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Abstract The accuracy of a model to forecast a time series diminishes as the prediction
horizon increases, in particular when the prediction is carried out recursively. Such decay is
faster when the model is built using data generated by highly dynamic or chaotic systems.
This paper presents a topology and training scheme for a novel artificial neural network,
named “Hybrid-connected Complex Neural Network” (HCNN), which is able to capture the
dynamics embedded in chaotic time series and to predict long horizons of such series. HCNN
is composed of small recurrent neural networks, inserted in a structure made of feed-forward
and recurrent connections and trained in several stages using the algorithm back-propagation
through time (BPTT). In experiments using a Mackey-Glass time series and an electrocardio-
gram (ECG) as training signals, HCNN was able to output stable chaotic signals, oscillating
for periods as long as four times the size of the training signals. The largest local Lyapunov
Exponent (LE) of predicted signals was positive (an evidence of chaos), and similar to the
LE calculated over the training signals. The magnitudes of peaks in the ECG signal were
not accurately predicted, but the predicted signal was similar to the ECG in the rest of its
structure.
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1 Introduction

Modeling of nonlinear and chaotic systems constructed from observed data has become an
important issue in the last years [1,2]. Frequently, such data comes from uniform sampling
of a continuous signal s(t), and the model is used to predict one or several future values of
the time series. A time series may be periodic, aperiodic, stationary (whose statistics do not
change with time), cycle-stationary (whose statistics change in time according to a known
pattern), non-stationary (whose statistics change over time) or chaotic [3]. Chaotic signals
result from deterministic systems showing an aperiodic, long-term behavior that exhibits
sensitive dependence on initial conditions [4]. Examples of chaotic signals are electroen-
cephalograms (EEG) [5], electrocardiograms (ECGs) [3], body temperature samplings [6],
sunspot numbers [7], video traffic [8], etc.

It is well known that accurate long-term prediction for chaotic systems is limited by the
value of the largest Lyapunov Exponent (LE) of the system [9]. However, if a good recon-
structed map of the system is built, a good short-term predictor may be built and used for
long-term prediction through recursive prediction, provided that the model includes ways
to compensate for systematic errors [10]. Recursive prediction consists of calculating future
values of a series based on knowledge of past values and values calculated by the predictor
itself. Long-term predictors of chaotic series have applications in several fields, for example
medicine, economy, meteorology, geology and finances; techniques to build them include
catastrophe theory, chaos modeling and artificial neural networks [11]. Among them, Recur-
rent Neural Networks are considered one of the most powerful strategies to tackle problems
where non-stationary and complex signals play a major role [12].

Advances in the design of machine learning algorithms and increments of computational
power have allowed that a huge number of prediction problems have been tackled using
neural networks or ensembles that use them, and everyday new models appear. Next we
briefly describe some recent research related to long-term prediction using artificial neural
networks: Beliaev and Kozma [13] introduced a chaotic neural network, called K I I I . It is
composed of a multi-layer architecture with excitatory and inhibitory neurons and massive
lateral, feed-forward and delayed feedback connections between layers. They use K I I I for
multi-step time series prediction applied to the IJCNN CATS benchmark data [14]. Júnior and
Barreto [8] showed that a Nonlinear Autoregressive Model with Exogenous inputs (NARX)
network, originally proposed by Leontaritis and Billings [15], outperforms a Time Delay
Neural Network (TDNN) [16] and that a Simple Recurrent Network architecture, originally
proposed by Elman [17]. The authors applied NARX to long-term prediction of a chaotic
laser time series and to a variable bit rate (VBR) video traffic time series. Park and col-
laborators [18] introduced a wavelet-based neural network architecture, called “Multiscale
BiLinear Recurrent Neural Network” (M-BLRNN) using it for the long-term prediction of
network traffic. Cai et al. [19] built an architecture that automates the design of a recurrent
neural network through an evolutionary learning algorithm based on a particle swarm opti-
mization; they used their model to predict 100 missing values of a time series provided by
the IJCNN 2004 time series prediction competition [14]. Alarcón-Aquino and Barria [20]
used the maximal overlap discrete wavelet transform (MODWT) to train a multi-resolution
FIR Neural Network and applied it to network traffic prediction. Sapankevich and Sankar
[21] reported an excellent survey on the use of support vector machines for both short and
long-term prediction.

