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In this paper we propose an approach to detect microcalcifications in digital mammograms using the dual-tree complex wavelet trans-
form (DT-CWT).The approach follows four basic strategies, namely, image denoising, band suppression, morphological transformation
and inverse complex wavelet transform. Recently, the DT-CWT has shown a good performance in applications that involve image
processing due to more data phase information, shift invariance, and directionality than other wavelet transforms. The procedure of
image denoising is carried out with a thresholding algorithm that computes recursively the optimal threshold at each level of wavelet
decomposition. In order to maximise the detection a morphological conversion is then proposed and applied to the high frequencies
subbands of the wavelet transformation. This procedure is applied to a set of digital mammograms from the mammography image
analysis society (MIAS) database. Experimental results show that the proposed denoising algorithm and morphological transformation
in combination with the DT-CWT procedure performs better than the stationary and discrete wavelet transforms and the top-hat
filtering. The approach reported in this paper seems to be meaningful to aid in the results on mammogram interpretation and to get
an earlier and opportune diagnostic for breast cancer.
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1. INTRODUCTION

A mammography exam, called a mammogram, is used to aid
in the diagnosis of breast diseases in women. A mammogram
is a specialised X-ray exam in which a set of plates is taken
from breast tissue to detect suspect tissue and microcalcifica-
tions (MCs). The main reason to perform a mammogram is the
detection of clinically hidden breast cancer at early time. The
early detection of breast cancer with a mammogram is difficult
due to the fact that small tumours and MCs are very similar
to normal glandular tissue. Recently, tools for computer-
aided diagnosis have been developed especially in the image-

processing field that permits an easy visualisation of mam-
mograms. In this regard, the wavelet transform (WT) has an
important merit, since it has been employed to eliminate noise
in mammogram image. The results have shown an improve-
ment of the image, making easy the visualisation of suspicious
lesions [1]. The WT analysis provides good time resolution
and poor frequency resolution at high frequencies, and good
frequency resolution and poor time resolution at low frequen-
cies. Wavelets are a powerful tool to image compression with
low information losses and have been applied in biomedical
signals because they provide an analysis of non-stationary sig-
nals that contains a high amount of complex frequencies [1].
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Lately, several approaches have been proposed to detect
MCs in digital mammograms. A system based on fuzzy logic
has been reported in [2], a mathematical morphologist study
is reported in [3], and several methods based on wavelet trans-
forms are reported in [4–8, 12, 14, 18, 21]. For example in [4]
Strickland and Hahn introduced a two stages method for detec-
tion and segmentation of MCs. The first stage is based on the
use of undecimated wavelet transform and the segmentation
process is realised with matched filters. A similar approach
is also reported in [18]. In [5], Wang and Karayiannis re-
ported an approach to detect MCs using the decimated wavelet
transform so that suppression in the low-band frequencies is
performed. The visualisation of MCs is improved using a non-
linear threshold based on the arc-tan method. In [6], Melloul
and Joscowicz proposed MCs detection in two steps. The first
consists in total elimination of background mammogram with
multi-scale morphological filtering then an optimal threshold
(entropy threshold) is applied to segmentation step. In [14]
an algorithm for early breast cancer diagnosis that employs a
combination of neural networks and wavelet-based subband
image decomposition that detects microcalcifications in digi-
tal mammograms is proposed. This algorithm uses a wavelet
transform that performs the wavelet decomposition through
a down-sampling process, which produces shifting. In gen-
eral, the aforementioned approaches have disadvantages that
limit the performance of these methods in image processing
applications. These disadvantages are shift sensibility derived
from the down-sampling process of the discrete wavelet trans-
form, low directionality of the horizontal, vertical and diag-
onal orientations of the image, and information inexistence
about phase.

In this paper we report an approach to detect microcal-
cifications in digital mammograms using the dual-tree com-
plex wavelet transform (DT-CWT). The DT-CWT has shown
a good performance in applications that involve image pro-
cessing due to more data phase information, shift invariance,
and directionality than other wavelet transforms. The ap-
proach consists of four stages, namely, image denoising by
optimal thresholding, band suppression of low frequencies,
morphological transformation, and inverse complex wavelet
transform. The remainder of this paper is organised as fol-
lows. In Section 2, a description of MCs and MIAS database
is presented. Section 3 presents an overview of wavelet the-
ory including the DT-CWT. The proposed approach to detect
microcalcifications is reported in Section 4. Experimental re-
sults are reported in Section 5. Conclusions and future work
are discussed in Section 6.

