
Eng Int Syst (2010) 1: 1–9
© 2010 CRL Publishing Ltd Engineering

Intelligent Systems

Initialisation and training
procedures for wavelet networks
applied to chaotic time series

V. Alarcon-Aquino1, O. Starostenko1, J. M. Ramirez-Cortes2, P. Gomez-Gil3, E. S. Garcia-Treviño1

1Communications and Signal Processing Research Group, Department of Computing, Electronics, and Mechatronics, Universidad de
las Americas Puebla, Sta. Catarina Mártir. Cholula, Puebla. 72820. MEXICO. E-mail: vicente.alarcon@udlap.mx
2Department of Electronics Engineering
3Department of Computer Science, National Institute for Astrophysics, Optics, and Electronics, Tonantzintla, Puebla, MEXICO

Wavelet networks are a class of neural network that take advantage of good localization properties of multi-resolution analysis and
combine them with the approximation abilities of neural networks. This kind of networks uses wavelets as activation functions in
the hidden layer and a type of back-propagation algorithm is used for its learning. However, the training procedure used for wavelet
networks is based on the idea of continuous differentiable wavelets and some of the most powerful and used wavelets do not satisfy this
property. In this paper we report an algorithm for initialising and training wavelet networks applied to the approximation of chaotic
time series. The proposed algorithm which has its foundations on correlation analysis of signals allows the use of different types of
wavelets, namely, Daubechies, Coiflets, and Symmlets. To show this, comparisons are made for chaotic time series approximation
between the proposed approach and the typical wavelet network.
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1. INTRODUCTION

Wavelet neural networks are a novel powerful class of neural
networks that incorporate the most important advantages of
multi-resolution analysis (MRA) [3, 4, and 7]. Several authors
have found a link between the wavelet decomposition theory
and neural networks (see e.g., [1–3, 5, 6, 9, 13, and 21]). They
combine the good localisation properties of wavelets with the
approximation abilities of neural networks. This kind of net-
works uses wavelets as activation functions in the hidden layer
and a type of back-propagation algorithm is used for its learn-
ing. These networks preserve all the features of common
neural networks, like universal approximation properties, but
in addition, present an explicit link between the network co-
efficients and some appropriate transform.

Recently, several studies have been looking for better ways
to design neural networks. For this purpose they have anal-
ysed the relationship between neural networks, approximation
theory, and functional analysis. In functional analysis any
continuous function can be represented as a weighted sum
of orthogonal basis functions. Such expansions can be eas-
ily represented as neural networks which can be designed for
the desired error rate using the properties of orthonormal ex-
pansions [5]. Unfortunately, most orthogonal functions are
global approximators, and suffer from the disadvantage men-
tioned above. In order to take full advantage of orthonormal-
ity of basis functions, and localised learning, we need a set
of basis functions which are local and orthogonal. Wavelets
are functions with these features. In wavelet theory we can
build simple orthonormal bases with good localisation prop-
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erties. Wavelets are a new family of basis functions that com-
bine powerful properties such as orthogonality, compact sup-
port, localisation in time and frequency, and fast algorithms.
Wavelets have generated a tremendous interest in both theo-
retical and applied areas, especially over the past few years
[3, 4]. Wavelet-based methods have been used for approxi-
mation theory, pattern recognition, compression, time-series
prediction, numerical analysis, computer science, electrical
engineering, and physics (see e.g., [3, 5, 10–13, 20–25]).

