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Abstract—in this paper we present the results obtained by a 

partially recurrent neural network, called the Hybrid-Complex 

Neural Network (HCNN), for long-term prediction of 

Electrocardiograms. Two different topologies of the HCNN are 

reported here. Even though the predicted series were not 

similar enough to the expected values, the HCNN produced 

chaotic time series with positive Lyapunov Exponents, and it 

was able to oscillate and to keep stable for a period at least 3 

times the training series. This behavior, not found with other 

predictors, shows that the HCNN is acting as a dynamical 

system able to generate chaotic behavior, which opens for 

further research in this kind of topologies.  

 

INTRODUCTION 

n electrocardiogram (ECG) is a time series that 

presents chaotic characteristics, as positive Lyapunov 

exponents and strange attractors in its phase or return map 

[1]. Figure 1 shows an example of an ECG and figure 2 

shows its corresponding delay embedding amplitude in a 3D 

space. Notice that this plot presents an injection region, 

zoomed out in Figure 3, where the trajectories are very near 

each other. This characteristic, among others, makes chaotic 

signals difficult to predict and very sensitive to the initial 

conditions of the systems generating them.   
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Figure 1. An example of an unfiltered ECG time series 
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Lyapunov exponents are a measure of the mean ratio of 

contractions or expansions near the limit in a non-linear 

dynamical system [2]. They are invariant measures that keep 

constant even when the initial conditions of the trajectory of 

the system change, or when perturbations in the system 

occur.  These values give information of the divergence of 

the trajectories of the system. There are as many Lyapunov 

exponents as dimensions in the system. In a chaotic system, 

at least one of the Lyapunov exponents is positive. Several 

numerical methods have been proposed to approximate the 

Lyapunov Exponents of a dynamical system from a time 

series produced by the system, when their real values are 

unknown (see for example [10-13]). However, these methods 

are not accurate because they are very sensitive to the input 

parameters required to perform the calculations.  
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Figure 2. A delay embedding amplitude of an ECG signal with τ = 10 

 

From a time series, defined as: 

ℜ∈…= T }, x(t), ,  x(t),  t 21{                               (1) 

it is possible to construct a space with dimension  

12 +≥ dM , where d is the dimension of the dynamical 

system generating the series. This is done defining the vector 

)))1(()...2(),(),(()( τττ −+++= Mtxtxtxtxty                     (2) 

for some value τ , 
MRt ∈)(y . This space will have similar 

properties as the dynamical system generating the signal. If it 

were possible to build such dynamical system then it could 

be possible to use it for long-term predictions of the time 

series [3]. 
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Figure 3. Zoom out of the central part of plot at Figure 2.  

 

The main idea in this research is to build a system based 

on Artificial Neural Networks able to learn the dynamics of a 

system from a time series generated by it, in order to obtain 

long-term predictions of the series. In this article we show 

the results obtained predicting several cycles of 

electrocardiograms using a neural network model based on a 

combination 3-node recurrent neural networks and feed–

forward connections. Such model was able to oscillate in a 

chaotic but stable way, generating a series that resembles an 

ECG for about 4 periods.  

   The article is organized as follows: Section I describes 

the neural network. Section II describes the results obtained 

for the cases presented here, and section III presents 

conclusions and future work.  

I. THE HIBRID-COMPLEX NEURAL NETWORK 

A. Topology 

 Artificial Neural Networks have been widely used for 

forecasting [4-8]. Our model, called “Hybrid Complex 

Neural Network” (HCNN) [1] is based on small networks 

called harmonic generators, connected to other neurons using 

feed-forward and recurrent connections.  

 A harmonic generator is a 3-node full recurrent neural 

network that, when trained, is able to produce an almost-

perfect sine function, with the same frequency and amplitude 

as the training data. Training is done using the algorithm of 

“Back Propagation through Time” (BPTT) [5]; training data 

consist of one period of the function. Figure 4 shows this 

network.  The HCNN includes several harmonic generators 

that are trained to learn sine functions representing the first 

seven frequency components of the time series to be 

predicted. 

