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Abstract. Even though it is known that chaotic time series cannot be 
accurately predicted, there is a need to forecast its behavior in may deci-
sion processes. Therefore several non-linear prediction strategies have 
been developed, many of them based on soft computing. In this chapter we 
present a new neural network architecutre, called (Hybrid and based-on-
Wavelet-Reconstructions Network (HWRN) which is able to perform 
long-term prediction, using recursive prediction, over highly dynamic and 
chaotic time series. HWRN is based on recurrent neural networks embed-
ded in a 2 layer neural structure, and uses as a learning aid signals generat-
ed by wavelets coefficients obtained from the training time series. In the 
results reported here, HWRN was able to predict better than a feed-forward 
neural network and that a fully recurrent neural network with similar num-
ber of nodes. Using the benchmark NN5, which contains chaotic time se-
ries, HWRN obtained in average a SMAPE = 26% compared to SMAPE = 
61% obtained by a fully-connected recurrent neural network and a SMAPE 
= 49% obtained by a feed forward network. 

1. Introduction 

The use of long-term prediction as a tool for complex decision processes 
involving dynamical systems has been of high interest for researchers in 
the last years. Some current prediction strategies approximate a model of 
the unknown dynamical system analyzing information contained in a sole-
ly time-series, which is supposed to described the system’s behavior. A 
time series may be defined as an ordered sequence of values observed 
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from a measurable phenomena: nxxx ..., 21 ; such observations are sensed at 
uniform time intervals and may be represented as integer or real numbers 
[24]. Once defined, an approximated model may be used to predict the 
trend of the system behavior or to predict as much specific values of the 
time series as desired. As usual, such model will be just as good as the in-
formation used to construct it and as the capability of the modeler to 
represent important information embedded in the time series being ana-
lyzed.  

Time series prediction consists on estimating future values of a time se-
ries .., 21 ++ tt xx using past time series values txxx ..., 21 . One-step or short-
term prediction occurs when several past values are used to predict the 
next unknown value of the time series. If no exogenous variables are con-
sidered, one-step prediction may be defined as [18]: 

)...,( 211 ptttt xxxx −−−+ = φ)             (1) 
where φ is a approximation function used to predict. Similarly, long 

term prediction may be defined as: 
)...,(,... 2112 ptttttht xxxxxx −−−+++ = φ)))             (2) 

where h denotes the prediction time horizon, that is, the number of future 
values to be obtained by the predictor at once. Long term prediction may 
also be achieved by recursive prediction, which consists of recursively us-
ing equation (1) by feeding back past predicted values to the predictor to 
calculate the new ones.  

The construction of models able to predict highly nonlinear or chaotic 
time series is of particular interest in this research. A chaotic time series is 
non-stationary, extremely sensitive to initial conditions of the system and 
contains positive Lyapunov Exponents [14]. It is claimed that chaotic time 
series may only be short-term predicted [19]. Even though, in some cases 
it is possible to approximate a dynamical model with similar characteris-
tics to that found in the non-linear time series and to use it for long-term 
prediction. There are many techniques used to build predictors; they may 
be linear or non-linear, statistical or based on computational or artificial in-
telligence.  For example, ARMA, ARIMA and Kalman filters are linear 
methods [20]; k-nearest neighbors, genetic algorithms and artificial neural 
networks are examples of non-linear methods. Only non-linear methods 
are useful to forecast non-linear time series. 

The use of fully-connected, recurrent neural networks for long-term 
prediction of highly-dynamical or chaotic time series has been deeply stu-
died [22]. In spite of the powerful capabilities of these models to represent 
dynamical systems, their practical use is still limited, due to constraints 
found in defining an optimal number of hidden nodes for the network and 
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the long time required to train such networks. As a way to tackle these 
problems, complex architectures with a reduced number of connections, 
better learning abilities and special training strategies have been developed 
[13]. Examples of such works are found at [2,3,4,9,10,12,14] among oth-
ers. 