Wavelet networks are a class of neural networks that employ
wavelets as activation functions. These have been recently in-
vestigated as an alternative approach to the traditional neural
networks with sigmoidal activation functions. Wavelet net-
works have attracted great interest, because of their advan-
tages over other networks schemes (see e.g., [6, 9–13, 16, 17,
20–24]). In [20, 22] the authors use wavelet decomposition
and separate neural networks to capture the features of the
analysed time series. In [13] a wavelet network control is
proposed to online learn and cancel repetitive errors in disk
drives. In [21, 23] an adaptive wavelet network control is pro-
posed to online structure adjustment and parameter updating
applied to a class of nonlinear dynamic systems with a par-
tially known structure. The latter approaches are based on the
work of Zhang and Benveniste [1] that introduces a (1 + 1/2)

layer neural network based on wavelets. The basic idea is to
replace the neurons by more powerful computing units ob-
tained by cascading wavelet transform. The wavelet network
learning is performed by the standard back-propagation type
algorithm as the traditional feed-forward neural network. It
was proven that a wavelet network is a universal approxima-
tor that can approximate any functions with arbitrary preci-
sion by a linear combination of father and mother wavelets [1,
4].

The main purpose of the work reported in this paper is
twofold: first, to modify the wavelet network training and ini-
tialisation procedures to allow the use of all types of wavelets;
and second, to improve the wavelet network performance
working with these two new procedures. The most important
difficulty to make this is that typical wavelet networks [1–3,
23] use a gradient descent algorithm for its training. Gradient
descent methods require a continuous differentiable wavelet
(respect to its dilation and translation parameters) and some
of the most powerful and used wavelets are not analytically
differentiable [4, 6, 7].

As a result, we have to seek for alternative methods to ini-
tialise and to train the network. That is, a method that makes
possible to work with different types of wavelets, with differ-
ent support, differentiable and not differentiable, and orthog-
onal and non-orthogonal. In the work reported in this paper
we propose a new training algorithm based on concepts of
direct minimisation techniques, wavelet dilations, and linear
combination theory. The proposed initialisation method has
its foundations on correlation analysis of signals, and there-
fore a denser adaptable grid is introduced. The term adaptable
is used because the proposed initialisation grid depends upon
the effective support of the wavelet. Particularly, we present
wavelet networks applied to the approximation of chaotic time
series. Function approximation involves estimating the under-
lying relationship from a given finite input-output data set, and
it has been the fundamental problem for a variety of applica-

tions in pattern classification, data mining, signal reconstruc-
tion, and system identification [3].

The remainder of this paper is organised as follows. Sec-
tion 2 briefly reviews wavelet theory. Section 3 describes the
typical wavelet network structure. In Section 4, the proposed
initialisation and training procedures are reported. In Sec-
tion 5 comparisons are made and discussed between the typi-
cal wavelet network and the proposed approach using chaotic
time series. Finally, Section 6 presents the conclusions of this
work.

2. REVIEW OF WAVELET THEORY

Wavelet transforms involve representing a general function in
terms of simple, fixed building blocks at different scales and
positions. These building blocks are generated from a single
fixed function called mother wavelet by translation and dila-
tion operations. The continuous wavelet transform considers
a family

ψa,b(x) = 1√|a|ψ
(
x − b

a

)
(1)

where a ∈ �+, b ∈ �,with a �= 0, and ψ (·) satisfies the
admissibility condition [7]. For discrete wavelets the scale
(or dilation) and translation parameters in Eq. (1) are chosen
such that at level m the wavelet am0 ψ(a

−m
0 x) is am0 times the

width ofψ (x). That is, the scale parameter {a = am0 : m ∈ Z}
and the translation parameter {b = kb0a

m
0 : m, k ∈ Z}. This

family of wavelets is thus given by

ψm,k(x) = a
−m/2
0 ψ(a−m

0 x − kb0) (2)

so the discrete version of wavelet transform is

dm,k = 〈
f (x) , ψm,k (x)

〉
= a

−m/2
0

∫ +∞

−∞
f (x)ψ

(
a−m

0 x − kb0
)
dx (3)

〈·, ·〉 denotes the L2-inner product. To recover f (x) from the
coefficients {dm,k}, the following stability condition should
exist [4, 7]

A ‖f (x)‖2 ≤
∑
m∈Z

∑
k∈Z

∣∣〈f (x) , ψm,k (x)〉∣∣2 ≤ B ‖f (x)‖2,

(4)
withA > 0 andB < ∞ for all signalsf (x) inL2(�) denoting
the frame bounds. These frame bounds can be computed from
a0, b0 and ψ(x) [7]. The reconstruction formula is thus given
by

f (x) ∼= 2

A+ B

∑
m∈Z

∑
k∈Z

〈
f (x) , ψm,k (x)

