bipolar transistor	Bardeen, Brattain, and Shockley	7
1949	p– n junction ^b	Shockley	8
1952	Thyristor	Ebers	9
1954	Solar cell ^b	Chapin, Fuller, and Pearson	10
1957	Heterojunction bipolar transistor	Kroemer	11
1958	Tunnel diode ^b	Esaki	12
1960	MOSFET	Kahng and Atalla	13
1962	Laser ^b	Hall et al	15
1963	Heterostructure laser ^b	Kroemer, Alferov and Kazarinov	16,1
1963	Transferred-electron diode ^b	Gunn	18
1965	IMPATT diode ^b	Johnston, DeLoach, and Cohen	19

TABLE 1 Year	(continued)			
	Semiconductor Device ^a	Author(s)/Inventor(s)	Ref.	
1966	MESFET	Mead	20	
1967	Nonvolatile semiconductor memory	Kahng and Sze	21	
1970	Charge-coupled device	Boyle and Smith	23	
1974	Resonant tunneling diode ^b	Chang, Esaki, and Tsu	24	
1980	MODFET	Mimura et al.	25	
1994	Room-temperature single-electron memory cell	Yano et al.	22	
2001	20 nm MOSFET	Chau	14	

En 1960, Kahng y Atalla inventarían el que sería el dispositivo electrónico mas importante para el diseño y fabricación de circuitos integrados avanzados: el transistor tipo MOSFET.

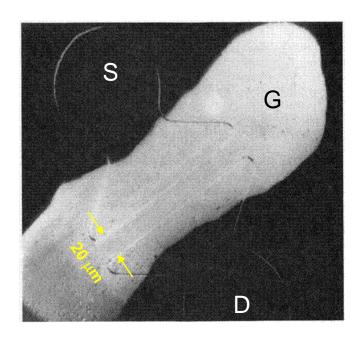


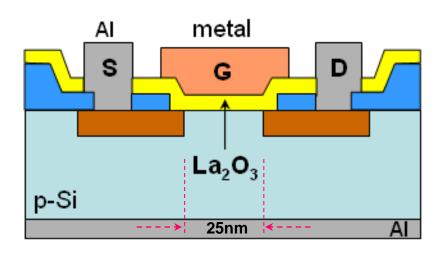


Year	Semiconductor Device ^a	Author(s)/Inventor(s)	Ref.
1874	Metal-semiconductor contact ^b	Braun	5
1907	Light emitting diode ^b	Round	6
1947	Bipolar transistor	Bardeen, Brattain, and Shockley	7
1949	p– n junction ^b	Shockley	8
1952	Thyristor	Ebers	9
1954	Solar cell ^b	Chapin, Fuller, and Pearson	10
1957	Heterojunction bipolar transistor	Kroemer	11
1958	Tunnel diode ^b	Esaki	12
1960	MOSFET	Kahng and Atalla	13
1962	Laser ^b	Hall et al	15
1963	Heterostructure laser ^b	Kroemer, Alferov and Kazarinov	16,1
1963	Transferred-electron diode ^b	Gunn	18
1965	IMPATT diode ^b	Johnston, DeLoach, and Cohen	19

TABLE 1	(continued)		
Year	Semiconductor Device ^a	Author(s)/Inventor(s)	Ref.
1966	MESFET	Mead	20
1967	Nonvolatile semiconductor memory	Kahng and Sze	21
1970	Charge-coupled device	Boyle and Smith	23
1974	Resonant tunneling diodeb	Chang, Esaki, and Tsu	24
1980	MODFET	Mimura et al.	25
1994	Room-temperature single-electron memory cell	Yano et al.	22
2001	20 nm MOSFET	Chau	14