In this chapter we present a novel neural prediction system called 
HWRN (Hybrid and based-on-Wavelet-Reconstructions Network). 
HWRN is based on recurrent neural networks, inspired at the Hybrid com-
plex neural network [14] and with a particular kind of architecture and 
training scheme supported by wavelet decomposition. In the experiments 
reported here, HWRN was able to learn and predict as far as 56 points of 
two highly-dynamical time series, obtaining better performance than a ful-
ly-connected recurrent neural network and a three-layer, feed-forward 
neural network with similar number of nodes than the HWRN. This chap-
ter is organized as follows: section two describes the main characteristics, 
general structure and training scheme of the model. In the same section 
some details are given related to reconstruction of some signals that are 
used for supporting training, which is based on discrete wavelet trans-
forms. Criteria used to evaluate the performance of the system are pre-
sented at section three. Section four describes the experiments performed 
and their results; it also includes a description of the time series used to 
evaluate the model.  Last section presents some conclusions and ongoing 
work. 

2. Model Description 

HWRN is built using several small, fully-connected, recurrent neural net-
works (SRNN) attached to a recurrent layer and an output layer. Figure 1 
shows the general architecture of HWRN. The SRNN are used to learn 
signals obtained from the training time series that contain different fre-
quency-time information. Outputs of the SRNN are fed to a recurrent 
layer, which is able to memorize time information of the dynamical sys-
tem. The last layer acts as a function approximator builder.   

The output of each node i at HWRN and SRNN is defined as: 

iii
i Ixy

dt
dy

++−= )(σ                     (3) 
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              represents the inputs to the i-th neuron coming from other  
            m neurons, 
 Ii         is an external input to i-th neuron,  

jiw       is the weight connecting neuron i to neuron j, 

)(xσ       is the node’s transfer function; it is a sigmoid for all 
   layers except output layer, for which transfer function is linear. 

 
In order to be solved, equation 3 may be approximated as [25]: 

)())(()()1()( ttItxttyttty iiii Δ+Δ+Δ−=Δ+ σ            (5) 
for a small tΔ , where: 

∑
=

=
m

j
jiji wtytx

1

)()(                           (6) 

 
For the results reported here, initial conditions of each node )0( =tyi , are 

set as small random values. Indeed, there are no external inputs to nodes, 
that is )(tIi for all i, all t.  
Training of a HWRN predictor contains three main phases:  
1. Pre-processing of the training time series and generation of recon-

structed signals, 
2. Training of the SRNN, 
3. Training of the HWRN.  
After being trained, HWRN receives as input k past values of a scaled time 
series, then recurrent prediction is applied to obtain as many futures values 
as required. Each training phase is described next. 

2.1 Phase 1: Preprocessing 

HWRN requires a time series with enough information of the dynamical 
behavior in order to be trained. Such time series may contain integer or 
real values and the magnitude of each element must be scaled to the inter-
val [0,1]. This is required in order to use sigmoid transfer functions for the 
nodes in the network. To achieve this, the time series may be normalized 
or linearly scaled; in this research a linear scale transformation was ap-
plied, as recommended for financial time series by [6]. The linear trans-
formation is defined as: 

)(
)min()max(

)min( lbubxlbz t
t −

−
−

+=
xx

x                                                         (7) 
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where: 
ub is the desired upper bound; in this case ub = 1,  
lb is the desired lower bound; in this case lb = 0, 
max(x) is the maximum value found at the time series, 
min(x) is the minimum value found at the time series. 
 

 
Fig. 1. A Hybrid and based-on-Wavelet-Reconstructions Network HWRN 

(adapted from [11]) 

If the original times series has missing values, they are approximated as 
the mean of their two nearest neighbors. No further processing is applied. 

An important challenge forecasting nonlinear and chaotic time series is 
the complexity found to represent its non-stationary characteristics. To 
tackle this, the HWRN learns frequency information related to different 
times using different components. It is known that wavelet analysis has 
been used to represent local frequency information in a signal. Such analy-
sis calculates the correlation among a signal and a function (.)ψ , called 
wavelet function. Similarity among both functions is calculated for differ-
ent time intervals, getting a two dimensional representation: time and fre-
quency [1].  In this work, a multi-scale decomposition of the training sig-
nal is performed using the sub-band coding algorithm of the Discrete 
Wavelet Transform [21]. This algorithm uses a filter bank to analyze a dis-
crete signal x(t). This bank is made of low-pass L(z) and high-pass H(z) 
filters, separating frequency content of the input signal in spectral bands of 
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equal width. Figure 2 shows a one-level filter bank. After performing a 
down-sampling with a factor of two, signals cA(t) and cD(t) are obtained. 
These signals are known as approximation and detail coefficients, respec-
tively. This process may be executed iteratively forming a wavelet decom-
position tree up to any desired resolution level. A three-level decomposi-
tion wavelet tree, used for the experiments presented in this paper, is 
shown in Figure 3. The original signal x(t) may be reconstructed back us-
ing the Inverse Discrete Wavelet Transform (iDWT), adding up the out-
puts of synthesis filters. Similarly it is possible to reconstruct not only the 
original signal, but also approximation signals that contain low-frequency 
information of the original signal and therefore more information about 
long-term behavior. In the same way, detail signals can be reconstructed; 
they contain information about short-term changes in the original signal. 
Using the decomposition wavelet tree at figure 3, four different signals 
may be reconstructed (one approximation and three detail signals) using 
the coefficients shown at the leaves of such tree. For the rest of this chap-
ter, these signals are referred as “reconstructed signals.”  