〉
ψm,k (x), (5)

Note that the closer A and B, the more accurate the recon-
struction. When A = B = 1, the family of wavelets then
forms an orthonormal basis [7]. The mother wavelet function
ψ(x), scaling a0 and translation b0 parameters are specifi-
cally chosen such that ψm,k(x) constitute orthonormal bases
for L2(�) [4, 7]. To form orthonormal bases with good time-
frequency localisation properties, the time-scale parameters
(b, a) are sampled on a so-called dyadic grid in the time-scale
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plane, namely, a0 = 2 and b0 = 1, [4, 7] Thus, substitut-
ing these values in Eq. (2), we have a family of orthonormal
bases,

ψm,k(x) = 2−m/2ψ(2−mx − k) (6)

Using Eq. (3), the orthonormal wavelet transform is thus
given by

dm,k = 〈
f (x) , ψm,k (x)

〉
= 2−m/2

∫ +∞

−∞
f (x)ψm,k

(
2−mx − k

)
dx (7)

and the reconstruction formula is obtained from Eq. (5). A
formal approach to constructing orthonormal bases is pro-
vided by MRA [4]. The idea of MRA is to write a function
f (x) as a limit of successive approximations, each of which
is a smoother version off (x). The successive approximations
thus correspond to different resolutions [4].

Since the idea of MRA is to write a signal f (x) as a limit
of successive approximations, the differences between two
successive smooth approximations at resolution 2m−1 and 2
give the detail signal at resolution 2m. In other words, after
choosing an initial resolutionL, any signal f (x) ∈ L2(�) can
be expressed as [4, 7],

f (x) =
∑
k∈Z

cL,kφL,k(x)+
∞∑
m=L

∑
k∈Z

dm,kψm,k(x) (8)

where the detail or wavelet coefficients {dm,k} are given by
Eq. (7), while the approximation or scaling coefficients are
defined by

cL,k = 2−L/2
∫ +∞

−∞
f (x) φL,k

(
2−Lx − k

)
dx (9)

Equations (7) and (9) express that a signalf (x) is decomposed
in details {dm,k} and approximations {cL,k} to form a MRA of
the signal [4].

3. DESCRIPTION OF
WAVELET-NETWORKS

Based on the so-called (1 + 1/2)-layer neural network, Zhang
and Benveniste introduced the general wavelet network struc-
ture [1]. In [2, 23] the authors presented a modified version of
this network. The main difference between these approaches
is that a parallel lineal term is introduced to help the learning
of the linear relation between the input and the output signals.
The wavelet network architecture improved in [2] and [23]
follows the form shown in Figure 1. The equation that defines
the network is given by

f (x) =
N∑
i=1

ωiψ [di (x − ti )] + cx + f̄ (10)

where x is the input, f is the output, t’s are the bias of each
neuron, ψ are the activation functions and finally d’s and ω’s
are the first layer and second layer (1/2 layer) coefficients,
respectively. It is important to note that f̄ is an additional and
redundant parameter, introduced to make easier the learning of

Figure 1 Modified (1 + 1/2)-layer wavelet neural network.

Figure 2 Dyadic Grid for Wavelet Network Initialisation.

nonzero mean functions, since the wavelet ψ(x) is zero mean
[4, 7]. Note that Eq. (10) is based on Eq. (1), and therefore
the parameters di and ti can be interpreted as the inverted
dilation and translation variables, respectively. In this kind
of neural network, each neuron is replaced by a wavelet, and
the translation and dilation parameters are iteratively adjusted
according to the given function to be approximated.

3.1 Wavelet Networks Initialisation

In the works [1, 2 and 23] two different initialisation pro-
cedures are proposed. Both based on the idea in some way
similar to the wavelet decomposition. Both divide the input
domain of the signal following a dyadic grid of the form shown
in Figure 2.

