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Anfis-Based P300 Rhythm Detection Using

Wavelet Feature Extraction on Blind

Source Separated Eeg Signals

Juan Manuel Ramirez-Cortes, Vicente Alarcon-Aquino,

Gerardo Rosas-Cholula, Pilar Gomez-Gil, and Jorge Escamilla-Ambrosio

27.1 Introduction

This article presents a revised and extended version of a paper presented at the World

Congress on Engineering and Computer Science 2011, International Conference on

Signal Processing and Imaging Engineering (Ramı́rez-Cortes et al. 2010). In recent

years, there has been a growing interest in the research community on signal

processing techniques oriented to solve the multiple challenges involved in Brain

Computer Interfaces (BCI) applications (Paul et al. 2008; Theodore et al. 2007;

Bashashati et al. 2007). Brain Computer Interfaces (BCIs) are systems which allow

people to control some devices using their brain signals. An important motivation to

develop BCI systems, among some others, would be to allow an individual with

motor disabilities to have control over specialized devices such as computers, speech

synthesizers, assistive appliances or neural prostheses. A dramatic relevance arises

when thinking about patients with severe motor disabilities such as locked-in syn-

drome, which can be caused by amyotrophic lateral sclerosis, high-level spinal cord

injury or brain stem stroke. In its most severe form people are not able to move any

limb. BCIs would increase an individual’s independence, leading to an improved

quality of life and reduced social costs. Among the possible brain monitoring

methods for BCI purposes, the EEG constitutes a suitable alternative because of its

good time resolution, relative simplicity and noninvasiveness when compared to

other methods such as functional magnetic resonance imaging, positron emission

tomography (PET), magnetoencephalography or electrocorticogram systems.

There are several signals which can be extracted from the EEG in order to develop

BCI systems, including the slow cortical potential (Bashashati et al. 2007), m and b
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rhythms (Royer et al. 2009; Delaram et al. 2009), motor imagery (Thomas et al.

2009), static-state visually evoked potentials (Zhu et al. 2010; Christian et al. 2009),

or P300 evoked potentials (David 2005; Seno et al. 2010; Brice et al. 2006). P300

evoked potentials occur with latency around 300 ms in response to target stimuli

that occur unexpectedly. In a P300 controlled experiment, subjects are usually

instructed to respond in a specific way to some stimuli, which can be auditory,

visual, or somatosensory. P300 signals come from the central-parietal region of the

brain and can be found more or less throughout the EEG on a number of channels.

The P300 is an important signature of cognitive processes such as attention and

working memory and an important clue in the field of neurology to study mental

disorders and other psychological disfunctionalities (Kun et al. 2009).

In this work, an experiment on P-300 rhythm detection using wavelet-based

feature extraction, and an ANFIS algorithm is presented. The experiment has been

designed in such a way that the P300 signals are generated when the subject is

exposed to some visual stimuli, consisting of a sequential group of slides with a

landscape background. Images of a ship are inserted using a controlled non-uniform

sequence, and the subject is asked to press a button when the ship unexpectedly

appears. The EEG signals are preprocessed using an Independent Component

Analysis (ICA) algorithm, and the P300 is located in a time-frequency plane

using the Discrete Wavelet Transform (DWT) with a sub-band coding scheme.

The rest of the paper is organized as follows: Sect. 27.2 presents the theory

associated to the wavelet sub-band coding algorithm. Section 27.3 describes Inde-

pendent Component Analysis (ICA) as part of the pre-processing stage. Section 27.4

reports the evoked potential experiment and the proposed method on P300 signal

detection. Section 27.5 describes the ANFIS model and its application to the EEG

signals. Section 27.6 presents obtained results, and Sect. 27.7 presents some

concluding remarks, perspectives, and future direction of this research oriented to

the implementation of a BCI system.