For example, figure 4(a) shows a chaotic time series called NN5-101 
(see section 4); figure 4(b) shows its most general approximation obtained 
using coefficients cA3 (see figure 3); figure 4(c) shows the most general 
detail signal obtained using coefficients cD3; figure 4(d) shows detail sig-
nal at level 2 obtained using coefficients cD2; figure 4(e) shows detail sig-
nal at maximum level obtained using coefficients cD1. 
 

 
Fig. 2. An analysis filter bank 
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Fig. 3. A three-level decomposition wavelet tree 

During the predictor training, a set of these reconstructed signals is se-
lected and independently learned by a set of SRNN.  In order to figure out 
which reconstructed signals contain the most important information, all 
possible combinations of reconstructed signals are created; next, signals in 
each combination are added up and the result is compared with the original 
signal using Mean Square Error (see equation 8). The reconstructed signals 
in the combination with the smallest MSE are selected to be learnt by the 
SRNN.   

 

 
Fig. 4 (a). Original signal NN5-101 (data taken from [7]) 
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Fig. 4 (b). Most general approximation signal obtained from NN5-101 

 

 
Fig. 4 (c). Most general detail signal obtained from NN5-101 
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 Fig. 4 (d). Detail signal at level 2 obtained from NN5-101 

 
Fig. 4 (e). Detail signal at maximum level obtained from NN5-101 
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2.2 Phase 2: Training the SRNN 

SRNN are trained to predict one point in each selected reconstructed sig-
nal; they receive as input k values of the corresponding reconstructed sig-
nal and predict the next one. Once trained, the SRNN require only the first 
k values of the reconstructed signal; the rest values are generated using re-
cursive prediction as long as the predictor works. These k values are stored 
as free parameters of the system, to use them when prediction of the time 
series is taking place.  

Training of all SRNN is performed using the algorithm “Real-time real-
learning based on extended Kalman filter (RTRL-EKF)” [15]. This algo-
rithm contains 2 parts: gradient estimation and weights adjustment. The 
first part is done using the Real-Time, Real-Learning Algorithm proposed 
by Williams and Zipser [27]; second part is done using an extended Kal-
man Filter. RTRL-EKF has a complexity of O(n4), where n is the number 
of neurons in the neural network [11]. 

2.3 Phase 3: Training the HWRN 

After training all SRNN, their weights are imbedded in the architecture of 
the HWRN (see figure 1) which also contains a hidden layer with recurrent 
connections and an output layer with feed-forward connections. The com-
plete architecture is trained to predict one point of the original signal, 
keeping fixed the weights of sub-networks SRNN. As in the case of 
SRNN, training is performed using “Real-time real-learning based on ex-
tended Kalman filter (RTRLEKF) algorithm” [15] 

3. Metrics for Performance Evaluation 

The prediction ability of the proposed architecture and comparative 
models was measured using three metrics: Mean Square Error (MSE), 
Symmetrical-Mean Absolute Percentage Error (SMAPE) and Mean Abso-
lute Scaled Error (MASE). Next each metric is explained. 

