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Preface 

We describe in this book, hybrid intelligent systems using soft computing tech-
niques for intelligent control and mobile robotics. Soft Computing (SC) consists of 
several intelligent computing paradigms, including fuzzy logic, neural networks, 
and bio-inspired optimization algorithms, which can be used to produce powerful 
hybrid intelligent systems. The book is organized in five main parts, which contain 
a group of papers around a similar subject. The first part consists of papers with 
the main theme of theory and algorithms, which are basically papers that propose 
new models and concepts, which can be the basis for achieving intelligent control 
and mobile robotics. The second part contains papers with the main theme of intel-
ligent control, which are basically papers using bio-inspired techniques, like  
evolutionary algorithms and neural networks, for achieving intelligent control of 
non-linear plants. The third part contains papers with the theme of optimization of 
fuzzy controllers, which basically consider the application of bio-inspired optimi-
zation methods to automate the design process of optimal type-1 and type-2 fuzzy 
controllers. The fourth part contains papers that deal with the application of SC 
techniques in times series prediction and intelligent agents. The fifth part contains 
papers with the theme of computer vision and robotics, which are papers consider-
ing soft computing methods for applications related to vision and robotics. 

In the part of theory and algorithms there are 5 papers that describe different 
contributions that propose new models and concepts, which can be the considered 
as the basis for achieving intelligent control and mobile robotics. The first paper, 
by Ramon Zatarain et al., deals with applying intelligent systems for modeling 
students’ learning styles used for mobile and web-based systems. The second pa-
per, by Luis Martinez et al., deals with a fuzzy model for RAMSET: Role As-
signment Methodology for Software Engineering Teams. The third paper, by 
Jorge Soria-Alcaraz et al., describes an academic timetabling design using hyper-
heuristics. The fourth paper, by Alberto Ochoa et al., describes a logistics optimi-
zation service improved with artificial intelligence. The fifth paper, by Francisco 
Arce and Mario Garcia-Valdez, describes an accelerometer-based hand gesture 
recognition system using artificial neural networks. 

In the part of intelligent control there are 5 papers that describe different contri-
butions on achieving control using hybrid intelligent systems based on soft  
computing techniques. The first paper, by Ieroham Baruch et al., describes a direct 
and indirect neural identification and control of a continuous bioprocess via 
Marquardt learning. The second paper, by Eduardo Gomez-Ramirez et al., deals 
with a method for simple tuning of type-2 fuzzy controllers. The third paper, by 
Leocundo Aguilar et al., proposes an increasing energy efficiency of a preamble 
sampling MAC protocol for wireless sensor networks using a fuzzy logic  
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approach. The fourth paper, by Arnulfo Alanis et al., describes a multi-agent sys-
tem based on psychological models for mobile robots. The fifth paper, by Fevrier 
Valdez et al., proposes the use of fuzzy logic to control parameters in bio-inspired 
optimization methods.  

In the part of optimization of fuzzy controllers there are 5 papers that describe 
different contributions of new algorithms for optimization and their application to 
designing optimal fuzzy logic controllers. The first paper by Ricardo Martinez  
et al., describes the optimization of type-2 fuzzy logic controllers using PSO ap-
plied to linear plants. The second paper, by Yazmin Maldonado et al., deals with 
an approach for the optimization of membership functions for an incremental 
fuzzy PD control based on genetic algorithms. The third paper, by Leticia 
Cervantes and Oscar Castillo, describes a new method for the design of a fuzzy 
system for the longitudinal control of an F-14 airplane. The fourth paper by Abra-
ham Melendez et al., describes a fuzzy reactive controller of a mobile robot. The 
fifth paper, by Arnulfo Alanis et al., describes a multi-agent system with personal-
ity profiles and preferences and learning for autonomous mobile robot, with fuzzy 
logic support. 