In this paper we present a novel topology and training scheme of a neural network, able
to forecast chaotic signals with some degree of accuracy using long-term prediction. The
scheme includes pre-processing the training signals and a particular training scheme. The net
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topology, named “Hybrid-connected Complex Neural Network1” (HCNN) which was first
presented at [22], is built using recurrent and feed-forward connections. The most important
advantage of this topology is that it is able to oscillate in a chaotic way under bounded values.
This allows HCNN to forecast a chaotic signal longer than other predictors using recursive
prediction. The neural components of HCNN are trained in several phases using the algo-
rithm “back-propagation through time” (BPTT), originally proposed by [23], and following
an implementation proposed in [24].

This paper is organized as follows: Sect. 2 presents main concepts associated to the con-
struction of embedded systems from data; Sect. 3 describes the architecture of HCNN and
its components; Sect. 4 describes the particular way in which HCNN is trained to capture
the dynamics of the system, pointing out some issues related to the implementation of the
algorithm BPTT and recursive prediction; Sect. 5 shows the results obtained by HCNN when
it was trained to predict large horizons of two signals: a time series obtained by the integration
of a Mackey Glass equation and a real ECG. Finally, Sect. 6 discusses some conclusions and
future work.

2 Main Concepts

Let s(n) be a scalar time series obtained from the uniform sampling of a continuous signal
s(t), using a sampling time τs and starting at some time t0. The state of the dynamical system
producing the signal is composed of many unknown variables that may be represented in a
state vector x(n) following the unknown rule [9]:

x (n + 1) = {F(x(n))} (1)

Another rule defines the relation among the observations and the state variables as follows:

s(n) = h(x(n)) (2)

In order to predict the future behavior of s(n), building a model approximating F(·) is
required. To do so, first it is required to create a d-dimensional state space of vectors z(n) that
is a proxy for the unknown x(n). According to Takens [25] such space can be represented as:

z(n) = [s(n), s (n − TL) , s (n − 2TL) , . . . , s (n − (d − 1) TL)] (3)

where TL is the integer time lag that makes the components of z(n) independent in a nonlinear
sense [9]; d the dimension required to unambiguously represent the trajectories of the system
in state space; d is also known as the embedding dimension.

To reconstruct this embedded state space, it is assumed that s(n) and s(n + TL), for some
integer TL , are independent samplings of the state of the nonlinear system [9]. During time
TLτs the system evolves and the unknown variables are now reflected in s (n + TL). Appro-
priate values of TL and d have to be determined to reconstruct z(·). Currently, there are several
methods to calculate both values from s(n) [1]. Abarbanel et al. [26] describe a method to
calculate TL based on finding the first zero of the auto-correlation function of s(n). They
also propose to calculate d in an iterative process involving the calculation of the correlation
function for increasing values of d , starting at one. They choose the value of d when the
correlation does not change with an increment of d. Both methods were used in this research
to calculate the values of TL and d for the experiments shown in this paper.

1 Formerly known as “Hybrid Complex Neural Network”.
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A standard procedure to determine if a measured signal comes from a chaotic system is
calculating the local LEs in the embedded space. LE are a measure of the mean ratio of contrac-
tions or expansions near the limit in a non-linear dynamical system [27]. There are as many LE
as dimensions in the system and, in a chaotic system, at least one LE is positive. Values of local
LE of an unknown dynamical system may be approximated using numerical methods. Gencay
and Dechert [28] proposed an algorithm for obtaining LEs of an unknown dynamical system,
based on a multivariate feed-forward network estimation technique. This idea was used to
design the HCNN, as described in Sect. 3.2. The algorithm developed by Wolf et al. [29]
monitors the long-term evolution of a single pair of nearby orbits of the system in order to esti-
mate the largest LE. This algorithm was used to calculate the LE in the training and predicted
signals used in the experiments reported in this paper. The algorithm attempts to approxi-
mate the local tangent space around a fiducial orbit of the system [29]. After calculating the
embedded system, the algorithm finds the nearest neighbor in the reconstructed space to the
first point in the orbit. The magnitude of the difference vector is recorded. Subsequently,
the point evolves along its trajectory a given number of steps. The magnitude of the final
separations is determined, and a contribution to the largest LE is calculated as the logarithm
of the final separation divided by the initial separation. All contributions are averaged over the
length of the time series. If the distance between neighbors becomes too large, the algorithm
abandons this point and searches for a new neighbor. Sano and Sawada [30] introduced a
method to determine the Lyapunov spectrum from a chaotic time series, based on a least-
square-error optimal estimation of a linear flow map of the tangent space from the data sets.
Rosenstein et al. [31] proposed an algorithmic approach for finding the largest LE based on
the reconstruction of the attractor dynamics from the time series, with an estimation of lag
and mean period using the Fast Fourier Transform. LE are estimated using the mean rate of
nearest-neighbor separation of each point on the trajectory. Darbyshire and Broomhead [32]
presented an approach for obtaining the spectrum of LE based on least square and total least
square methods applied to the estimation of tangent maps from time series data.