 A HCNN also includes a mechanism to obtain some 

information related to the chaotic dynamics of the training 

signal. This is done by introducing in the network 

information about Lyapunov exponents. In [9] a system was 

proposed based on a feed-forward neural network, able to 

obtain an approximation of the Lyapunov exponents of a 

time series. Such neural network calculates a function that is 

topologically equivalent to the one describing the dynamical 

system. The network gets as input some past values of the 

series, generating the next value as output. Taking the same 

idea, the HCNN includes some external inputs corresponding 

to delayed values of the signal, connected in a feed-forward 

fashion to nodes in the harmonic generators.  
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Figure 4. Harmonic Generator 

 

 A hidden layer may be added to reinforce the power of the 

system. Figure 5 shows a HCNN with five inputs and no 

hidden layer, and figure 6 shows an example including a 

hidden layer.  

In summary, the harmonic generators give to the system 

initial information about the frequency components in the 

signal, feed forward and external inputs will allow obtaining 

information about the nonlinearity in the system. Hidden 

nodes will allow internal representation of the dynamics of 

the model.   
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Figure 5. A HCNN with 5 inputs and no hidden layer  

(not all connections are shown) 
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Figure 6. A HCNN with 5 inputs and one hidden layer 

(not all connections are shown) 
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B. Training 

 The training of HCNN is carried out in three steps 

described next. 

 In the first step, seven harmonic generators are trained as 

separated networks, to produce sine functions with the same 

frequency as the first 7 harmonics of the signal. The number 

of harmonics was chosen experimentally, based on a cost-

benefit relation among the number of Fourier components 

needed to represent the signal and the time needed to train 

the HCNN. ECG is a highly non-linear signal, with a large 

number of significant frequency components. Figure 7 shows 

the power spectrum of an ECG. Seven frequency 

components are far to be enough to reconstruct the signal, 

but they give important information about the shape of the 

ECG. In the third step of training these harmonic generators 

will be again modified.  

 The dynamics of each neuron in the network is given by: 

dy

dt
y x I

i
i i i= − + +σ ( )                (3) 

where:  

x w yi ji j

j

= ∑                     (4) 

xi represents the input to the i-th. neuron coming from other 

neurons, Ii is an external input to i-th. neuron, wji is the 

weight connecting neuron i to neuron j and )(xσ is an 

arbitrary differentiable function, commonly a sigmoid. Ii  is 

used only in the input layer of the HCNN 

 The second step of training consists on adapting the 

weights corresponding to the feed-forward part of the 

network, using the input values, and keeping weights in the 

generators constant. This training is also done using BPTT.  

 The third step of training consists on adapting weights in 

the recurrent part (harmonic generators) and in the feed-

forward part of the HCNN.  
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Figure 7. Frequency spectrum of ECG at figure 1. 

II. RESULTS 

  Here we present the results obtained using two 

topologies of HCNN, shown at figure 5 and 6, referred from 

now as topology A and B, respectively. In both cases there is 

an input layer with 5 nodes, one output node and 7 harmonic 

generators. In the second case there is a hidden layer with 7 

nodes.   

A. Data Set and Calculation of Lyapunov Exponents  

Both topologies were trained using a time series of 512 

points obtained from a band-pass filtered ECG, digitized at 

360 Hz. The cutoff frequencies were selected as 0.5 and 105 

Hz. after analysis of the power spectrum (Figure 7), to keep 

significant frequency components.    

The maximum Lyapunov exponent λ1 of this time series 

was calculated using an implementation developed in [1] of 

the numerical method described by Wolf et al. [9]. As with 

other numerical algorithms, this is strongly dependent of the 

size of data and accuracy of input parameters. The main idea 

of Wolf’s algorithm is to monitor the long-term evolution of 

a single pair of nearby orbits of the system in order to 

estimate λ1. For a detailed description of the implementation 

of this algorithm see [1].  

To calculate λ1 for the time series used and predicted in 

these experiments we applied the following input parameters: 

Number of inputs points = 512 or 1,536 (size of the signal), 

embedded dimension = 3 (as suggested in [11]), time delay = 

15 (calculated using auto-correlation function), time period 

of data = 0.028, maximum distance to look for neighbors = 

0.008 and minimum distance = 1.0e-05.  