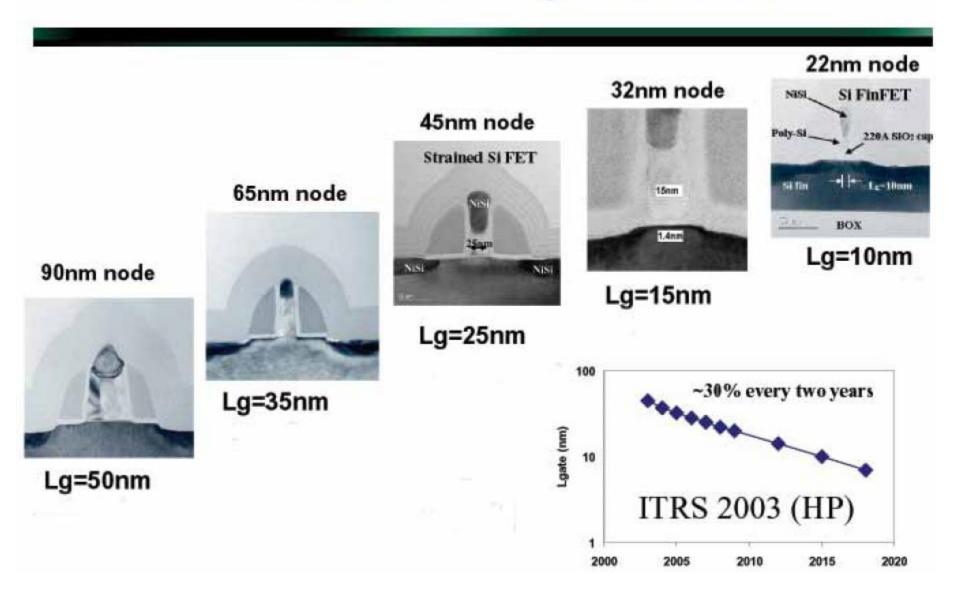
Las memorias tipo NVSM permitieron expandir la función de los sistemas electrónicos al incorporar elementos de memoria durante su operación para almacenar la información (0 1).





Year	Semiconductor Device ^a	Author(s)/Inventor(s)	Ref.
1874	Metal-semiconductor contact ^b	Braun	5
1907	Light emitting diode ^b	Round	6
1947	Bipolar transistor	Bardeen, Brattain, and Shockley	7
1949	p– n junction ^b	Shockley	8
1952	Thyristor	Ebers	9
1954	Solar cell ^b	Chapin, Fuller, and Pearson	10
1957	Heterojunction bipolar transistor	Kroemer	11
1958	Tunnel diode ^b	Esaki	12
1960	MOSFET	Kahng and Atalla	13
1962	Laser ^b	Hall et al	15
1963	Heterostructure laser ^b	Kroemer, Alferov and Kazarinov	16,17
1963	Transferred-electron diode ^b	Gunn	18
1965	IMPATT diode ^b	Johnston, DeLoach, and Cohen	19

TABLE 1	(continued)		
Year	Semiconductor Device ^a	Author(s)/Inventor(s)	Ref.
1966	MESFET	Mead	20
1967	Nonvolatile semiconductor memory	Kahng and Sze	21
1970	Charge-coupled device	Boyle and Smith	23
1974	Resonant tunneling diode ^b	Chang, Esaki, and Tsu	24
1980	MODFET	Mimura et al.	25
1994	Room-temperature single-electron memory cell	Yano et al.	22
2001	20 nm MOSFET	Chau	14
2007	Metal gate/high-k MOSFET	Intel team	

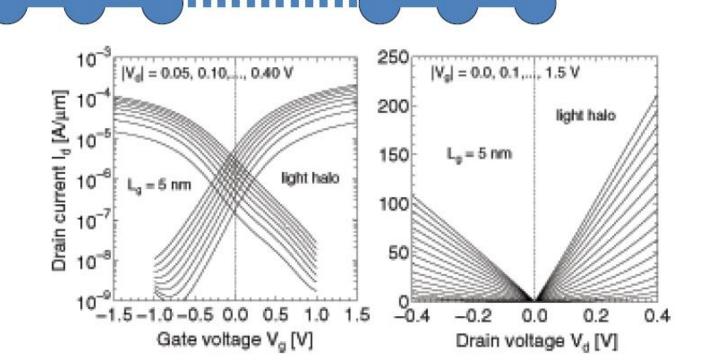

En enero del 2007, Intel ofrece al mercado microprocesadores basados en MOSFET (Lg=45 nm) reemplazando para ello los tres materiales convencionales que formaban al transistor.