The HCNN implements an approximation of map F(·) (Eq. 1), which is built with infor-
mation given by the embedded state space z(n) (Eq. 3) obtained from the observed time
series s(n). After being trained, HCNN represents a system with a maximum LE similar to
the one calculated over the training time series s(n). Next we present details of the design
and implementation of HCNN.

3 Architecture of HCNN

Hybrid-connected Complex Neural Network is a combination of components connected in
recurrent and feed-forward fashions; it receives as input z(n) and output last variable in
z (n + 1), that is, zd (n + 1). When HCNN is used to predict long horizons, it receives inputs
calculated by the network itself. HCNN works as a function approximator whose architecture
aims to represent two main concepts: (1) the construction of a function aided by a non-lin-
ear combination of sinusoidal functions and (2) the modeling of a dynamical system with
invariant characteristics similar to the ones found in the unknown system producing the train-
ing time series. To represent the first concept, the HCNN uses small fully connected neural
networks able to produce discrete samplings of sine signals autonomously, that is, with no
external inputs except for their initial conditions [33]. These small networks are inspired
in the work of Logar [34]. The second concept is inherent to the ability of multi-layer per-
ceptrons, described by Gencay and Dechert [28], to create a function with a maximum LE
similar to the one calculated in the training time series.
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The dynamics of each neuron in a recurrent neural network can be defined as [24]:

dyi

dt
= −yi + σ (xi ) + Ii (4)

for all neurons in the network, where

xi =
∑

j

w j i y j (5)

represents the input to neuron i coming from all neurons connecting to it; Ii is an external
input to neuron i ; w j i is the weight connecting neuron i to neuron j ; σ (x) is an activation
function, which can be a sigmoid function or a linear function, depending upon the layer
where the neuron is located.

Hybrid-connected Complex Neural Network contains recurrent and feed-forward con-
nections, so, in order to use Eq. 4, some connections w j i are set to zero to represent con-
nections that are not required in the structure of the network. To implement HCNN in a
digital computer, we approximate Eq. 4 using a first-order difference equation, as proposed
by Pearlmutter [24]:

ỹi (n + 1) = (1 − μ) ỹi (n) + μσi (x̃i (n)) + μIi (n) (6)

for all networks in HCNN and where μ is the time step; x̃i (n) = ∑
j w j i ỹ j (n − 1);

Ii (n) =
{

zi (n) if i is a neutron in the input layer, that is i ≤ d, the embedding dimension;
0 otherwise

zi (n) represents each variable of the embedded state, at iteration n, as defined by Eq. 3;

σi (x) =
{

x if i is the neuron in output layer,
tanh(αx) otherwise

α is a scaling factor, experimentally adjusted according to magnitudes of training data.
Hybrid-connected Complex Neural Network contains L neurons arranged in four layers.

Neurons in the input layer receive external inputs Ii (n), corresponding to zi (n). The output
layer contains only one neuron. The outputs of neurons in the input layer feed neurons in the
hidden layer. There is also a layer made of several 3-node, fully connected recurrent networks
called harmonic generators (HG), which are also connected to the hidden layer. Figure 1
shows an example of HCNN that contains five inputs and seven HGs.

The role of each part of HCNN is: HGs give information to the network about the frequency
components of the time series; the hidden layer captures information about the nonlinearity
in the system, and it allows internal representation of the dynamics of the model; the last
layer allows an approximation of the function generating the network’s output ỹL(n + 1).
The activation function of the unique neuron at the output layer is a linear function, in order
to allow the HCNN to approximate any arbitrary value.