2. DESCRIPTION OF MCS IN
MAMMOGRAMS

Initially, the breast tissue study was performed in the radiology
field by analogical images including all kind of image modal-
ities such as magnetic resonance image and nuclear medicine.
The basic idea for using different image methods was to detect
and to diagnose at early stage the breast cancer tissue when
the probability of cure was greater and the treatment was less
aggressive. It helped by some means to decide the best ther-
apy for each lesion. Currently, mammogram screening is the

only way for detection at a short period of time. The objec-
tive of a mammogram is to produce detailed images of the
internal structures in breast tissue to make earlier cancer de-
tection. Due to the need of details, high quality spatial images
are required because the X-ray attenuation between normal
and abnormal tissue is very small. Conventional mammo-
gram uses film-screen detectors to record the photons that go
through breast tissue, and it produces an analogical image.
Due to the large amount of data that need to be stored, a piece
of film is an excellent storage medium. Unfortunately, it is
not possible to perform modifications in the image to improve
the visualisation of present elements. In order to overcome
the intrinsic limitations of conventional mammograms the use
of digital mammograms is desirable. One of the fundamen-
tals benefits of a digital mammogram is the facility to modify
the image information. There are several kinds of lesions in
breast tissue that can be detected in a mammogram, viz [9].

1. Primary signs:

• Dominant mass: This lesion is frequently found by
analysing mammogram information. The lesion
fall into one of four categories: benign, probably
benign, probably malignant, and malignant.

• Dashed lesions (architecture alteration): Distorted
areas of breast architecture with irregular edges that
adopt a radiated morphology indicate an earlier sign
of cancer but it is difficult to diagnostic.

• Microcalcifications: Frequently discovered and the
analysis of its characteristics permits to differen-
tiate a benign lesion from suspicious and clearly
malignant lesions.

2. Secondary signs:

• Skin enlarger: Caused by lymphatic congestion and
edema.

• Vascularisation increase: Due to cellular needs by
cell proliferation.

• Lymphatic affectation: Due to permeability
changes in lymphatic vases.

• Ductal dilation: Because liquid excess is present at
the breast tissue.

2.1 Microcalcifications

Breast calcifications are commonly discovered in the radio-
logical study on asymptomatic women. These are deposits
of calcium at the thickness of mammary tissue and are repre-
sented as little white dots, and normally show the first sign of
cancerous process. The main characteristics to determine the
level of MCs abnormality are [9]

i. Size: Larger than 2mm are classified as macrocalcifi-
cations and are usually benign. Microcalcifications are
under 2mm length and are suspicious of malignant when
they are small and grouped.

ii. Morphology: Malignant calcifications usually are het-
erogeneous in form and size, namely, pointed, angu-
lar, and irregular, in “comma”, graft and with form of
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point and ray. The benign ones usually are homogenous,
round, and sometimes annular and with clear centre.

iii. Quantity: A suspect of malignity is considered when
there are five or more calcifications less to 1mm into an
area of 1cm2.

iv. Distribution: Segmental distribution of calcifications,
not random distribution, is indicative of biopsy.

v. Calcification time variance: Stable calcifications into a
period of 1.5-2 years are benign whereas malignant cal-
cifications vary in time.

vi. Calcifications associated with breast tissue: These are
the first sign of breast cancer in young women.

Figure 1 shows different types of grouped MCs and an ex-
ample of mammogram with MCs grouped linearly is shown
in Figure 2.

2.2 MIAS database

In order to assess the performance of the proposed approach
the mammography image analysis society (MIAS) database
is used [9]. Table 1 shows the available information at the
database for each mammogram that includes type of tissue,
kind of abnormality, and strictness. In this paper only mam-
mograms classified as CALC and NORM are analysed. Re-
garding the database some considerations should be noted [9]:

• The list of images is presented in pairs: even numbers
correspond to left breast mammogram and odd numbers
correspond to right breast mammogram as shown in Fig-
ure 3.

• The size of each image is 1024 × 1024 pixels and it is
centred in the matrix.

• Coordinate system origin is at the bottom-left corner of
mammogram.

• If microcalcifications are present, centre and radii are
applied to a group of MCs not individually.

• In the case of MCs distributed into image and not concen-
trated, columns 5 and 6 are empty due to inappropriate
coordinates and radii.

Examples of mammograms with several types of tissue are
shown in Figure 4. It can be observed that the abnormalities
in the mammogram are difficult to observe when there is an
increment of changes into density tissue.

2.3 Wavelet transforms

The wavelet transform (WT) is a mathematical tool that pro-
vides building blocks with information in scale and in time
of a signal [10]. These building blocks are generated from
a single fixed function called mother wavelet by translation
and dilation operations. The most commonly used mother
wavelets are Haar, Daubechies, Mexican Hat, Morlet, and
Walsh [10]. The process of wavelet transform of a signal
is called analysis, and the inverse process to reconstruct the

analysed signal is called synthesis. The analysis generates dif-
ferent subband blocks (multi-resolution analysis, MRA [10]),
so different resolution levels can be generated, as the applica-
tion requires. This process is also known as subband coding
[11]. The discrete wavelet transform (DWT) is a time-scale
representation of a digital signal obtained with digital filtering
techniques. The signal to analyse is passed through several
filters with different cut-frequencies at different scales [10].
The wavelet family is generated by a mother wavelet ψ(x)
defined by [10, 16]