In the part of time series prediction and intelligent agents several contributions 
are described on the development of new models and algorithms relevant to time 
series analysis and forecasting, as well as the application of intelligent agents in 
real-world applications. The first paper, by Pilar Gomez et al., describes compos-
ite recurrent neural networks for long-term prediction of highly-dynamic time  
series supported by wavelet decomposition. The second paper, by Juan R. Castro 
et al., describes an interval type-2 fuzzy neural network for chaotic time series 
prediction with cross-validation and the Akaike test. The third paper, by Jesus 
Soto et al., deals with chaotic time series prediction using Ensembles of ANFIS. 
The fourth paper, by Lucila Morales et al., describes the modeling of facial ex-
pression of intelligent virtual agents. The fifth paper, by Ivan Espinoza et al., de-
scribes agent communication using semantic networks. The sixth paper, by Cecilia 
Leal-Ramirez et al., describes a fuzzy cellular model for predator-prey interaction 
applied to the control of plagues in a peppers cropping.  

In the part of computer vision and robotics several contributions on models and 
algorithms are presented, as well as their applications to different real-world prob-
lems. The first paper, by Rogelio Salinas-Gutierrez et al., describes the use of 
Gaussian copulas in supervised probabilistic classification. The second paper, by 
Pablo Rivas et al., proposes subjective co-localization analysis with fuzzy predi-
cates. The third paper, by Jesus David Teran et al., describes an iterated local 
search algorithm for the linear ordering problem with cumulative costs. The fourth 
paper, by Nohe Cazarez et al., describes an observer for the type-1 fuzzy control 
of a servomechanism with backlash using only motor measurements. The fifth pa-
per, by Selene Cardenas et al., proposes a neuro-fuzzy based output feedback con-
troller design for biped robot walking. The sixth paper, by Oscar Montiel et al., 
describes a fuzzy system to control the movement of a wheeled mobile robot. The 
seventh paper, by Oscar Montiel et al., proposes an approach for embedding a 
fuzzy locomotion pose controller for a wheeled mobile robot into an FPGA. 
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In conclusion, the edited book comprises papers on diverse aspects of bio-
inspired models, soft computing and hybrid intelligent systems for control and 
mobile robotics. There are theoretical aspects as well as application papers.  

 
 
 

May 31, 2010 Oscar Castillo
Tijuana Institute of Technology, Mexico

Witold Pedrycz
University of Alberta, Canada

Janusz Kacprzyk
Polish Academy of Sciences, Poland
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Composite Recurrent Neural Networks for Long-Term 
Prediction of Highly-Dynamic Time Series Supported 
by Wavelet Decomposition 

Pilar Gomez-Gil1, Angel Garcia-Pedrero1, and Juan Manuel Ramirez-Cortes2 

1 Department of Computational Science  
  pgomez@acm.org, agarciapedrero@gmail.com 
2 Department of Electronics,  
  National Institute of Astrophysics, Optics and Electronics,  
  Luis Enrique Erro No. 1 Tonantzintla, Puebla, 72840. Mexico  
 jmramirez@ieee.org 

Abstract. Even though it is known that chaotic time series cannot be accurately 
predicted, there is a need to forecast their behavior in may decision processes. 
Therefore several non-linear prediction strategies have been developed, many of 
them based on soft computing. In this chapter we present a new neural network 
architecutre, called Hybrid and based-on-Wavelet-Reconstructions Network 
(HWRN), which is able to perform recursive long-term prediction over highly dy-
namic and chaotic time series. HWRN is based on recurrent neural networks em-
bedded in a two-layer neural structure, using as a learning aid, signals generated 
by wavelets coefficients obtained from the training time series. In the results re-
ported here, HWRN was able to predict better than a feed-forward neural network 
and that a fully-connected, recurrent neural network with similar number of nodes. 
Using the benchmark known as NN5, which contains chaotic time series, HWRN 
obtained in average a SMAPE = 26% compared to a SMAPE = 61% obtained by a 
fully-connected recurrent neural network and a SMAPE = 49% obtained by a feed 
forward network. 