3.1 Harmonic Generators

An HG is a three-node, fully connected recurrent neural network that, once trained, is able
to reproduce in each neuron, discrete values of a sinusoidal function. This is achieved auton-
omously, that is, without any external input to the HG, except for the initial values of its
neurons ỹi (n = 0). An HG is trained using one cycle of a discrete sine function with any
frequency and amplitude. The output of an HG is defined as the output of one of its neurons,
arbitrarily selected. Figure 2 shows the structure of an HG.
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z5(n+1)

z5(n)            z4(n)               z3(n)            z2(n)           z1(n) 

Fig. 1 HCNN with seven HGs and five inputs

Sine function 

3-node, fully 
connected NN

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145 154 163 172 181 190 199 208 217 226 235 244

Initial 
Conditions 

Fig. 2 A HG [33]

The HCNN includes r HGs, each trained to learn different discrete sinusoidal functions
representing frequency components of the time series to be predicted. Each HG is trained
with a time series hi (n) defined as:

hi (n) = Asin

(
2π iϕo

N

)
n n = 1, . . . , Nhi /ϕo; i = 1, . . . , r (7)

where ϕo is the fundamental frequency obtained from the HCNN training series s(n); Nhi is
the number of samples of hi (n); A is the magnitude of the sine function.

An amplitude A = 0.8 was determined by experimentation to be used during the training
stage. This value allowed the sigmoidal function to keep the output within an adequate range,
which supported the network convergence.

The fundamental frequency ϕo was obtained by spectral analysis of the training series s(n),
using the component with largest magnitude obtained from its Discrete Fourier Transform:

S (k) =
Ns−1∑

n=0

s(n)e− j2πkn/Ns (8)

where Ns is the number of samplings in s(n).
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Fig. 3 Example of the output of neuron 3 of a trained HG

Figure 3 shows a plot of the first 200 discrete sine values of a training series hi (n) and
the values autonomously generated by an HG in its node number 3. After being trained, the
weights of this HG were:

wi j = {0.9064, 2.0437,−0.1731, 2.1340, 4.3370,−0.4494, 1.0664, 2.2310, 3.8437};

initial values for each neuron were: ỹi (n = 0) = {0.3449,−0.7061, 0.0} for i, j ∈ {1, 2, 3};
σ(x) = tanh(0.5x) and μ = 0.1. This HG was trained using one cycle of a discrete sine
function with ϕo = 1.4 and N = 90. Note that expected and predicted signals are almost
equal, even in the segment corresponding to testing (points 91–180).

3.2 Representation of the Dynamical Invariants

After training, the HCNN is aimed to be a dynamical system with invariant characteristics
similar to the ones found in the unknown system producing the training time series. A way to
achieve this is to make the HCNN represent a function whose local LE are similar in magni-
tude to those found in the training time series. To do so, a multi-layer perceptron architecture
(MLP) is built into the HCNN. It has been proved that a MLP with d inputs and one hidden
layer approximates a function with d LEs, equal to the LEs of a dynamical system embedded
in a time series used to train such MLP [28]; the d corresponds to the embedding dimension
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of the system. Therefore, HCNN implements a function f :

z̃d(n + 1) = f (z(n)). (9)

4 Training and Prediction Scheme of HCNN

There are three possible stages in a prediction system based on HCNN:

1. Preprocessing. Here, the embedding dimension d , time lag TL and fundamental fre-
quency ϕo of training series s(n) are calculated using the algorithms proposed by
Abarbanel et al. [26]. After that {z(n)} (Eq. 3) and rdiscrete sine functions hi (n) (Eq. 7)
are built. The value of r is set by experimentation.

2. Training. All trainings are carried out using the algorithm back-propagation through time
(BPTT) as implemented in [24] (see Sect. 4.1). HCNN is treated as a fully connected
neural network where some connections are represented with wi j = 0 to implement the
feed-forward parts. Training is divided in three steps:

2.1 A total of rHGs are trained to output their corresponding hi (n) discrete sine
functions. Initial conditions of each neuron yi (n = 0) , i = 1..3 are generated
randomly. As described in Sect. 3.1, an HG requires no input signals after it has
been trained, except for the initial conditions of each neuron.

2.2 Next, weights of the rHGs are embedded into the HCNN as the initial weight
values of this part of the architecture; the rest of the weights in HCNN are ran-
domly generated. After that, the feed-forward part of the HCNN is trained for a
number of epochs (hidden and output layer), keeping constant the weights corre-
sponding to HGs. For neurons that are not part of an HG, their initial conditions
ỹi (n = 0) are randomly generated at the beginning of this step. The yi (0) values
corresponding to neurons in HGs, are provided by step 2.1.