This grid has its foundations on the use of the first deriva-
tive of the Gaussian wavelet and it is a non-orthogonal grid
because the support of wavelet used, at a given dilation, is
higher than the translation step at its respective dilation. The
main difference between the two initialisation approaches pre-
sented in [1, 2 and 23] is the way of the wavelet selection. In
the first method, wavelets at higher dilations are chosen un-
til the number of neurons of the network has been reached.
In the particular case, that the number of wavelet candidates,
at a given dilation, exceeds the remainder neurons, then they
are randomly selected using the dyadic grid shown in Figure
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2. It is important to note that this method does not take into
account the input signal for the selection of wavelets. On the
other hand, in the second approach an iterative elimination
procedure is used [2, 23]. That is, it is based on the least
squares error between the output observations and the out-
put of the network with all wavelets of the initialisation grid.
In each iteration, the least contributive wavelet for the least
squares error is eliminated of the network until the number
of wavelets left in the network is the expected. The number
of levels (different dilations) for both cases depends upon the
number of wavelets available in the network.

3.2 Training Algorithm

As stated previously, wavelet networks use a stochastic gradi-
ent type algorithm to adjust the network parameters. If all the
parameters of the network (c, f̄ , d ′s, t ′s, ω′s) are collected in
a vector θ , and using yk to refer the original output signal and
fθ to refer the output of the network with the vector of param-
eters θ ; the error function (cost function C) to be minimised
is thus given by

C (θ) = 1

2
E

{
[f0 (x)− y]2

}
(11)

This stochastic gradient algorithm recursively minimise the
criterion (11) using input/output observations. This algorithm
modifies the vector θ after each measurement in the opposite
direction of the gradient of

C (θ, xk, yk) = 1

2
E

{
[f0 (xk)− yk]

2
}

(12)

Due to the fact that the traditional procedure used to train
wavelet networks is based on the gradient of the error func-
tion respect to each parameter of the network, differentiable
activation functions are necessary. This is the main reason for
the use of the first derivative of the Gaussian wavelet in [1–3
and 23]. Gaussian wavelets are continuous and differentiable
wavelets respect to its dilation and translation parameters. In
wavelet networks additional processing is needed to avoid di-
vergence or poor convergence. This processing involves con-
straints that are used after the modification of the parameter
vector with the stochastic gradient, to project the parameter
vector in the restricted domain of the signal.

4. PROPOSED CORRELATION-BASED
INITIALISATION AND TRAINING
PROCEDURES

The proposed initialisation procedure is based on the idea of
correlation of signals. Correlation is a measure of the de-
gree of interrelationship that exists between two signals [18].
From this definition, wavelet coefficients can be seen as a no
normalised linear correlation coefficient, because it is the re-
sult of the multiplication and integration of two signals. If
the wavelet energy and the signal energy are equal to one,
then this coefficient may be interpreted as a normalised linear
correlation coefficient. This coefficient represents the simi-
larity between the wavelet and the signal. Higher coefficients

Table 1 Relationship among neurons, decomposition levels, and scales.

Number of Decomposition Scales Wavelet
Neurons Levels candidates

at a given
resolution

1 1 2 2
2 2 2,1 2,3
3 2 2,1 2,3
4 3 2,1,0.5 2,3,5
5 3 2,1,0.5 2,3,5
6 3 2,1,0.5 2,3,5
7 3 2,1,0.5 2,3,5
8 4 2,1,0.5,0.25 2,3,5,9

indicate more similarity [19]. The idea of the proposed ini-
tialisation approach consists, firstly, in the generation of the
initialisation grid, and secondly, in the selection of wavelets
with higher coefficients by using Eq. (7) according to the
number of available neurons in the network. The grid is sim-
ilar to the proposed in [1-3], but in this case a much denser
grid (in the translation axis) is used (see Figures 2 and 3). A
dense grid is necessary because, at each level of resolution,
the whole signal domain can be covered for at least three dif-
ferent wavelet candidates. The number of wavelet candidates
at a given resolution depends directly on the effective support
of the wavelet. In the work reported in this paper, for compar-
ative purposes and to underline the good performance of this
new initialisation technique respect to the traditional wavelet
networks training, the first derivative of the Gaussian wavelet
is used as well as other types of wavelets. The number of
decomposition levels l is defined by the number of neurons of
the network as follows:

l = int
(
log2 (N)

