
FPGA design and implementation for vertex extraction of polygonal

shapes
Jorge Martínez-Carballido Jorge Guevara-Escobedo Juan M. Ramírez-Cortés

Instituto Nacional de Astrofísica, Óptica y Electrónica

jmc@inaoep.mx jorgege@inaoep.mx jmram@inaoep.mx

Rubén Alejos-Palomares

Universidad de las Américas Puebla

ruben.alejos@udlap.mx

Abstract

This work focuses on developing systems of blocks

in SIMULINK and VHDL to reuse on design of

applications involving the recognition of polygonal

objects. Usage of this work reduces time in the

development of prototype solutions using FPGAs.

The vertex extraction algorithm uses contour’s

corners as the candidate set to select vertices by

using local properties. SIMULINK and VHDL

implementations were tested to be equal at I/O level.

Using a Spartan 3E FPGA Starter kit for the

hardware implementation probed that the VHDL

implementation synthesizes. Binary images are

loaded into the FPGA through a microSD memory

card and the resulting data from the FPGA process is

visualized through the Starter Kit built-in

alphanumeric LCD.

Test cases consider artificial cases to ensure wide

case testing for case combination of the algorithm.

These sets of components in software and hardware

contribute by easing implementations on computer

vision applications using polygons for object

identification.

1. Introduction

A polygon is a closed multi-linear curve. Polygons

are basis for many of the objects of interest in the

field of computer vision. On industrial applications

there is an increased need to integrate; camera and

processing on the same device, where usage of FPGA

is becoming a good choice given the advantages of

re-configurability and the possibility of high

performance implementations, using parallel

architectures.

 Computer vision is a rich topic for research

and study; increasingly, it has a commercial future.

While the goal of computer vision is to make useful

decisions about physical objects and scenes based on

sensed images; computer vision systems become

important whenever automation or improvement of

industrial or human activities is a goal.

Computer vision research is an interdisciplinary

field closely related to human vision system, with

applications in a variety of areas such as: mechanical

piece inspection, agricultural quality, electronic

circuit board inspection, biometrics, medical

diagnostics [1], and automotive safety [2] [3].

Along the years, starting on the 1960’s, there has

been specialized hardware to accelerate and/or

integrate functionality to computer vision

applications. Some of this are: array and vector

processors, FPGA, and GPU based hardware

implementations.

Computer vision applications make use of object

representation; many object representations include

shape representation. We present design and

implementation on FPGA that extracts vertices of a

binary image containing a contour of a polygon. This

work uses as hardware platform a Xilinx Spartan 3E

(500K) Starter kit with microSD for image loading.

The following sections describe design,

development, testing, and results of this work.

2. Algorithm

On the design phase for vertex location on a

binary image of a polygonal object, a decision on the

contour’s representation and on the vertex location

method has to be taken.

Contour based representation is divided in the

following three classes [4]:

 Parametric Contours: the shape outline is

represented by a parametric curve implying a

sequential order along it.

 Set of Contour Points: the shape outline is

simply represented as a set of points, without any

special order among them;

 Curve Approximation: a set of geometric

primitives like straight line segments are fitted to the

shape outline.

Polygons can naturally be represented by its set of

vertices, where representation is independent to

vertex order; thus, this work takes a set of contour

points to represent a resulting polygon.

217 978-1-4244-9557-3/11/$26.00 ©2011 IEEE

 Vertex detection and polygonal approximation

methods can be global or local:

 Global methods use an error function to

estimate quality of the resulting approximation [5].

 Local methods go directly to identify vertex

location, using contour properties [6] [7] [8].

Given that FPGA implementation is the final

target of this work, it is of high relevance to consider

simplicity of elements with preference to use integer

arithmetic and/or logical binary components for the

vertex location method. This leads to use a local

method to identify vertex location on the contour.

From the above it can be said that this solution

approach uses a set of contour points, locates vertices

on the contour by using local properties and represent

the resulting polygon with a set of vertices.

3. Algorithm developing

Software based tools are good for quick

development and test cycles while trying options for

algorithm development. Here we used MATLAB for

this stage. The details of the algorithm is subject of

another report, let just say that we used a list of

corners as representation of the binary image contour

and with local properties, a subset of this corners are

identified as vertices of the contour.

Figure 1. System diagram

4. Implementation

Development was performed concurrently using

SIMULINK and VHDL implementations for each of

the internal blocks, while integrating them to form

the system. Equivalence between systems is at the IO

level, meaning that given the same image, one gets

the same set of vertices representing the polygon on

each system.

The system has two subsystems: contour’s local

properties and vertex location. With the use of

corners on the contour, instead of sets of contour

points that form a straight line segment [7], and the

difference between corners locate a vertex. The

system needs peripherals as means to get an image

into memory to process it and one to present the

resulting vertices. Diagram on Figure 1 represents

this.

Figure 2. SIMULINK Contour's local

properties system

Once the algorithm for the system was defined by

coding and testing on ‘M’ language from MATLAB,

a system decomposition to define blocks that will be

more related to a final development on a digital

design was performed using level-2 S functions of

SIMULINK: a) Figure 2 presents the contour’s local

properties, extracting corners and their differences. b)

Figure 3 presents the block system in SIMULINK for

the vertex location system.

Figure 3. SIMULINK vertices location system

218 978-1-4244-9557-3/11/$26.00 ©2011 IEEE

Concurrently the SIMULINK and VHDL systems

were developed, resulting on systems of VHDL

entities to integrate the contour’s local properties and

vertex location systems; whose corresponding

diagrams are shown on Figure 4 and Figure 5. The

fact that SIMULINK blocks were first implemented

then the VHDL ones, eased the process to have

working VHDL entities to the synthesized system on

the FPGA Spartan 3 starter kit. Given that by using

SIMULINK to try design options can be done in less

time than on a VHDL simulation and synthesis.