A λ1 = 3.23±0.027 was found for the input ECG described 

earlier. It must be pointed out that, at the time when these 

experiments were carried out [1], the true value of the 

maximum Lyapunov Exponent λ1 of an ECG signal had not 

been determined. Very different values have been reported in 

the literature, for example: 0.34±0.08 by Babloyantz and 

Destexhe [11], 0.11 to 0.27 by Karanam [12], 7.6 to 29.1 by 

Casaleggio et al. [13], 8.18±3.63 to 17.36±3.68 by Owis et 

al. [14], the last for ECG showing different kinds of 

arrhythmias.  

 

B.    Sweeps and metrics  

 Each network was trained until it stopped learning. 

Topology A was trained with 50,000 sweeps and topology B 

with 30,000 sweeps.   

 Table I shows resulting metrics over the predicted signals. 

The Maximum Square Error (MSE) over the original and 

predicted signal was calculated for each case, as well as the 

maximum Lyapunov Exponent λ1 for the resulting signal, 

this separated in two sections:  first 512 points, when the 

prediction was made using original data as input to the 

network, and the rest of the signal (1536 points) when 

prediction was made using predicted data as input to the 

network.  

  Figure 8 shows the original signal with 512 points and a 

prediction of 2,048 points using the network for topology A.  

Figure 9 shows the predicted signal only, for the same case, 

marking the peaks of the predicted ECG. The predicted 

signal has a Lyapunov exponent of 4.47±0.33 in the first 512 
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points, which used original data in the input data, and 

3.92±21.11 in the 2,048 point where, starting at point 513, 

input data was already composed from predicted values. 

Notice that even this condition, the signal keeps stable. 

 Figure 10 shows the results obtained with the prediction of 

2,048 point using the network for topology B. Here the 

obtained Lyapunov exponent is 4.88±2.21 in the first 512 

points, and 7.52±1.95 in the 2,048 points.  

 Notice that in both cases the predicted output is enclosed 

to an upper value; that is, the network oscillates in an 

autonomous way, using their own predicted data and keeping 

their output with no divergence. This behavior is not seen in 

other linear predictors, or with predictors based on feed- 

forward neural networks, as shown at [1].  

 Table I shows that topology B obtained the lowest MSE. 

Notice that the peaks in the electrocardiograms are presented 

in both cases, but their magnitude is not as expected. In the 

experiment using topology B, magnitude of the predicted 

signal is closer to expected. It can also be noticed that values 

obtained by topology B are noisier than the obtained by 

topology A. 

 Figure 12 and 13 shows the delay embedding for the 

predicted signal for topology A and B respectively. The 

injection regions in both figures are denser than in the 

original signal (Figure 3) and, as expected, the attractor is 

missing the peak due to the R values of the ECG. 

 

 

 

TABLE I. 

 METRICS OF RESULTS 

 

 Topology A Topology B 

Resulting MSE 

original vs. predicted 

3.1e-3 2.5e-3 

Lyapunov value of first 

512 points of predicted 

signal 

4.47±0.33 

 

4.88±2.21 

 

Lyapunov value from 

point 513 to 2048 of 

predicted signal 

3.92±21.4 7.52±1.95 

 

 

III. CONCLUSIONS 

 The results obtained by a neural network called “Hybrid 

complex neural network” for long-term prediction of ECG 

are shown here. This network is a combination of recurrent 

smaller networks trained to oscillate in specific frequencies 

and related with other nodes by recurrent and feed forward 

connections. The results showed that this neural system is 

able to oscillate in a stable way, and to generate chaotic 

signals that resemble and ECG. The system is not able to 

learn the magnitude of the signal neither its phase in an 

accurate way. As future work it is proposed to include more 

information about the phase of the signal in the harmonic 

generator, and in the complete HCNN as a training value. 
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Figure 8. Original and predicted signal obtained by 

topology A 
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Figure 9.  Prediction obtained by topology A. 

Symbols R and T show the time periods in the predicted signal 
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Figure 10. Original and predicted signal for Topology B 
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Figure 11.  Prediction obtained by topology B. Notice the magnitude values compared with topology A. 
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Figure 12. Delay embedding of ECG predicted by topology A 
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Figure 13. Delay embedding of ECG predicted by topology B 
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