27.2 Discrete Wavelet Transform

The Discrete Wavelet Transform (DWT) is a transformation that can be used to

analyze the temporal and spectral properties of non-stationary signals. The DWT is

defined by the following equation (Priestley 2008):

Wð j; kÞ ¼
X
j

X
k

f ðxÞ2�j=2cð2�jx� kÞ (27.1)

The set of functions cj;kðnÞis referred to as the family of wavelets derived from

cðnÞ, which is a time function with finite energy and fast decay called the mother

wavelet. The basis of the wavelet space corresponds then, to the orthonormal

functions obtained from the mother wavelet after scale and translation operations.
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The definition indicates the projection of the input signal into the wavelet

space through the inner product, then, the function f(x) can be represented in the

form:

f ðxÞ ¼
X
j;k

djðkÞcj;k (27.2)

where dj(k) are the wavelet coefficients at level j. The coefficients at different levels
can be obtained through the projection of the signal into the wavelets family as

expressed in Eqs. 27.3 and 27.4.

f ;cj;k

D E
¼

X
l

dl f ;fj;kþl

D E
(27.3)

f ;fj;k

D E
¼ 1ffiffiffi

2
p

X
l

cl f ;fj�1;2kþl

D E
(27.4)

The DWT analysis can be performed using a fast, pyramidal algorithm described

in terms of multi-rate filter banks. The DWT can be viewed as a filter bank with

octave spacing between filters. Each sub-band contains half the samples of the

neighboring higher frequency sub-band. In the pyramidal algorithm the signal is

analyzed at different frequency bands with different resolution by decomposing the

signal into a coarse approximation and detail information. The coarse approxima-

tion is then further decomposed using the same wavelet decomposition step. This is

achieved by successive high-pass and low-pass filtering of the time signal and a

down-sampling by two (Pinsky et al. 2009), as defined by the following Eqs. 27.5

and 27.6:

ajðkÞ ¼
X
m

hðm� 2kÞ ajþ1ðmÞ (27.5)

djðkÞ ¼
X
m

gðm� 2kÞ ajþ1ðmÞ (27.6)

Figure 27.1 shows a two-level filter bank. Signals aj(k), and dj(k) are known as

approximation and detail coefficients, respectively.

Fig. 27.1 Two-level wavelet

filter bank in the sub-band

coding algorithm
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This process may be executed iteratively forming a wavelet decomposition tree

up to any desired resolution level. In this work the analysis was carried out up to

the 11 decomposition level (16 s windows with sampling frequency of 128 sps)

applied on the signals separated from the ICA process described in the next

section.

27.3 Preprocessing of Eeg Signals Using Independent

Component Analysis

Independent Component Analysis (ICA), an approach to the problem known as

Blind Source Separation (BSS), is a widely used method for separation of mixed

signals (Amar et al. 2008; Keralapura et al. 2011). The signals xiðtÞare assumed to

be the result of linear combinations of the independent sources, as expressed in

Eq. 27.7.

xiðtÞ ¼ ai1siðtÞ þ ai2s2ðtÞ þ � � � þ ainsnðtÞ (27.7)

or in matrix form:

x ¼ As (27.8)

where A is a matrix containing mixing parameters and S the source signals. The goal
of ICA is to calculate the original source signals from the mixture by estimating a

de-mixing matrix U that gives:

s
_ ¼ Ux (27.9)

This method is called blind because both the mixing matrix A and the matrix

containing the sources S are unknown, i.e., little information is available. The de-

mixing matrix U is found by optimizing a cost function. Several different cost

functions can be used for performing ICA, e.g. kurtosis, negentropy, etc., there-

fore, different methods exist to estimate U. For that purpose the source signals are

assumed to be non-gaussian and statistically independent. The requirement of

non-gaussianity stems from the fact that ICA relies on higher order statistics to

separate the variables, and higher order statistics of Gaussian signals are zero

(John 2008).

EEG consists of measurements of a set of N electric potential differences

between pairs of scalp electrodes. Then the N-dimensional set of recorded signals

can be viewed as one realization of a random vector process. ICA consists in

looking for an overdetermined (N � P) mixing matrix A (where P is smaller than

or equal to N) and a P-dimensional source vector process whose components are the

most statistically independent as possible. In the case of the P300 experiment
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described in this paper, ICA is applied with two objectives; denoising the EEG signal

in order to enhance the signal to noise ratio of the P-300, and separating the evoked

potential from some artifacts, like myoelectric signals derived from eye-blinking,

breathing, or head motion.