ψj,k(x) = 1√
aj
ψ

(
x − bk

aj

)
(1)

where aj denotes the scale parameter, bk represents the trans-
lation parameter, the term j controls scale and the term k

controls translation. Further details on the DWT can be found
in [10, 16]. The two-dimensional discrete wavelet transforms
analyses digital images by separation of rows and columns,
in this way the horizontal, vertical, and diagonal details are
separated. In the first stage, the rows of an image N × N

are filtered by one-dimensional (1D)-DWT analysis and then
the same process is applied to the columns [15]. The pre-
vious process generates three different detailed sub-images
HH, HL and LH. These correspond to three different direc-
tions (diagonal, vertical and horizontal, respectively) and a
sub-image LL, known as approximation matrix, is used to the
multi-level decomposition process. To reconstruct the image
through the sub-images results of two-dimensional-DWT, de-
tails are recombined with the low-pass approximation and the
up-sampling process. Note that the DWT is the non-redundant
and compact representation of a signal in the wavelet domain.
The down-sampling process makes the DWT time variant and
produces shifting. The DWT is a powerful tool, although it
has three main disadvantages that limit the performance in
image processing applications, namely [13],

• Shift sensibility: It is derived from the down-sampling
process because DWT coefficients fail to identify the
shift in the input signal.

• Low directionality: The horizontal (LH), vertical (HL)
and diagonal (HH) orientations are not enough to process
the soft contours and random edges in natural images.

• Information inexistence about phase: A DWT applica-
tion uses filters with real coefficients to process an image,
so it is not possible obtain phase information.

The stationary wavelet transform (SWT) is the redundant,
non down-sampling and full time invariant version of WT.
The SWT has the same length of wavelet coefficients for each
decomposition level. Furthermore, the SWT does not have
sensibility but it is computationally complex. The computa-
tional complexity of the SWT is O(n2), where n denotes the
length of samples in the signal [13]. The redundant repre-
sentation of SWT does not present shifting. This is ideal for
applications as contour detection, noise reduction, and data
fusion [13].
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Figure 1 Types of MCs, a) and b) Grouped or clusters MCs. c) Linear MCs. d) Linear MCs & clustered.

Figure 2 Image of mammogram with linear MCs.

Table 1 Mammogram information format [9].

mdb209 G CALC M 647 503 87

1st column 2nd column 3rd column

Reference number from MIAS
database. The database includes 322
mammograms.

Type of tissue:
F-Fatty,
G- Fatty-Glandular,
D-Dense-Glandular.

Class of abnormality: CALC-Calcifi-
cation, CIRC-Circumscribed masses,
SPIC-Spiculated masses, MISC-other,
ill-defined masses, ARCH Architec-
tural distortion, ASYM- Asymmetry,
NORM-Normal.

4th column 5th & 6th column 7th column

Severity of abnormality:
B-Benign, M-Malignant

(x, y) image-coordinates of centre of
abnormality.

Approximate radius (pixels) of a circle
enclosing the abnormality.

2.4 Complex wavelet transform (CWT)

The complex wavelet transform (CWT) is used to avoid the
limitations of DWT and to obtain phase information. The
CWT employs a complex value filtered analytically to decom-
pose pure real signals and real signals with complex compo-
nents into real and imaginary parts in the wavelet domain.
Real and imaginary coefficients are used to compute ampli-
tude and phase information, needed to describe precisely the
energy localisation of oscillating sources. Recent investiga-
tions in the CWT field are addressed to the design of complex
filter banks, in which the outputs are wavelet coefficients (real
and imaginary). It is desirable that filters form pairs of Hilbert
transform on each decomposition level. The CWT is classi-
fied into two groups, namely, the Redundant-CWT (RCWT)

and the Non-redundant-CWT (NR-CWT), and it is a powerful
tool to image compression [13].

2.4.1 Analytical filters

The Hilbert transform was introduced for signal processing
by Gabor. It is defined as an extension of a real signal s(x)
according to

r(x) = s(x)+ i g(x) (2)

where g(x) is the Hilbert transform of s(x) denoted by

H {s(x)} and i = (−1)
1
2 [13]. The signal g(x) is the 90◦

shifted version of s(x) as shown in Figure 5(a). The signal
g(x) is orthogonal to s(x). If S(ω) is the Fourier Transform
(FT) of signal s(x) and G(ω) is the FT of g(x), the relation
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a) mdb297 b) mdb298

Figure 3 (a) Mammogram corresponding to right breast and (b) Mammogram corresponding to left breast.

a) mdb006 b) mdb276 c) mdb038

Figure 4 Mammograms with several densities of tissue: (a) Fatty (F), (b) Fatty-Glandular (G), and (c) Dense-glandular (D) according to the MIAS database.

between s(x) and g(x) in the frequency domain is given by

G(ω) = S{H {s(x)}} = −i Sgn(ω)S(ω) (3)

where −iSgn(ω) is the modified signum function shown in
Figure 5(b). In the time domain, g(x) can be represented by
[13]

g(x) = H {s(x)} = 1

π

∞∫
−∞

s(x)

x − τ
dτ = s(x)