El escalamiento geométrico de los transistores continúa

Transistor Scaling Continues

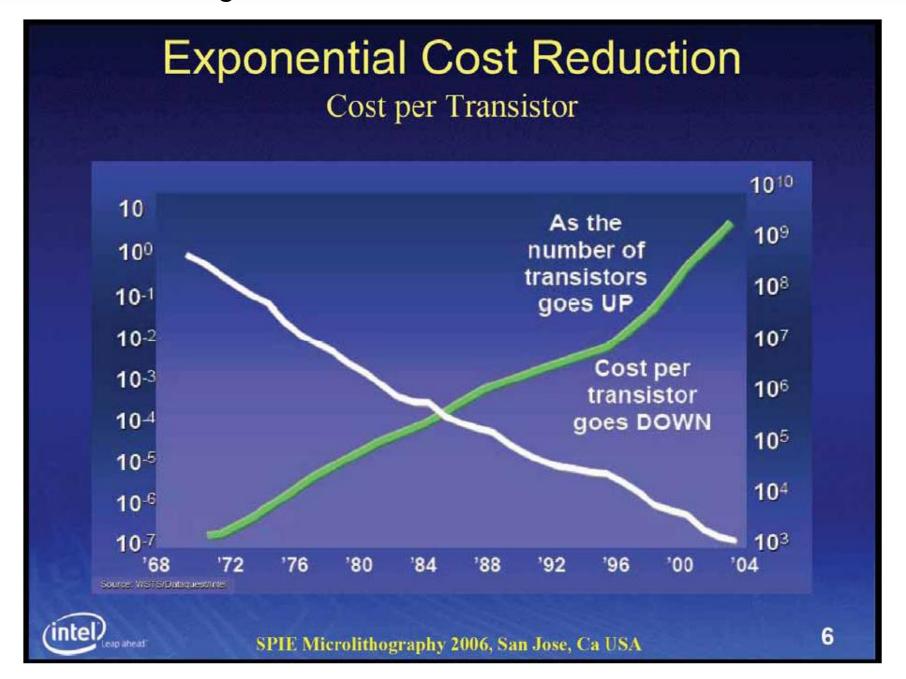
El escalamiento geométrico de los transistores continúa

5 nm gate length CMOS


Is a Real Nano Device!!