1   Introduction 

The use of long-term prediction as a tool for complex decision processes involving 
dynamical systems has been of high interest for researchers in the last years. Some 
current prediction strategies approximate a model of the unknown dynamical sys-
tem analyzing information contained in a solely time-series, which is supposed to 
described the system’s behavior. A time series may be defined as an ordered se-
quence of values observed from a measurable phenomena: nxxx ..., 21 ; such observa-
tions are sensed at uniform time intervals and may be represented as integer or real 
numbers [25]. Once defined, an approximated model may be used to predict the 
trend of the system behavior or to predict as much specific values of the time se-
ries as desired. As usual, such model will be just as good as the information used 
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to construct it and as the capability of the modeler to represent important informa-
tion embedded in the time series being analyzed.  

Time series prediction consists on estimating future values of a time series 
.., 21 ++ tt xx using past time series values txxx ..., 21 . One-step or short-term predic-

tion occurs when several past values are used to predict the next unknown value of 
the time series. If no exogenous variables are considered, one-step prediction may 
be defined as [19]: 

)...,( 211 ptttt xxxx −−−+ = φ                   (1) 

where φ is a approximation function used to predict. Similarly, long term predic-

tion may be defined as: 

)...,(,... 2112 ptttttht xxxxxx −−−+++ = φ                  (2)  

where h denotes the prediction time horizon, that is, the number of future values to 
be obtained by the predictor at once. Long term prediction may also be achieved 
by recursive prediction, which consists of recursively using equation (1) by feed-
ing back past predicted values to the predictor to calculate the new ones.  

The construction of models able to predict highly nonlinear or chaotic time se-
ries is of particular interest in this research. A chaotic time series is non-stationary, 
extremely sensitive to initial conditions of the system and contains at least one 
positive Lyapunov Exponent [15]. It is claimed that chaotic time series may only 
be short-term predicted [20]. Even though, in some cases it is possible to ap-
proximate a dynamical model with similar characteristics to that found in the non-
linear time series and to use it for long-term prediction. There are many techniques 
used to build predictors; they may be linear or non-linear, statistical or based on 
computational or artificial intelligence.  For example, ARMA, ARIMA and Kal-
man filters are linear methods [21]; k-nearest neighbors, genetic algorithms and 
artificial neural networks are examples of non-linear methods. Only non-linear 
methods are useful to forecast non-linear time series. 

The use of fully-connected, recurrent neural networks for long-term prediction 
of highly-dynamical or chaotic time series has been deeply studied [23]. In spite of 
the powerful capabilities of these models to represent dynamical systems, their 
practical use is still limited, due to constraints found in defining an optimal num-
ber of hidden nodes for the network and the long time required to train such net-
works. As a way to tackle these problems, complex architectures with a reduced 
number of connections, better learning abilities and special training strategies  
have been developed [13]; examples of such works are found at [2,3, 
4,10,11,13,15,25,26, 29, 30,31] among others. From the vast number of strategies 
used to improve the long term prediction ability of neural networks, Wavelet The-
ory is used either to modify neuron architectures (for example [2,6,12,31,33]) or 
as a pre-processing aid applied to training data (for example [11,26,28,29]). When 
wavelet theory is used to modify the neuron architecture, normally it is done using  
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a wavelet function as the activation function [33]. Other works combine wavelet 
decomposition (as a filtering step) and neural networks to provide an acceptable 
prediction value [11,29]. 

In this chapter we present a novel neural prediction system called HWRN (Hy-
brid and based-on-Wavelet-Reconstructions Network). HWRN is based on recur-
rent neural networks, inspired at the Hybrid complex neural network [15] and with 
a particular kind of architecture and training scheme supported by wavelet decom-
position. In the experiments reported here, HWRN was able to learn and predict as 
far as 56 points of two highly-dynamical time series, obtaining better performance 
than a fully-connected recurrent neural network and a three-layer, feed-forward 
neural network with similar number of nodes than the HWRN. This chapter is or-
ganized as follows: section two describes the main characteristics, general struc-
ture and training scheme of the model. In the same section some details are given 
related to reconstruction of some signals that are used for supporting training, 
which is based on discrete wavelet transforms. Criteria used to evaluate the per-
formance of the system are presented at section three. Section four describes the 
experiments performed and their results; it also includes a description of the time 
series used to evaluate the model.  Last section presents some conclusions and on-
going work. 