) + 1 (13)

where N is the number of neurons and int () denotes the
integer-part function. Note that for the case of a network with
one neuron the number of levels is sets to one. The number
of wavelet candidates at a given level is then obtained by

hi = 2

ai
+ 1 (14)

where ai = 22−i denotes the scale associated with each level
i = 1, 2, . . . , l. Note that equations (13) and (14) can be
applied to any wavelet. Regarding the translation parameter
of each wavelet candidate, it can be computed as

ki,j = (
s − nj

)
ai + 1 (15)

where ki,j denotes the translation parameter of the wavelet
candidate j at decomposition level i, s represents the wavelet
support and nj = 0, 1, . . . , hi − 1. For example, for the
Daubechies wavelet Db2 with support [0,3], we obtain a grid
with 4 levels of decomposition whose scales are 2, 1, 0.5,
0.25 with 2, 3, 5 and 9 wavelet candidates respectively (see
Figure 3). Table 1 shows the relationship among the number
of neurons, decomposition levels, and the associated scales to
each level for a network of eight neurons.
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(a)

(b)

Figure 3 (a) Daubechies wavelet Db2 and (b) Dyadic grid for wavelet net-
work initialisation for Db2.

Figure 4 shows the initialisation grid for the Gaussian first
derivative wavelet. This is a non-orthogonal and dense grid
because the support of wavelet used, at a given dilation, is
higher than the translation step at its respective dilation. This
special characteristic causes the overlap of consecutive trans-
lation wavelets. It is worth noting that for all levels the wavelet
candidates are distributed in the centre of the signal domain.

4.1 The Training Algorithm

The alternative training approach introduced in this work is
based on the concept of direct minimisation techniques. This
method works directly with the error function of the network
but manipulate only dilation and translation parameters by
searching the minimum of the cost function. The rest of the
parameters (wavelet coefficients, linear term, and bias) are
obtained via linear combination. It is important to note that,
similarly to Eq. (10), the equation of the proposed network
is based on the continuous wavelet transform, but in this case
the parameter di corresponds directly to the dilation variable.
That is, Eq. (10) can be rewritten as

f (x) =
N∑
i=1

ωiψ

[
x − ti

di

]
+ cx + f̄ (16)

(a)

(b)

Figure 4 (a) First derivative of the Gaussian wavelet and (b) Dyadic Grid for
Wavelet Network Initialisation for first derivative of the Gaussian wavelet.

If we use zi = (x − ti )/di , the network can be written as

fθ (x) = ω1ψ(z1)+ . . .+ ωNψ(zN)+ cx + f̄

Equation (16) can also be written as

fθ (x) = W� (17)

where

W = (
ω1 ω2 · · · ωN c f̄

)
� = (

ψ1(z1) ψ2(z2) · · · ψN(zN) x 1
)T

then finally
W = fθ (x)�

−1 (18)

With this strategy the wavelet coefficients, the linear term,
and the bias of the network are obtained at the same time. The
error function is then given by

e = yk − fθ (xk) (19)

The main idea of this method is the direct modification of
the most contributive dilation or translation parameter of the
network. Then, indirectly, make the correction of the rest
of the parameters via linear combination. For this task, the
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special properties of dilation and translation parameters in
wavelet theory are taking into consideration. The purpose
of this modification is the searching of the highest similarity
between the wavelets used to perform the analysis and the
signal to be analysed. For higher similarity, a minimum of
wavelets can be necessary for the approximation and it will be
very precise. As stated previously, this method is based on the
idea of direct minimisation techniques because the traditional
method used to train typical wavelet networks [1–3 and 23]
requires the first derivatives of the error function respect to
all its parameters and differentiability is not a property of
all families of wavelets [6]. As the traditional optimisation
techniques, the reported approach uses a dynamical learning
rate which is decreased if the error of the current iteration is
poor regarding the error of the last iteration, or increased if
the error is higher.