27.4 Experimental Setup and Proposed Methodology

for P-300 Signal Detection

In this work the EPOC headset, recently released by the Emotiv Company, has been

used (Emotiv Systems Inc.). This headset consists of 14 data-collecting electrodes

and 2 reference electrodes, located and labeled according to the international 10–20

system (John 2008). Following the international standard, the available locations

are: AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8 and AF4. The EEG

signals are transmitted wirelessly in the frequency of 2.4 GHz to a laptop computer.

This experiment consists of presenting a non-persistent image to cause a P300

response from the user. The block diagram of the system to evoke and capture P300

signals, and a picture of the described setup are shown in Figs. 27.2 and 27.3,

respectively. The subject is resting in a comfortably position during the testing.

A simple graphical application shows in the screen a starship attacking a neighbor-

hood in a fixed time sequence not known by the subject, as represented in

Table 27.1. Recognition of the ship by the subject, when it suddenly appears in

the screen, is expected to generate a P300 evoked potential in the brain central zone.

The serial port is used for sending time markers to the Emotive testbench, in

synchrony with the moments when the ship appears in the screen. The Testbench

application provided by Emotiv System Co., is used to capture raw data from the 14

electrodes, as shown in Fig. 27.4.

Stimulus
application

Subject using
EEG headset

Capture
System

Serial
Comm

Bluetooth

Fig. 27.2 Block diagram of the experimental setup used during the P300 signals detection
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Fig. 27.3 Headset and stimulus used for the experiment on P300 signal detection

Table 27.1 Event time sequence

examples

Event Time difference Time (mS)

1 4000 4000

2 3000 7000

3 4000 11000

4 3000 14000

5 5500 19500

6 3000 22500

7 4000 26500

8 4500 31000

Fig. 27.4 Block diagram of the proposed system for ANFIS-based P-300 signal detection
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The operations proposed to detect the P300 rhythm are summarized in the block

diagram of Fig. 27.5. First, a band-pass filter selects the required frequency

components and cancels the DC value. Then, ICA blind source separation is applied

with the purpose of denoising the EEG signal and separating the evoked potential

from artifacts, like myoelectric signals derived from eye-blinking, breathing, or

head motion, as well as cardiac signals.

The P300 is further located in time and scale through a wavelet sub-band coding

scheme. This information is further fed into an Adaptive Neurofuzzy Inference

System (ANFIS), as described in the next section.

27.5 Adaptive Neurofuzzy Inference System

Adaptive Neuro Fuzzy Inference Systems (ANFIS) combine the learning

capabilities of neural networks with the approximate reasoning of fuzzy inference

algorithms. Embedding a fuzzy inference system in the structure of a neural

network has the benefit of using known training methods to find the parameters

of a fuzzy system. Specifically, ANFIS uses a hybrid learning algorithm to identify

the membership function parameters of Takagi-Sugeno type fuzzy inference

systems. In this work, the ANFIS model included in the MATLAB toolbox has

been used for experimentation purposes. A combination of least-squares and

backpropagation gradient descent methods is used for training the FIS membership

function parameters to model a given set of input/output data through a multilayer

neural network. ANFIS systems have been recently used for optimization,

modeling, prediction, and signal detection, among others (Douglas et al. 2004;

Chang and Chang 2006; Subasi 2007). In this paper, the ANFIS system is proposed

to be used for the detection of the P-300 rhythm in an EEG signal, for BCI

applications. Frequency bands with the most significant energy content, in the

Fig. 27.5 ANFIS structure
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range of the P-300 signal, are selected from the wavelet decomposition, as the input

for the ANFIS system. These bands are 8–4, 4–2, 2–1, and 1–0.5 Hz, which are

considered as the linguistic variables B1, B2, B3 and B4, respectively. The ANFIS

structure is depicted in Fig. 27.6. Figure 27.7 shows the control surfaces

corresponding to inputs B1 and B2 related to the output. Figure 27.7 shows the

input Gaussian membership functions for input B1.