2   Model Description 

HWRN is built using several small, fully-connected, recurrent neural networks 
(SRNN) attached to a recurrent layer and an output layer. Figure 1 shows the gen-
eral architecture of HWRN. The SRNN are used to learn signals obtained from the 
training time series that contain different frequency-time information. Outputs of 
the SRNN are fed to a recurrent layer, which is able to memorize time information 
of the dynamical system. The last layer acts as a function approximator builder.   

The output of each node i at HWRN and SRNN is defined as: 

iii

i Ixy
dt
dy ++−= )(σ                         (3) 

where: 

      ∑
=

=
m

j
jiji wyx

1

                               (4) 

            represents the inputs to the i-th neuron coming from other  
            m neurons, 
 Ii         is an external input to i-th neuron,  

jiw      is the weight connecting neuron i to neuron j, 

)(xσ      is the node’s transfer function; it is a sigmoid for all 

   layers except output layer, for which transfer function is linear. 
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In order to be solved, equation 3 may be approximated as [27]: 

)())(()()1()( ttItxttyttty iiii Δ+Δ+Δ−=Δ+ σ                   (5) 

for a small tΔ , where: 
 

∑
=

=
m

j
jiji wtytx

1

)()(                                 (6) 

For the results reported here, initial conditions of each node )0( =tyi , are set as 

small random values. Indeed, there are no external inputs to nodes, that is 

0)( =tIi for all i, all t.  

Training of a HWRN predictor contains three main phases:  

1. Pre-processing of the training time series and generation of reconstructed  
signals, 

2. Training of the SRNN, 
3. Training of the HWRN.  
 
After being trained, HWRN receives as input k past values of a scaled time series, 
then recurrent prediction is applied to obtain as many futures values as required. 
Each training phase is described next. 

2.1   Phase 1: Preprocessing 

HWRN requires a time series with enough information of the dynamical behavior 
in order to be trained. Such time series may contain integer or real values and the 
magnitude of each element must be scaled to the interval [0,1]. This is required in 
order to use sigmoid transfer functions for the nodes in the network. To achieve 
this, the time series may be normalized or linearly scaled; in this research a linear 
scale transformation was applied, as recommended for financial time series by [7]. 
The linear transformation is defined as: 
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−+=
xx
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                                                                   (7) 

 

where: 
ub is the desired upper bound; in this case ub = 1,  
lb is the desired lower bound; in this case lb = 0, 
max(x) is the maximum value found at the time series, 
min(x) is the minimum value found at the time series. 
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Fig. 1. A Hybrid and based-on-Wavelet-Reconstructions Network HWRN (adapted from [12]) 

If the original times series has missing values, they are approximated as the 
mean of their two nearest neighbors. No further processing is applied. 

An important challenge forecasting nonlinear and chaotic time series is the 
complexity found to represent its non-stationary characteristics. To tackle this, the 
HWRN learns frequency information related to different times using different 
components. It is known that wavelet analysis has been used to represent local 
frequency information in a signal. Such analysis calculates the correlation among 
a signal and a function (.)ψ , called wavelet function. Similarity among both 

functions is calculated for different time intervals, getting a two dimensional rep-
resentation: time and frequency [1].  In this work, a multi-scale decomposition of 
the training signal is performed using the sub-band coding algorithm of the Dis-
crete Wavelet Transform [22]. This algorithm uses a filter bank to analyze a dis-
crete signal x(t). This bank is made of low-pass L(z) and high-pass H(z) filters, 
separating frequency content of the input signal in spectral bands of equal width. 
Figure 2 shows a one-level filter bank. After performing a down-sampling with a 
factor of two, signals cA(t) and cD(t) are obtained. These signals are known as ap-
proximation and detail coefficients, respectively. This process may be executed it-
eratively forming a wavelet decomposition tree up to any desired resolution level. 
A three-level decomposition wavelet tree, used for the experiments presented in 
this paper, is shown in Figure 3. The original signal x(t) may be reconstructed 
back using the Inverse Discrete Wavelet Transform (iDWT), adding up the out-
puts of synthesis filters. Similarly it is possible to reconstruct not only the original 
signal, but also approximation signals that contain low-frequency information of 
the original signal and therefore more information about long-term behavior. In 
the same way, detail signals can be reconstructed; they contain information about 
short-term changes in the original signal. Using the decomposition wavelet tree at 
figure 3, four different signals may be reconstructed (one approximation and three 
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detail signals) using the coefficients shown at the leaves of such tree. For the rest 
of this chapter, these signals are referred as “reconstructed signals.”  