Figure 4. VHDL Contour’s local properties

system

A difference between the SIMULINK and VHDL

implementations is that IO subsystem in SIMULINK

is readily available on the computer and that on the

synthesized VHDL to FPGA, IO needs to be

implemented. For this system a microSD was used as

storage and an LCD display for vertex location

output. Therefore subsystems for each peripheral

were developed.

For the microSD memory card, the FAT32 file

system was used to be able to read images form

images saved on a microSD card on a personal

computer; this ensures that the image written by the

an external application can be read into the FPGA

system from the microSD memory card with the

‘BMP’ standard uncompressed image file format.

Figure 5. VHDL Vertex location system

5. Tests and Results

This section presents results obtained in the three

different implementations for the implemented

algorithm (MATLAB function, SIMULINK block

system and VHDL system). A group of binary

images in ‘BMP’ format of size 64x64 - 574 bytes

(512 bytes raw image + 62 bytes bmp format header)

representing a combination of all possible type of

vertices to be found were selected as examples; this

test cases include cases found on images of polygonal

objects in a real environment as obtained from an

industrial case.

Careful selection of test cases considered each

type of vertex and combination of each type of

vertex, giving seven test cases. Figure 6 shows the

results generated by the SIMULINK implementation

219 978-1-4244-9557-3/11/$26.00 ©2011 IEEE

for each of the seven cases, for each case a list of the

vertices located and its corresponding image with

their vertices are shown.

Figure 6. SIMULINK tests and results

For the VHDL implementation case, a Spartan 3E

(500K) starter kit with proto-board expansion for the

microSD connection was used and shown on Figure

7. The rotating knobs of the kit was used to read

vertices location and are displayed on the LCD

screen, Figure 8 illustrates the usage of the rotating

knob for a four vertices polygon.

Figure 7. FPGA system

Using Xilinx ISE to synthesize the VHDL system

for the Spartan 3E (500K) starter kit, the RTL

diagram obtained is shown on Figure 9.

MATLAB and Simulink Testing was performed

by using MATLAB R2008a running under Linux

Operating System (Ubuntu 9.10) in a Intel Core 2

Duo processor at 1.83Ghz of clock frequency, with 2

GBytes of RAM.

Using the MATLAB implementation time

execution is estimated for the implemented

algorithm; Table 1 shows the obtained results along

Figure 8. LCD display with sample vertices

location

with the number of pixels forming the polygon’s

contour, the number of contour pixels that are

corners, the number of vertices, and execution time in

milliseconds found.

Figure 9. Vertices' system RTL

220 978-1-4244-9557-3/11/$26.00 ©2011 IEEE

Results show that timing is closely related to the

number of corners of the contour, given that the

algorithm uses the list of corners to extract vertices

by using local properties.

Table 1. Summary of tests results

Image Pixels Corners Vertices Time ms

pol1.bmp 181 115 4 11

pol2.bmp 203 107 3 12

pol3.bmp 197 4 4 2

pol4.bmp 169 77 8 9

pol5.bmp 215 115 12 11

pol6.bmp 207 117 9 12

pol7.bmp 261 139 10 14

6. Conclusions

A SIMULINK and VHDL component library was

designed and implemented by refactoring a

MATLAB algorithm. Both systems were tested for

equivalence at the I/O level with a set of designed

cases.

The FPGA implementation used microSD

memory and Starter Kit built-in LCD; thus, images

could be loaded into the FPGA and results could be

visualized through the LCD.

A set of components in software and hardware,

was designed, developed and implemented to

contribute on computer vision implementations of

applications using polygons for object identification.

7. References

[1] Xiaolei Huang and Dimitris N. Metaxas,

"Metamorphs: Deformable Shape and

Appearance Models," IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol.

30, no. 8, pp. 1444-1459, August 2008.

[2] Carlos Filipe Paulo and Paulo Lobato Correia,

"Traffic Sign Recognition Based on Pictogram

Contours," in Ninth International Workshop on

Image Analysis for Multimedia Interactive

Services, Klagenfurt University, Austria, 2008,

pp. 67-70.

[3] Gareth Loy, David Shaw Nick Barnes, "The

regular polygon detector," PatternRecognition,

vol. 43, p. 592–602, 2010.

[4] Roberto Marcondes Cesar Jr. Luciano da

Fontoura Costa, Shape Analysis and

Classification.: CRC Press LLC, 2001.

[5] Alexander Kolesnikov and Pasi Fränti,

"Polygonal approximation of closed discrete

curves," Pattern Recognition, vol. 40, pp. 1282-

1293, 2007.

[6] Denise Guliato, Juliano D. de Carvalho, Sérgio A.

Santiago Rangaraj M. Rangayyan, "Polygonal

approximation of contours based on the turning

angle function," Journal of Electronic Imaging,

vol. 17, no. 2, pp. 023016-1 - 023016-14, Apr-Jun

2008.

[7] Partha Bhowmick and Bhargab B. Bhattacharya,

"Fast Polygonal Approximation of Digital Curves

Using Relaxed Straightness Properties," IEEE

Transactions on Pattern Analysis and Machine

Intelligence, vol. 29, no. 9, pp. 1590-1602,

September 2007.

[8] Lars Kulik, Mike Worboys,Antony Galton Matt

Duckham, "Efficient generation of simple

polygons for characterizing the shape of a set of

points in the plane," Pattern Recognition, vol. 41,

pp. 3224 - 3236, 2008.

221 978-1-4244-9557-3/11/$26.00 ©2011 IEEE