1

πτ
(4)

where τ denotes the integration variable. The estimate of in-
stantaneous frequency and amplitude of signal r(x) are given
by

Magnitude of r (x) =
√
s (x)2 + g (x)2

Angle of r (x) = tan−1 g (x)

s (x)

(5)

The previous quadrature representation results in a non-
negative spectral representation in the Fourier domain that

uses only a half of the bandwidth, this decreases the “alias-
ing”. Reduction of the “aliasing” is the key for shift insen-
sibility of CWT. Figure 6 shows the frequency spectrum of
an original signal S(ω) and its analytic representationR(ω).
The previous concept is applied to a filter bank of the DWT
to produce complex solutions that originates the CWT. Real
coefficients are replaced by complex coefficients. The com-
plex filter can be decomposed into two real filters (seen Figure
7). The impulse response of each filter constitutes the Hilbert
pairs. The combination of these filters is known as analytic
filter.

2.5 Redundant complex wavelet transform
(RCWT)

The RCWT is presented in two variants, namely, the dual-tree
complex wavelet transform of Kingsbury (DT-CWT (K)) and
the DT-CWT of Selesnick (DT-CWT (S)). Both of them are
redundant due to a similar filter bank structure with the DWT,
but in this case the banks operate in parallel and in quadrature.
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a) b)

Figure 5 Hilbert transform a) polar form, b) frequency domain.

a) b)

Figure 6 Spectral representation a) original signal s(x) b) analytic signal r(x).

Figure 7 Interpretation of an analytic filter into two real filters [13].

The filter structure is the same in both variants; the difference
is the method that generates the wavelet and scaling coeffi-
cients. Both DT-CWT variations generate phase information,
are insensible to shifting, and are directional. The CWT fol-
lows the same principle of DWT, and at the output there are the
same number of samples n that at the input. Furthermore, the
computational complexity is only twice of the DWT, O(2n)

[13]. Although, both DT-CWT have the same filter bank struc-
ture of DWT, the difference is that analytical filters replace real
filters in order to obtain complex solutions. It is similar of two
parallel filter bank structures in the DWT [13, 17]. Figure 8
shows the filter bank structure to DT-CWT analysis at three
level of decomposition in one-dimension. The form of the
conjugated filters for one-dimensional DT-CWT is defined by

54 Engineering Intelligent Systems



V. ALARCON-AQUINO ET AL

Figure 8 Analysis filter bank for 1D DT-CWT.

Figure 9 Synthesis filter bank for 1D DT-CWT.

(hn + ign) (6)

where hn is the set of filter {h0, h1} and gn is the set {g0, g1}.
Filter h0 and h1 correspond to low-pass and high-pass filter
respectively for real tree, in the same way filter g0 and g1 are
in the imaginary tree. It should be noted that notation h0 and
h1 for real tree (a-tree) and g0 and g1 for imaginary tree (b-
tree) is used in entire trees, but numerical values for each filter

differs from the other at each level. The synthesis filter bank
is shown in Figure 9. The reconstruction process is realised
with the pairs h̃0, h̃1 and g̃0, g̃1. In Figure 10, it is shown the
structure for a two-dimensional (2D) implementation; in this
case there are four trees for signal analysis and synthesis. The
pair of complex filters is applied in 2-D (m, n), where m and
n denote de elements of a two-dimensional array that can be
expressed as follows:
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Figure 10 Filter bank structure for 2-D DT-CWT.

(hn + ign)(hm + igm) = (hnhm − gngm)+ i(hngm − gnhm)

(7)
The pair constituted by a & b tree are the real part whilst

c & d tree are the imaginary part. In order to reconstruct
the signal trees {ã, b̃} are used for real part and trees {c̃, d̃}
for imaginary parts. In the work reported in this paper the
DT-CWT(S) is employed to detect microcalcifications. The
DT-CWT(S) uses either the Grobner’s bases or spectral fac-
torization method for the design of analytical quadrature fil-
ters for one dual-tree. The DT-CWT(S) design probes for the
two orthogonal wavelets that conforms the Hilbert transform,
the scaling filters should be at an offset level of 1

/
2 sample.

Equation (8) represents mathematically the filter bank struc-
ture (see Figure 8) with conjugate quadrature filters (CQF)
pair h0 and h1.

∑
n

h0(n)h0(n+ 2�) = δ(�) =
{

1 l = 0
0 l �= 0

(8)

h1(n) = (−1)(1−n)h0(1 − n)

Equations for scaling ch(x) and wavelet coefficients dh(x)
of real part are defined by

ch(x) = √
2

∑
n

h0(n)ch(2x − n) (9)

dh(x) = √
2

∑
n

h1(n)dh(2x − n) (10)

Correspondingly, imaginary part coefficients cg and dg are
defined similarly for the imaginary tree. In order to generate
the Hilbert transform the filters are different at each decom-
position level. Reconstruction filters are the inverse version
of the transformation filters. Further details can be found in
[13, 17].