The bond length in Si-Si is: ~ 250 pm

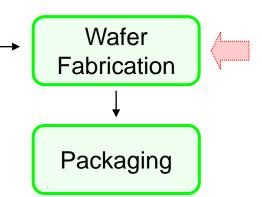
Length of 18 Si atoms


H. Wakabayashi et.al, NEC

IEDM, 2003

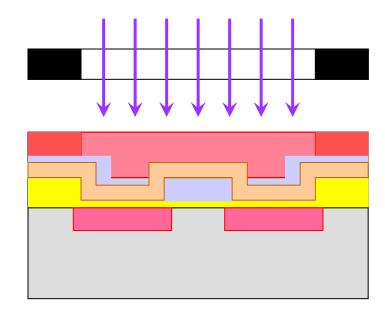
75 nm

El escalamiento geométrico de los transistores continúa


Material Preparation

→

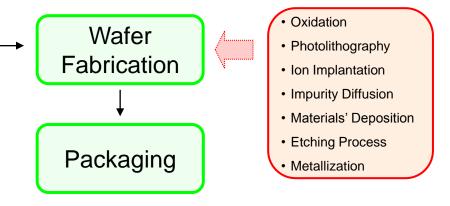
Crystal Growth and Wafer preparation


Key Semiconductor Technologies

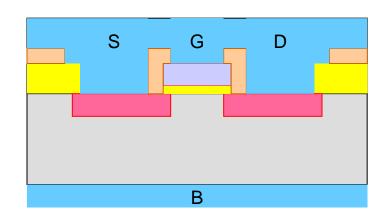
Year	Technology	Author(s)
1918	Czochralski crystal growth	Czochralski
1952	III-V Compounds	Welker
1952	Diffusion	Pfann
1957	Lithographic Photoresist	Andrus
1957	Oxide Masking	Frosch and Derrick
1957	Epitaxial CVD Growth	Sheftal, Kokorish, Krasilov
1958	Ion Implantation	Shockley
1959	Hybrid Integrated Circuit	Kilby
1959	Monolithic Integrated Circuit	Noyce
1960	Planar Process	Hoerni
1963	CMOS	Wanlass and Sah
1967	DRAM	Dennard
1969	Poly-silicon self-aligned gate	Kerwin, Klein, Sarace
1969	MOCVD	Manasevit, Simpson
1971	Dry Etching	Irving, Lemons, Bobos
1971	Molecular Beam Epitaxy	Cho
1971	Microprocessor (4004)	Hoff et al
1982	Trench Isolation	Rung, Momose, Nagakubo
1989	Chemical Mechanical Polishing	Davari et al
1993	Copper Interconnect	Paraszczack et al
2007	Metal/High-k Integration	Bohr, Chau, Ghani, Mistry

- Oxidation
- Photolithography
- Ion Implantation
- Impurity Diffusion
- · Materials' Deposition
- Etching Process
- Metallization

Major Fabrication Steps in MOS Process Flow

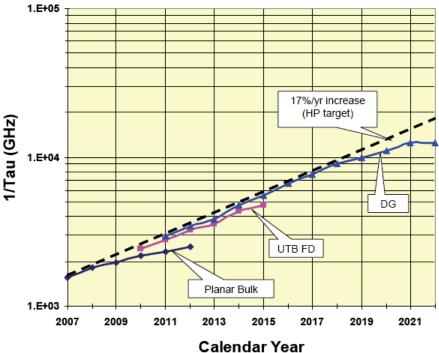

Material Preparation

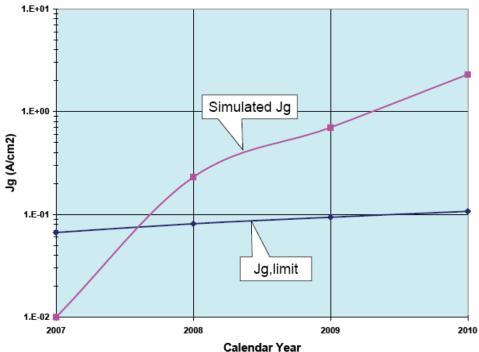
→


Crystal Growth and Wafer preparation

Key Semiconductor Technologies

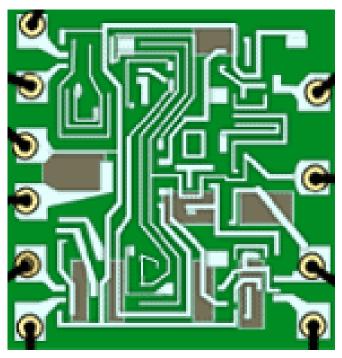
Year	Technology	Author(s)
1918	Czochralski crystal growth	Czochralski
1952	III-V Compounds	Welker
1952	Diffusion	Pfann
1957	Lithographic Photoresist	Andrus
1957	Oxide Masking	Frosch and Derrick
1957	Epitaxial CVD Growth	Sheftal, Kokorish, Krasilov
1958	Ion Implantation	Shockley
1959	Hybrid Integrated Circuit	Kilby
1959	Monolithic Integrated Circuit	Noyce
1960	Planar Process	Hoerni
1963	CMOS	Wanlass and Sah
1967	DRAM	Dennard
1969	Poly-silicon self-aligned gate	Kerwin, Klein, Sarace
1969	MOCVD	Manasevit, Simpson
1971	Dry Etching	Irving, Lemons, Bobos
1971	Molecular Beam Epitaxy	Cho
1971	Microprocessor (4004)	Hoff et al
1982	Trench Isolation	Rung, Momose, Nagakubo
1989	Chemical Mechanical Polishing	Davari et al
1993	Copper Interconnect	Paraszczack et al
	•••	
2007	Metal/High-k Integration	Bohr, Chau, Ghani, Mistry