2.3 Last, the HCNN is trained as a fully connected network for a number of epochs
or until a desired Mean Square Error (MSE) (Eq. 11) is reached, or a maximum
number of sweeps in the training series is executed (see Sect. 4.1).

3. Prediction. Once trained, HCNN is ready to predict as many futures values as desired
using recursive prediction. Each predicted value is stored in a right-shift register that
feeds the inputs to be used for the prediction of the next point (see Fig. 4). Initially, the
prediction stage requires as inputs the initial condition of each node yi (n = 0) in the
HCNN and z(n = 0). After n > d the right-shift register contains only approximations
of z(n) and the predictor autonomously calculates as many values as desired.

4.1 Training Algorithm

Back-propagation through time extends general back-propagation algorithm so that it applies
to dynamic systems [35]. BPTT looks to minimize the MSE obtained over a period of time,
among real and desired values of output neurons. HCNN has only one output neuron, then
MSE is defined as:

MSEHC = 1

Nz

Nz∑

j=1

(ỹl( j) − zd( j + 1))2 (10)
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Fig. 4 Long-term prediction using HCNN

where Nz is the size of training set {z (·)}; ỹl( j) is the output of last neuron in the HCNN,
the only neuron in the output layer (see Fig. 1), obtained at iteration j ; zd( j + 1) is the last
variable at embedded system z(·) at iteration j + 1; it corresponds to the desired value to be
predicted; d is the embedding dimension.

For the case of each HG, MSE is defined as:

MSEHG = 1

Nhi

Nhi∑

j=1

(ỹ3( j) − hi ( j))2 (11)

where Nhi is the number of samples in hi (n); ỹ3( j) is the output of the third neuron in the HG.
Back-propagation through time modifies weights sweeping the training set as many times

as needed, until a desired MSE is reached, or a maximum number of sweeps is executed.
According to the derivations proposed by Pearlmutter [24], weights are updated on line,
using:

�wi j = −η

Nz∑

k=1

ỹi (k) σ ′ (x̃ j (k)
)

d j (k) μ (12)

where Nz is the size of training set {z (·)}; η is a learning coefficient, experimentally defined;
μ is the time step as in Eq. 6; x̃ j (k) = ∑

p wpj ỹp (k − 1), p ε {neurons connecting to
neuron j};

di (k) = di (k + 1) − μ(di (k + 1) − ei (k + 1) −
∑

j

wi jσ
′ (x̃ j (k + 1)

)
d j (k + 1) ; (13)

di (k) is calculated backwards over training data in each sweep, before weights are modified,

ei (k) =
⎧
⎨

⎩

ỹi (k) − zd (k + 1) if i is the last neuron in HCNN;
ỹ3 (k) − hg (k) if i is an output neuron in an HG;
0 if k is not an output neuron either in HCNN or HG.

(14)
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4.2 Recursive Prediction Using HCNN

To predict a trajectory of arbitrary length, HCNN requires the first state vector z(0) and the
initial conditions of each neuron in the network, that is ỹi (0), which were randomly generated
at the beginning of training. Each output of the network at step n corresponds to zd(n + 1).
This value is stored in a right-shift register that feeds inputs to be used for next prediction
(see Fig. 4). Initial values in the right-shift register are the d values of z(0). Each ỹi (n + 1)

is calculated according to Eq. 6; external inputs are:

Ii (n) =
{

right-shift register(i), if i is an input node;
0 otherwise.

(15)

5 Results

Hybrid-connected Complex Neural Network may be used with any kind of non-linear time
series, but, given its architecture, it is better-suited for time series that present a pseudo-
cyclic behavior. Here we present the results obtained for long-term prediction of time series
generated using a Mackey-Glass function and a filtered real ECG.

The performance of HCNN was measured using:

(1) MSE, as defined in Eq. 10,
(2) A comparison of the magnitude of the maximum local LE of the output signal with the

maximum local LE of the training signal. In all cases the maximum LE was calculated
using the algorithm proposed by Wolf et al. [29].

Next we present the results obtained with two time series known to be chaotic: Mackey-Glass
data and an ECG of a healthy patient.

5.1 Long-Term Prediction of a Mackey-Glass Time Series

The Mackey-Glass equation [6], widely used to model biological rhythms, is defined as:

dx(t)

dt
= ax(t − τ)

1 + x10(t − τ)
− bx(t) (16)

This equation results in chaotic behavior for a = 0.2, b = 0.1 and τ = 17. Figure 5 shows
a normalized numerical solution of the Mackey-Glass equation using these parameters.