2.5.1 Properties of DT-CWT

The DWT and the DT-CWT have similar properties due to
identical filter structure. The properties of the DT-CWT are
[17]:

• Shift insensibility: reconstructed detail at last level has
almost the same shifting present in original signal. This
allows that the DT-CWT has successful results in appli-
cations as motion estimation on images and image fusion
at different resolution levels.

• Directionality: The DT-CWT has six directions, three for
real part and three for imaginary part oriented at ±15◦,
±45◦ and ±75◦ in case of images.

• Phase information: This is due to the two parallel trees of
the DT-CWT. Phase can be computed at each level with
real and imaginary parts. The one-dimensional complex
wavelet is an envelope of real and imaginary wavelets in
quadrature (Hilbert pair) as shown in Figure 11 [13].

• Reconstruction: The DT-CWT reaches the conditions of
perfect reconstruction.

• Redundancy: The redundancy is 2:1 or 2J:1, where J
denotes the maximum number of decomposition levels.
In this regard, the DT-CWT is more expensive than the
DWT but less than the SWT.

3. PROPOSED APPROACH

In this section we report an approach to detect microcalcifi-
cations in digital mammograms using the DT-CWT (S). The
DT-CWT has shown a good performance in applications that
involve image processing due to more data phase informa-
tion, shift invariance, and directionality than other wavelet
transforms. The approach consists of four stages, namely,
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Figure 11 1-D Complex wavelet resulting from quadrature combination of
real and imaginary wavelets [13].

image denoising by optimal thresholding, suppression of low-
band frequencies, morphological transformation, and inverse
complex wavelet transform. Microcalcifications are small de-
posits of calcium that appear as diminutive white dots in the
mammogram. Due to size of microcalcifications, the non-
homogeneous background of mammogram (breast glandular
tissue) and noise present, detection of MCs is difficult [6].
The approach reported in this paper assumes that MCs present
in mammograms can be obtained using a transform that lo-
cate image characteristics into the wavelet transform domain.
The WT allows the multi-resolution analysis and image de-
composition in subband frequencies in which the low-band
frequencies are image background and high-band frequencies
correspond to image details. MCs correspond to the high-
band frequencies of mammogram spectrum [5]. Figure 12
shows the block diagram of the proposed approach. The five
steps that conforms the approach to detect MCs are 1) Mam-
mogram sub-band frequency decomposition, 2) Mammogram
noise reduction, 3) Suppression of bands containing low fre-
quencies, 4) Dilation of high frequency components and 5)
Mammogram reconstruction.

3.1 Mammograms sub-band frequency de-
composition

The original mammogram is decomposed into a subband set,
each band with different resolution and frequency contents.
This process is performed with the DT-CWT proposed by
Selesnick (see Section 3.2). There are two variants of the DT-
CWT(S), the DT-CWT (real) and the DT-CWT (complex).
Both of them have wavelets oriented in six directions. The
difference is that the DT-CWT (complex) uses two wavelets
for each direction, one interpreted as the real part and the
other as the imaginary part. Due to the complex version there
are double numbers of wavelets than the DT-CWT (real). The
DT-CWT (complex) is four times expansive and the DT-CWT
(real) is two times expansive [13]. The complex wavelet trans-
form used in this work to detect MCs is the DT-CWT (real).
The DT-CWT has six different wavelets oriented at ±15◦,
±45◦, and ±75◦ for i = 1, 2, 3 as follows [13, 17]:

ψi(n,m) = 1√
2
(ψ3,1(n,m)+ ψ4,i (n,m)) (11)

ψi+3(n,m) = 1√
2
(ψ3,1(n,m)− ψ4,i (n,m)) (12)

Oriented wavelets are produced from 2-D wavelets
ψ (n,m) = ψ (n)ψ (m) associated with row-column imple-
mentation of wavelet transform, where ψ (n) is the complex
wavelet defined by

ψ (n) = ψh (n)+ jψg (n) (13)

where h and g denote the corresponding low-pass and high-
pass filters respectively. Thus, the oriented wavelets are [17]

ψ3,1 (n,m) = φg (n)ψh (m) (14)

ψ3,2 (n,m) = ψg (n) φh (m) (15)

ψ3,3 (n,m) = ψg (n)ψh (m) (16)

ψ4,1 (n,m) = φh (n)ψg (m) (17)

ψ4,2 (n,m) = ψh (n) φg (m) (18)

ψ4,3 (n,m) = ψh (n)ψg (m) (19)

3.2 Mammogram noise reduction

The noise reduction in the mammogram is realised into trans-
form domain by an optimal threshold algorithm that modi-
fies the signal representation coefficients according to each
decomposition level. The method used to obtain the opti-
mal threshold consists in the stages of initialisation, iteration,
and convergence [19]. The main objective is to implement a
method to remove image noise using a non-linear and recur-
sive algorithm called optimal threshold algorithm with CWT
theory. Threshold application on wavelet coefficients is an
efficient method for noise removal in a signal [20]. A quasi-
optimal threshold method depends upon sampled signal length
and noise variance that generally is an unknown parameter. In
this section, a recursive method to estimate noise variance is
presented. The threshold limit depends on the probability den-
sity function (PDF) of noise. In order to obtain the threshold
in this recursive method two values are calculated to initialise
the process, viz [20].