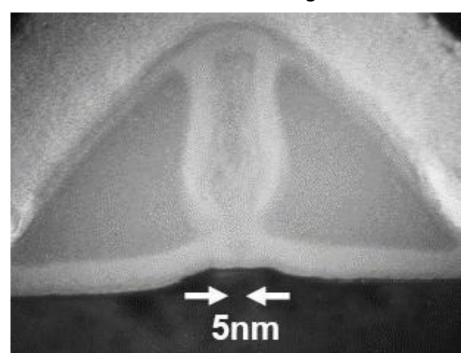

Major Fabrication Steps in MOS Process Flow



Low Standby Power Technology

http://www.itrs.net/Links/2007ITRS/Home2007.htm


Parameter	2007	2008	2009	2010	2011	2012	2013	2014	2015	2022
Lg [nm]	45	37	32	28	25	22	20	18	16	
EOT [Å]	19	16	15	14	13	12	11	11	10	Novel
Jg [A/cm ²]	6.67e-2	8.11e-2	9.38e-2	1.07e-1	1.20e-1	1.36e-1	1.50e-1	1.67e-1	1.76e-1	
Vdd [V]	1.1	1.1	1	1	1	1	0.95	0.9	0.85	Non-CMOS
Vth [mV]	534	567	535	535	544	552	547	401	404	Devices
$\mu_{ratio} = \mu_{enh}/\mu_{ref}$	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	and/or Circuit
Rsd $[\Omega \cdot \mu m]$	180	180	180	180	180	180	180	180	160	Architectures
1/τ [GHz]	493	575	610	685	741	806	813	1266	1449	Atomicolares
1/τ [GHz]*HP	1563	1818	1961	2174	2326	2500	3571	4348	4762	



La nanoelectrónica se encarga de estudiar el diseño, fabricación, medición, operación y optimización de materiales, dispositivos y sistemas electrónicos (Cl's) muy avanzados y con dimensiones muy pequeñas.

tarjeta de circuito impreso

transistor MOS de 5nm de longitud de canal

El desarrollo vertiginoso de las aplicaciones electrónicas (comunicaciones inalámbricas, computadoras portátiles, videojuegos de alto desempeño, sistemas militares de vigilancia, etc) ha sido posible gracias al empleo de nuevas tecnologías que permiten diseñar, fabricar, medir, operar y optimizar materiales, dispositivos y sistemas electrónicos muy avanzados y con dimensiones muy pequeñas. Lo anterior se traduce en máquinas más pequeñas (portátiles), mas rápidas, con un menor consumo de potencia, mas inteligentes, mas económicas y consecuentemente, con un cada vez mayor impacto en la sociedad mundial que las consume.

Actualmente, en la coordinación de electrónica del INAOE se realizan actividades de investigación, desarrollo tecnológico y formación de recursos humanos en diferentes áreas científicas las cuáles tienen relación directa con las actividades del proyecto LNN.