“Mean Square Error” is defined as: 

∑
=

−=
n

t
tt xx

n
MSE

1

2)ˆ(1

                                                                    (8) 
 
The “Symmetrical-Mean Absolute Percentage Error” is scale-

independent; therefore it is frequently used to compare performances when 
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different time series are involved [16].  This is the official metric used by 
the “NN5 forecasting competition for artificial neural networks & compu-
tational Intelligence” [7]. SMAPE is defined as: 

%)100(
2/)ˆ(

ˆ1
1
∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

=
n

t tt

tt

xx
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n
SMAPE

                                           (9) 
 
It is important to point out that SMAPE cannot be applied over time se-

ries with negative values.  
Other popular metric is the “Mean Absolute Scaled Error,” defined as: 

∑
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1

2 11
1

ˆ1

                                                    (10) 
 

where tx  is the original time series and tx̂  is the predicted time series. 

4. Experiments and Results 

The proposed architecture and training scheme were tested using two 
benchmark time series; they are:  

a) The time series generated by Matlab function sumsin(), available at 
version 7.4 and commonly used in Matlab demos [23]. It is defined as: 

)03.0sin()3.0sin()3sin()( tttts ++=                                 (11) 
 
Figure 5 shows an example of 735 points of sumsin() time series.  
b)  Eleven of the time series found in the database of the “NN5 Fore-

casting Competition for Artificial Neural Networks and Computational In-
telligence” [7]. These time-series correspond to cash drawbacks occurred 
daily in teller machines at England from 1996 to 1998; these series may be 
stationary, have local tendencies or contain zeroes or missing values.  Fig-
ure 4 (a) shows the first time-series of such database, identified as “NN5-
101”. The eleven time-series used here correspond to what is called the 
“reduced set” in such competition. In order to determine if these series 
were chaotic, the maximum Lyapunov Exponent (LE) of each one was 
calculated using the method proposed by Sano and Sawada [17]. Table 1 
shows the maximum LE of each time series; notice that all are positive, an 
indication of chaos. 
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Fig. 5. 735 points of the time series sumsin() 

 

Table 1. Maximum LE of reduced set series NN5 

Series ID Maximum LE 
NN5-101 0.0267 
NN5-102 0.6007 
NN5-103 0.0378 
NN5-104 0.0565 
NN5-105 0.0486 
NN5-106 0.0612 
NN5-107 0.0678 
NN5-108 0.0384 
NN5-109 0.8405 
NN5-110 0.0621 
NN5-111 0.0220 

 
 
The HWRN contains 3 SRNN; the number of nodes at each SRNN was 

from 6 to 10, determined experimentally depending upon the reconstructed 
signal being learnt; the hidden layer has 10 nodes. The performance of 
HWRN was compared with a three layer, feed-forward neural network (5-
26-1) and a fully-connected recurrent neural network with 5 input nodes, 
26 hidden nodes and one output node. These architectures have a similar 
number of nodes as the HWRN. All architectures receive as input 5 values 
(k = 5) of the time series and predict next value. Recurrent prediction is 
used to generate 56 futures values, following rules of the “NN5 forecasting 
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competition for artificial neural networks & computational Intelligence” 
[7]. The architecture was implemented using Matlab V7.4, C++, and pub-
lic libraries for the training algorithm available at [5].  For both cases, four 
reconstructed signals were generated using DWT with wavelet function 
Daubechies ‘db10’ available at Matlab. Three of the reconstructed signals 
were selected using the strategy described at section 2.1. 

Twelve experiments were executed for each time series and each neural 
model. For each experiment, a different random initial set of weights was 
used. All trainings were made of 300 epochs. The first 635 values of each 
series were employed to train all models and the next 56 values were used 
as a testing set to compare the performance of the proposed architecture 
with respect to the other two models. The last 56 values of the series were 
used as a validation set in order to compare the performance of this archi-
tecture with respect to the competition results published by [8].  

Table 2 shows the results obtained using recursive prediction of 56 val-
ues (validation set) by the 12 experiments over series sumsim(); the metric 
MAPE is not shown because it is not valid for negative values, as is with  
sumsin(). Figure 6 plots 56 predicted values (validation set) of series NN5-
109, which was the series at NN5 dataset that obtained the best prediction 
results, with a SMAPE = 20.6%. Figure 7 plots 56 predicted values (vali-
dation set) of series NN5-107, which was the worst case obtained with se-
ries NN5, with a SMAPE = 40.5%.  