For example, figure 4(a) shows a chaotic time series called NN5-101 (see sec-
tion 4); figure 4(b) shows its most general approximation obtained using coeffi-
cients cA3 (see figure 3); figure 4(c) shows the most general detail signal obtained 
using coefficients cD3; figure 4(d) shows detail signal at level 2 obtained using 
coefficients cD2; figure 4(e) shows detail signal at maximum level obtained using 
coefficients cD1. 

During the predictor training, a set of these reconstructed signals is selected and 
independently learned by a set of SRNN.  In order to figure out which recon-
structed signals contain the most important information, all possible combinations 
of reconstructed signals are created; next, signals in each combination are added 
up and the result is compared with the original signal using Mean Square Error 
(see equation 8). The reconstructed signals in the combination with the smallest 
MSE are selected to be learnt by the SRNN.   
 

 

Fig. 2. An analysis filter bank 

 

 

Fig. 3. A three-level decomposition wavelet tree 



Composite Recurrent Neural Networks for Long-Term Prediction  259
 

 

Fig. 4. (a) Original signal NN5-101 (data taken from [7]) 

 

 

Fig. 4. (b) Most general approximation signal obtained from NN5-101 
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Fig. 4. (c) Most general detail signal obtained from NN5-101 

 

Fig. 4. (d) Detail signal at level 2 obtained from NN5-101 
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Fig. 4. (e) Detail signal at maximum level obtained from NN5-101 

2.2   Phase 2: Training the SRNN 

SRNN are trained to predict one point in each selected reconstructed signal; they 
receive as input k values of the corresponding reconstructed signal and predict the 
next one. Once trained, the SRNN require only the first k values of the recon-
structed signal; the rest values are generated using recursive prediction as long as 
the predictor works. These k values are stored as free parameters of the system, to 
use them when prediction of the time series is taking place.  

Training of all SRNN is performed using the algorithm “Real-time real-
learning based on extended Kalman filter (RTRL-EKF)” [16]. This algorithm con-
tains 2 parts: gradient estimation and weights adjustment. The first part is done us-
ing the Real-Time, Real-Learning Algorithm proposed by Williams and Zipser 
[32]; second part is done using an extended Kalman Filter. RTRL-EKF has a 
complexity of O(n4), where n is the number of neurons in the neural network [12]. 

2.3   Phase 3: Training the HWRN 

After training all SRNN, their weights are imbedded in the architecture of the 
HWRN (see figure 1) which also contains a hidden layer with recurrent connec-
tions and an output layer with feed-forward connections. The complete architec-
ture is trained to predict one point of the original signal, keeping fixed the weights 
of sub-networks SRNN. As in the case of SRNN, training is performed using 
“Real-time real-learning based on extended Kalman filter (RTRLEKF) algorithm” 
[16]. 
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3   Metrics for Performance Evaluation 

The prediction ability of the proposed architecture and comparative models was 
measured using three metrics: Mean Square Error (MSE), Symmetrical-Mean Ab-
solute Percentage Error (SMAPE) and Mean Absolute Scaled Error (MASE). Next 
each metric is explained. 

“Mean Square Error” is defined as: 
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The “Symmetrical-Mean Absolute Percentage Error” is scale-independent; there-
fore it is frequently used to compare performances when different time series are 
involved [17].  This is the official metric used by the “NN5 forecasting competi-
tion for artificial neural networks & computational Intelligence” [8]. SMAPE is 
defined as: 
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It is important to point out that SMAPE cannot be applied over time series with 
negative values.  