A. Initialisation

The values that should be obtained are the variance of noised
signal σ 2

0 and the initial threshold λ0. The methodology to
obtain these values is as follows:

• Given the sampled noised signal p (n) with n denoting
the number of signal samples, the discrete or complex
wavelet transform is calculated to obtain p̂γ , where γ
is a multiple index γ = (j, k), with j and k denoting
scale and wavelet position respectively. Note that in a
bi-dimensional signal n is substituted by n×m.

When wavelet signal decomposition is obtained, the noise
variance of transformed signal is computed by using

σ 2
0 = 1

n

∑
γ∈�J

∣∣p̂γ ∣∣2
, (20)

where �J is a set of indexes defined by �J ={
γ (j, k) , j = 0, . . . , J − 1 , & k = 0, . . . , 2J − 1

}
[19].

The threshold λ0 is computed by using λ0 = (
2 ln nσ 2

0

)1/2
.
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Figure 12 Block diagram of proposed approach to detect MCs.

B. Iteration

• New variance and threshold values are calculated σ 2
t+1 =

1
n

∑
γ∈�J

∣∣p̂γ , λ0
∣∣2 and λt+1 = (

2 ln nσ 2
t+1

)1/2
[20].

• With a defined sequence of estimated thresholds (λt )t∈T
and estimated variances

(
σ 2
t

)
t∈T the convergence of the

new values depends upon initial value and iteration func-
tion Ip.n (λ).

Ip.n (λ) =

2 ln n

n

∑
γ∈�J

∣∣(p̂γ )
, λt

∣∣2




1/2

(21)

=

2 ln n

n

∑
γ∈�J

∣∣(p̂γ )∣∣2




1/2

(22)

(23)

C. Convergence

To get a fixed threshold estimation, it is necessary to consider
the following:

• The defined iteration function Ip.n (λ) supposes the exis-
tence of an interval [λa, λb] in which Ip.n (λa) ≥ λa
and Ip.n (λb) ≤ λb; in addition, the existence of a
step t0 in which λt0 ∈ [λa, λb], then in general form,
λt = Ip,n (λt−1) converges to a limit threshold value λli

contained in [λa, λb]. This is demonstrated in [20], and
permits to obtain a thresholdλli = Ip,n (λli).

λli = Ip,n (λli) =

2 ln n

n

∑
γ∈�λli

∣∣p̂γ ∣∣2




1/2

(24)

The thresholds values are obtained for each decomposition
level and are not dependant of a proposed variance but from the
variance estimation of signal noise. Equation (22) is defined
for a one-dimensional signal; the 2-D extension is obtained by
substituting n with (n×m). To reduce noise in digital mam-
mograms by considering the CWT extracted coefficients and
applying the optimal threshold, the following points should
be considered:

• The firs stage consists in decomposition of the noised sig-
nal into wavelet coefficients using the complex wavelet
transform.

• A threshold level is then obtained with the assistance
of the optimal threshold algorithm [20]. This procedure
modifies the wavelet coefficients in distinct form for each
decomposition level of the CWT.

• Finally, the reconstruction process is realised with the
modified coefficients.
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3.3 Suppression of bands containing low fre-
quencies

To eliminate mammogram background that difficult visibility
of MCs the suppression of bands that contain mammogram
low-band frequencies is performed. This objective is achieved
by scaling coefficient suppression from real and imaginary
part of DT-CWT(S), defined in Equation (9), then

ch (x) = √
2

∑
n

h0 (n) ch (2x − n) = 0 (25)

3.4 Dilation of high frequency components

It is necessary to stand out the subbands components that
contain high frequencies in which MCs are present. This is
achieved by a morphological operation of dilation. The re-
sult of dilation is the set of origins points of the structuring
element Y in which the structuring element contains some
element from X set when the element is displaced through
the space that contains both sets. The equation that models
dilation δY (X) is given by [3, 6]

δY (X) = {x|Yx ∩X �= 0} (26)

where X is a pixel set, Y is a structuring element (with circle,
triangle or hexagonal shape) and xis the set of pixels con-
cerned to X. The wavelet coefficients contain image details
so it is necessary to dilate each of six oriented bands; thus
δY (ψi (x, y)) for i = 1, . . . , 6. The used structuring element
Y is a circle that contains the MCs.

3.5 Mammogram reconstruction

Finally, DT-CWT synthesis is applied to the filter bank as ex-
plained in Section 3.2 and the DT-CWT subbands, previously
processed with the described methods of image denoising, low
frequencies subband suppression, and high frequencies com-
ponents dilation in which is obtained the mammogram that
contains only the MCs.