After pre-processing this time series as described in Sect. 4, a time lag TL = 1 and an
embedded dimension d = 5 were identified. An HCNN with seven HGs was trained to model
this series using 205 points for training. This HCNN has five input neurons, 21 neurons dis-
tributed at the seven HGs, seven hidden neurons and one output neuron. Appendix A shows
the connection matrix of all neurons in the network. HCNN was trained for 31,000 epochs; the
first 20,000 epochs trained the feed-forward connections and the last 11,000 epochs trained
all connections. The training was executed with μ = 0.5, η = 4.8E−5, α = 0.3. The results
of HCNN for the first 205 predicted values are shown in Fig. 6, compared to training data. The
MSE obtained was 0.0038. The predicted series of the same size obtained by the recursive
method (black solid line) had a maximum LE of 0.0374±0.006. This positive LE shows that
the HCNN was able to capture the chaotic dynamics found in the training signal, which has a
maximum LE of 0.0334±0.003. Notice that maximum LE of training and predicted signals
are similar. Figure 7 shows the results of long-term prediction for a horizon of 820 points
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Fig. 5 A solution of Mackey-Glass equation for a = 0.2, b = 0.1 and τ = 17

Fig. 6 Results of training an HCNN with 205 points of Mackey-Glass data

(four times the size of training series); The MSE of testing series from point 206 to point 820
was 0.2586 and the local maximum LE was 0.0845±0.005. Figure 8 shows the long-term
prediction compared to expected results. Notice that this prediction resembles the expected
signal but it is slightly delayed in time, a condition frequently found in long-term prediction.

To compare our results with others, we looked for published research doing long-term
prediction, testing it with a Mackey-Glass series and measuring performance with MSE. The
closest work that we found was a long-term predictor built by Sollacher and Gao [36]. Their
predictor is based on a model called “Spiral Recurrent Neural Networks,” which is trained
using online learning based on an extended Kalman filter and gradients, similar to Real
Time Recurrent Learning. However, they evaluated the performance of their system using
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Fig. 7 Long-term prediction (820 points) obtained by an HCNN for Mackey-Glass series

Fig. 8 HCNN 820 points of recursive long-term prediction versus original Mackey-Glass series

the “logarithmic normalized MSE” metric, and they measured the error only in the time
steps when the spikes occurred, which makes difficult to compare their results with ours.
On the other hand, García-Treviño and Alarcón-Aquino [37] tested their predictor using the
same performance metric and same time series as we did, but they reported results only
with single-step prediction. Their predictor uses a neural network with wavelets as activa-
tion functions in the hidden layer, trained with a type of back-propagation algorithm. They
also compared the performance of their network with single step prediction obtained using
a feed-forward network. Both networks were trained using 100 points and tested using 100
single-step predictions. Wavelet network obtained an MSE of 0.0008 and the feed-forward
network obtained a MSE of 0.0359. Given the fact that this is single-step prediction, it is
expected that the MSE obtained by their systems was smaller than the MSE obtained by our
recursive prediction.
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Fig. 9 A filtered ECG signal

5.2 Modeling and Predicting the Dynamics of an ECG

An ECG is a time series believed to be chaotic, because it presents a maximum positive LE,
strange attractors in its phase or return maps [38] and other important characteristics [39].
Currently, several research projects are looking for modeling and predicting the behavior of
an ECG, because several cardiac diseases could be promptly treated if they were predicted
[40,41]. For example, ventricular fibrillation or ventricular tachycardia produce arrhythmias
that may lead to death [42], but the identification of patients in risk remains a challenge [43].
Therefore, the construction of an accurate model of an ECG is still an open problem. Here,
we used an HCNN to capture the dynamics embedded in an ECG, even though its exact
reproduction was not achieved. The ECG signal of a healthy patient, obtained from [44] was
filtered with an FIR filter of order 40, with cutoff frequencies lying at 0.5 and 105 Hz. This
upper limit was chosen after observing that in the original signal the magnitude of frequen-
cies above 100 Hz was less than 0.5. Figure 9 shows 507 points of the filtered ECG; the
fundamental frequency of this signal is 1.4062 Hz and it presents a positive maximum local
LE of 3.23±0.27 (an evidence of chaos).