Other popular metric is the “Mean Absolute Scaled Error,” defined as: 
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where tx  is the original time series and tx̂  is the predicted time series. 

4   Experiments and Results 

The proposed architecture and training scheme were tested using two benchmark 
time series; they are:  

a) The time series generated by Matlab function sumsin(), available at version 
7.4 and commonly used in Matlab demos [24]. It is defined as: 

 

)03.0sin()3.0sin()3sin()( tttts ++=                                                (11) 
 

Figure 5 shows an example of 735 points of sumsin() time series.  
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b)  Eleven of the time series found in the database of the “NN5 Forecasting 
Competition for Artificial Neural Networks and Computational Intelligence” [8]. 
These time-series correspond to cash drawbacks occurred daily in teller machines 
at England from 1996 to 1998; these series may be stationary, have local tenden-
cies or contain zeroes or missing values.  Figure 4 (a) shows the first time-series of 
such database, identified as “NN5-101”. The eleven time-series used here corre-
spond to what is called the “reduced set” in such competition. In order to deter-
mine if these series were chaotic, the maximum Lyapunov Exponent (LE) of each 
one was calculated using the method proposed by Sano and Sawada [18]. Table 1 
shows the maximum LE of each time series; notice that all are positive, an indica-
tion of chaos. 

 

 

Fig. 5. 735 points of the time series sumsin() 

 

Table 1. Maximum LE of reduced set series NN5 [12] 

 

Series ID Maximum LE 
NN5-101 0.0267 
NN5-102 0.6007 
NN5-103 0.0378 
NN5-104 0.0565 
NN5-105 0.0486 
NN5-106 0.0612 
NN5-107 0.0678 
NN5-108 0.0384 
NN5-109 0.8405 
NN5-110 0.0621 
NN5-111 0.0220 
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The HWRN contains 3 SRNN; the number of nodes at each SRNN was from 6 
to 10, determined experimentally depending upon the reconstructed signal being 
learnt; the hidden layer has 10 nodes. The performance of HWRN was compared 
with a three layer, feed-forward neural network (5-26-1) and a fully-connected  
recurrent neural network with 5 input nodes, 26 hidden nodes and one output 
node. These architectures have a similar number of nodes as the HWRN. All ar-
chitectures receive as input 5 values (k = 5) of the time series and predict next 
value. Recurrent prediction is used to generate 56 futures values, following rules 
of the “NN5 forecasting competition for artificial neural networks & computa-
tional Intelligence” [8]. The architecture was implemented using Matlab V7.4, 
C++, and public libraries for the training algorithm available at [5].  For both 
cases, four reconstructed signals were generated using DWT with wavelet func-
tion Daubechies ‘db10’ available at Matlab. Three of the reconstructed signals 
were selected using the strategy described at section 2.1. 

Twelve experiments were executed for each time series and each neural model. 
For each experiment, a different random initial set of weights was used. All train-
ings were made of 300 epochs. The first 635 values of each series were employed 
to train all models and the next 56 values were used as a testing set to compare the 
performance of the proposed architecture with respect to the other two models. 
The last 56 values of the series were used as a validation set in order to compare 
the performance of this architecture with respect to the competition results pub-
lished by [9].  

Table 2 shows the results obtained using recursive prediction of 56 values 
(validation set) by the 12 experiments over series sumsim(); the metric MAPE is 
not shown because it is not valid for negative values, as is with  sumsin(). Figure 6 
plots 56 predicted values (validation set) of series NN5-109, which was the series 
at NN5 dataset that obtained the best prediction results, with a SMAPE = 20.6%. 
Figure 7 plots 56 predicted values (validation set) of series NN5-107, which was 
the worst case obtained with series NN5, with a SMAPE = 40.5%.  

Table 3 summarizes the average results obtained for the two cases, all experi-
ments, all architectures predicting the validation set. For the three metrics in the 
two tested cases, HWRN got, in average, better results than the feed-forward and 
the fully-connected recurrent architectures. HWRN got a average SMAPE of 54% 
for the sumsinn() time series and 27% for the NN5 time series. It is important to 
point out that, with respect to contest results published by [9] using NN5 reduced 
test, HWRN could be located between the 16th and 17th place in the category of 
“neural networks and computational intelligence methods.” 