Fig. 27.6 Control surfaces of input B1 and B2 related to the output

Fig. 27.7 Gaussian membership functions corresponding to the input B1
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The ANFIS is used to map the P300 signal composition to a triangle pulse

occurring simultaneously during the training stage. Figure 27.8 shows the ANFIS

output following triangle pulses after a 400 epochs training. A trained ANFIS is

further used during a verification stage, using the EEG signals obtained from eight

test subjects performing the same experiment with 10 trials of 16 s each.

27.6 Results

The captured signals were analyzed using a time window of 16 s, with a sampling

frequency of 128 samples per second. Figure 27.9 shows the 14 electrodes raw

signals obtained from the emotive headset. As described before, a band-pass

filtering stage is applied to the raw data. Figure 27.10 shows information from the

electrodes T8, FC6, F4, F8 and AF4 signals, after the filter is applied.

The P300 signals are predominant in the brain central area, thus the P300 is

typically measured from the Pz, Cz, Fz electrodes. The Emotive headset does not

include specific electrodes over the brain central area, however, the headset can be

positioned in such a way that the electrodes AF3, AF4, F3, and F4, are able to

collect the EEG signals relevant to the P300 experiment described in this work. The

EEG signals obtained from the 14 electrodes are then processed through the ICA

algorithm. The 14 channels are shown in Fig. 27.11. Typically, the P300 signals are

embedded in artifacts, and they appear in two different channels; in this case

channel 2 and 3. After the blind source separation applied to electrodes AF3,

AF4, F3, and F4 signals, it can be noticed that P300 signals are visible on channel 2,

while the others separated channels show some artifacts such as the myoelectric

signal from blinking, which is predominant in AF3 and AF4 electrodes, cardiac

rhythm, and system noise. The signals obtained after the ICA separation, are shown

in Fig. 27.12.

Fig. 27.8 ANFIS output and triangle pulses
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Fig. 27.9 Raw data obtained from the EEG headset

Fig. 27.10 Prefiltered EEG signals

Fig. 27.11 Fourteen channels entered to the ICA algorithm
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Fig. 27.12 Separated signals obtained from the ICA algorithm

Fig. 27.13 Scalogram of signal obtained from channel 2

Fig. 27.14 ANFIS output showing detection of P-300 events
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A time-scale analysis in the wavelet domain was then performed in order to

locate the energy peaks corresponding to the P300 rhythm. DWT sub-band coding

with 11 decomposition levels, using a Daubechies-4 wavelet was applied to channel

2, as shown in Fig. 27.13. It can be seen that the P300 peaks are easily distinguished

in the wavelet domain. The energy peaks in the scalogram of Fig. 27.13, are located

in the bands 0.5–1 Hz and 1–2 Hz, as expected. It was noted that P300 rhythms were

distinguished better in the EEG signals corresponding to the eight first events in the

experiment. After that time lapse, the experiment became tedious for most of the

users, with the consequence of generating low-level P300 signals, undetectable in

the experiments. Figure 27.14 shows a typical obtained signal, corresponding to the

detection of P300 rhythms, as the output of the ANFIS system. Table 27.2

summarizes the total detection accuracy obtained with the proposed system.

27.7 Concluding Remarks

This paper presented an experiment on P300-rhythm detection based on ICA-based

blind source separation, wavelet analysis, and an ANFIS model. The results

presented in this paper are part of a project with the ultimate goal of designing

and developing brain computer interface systems. These experiments support the

feasibility to detect P300 events using the Emotiv headset through an ANFIS

approach. The proposed method is suitable for integration into a brain-computer

interface, under a proper control paradigm. DWT coefficients could be used further

as input to a variety of classifiers using different techniques, such as distance-based,

k-nearest neighbor or Support Vector Machines (SVM).
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