Table 3 summarizes the average results obtained for the two cases, all 
experiments, all architectures predicting the validation set. For the three 
metrics in the two tested cases, HWRN got, in average, better results than 
the feed-forward and the fully-connected recurrent architectures., HWRN 
got a average SMAPE of 54% for the sumsinn() time series and 27% for 
the NN5 time series. It is important to point out that, with respect to con-
test results published by [8] using NN5 reduced test, HWRN could be lo-
cated between the 16th and 17th place in the category of “neural networks 
and computational intelligence methods.” 

Notice at table 3 the high Standard Deviation found in the performance 
measured by MASE for the three architectures. This may be due to the 
facts that these series are chaotic (see table 1), and that the ability of the 
learning algorithm RTRLEKF to find the best solution space depend, 
among other factors, upon the initial set of weights randomly generated. 
However, it may be noticed that HWRN got the smallest Standard Devia-
tion for these cases. 
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Table 2. Twelve experiments predicting validation set over series sumsin(). For a 
definition of MSA and MASE see equations (8) and (10) 

Experiment 
Number 

Feed-forward 
network 

Recurrent 
Network 

HWRN 

 MSE MASE MSE MASE MSE MASE 
1 0.112 60.827 0.236 100.004 0.110 73.184 
2 0.089 49.823 0.083 56.638 0.092 66.314 
3 0.070 47.931 0.036 40.038 0.370 41.687 
4 0.099 58.184 0.191 86.501 0.034 41.807 
5 0.061 48.613 0.023 34.78 0.029 37.863 
6 0.165 80.531 0.090 53.566 0.040 43.689 
7 0.096 59.478 0.003 12.399 0.132 78.450 
8 0.049 49.816 0.521 107.336 0.052 49.518 
9 0.104 74.631 0.146 78.909 0.054 49.677 
10 0.063 55.017 0.064 53.904 0.116 67.361 
11 0.063 50.018 0.087 73.610 0.099 68.531 
12 0.160 84.994 0.086 61.378 0.021 32.832 
Mean 0.094 59.989 0.131 63.255 0.068 54.243 
St. deviation 0.038 13.044 0.140 27.553 0.039 15.551 

 
 

 
Fig. 6. Best Prediction Case using NN5, SMAPE = 20.6%, series NN5-109  
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Fig. 7. Worst prediction case using NN5, SMAPE = 40.5%, series NN5-109  

 

Table 3. Prediction errors obtained by the proposed architecture and two other 
architectures using 56 values ahead. 

Time Series Metric Neural Architecture 
  Feed-forward Recurrent HWRN 

sumsin() MSE 0.09 ± 0.04 0.13 ± 0.14 0.07 ± 0.04 
MASE 59.99 ± 13.04 63.25 ± 27.55 54.24 ± 15.55 

Eleven exam-
ples of NN5 
time series 

MSE 250.12 ± 226.05 198.69 ± 131.12 34.05 ± 20.12 
SMAPE 49.28% ± 12.36 60.75% ± 13.05 27.22% ± 8.27 
MASE 517.50 ± 1,079.68 546.31 ± 1,218.95 194.99 ± 387.22 

 

5. Conclusions 

We presented a novel neural network predictor, called HWRN, based on 
a combination of small, fully-connected recurrent sub-networks, called 
SRNN, that are embedded in a composite neural system. This system is 
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able to generate as many future values as desired using recursive predic-
tion. HWRN was able to predict up to 56 points ahead of several non-
linear time series, as shown by experiments done using the time series 
generated by Matlab’s function sumsin() and the time series found at the 
reduced set of the “NN5 Forecasting Competition for Artificial Neural 
Networks and Computational Intelligence” [7]. The SRNN’s are trained to 
reproduce selected reconstructed signals that represent different frequen-
cies at different times of the original one. The reconstructed signals are ob-
tained using the Discrete Wavelet Transform and the Inverse Discrete 
Wavelet Transform [1]. In average, the HWRN obtained a Symmetrical-
Mean Absolute Percentage Error (SMAPE) of 27% when predicting in a 
recursive way 56 points ahead of 11 chaotic NN5 time series. This perfor-
mance was better than the obtained with a fully-connected recurrent neural 
network (SMAPE= 61%) and a feed-forward network (SMAPE = 49%), 
both with similar number of nodes and weights. The main drawback of this 
system is the time required to train it. Currently our research group is look-
ing for ways to train this system faster and for a efficient method to select 
the reconstructed signals generated by the iDWT. 
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