Notice at table 3 the high Standard Deviation found in the performance meas-
ured by MASE for the three architectures. This may be due to the facts that these 
series are chaotic (see table 1), and that the ability of the learning algorithm 
RTRLEKF to find the best solution space depend, among other factors, upon the 
initial set of weights randomly generated. However, it may be noticed that HWRN 
got the smallest Standard Deviation for these cases. 
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Table 2. Twelve experiments predicting validation set over series sumsin(). For a definition 
of MSA and MASE see equations (8) and (10) 

 

Experiment 
Number 

Feed-forward 
network 

Recurrent 
Network 

HWRN 

 MSE MASE MSE MASE MSE MASE 
1 0.112 60.827 0.236 100.004 0.110 73.184 
2 0.089 49.823 0.083 56.638 0.092 66.314 
3 0.070 47.931 0.036 40.038 0.370 41.687 
4 0.099 58.184 0.191 86.501 0.034 41.807 
5 0.061 48.613 0.023 34.78 0.029 37.863 
6 0.165 80.531 0.090 53.566 0.040 43.689 
7 0.096 59.478 0.003 12.399 0.132 78.450 
8 0.049 49.816 0.521 107.336 0.052 49.518 
9 0.104 74.631 0.146 78.909 0.054 49.677 
10 0.063 55.017 0.064 53.904 0.116 67.361 
11 0.063 50.018 0.087 73.610 0.099 68.531 
12 0.160 84.994 0.086 61.378 0.021 32.832 
Mean 0.094 59.989 0.131 63.255 0.068 54.243 
St. deviation 0.038 13.044 0.140 27.553 0.039 15.551 

 

 

Fig. 6. Best Prediction Case using NN5, SMAPE = 20.6%, series NN5-109 
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Fig. 7. Worst prediction case using NN5, SMAPE = 40.5%, series NN5-109  

Table 3. Prediction errors obtained by the proposed architecture and two other architectures 
using 56 values ahead 

Time Series Metric Neural Architecture 
  Feed-forward Recurrent HWRN 

MSE 0.09 ± 0.04 0.13 ± 0.14 0.07 ± 0.04 sumsin() 

MASE 59.99 ± 13.04 63.25 ± 27.55 54.24 ± 15.55 
MSE 250.12 ± 226.05 198.69 ± 131.12 34.05 ± 20.12 
SMAPE 49.28% ± 12.36 60.75% ± 13.05 27.22% ± 8.27 

Eleven exam-
ples of NN5 
time series MASE 517.50 ± 

1,079.68 
546.31 ± 
1,218.95 

194.99 ± 
387.22 

5   Conclusions 

We presented a novel neural network predictor, called HWRN, based on a combina-
tion of small, fully-connected recurrent sub-networks, called SRNN, that are embed-
ded in a composite neural system. This system is able to generate as many future val-
ues as desired using recursive prediction. HWRN was able to predict up to 56 points 
ahead of several non-linear time series, as shown by experiments done using the time 
series generated by Matlab’s function sumsin() and the time series found at the reduced 
set of the “NN5 Forecasting Competition for Artificial Neural Networks and Compu-
tational Intelligence” [8]. The SRNN’s are trained to reproduce selected reconstructed 
signals that represent different frequencies at different times of the original one. The 
reconstructed signals are obtained using the Discrete Wavelet Transform and the In-
verse Discrete Wavelet Transform [1]. In average, the HWRN obtained a Symmetri-
cal-Mean Absolute Percentage Error (SMAPE) of 27% when predicting in a recursive 
way 56 points ahead of 11 chaotic NN5 time series. This performance was better than 
the obtained with a fully-connected recurrent neural network (SMAPE= 61%) and a 
feed-forward network (SMAPE = 49%), both with similar number of nodes and 
weights. The main drawback of this system is the time required to train it. Currently 
our research group is looking for ways to train this system faster and for a efficient 
method to select the reconstructed signals generated by the iDWT. 
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