4. EXPERIMENTAL RESULTS

To assess the performance of the proposed approach experi-
mental results using the SWT and the top-hat transformation
are also presented. The results after applying these methods in
mammograms from the MIAS database are reported. The top-
hat transformation is mainly employed for detail extraction in
images. There are two kinds of top-hat transformation. The
white top-hat transformation for brighten details extraction
and the black top-hat transformation for dark details extraction
[6]. Because MCs are present as bright particles rounded by
a black background, then the white top-hat transformation is
considered. The top-hat transformation consists on recovering
the structures eliminated in the open or closed process. Using
a structuring element with suitable shape, size and orientation
it is possible to filter the image and eliminate particular ele-
ments of the original image. The white top-hat transform is
the residue between original image and morphological open.

Equation (25) shows the definition of white top-hat filtering
[3].

ρ (X) = X

γ (X)
(27)

where ρ (·) denotes the white top-hat transform and γ (·)is the
open process or morphological dilation δY (X). Furthermore,
to compare the efficiency of the proposed approach simula-
tions are first realised with mammograms using the DWT, the
SWT, and the morphological top-hat filtering. In the SWT and
the DWT case, the fourth order Daubechies (db4) wavelet is
used. Other wavelets may also be considered.

4.1 MCs detection using DWT and SWT

The DWT disadvantages decrease its efficiency in digital im-
age processing; in addition, when using the DWT for MCs
detection the inconvenient is the down-sampling process that
eliminates details in the image, especially when MCs are de-
tails in high-band frequencies. Figure 13 shows the results of
applying a four level decomposition DWT to a mammogram
with the wavelet Daubechies 4 (db4). Note that the detec-
tion of MCs using the SWT and the DWT is accomplished by
setting low frequencies subbands to zero, and before image
reconstruction the universal threshold algorithm with a soft
threshold is applied at each level of wavelet decomposition
[22]. It can be seen that the DWT is not a good alterna-
tive for MCs detection because the down-sampling process
makes the DWT time variant. The SWT is the non-redundant,
non-down-sampling and fully time-invariant version of WT.
The coefficients length of the SWT is the same at each de-
composition level and it has a similar structure to the DWT
without down-sampling. The redundancy of the SWT avoids
shifting. This is ideal for edge detection, noise reduction,
and data fusion. The SWT increases significantly MCs detec-
tion to overcome the DWT disadvantages. In Figure 14(a) a
mammogram with MCs is shown. The image obtained after
applying a four level decomposition SWT with db4 is shown
in Figure 14(b). It can be seen that the performance of the
SWT is better than the performance of the DWT because it
detects the MCs. However, the SWT process fails because it
also shows glandular tissue. Furthermore, its high redundancy
increments the computational complexity to O(n2) [13]. In
order to overcome the limitations of the DTW and the SWT
we use the DT-CWT.

4.2 Comparative results

Figure 15 shows an original mammogram called mdb233 G
CALC M *NOTE 3*. According to Table 1 this mammo-
gram corresponds to a Glandular tissue (G) and contains a set
of malignant MCs. NOTE 3 denotes that when calcifications
are present, centre locations and radii are applied to a group
of MCs rather than individually. As can be seen in Figure 15,
when using the SWT the MCs (brighten points) are apprecia-
ble, but its visibility is difficult because other image details
appear (tissue and breast glands), and the computational com-
plexity is high, O(n2). With the proposed approach using
the DT-CWT better results are obtained. MCs are more vis-
ible and other objects presented by the SWT disappear; in
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Figure 13 MCs detection using a four level decomposition DWT. [left] Original mammogram and [right] Image obtained after applying IDWT process.

(a) (b)

Figure 14 MCs detection using four levels of decomposition SWT, (a) Original mammogram, (b) Image from ISWT process.

addition the DT-CWT has lower computational complexity,
O(2n). The results obtained with the top-hat transformation
show that this is the worst method to detect MCs. This is due
to the fact that other tissue and breast glands are not filtered
and appear together with MCs, which are not significantly ap-
preciated as in the cases of the two other simulated methods.

Likewise, results are interpreted for the case of the mam-
mogram mdb249 D CALC M 544 508 48 shown in Figure
16. In this case a set of MCs are present at the approximate
centre of image (544, 508) [9]. Yet again it is observed that
using the DT-CWT a better detection of MCs without inherent
mammogram characteristics is obtained. This is not possible
with the SWT because there are not tissue and glandular fil-
tering. Finally in Figure 17, experimental results are obtained
from the mammogram mdb003 D NORM. This is a normal
mammogram (without MCs presence). As can be observed on
the SWT and the top-hat transformation results, tiny details
are appreciated in the mammogram, whilst with the proposed
approach a mammogram fully free of MCs and other details
is obtained.