4 Coordinaciones
Astrofísica
Óptica

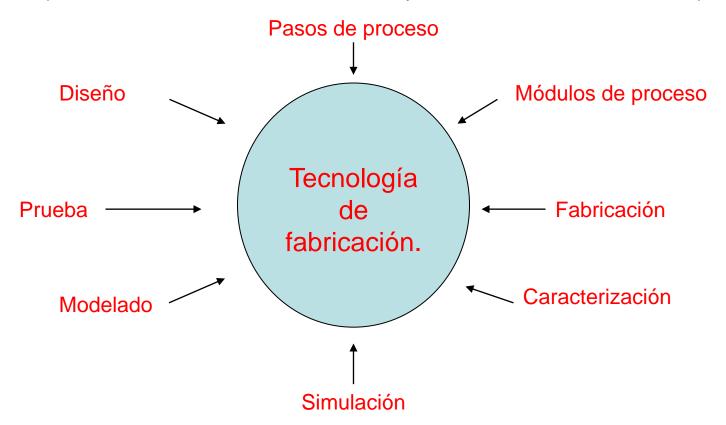
Electrónica

C. Computacionales

- Dispositivos y materiales (física, modelado, diseño, fabricación)
- Tecnología de fabricación de dispositivos y CI en silicio
- Diseño de circuitos integrados (digital, analog, mixed)
- Desarrollo de CAD
- Verificación de circuitos y sistemas electrónicos VLSI
- Instrumentación Electrónica
- Sistemas de Comunicaciones

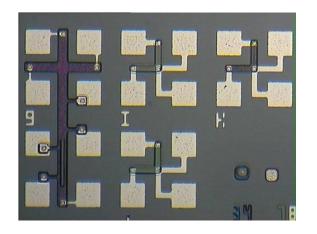
Dentro de la coordinación de electrónica, el grupo de microelectrónica ofrece diferentes líneas de investigación con aplicación directa al proyecto LNN. Adicionalmente, este grupo provee de la infraestructura necesaria para operar equipo especializado en la fabricación de materiales, dispositivos y sistemas electrónicos básicos para el desarrollo de una electrónica nacional.

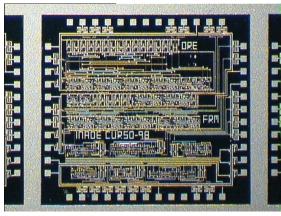
Grupo de microelectrónica

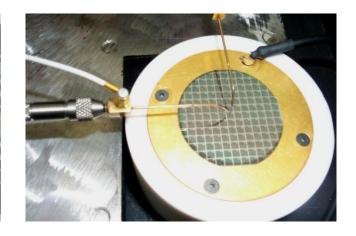

16 investigadores nacionales y extranjeros Infraestructura para la fabricación de Cl's Colaboración con academia e industria

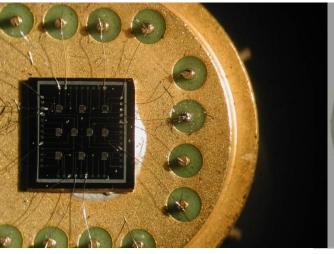
Lineas de investigación del grupo de microelectrónica

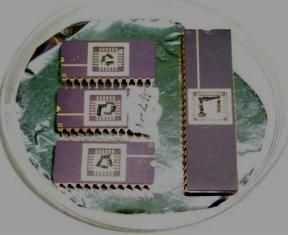
Dispositivos Semiconductores (MOSFET, TFT, etc)
Fabricación y Caracterización de Sensores con Base en el Silicio
Materiales Nanoestructurados (high-index Si, SiGe, dieléctricos, metales)
MEMS, NEMS
Crioelectrónica
Dispositivos optoelectrónicos, celdas solares, bolómetros, etc.