An HCNN, with the same architecture as the one described in Sect. 5.1 and in Appen-
dix A, was used for modeling this ECG. Seven HG were trained to produce the first seven
sine harmonic components of the filtered ECG. After that, the HCNN was trained for 30,000
epochs; the first 20,000 epochs trained the feed-forward connections and the last 10,000
trained all feed-forward and recurrent connections. The training was executed using μ = 0.3,
η = 3.7E−3, α = 0.1. An MSE of 0.0028 was reached for the first 507 predictions, the train-
ing segment (see Fig. 10). This prediction has a maximum local LE=4.47±0.33. Figure 11
shows 2,028 points of long-term prediction of the ECG (4 times the size of training series).
This resulting series has chaotic characteristics, with a maximum local LE of 7.52±1.95.
Notice that, even though the predicted series does not contain the right magnitudes in the
peaks of the ECG, it contains “peaks” resembling the R and T peak of a typical ECG. Figure 12
compares the original training signals with the long-term prediction.

A recursive predictor based on a fully connected, feed-forward network was built to com-
pare these results. The feed-forward network contained five inputs, 10 hidden neurons and
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Fig. 10 Results of training an HCNN with 507 points of ECG data

Fig. 11 Long-term prediction (2,028 points) obtained by an HCNN for ECG data

Fig. 12 Training series (507 points) and long-term prediction (2,028 points) obtained by an HCNN for ECG
data

one output neuron and was trained using 470 points of a filtered ECG. This feed-forward
network predicted well the training segment, as shown at Fig. 13. The MSE obtained for this
segment was 0.0009. However, this network was unable to carry out the recursive predic-
tion. Figure 14 shows the predictions obtained from points 470 to 570. For that prediction,
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Fig. 13 Predicting the training series (point 1–470) using a feed-forward network

the MSE was 113.1381. The prediction is so distorted in magnitude that the training signal
cannot be distinguished in the figure.

6 Conclusions

In this paper we presented a novel neural network architecture known as “HCNN” and its
training scheme. HCNN is able to capture the dynamics embedded in highly non-linear time
series and to perform some long-term prediction of chaotic time series. This architecture
is composed of small fully connected neural networks, embedded in a feed-forward sys-
tem with some extra recurrent connections. The small networks, called HGs, are trained
to generate sine signals oscillating to frequencies that are multiples of fundamental fre-
quency of training time series. The feed-forward part of HCNN is able to learn a function
with similar maximum local LE as the one found in the training series. The HGs in HCNN
contribute with some information related to frequencies; the recurrent connections in the
hidden layer contribute memorizing dynamic characteristics of the past; feed-forward con-
nections going from the input to the hidden layer allow the definition of a function approx-
imator.

In the experiments reported here, an HCNN was used to learn a Mackey-Glass time series
and an ECG to predict a horizon with a size 4 times the training signals. In both cases, chaotic
signals were produced, and HCNN was able to approximate these long horizons using recur-
sive prediction, oscillating in a stable way. However, the network was not able to generate
right magnitudes in the peaks of the ECG. A reason for that could be the predictor is not
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Fig. 14 Recursive Prediction from point 470 to 570 using a feed-forward network

detecting information in high frequencies. As it is well known, peaks are the most difficult
part to be learnt by a predictor.

Currently, we are designing other architectures similar to the HCNN, using wavelet theory
instead of Fourier transform, in order to include time-frequency information in the model
[45]. Future improvements to our predictor would include faster training algorithms and the
use of ensemble forecasts, which has reported good results in this kind of problems [46].
Each ensemble could be built using several HCNNs, trained with different samplings from
the same dynamical system but different initial conditions.
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Appendix A

Table A1 shows the connection matrix of the HCNN topology, used for the experiments
reported in this paper and in [22]. Each row and column represents a neuron in the network.
Neurons are numbered in sequence, starting at the input layer. Neurons 1–5 correspond to
input neurons; 6–26 belong to HGs; neurons 27–33 belong to the hidden layer; neuron 34
corresponds to the output of the network. A value 1 in a cell in row i and column j indicates
a connection going from neuron i to neuron j . Bold lines separate each layer in the network,
starting with the input layer, the HG layer, the hidden layer and the output layer.
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Table A1 Connection matrix of HCNN used for experiments reported in this paper [22]

INPUT 
NEURONS 

HARMONIC GENERATOR’S NEURONS HIDDEN 
NEURONS 

O
U

T
P

U
T

 N
. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0

6 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0
9 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0
12 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0

27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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