The aforementioned approaches were applied to a set of 15
mammograms of different types of tissue. Six mammograms
of Glandular tissue (G), five of Dense-Glandular tissue (D)
and four of Fatty tissue (F) were used. The results obtained
by using the SWT and the proposed approach are in some

way similar (as can be seen in Figure 15 and in Figure 16),
both of them detect MCs, but with the SWT some inherent
characteristics of breast (tissue and glands) are not filtered.
The detection criterion on Fatty tissue (F) to determine if a
good detection was realised, is the presence of MCs without
tissue or breast glands. This is reported in Table 2 with “1”,
whilst it is considered a bad detection when in addition to
MCs, other breast characteristics are filtered, and it is reported
with “0”. In the cases of Dense-Glandular (D) and Glandular
(G) tissues, the detection becomes difficult due to the tissue
nature, so the symbol “0” represents that detection of MCs
was not achieved. An important factor to consider is the type
of tissue in the mammogram so that with Glandular (G) and
Dense-Glandular (D) tissues, the detection becomes difficult,
whilst the best results are obtained for Fatty tissue (F). Table
2 reports the results after applying the proposed approach, the
SWT and the top-hat filtering on digital mammograms. From
the fifteen analysed mammograms in the proposed approach
ten of them were classified with a “1” then a detection rate
of 66.6% was obtained, whilst the detection rate for the SWT
and the top-hat filtering was 34% and 20% respectively. The
low detection rate for the proposed approach is produced by
the nature of Glandular (G) and Dense-Glandular (D) tissues.
However, with Fatty tissue (F) better results are obtained, as
can be observed in Table 2.
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(a) (b)

(c) (d)

Figure 15 Experimental results for the mammogram mdb233 G CALC M *NOTE 3*. (a) Original mammogram, (b) Mammogram with MCs using the DT-CWT,
(c) Mammogram with MCs using the SWT, and (d) Mammogram with MCs using the top-hat filtering.

(a) (b)

(c) (d)

Figure 16 Experimental results for the mammogram mdb249 D CALC M 544 508 48. (a) Original mammogram, (b) Mammogram with MCs using the DT-CWT,
(c) Mammogram with MCs using the SWT, and (d) Mammogram with MCs using the top-hat filtering.
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(a) (b)

(c) (d)

Figure 17 Experimental results for the mammogram mdb003 D NORM. (a) Original mammogram, (b) Mammogram with MCs using DT-CWT, (c) Mammogram
with MCs using SWT, and (d) Mammogram with MCs using the top-hat filtering.

Table 2 Experimental results for the proposed approach, the SWT and the top-hat filtering, where G (Glandular tissue), D (Dense-Glandular tissue) and F (Fatty
tissue). A good detection is represented with “1” and a bad detection with “0”.

MAMMOGRAM Type of lesion Type of tissue DT-CWT SWT Top-hat

mdb209 CALC G 1 1 0
mdb211 CALC G 0 0 0
mdb213 CALC G 1 1 1
mdb218 CALC G 0 0 0
mdb219 CALC G 1 0 1
mdb233 CALC G 1 1 0
mdb216 CALC D 0 0 0
mdb222 CALC D 0 0 0
mdb223 CALC D 1 1 1
mdb226 CALC D 0 0 0
mdb249 CALC D 1 1 0
mdb231 CALC F 1 0 0
mdb238 CALC F 1 0 0
mdb245 CALC F 1 0 0
mdb252 CALC F 1 0 0

5. CONCLUSIONS AND FUTURE WORK

In the work reported in this paper we have proposed an ap-
proach to detect MCs in digital mammograms using the DT-
CWT. The approach consists of the DT-CWT application to
obtain a mammogram subband decomposition, mammogram
denoising by applying an optimal threshold at each decom-
position level, suppression of mammogram low frequencies,
application of morphological operators to enhanced MCs visu-
alization, and finally, the reconstruction of the mammogram.

The results obtained using the DT-CWT are compared to the
results obtained using the SWT and the top-hat transforma-
tions. The proposed approach shows the best performance
to detect MCs in digital mammograms. The SWT detects
the MCs but other details are also observed as MCs. Another
inconvenient presented by the SWT is the computational com-
plexity, O(n2), in contrast, the computational complexity of
the DT-CWT is O(2n) only. From results obtained morpho-
logical filtering is the worst method to detect MCs, because
MCs are not well appreciated. Furthermore, tissue and breast
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glands are presented in the reconstructed mammogram. It is
also observed that the results have variation that depends on
breast tissue type. The best results to detect MCs are achieved
with the proposed approach in Fatty tissue (F) mammograms,
according to the MIAS database. On the other hand, with
Glandular (G) and Dense-Glandular (D) tissues, due to the
tissue nature the detection becomes difficult. The approach
reported in this work can be used as a basis to develop an au-
tomatic diagnostic system to aid the results on mammogram
interpretation and to get an earlier and opportune diagnostic
for breast cancer. The MCs detection stage could be improved
to dense tissue and could be extended for other kind of lesions
that are also breast cancer indications. After the detection
stage, a segmentation stage could be implemented with fuzzy
logic [2] or neural networks [7], [8]. Furthermore, to detect
another kind of lesion, these could be classified into benign
or malignant depending on shape and size characteristics.
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