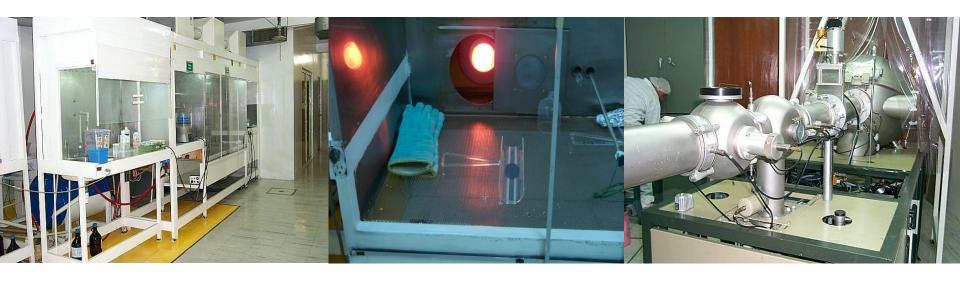

A manera de antecedente, la <u>investigación y desarrollo</u> de la electrónica en México se comienza con la creación del <u>Laboratorio de Microelectrónica</u> (1974) en el INAOE. Este laboratorio cuenta con las facilidades y equipos necesarios para la fabricación de circuitos integrados y dispositivos semiconductores a partir de obleas de silicio.


Ambiente multidisciplinario para el desarrollo de microelectrónica (Electrónica, Física, Química, C. Computación, C. De Materiales, etc)




Circuitos Integrados con la Tecnología CMOS.


Con la puesta en marcha del Laboratorio de Microelectrónica, se han formado recursos humanos altamente especializados en maestrías y doctorados que en la mayoría de los casos, proveen de soluciones tecnológicas en electrónica al país.

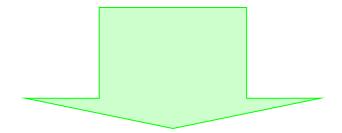


Obviamente, el desarrollo de estos productos de alta tecnología no sería posible sin la presencia de dos recursos sumamente valiosos: los <u>recursos materiales y humanos</u>.

Obviamente, el desarrollo de estos productos de alta tecnología no sería posible sin la presencia de dos recursos sumamente valiosos: los <u>recursos materiales y humanos</u>.

Dados los excelentes resultados en investigación y desarrollo tecnológicos ofrecidos por el Laboratorio de Microelectrónica, se comienza con la instalación del LNN como un paso natural hacia la actualización de las técnicas de fabricación de materiales, dispositivos y sistemas electrónicos que como vimos, son muy avanzados actualmente.

El proyecto nacional LNN, comienza con la Iniciativa "Latinchip" de Motorola, la cual realiza la donación de una línea completa para fabricación de CI's con tecnología BiCMOS.



- 2 Barrel Asher Branson L2101
- 2 Wafer Stepper Canon FPA2000it
- 1 Difusion Furnace Thermco
- 1 High Current Implanter Varian 80XP
- 1 Medium Current Implanter Varian 300XP
- 8 Stacks Horizontal Furnaces MRL C440

- 2 Oxide Etcher AME 8110
- 2 Metal Etcher AME 8330
- 2 Photoresist Coater SSI 150,1A
- 2 Photoresist Developer SSI 150,1A
- 2 Metal Deposition Varian 3180
- 1 Stress gauge Tencor M Gauge

Objetivo General del LNN

Contar con un laboratorio de clase mundial para el desarrollo de una tecnología nacional de <u>fabricación de dispositivos, circuitos integrados y MEMS avanzados</u>, que esté por delante de las necesidades de la industria, mediante la incorporación de materiales nanoestructurados a la tecnología del silicio.

- Formación de recursos humanos altamente calificados, con una visión moderna y global de la nanoelectrónica.
- Desarrollo de una industria electrónica nacional competitiva y mejora del entorno Universidad-Industria-Gobierno mediante proyectos auto-sustentables en el mediano a largo plazo.

Las dimensiones del equipo (donado en su gran mayoría por Motorola y otra parte comprado institucionalmente por INAOE) y del edificio especializado son tales, que se requiere instalar el LNN en 2 fases: LNN1 y LNN2.

LNN1 se transforma en Laboratorio para la Inovación de MEMS (LIMEMS)

- 800 m² lab area
- 550 m² class 10-100, 150 m² class 10
- 6" wafer capabilities
- 0.8 µm BICMOS process