The first step of the process is the generation of all possible
combinations of dilation and translation parameters making
the modification of only one parameter of them. Since we have
N neurons and two parameters, then the number of possible
combinations is 2N . Searching in both directions, positive and
negative, then we have 4N combinations. Writing a dilation
and translation squares matrices with length defined by the
number of neurons of the network N we have,

Di,i =



d1 d1 . . . d1
d2 d2 . . . d2
...

...
. . .

...

dN dN . . . dN


 ,

Ti,i =



t1 t1 . . . t1
t2 t2 . . . t2
...

...
. . .

...

tN tN . . . tN


 (20)

and using the dilation matrix and the learning rate r , the square
matrix of changes can be written as

�i,i = r
(
diag

(
Di,i

)) =



rd1 0 . . . 0
0 rd2 . . . 0
...

...
. . .

...

0 0 . . . rdN


 (21)

Concatenating the matrices of Eqs. (20) and (21) to form
new matrices of N × M where M = 4N and consequently
j = 1, 2, . . . ,M , we have

D�i,j = [
Di,i +�i,i Di,i −�i,i Di,i Di,i

]
T�i,j = [

Ti,i Ti,i Ti,i +�i,i Ti,i −�i,i
] (22)

Using the matrices of Eq. (22) the different outputs of
the network for every combination of dilation and translation
parameters are obtained,

fθj (x) =
N∑
i=1

ωiψ

[(
x − T�i,j

)
D�i,j

]
+ cx + f̄ (23)

where ωi, ti , di, f̄ , c ∈ �; i ∈ Z. The second step of the
process is the evaluation of the error described by Eq. (19) for

every combination of Eq. (23). As a result, an error vector is
obtained

Ej = yk − fθj (xk) = E1, E2, . . . , E4N
= [yk − fθ1 (xk) , . . . , yk − fθ4N (xk)]

(24)

where xk and yk are the network input and the desired output
respectively, and fθj is the output of the wavelet neural net-
work. Finally, searching for the minimum error of this group
of errors the most contributive dilation or translation param-
eter is obtained. It worth noting that the modification of both
dilation and translation parameter exclusively depends on the
dilation. This is due to the fact that the dilation parameter has
a direct relationship with the wavelet support.

5. PERFORMANCE EVALUATION

5.1 Chaotic Time Series

Chaos is the mathematical term for the behaviour of a system
that is inherently unpredictable. Unpredictable phenomena
are readily apparent in all areas of life [14]. Many systems in
the natural world are now known to exhibit chaos or non-linear
behaviour, the complexity of which is so great that they were
previously considered random. The unravelling of these sys-
tems has been aided by the discovery, mostly in this century, of
mathematical expressions that exhibit similar tendencies [15].
One might argue that the many factors that influence this kind
of systems are the reason for this unpredictability. But chaos
can occur in systems that have few degrees of freedom as well.
The critical ingredient in many chaotic systems is what math-
ematicians call sensitive dependence to initial conditions. If
one makes even slightest change in the initial configuration
of the system, the resulting behaviour may be dramatically
different [14].

Chaos is part of an even grander subject known as dynam-
ics. Whenever dynamical chaos is found, it is accompanied
by nonlinearity. Naturally, an uncountable variety of non-
linear relations is possible, depending perhaps on a multi-
tude of parameters. These non-linear relations are frequently
encountered in the form of difference equations, mappings,
differential equations, partial differential equations, integral
equations, or even sometimes combinations of these. We note
that, for each differential equation, the specific parameters
were selected because they are the more representative values
for chaotic behaviour, and also are the most commonly used
in the literature [8, 14, and 15]. In this section, we describe
briefly the chaotic time series used in this work. They were
considered because they are used as a benchmark and also it
illustrates how complex behaviour can easily be produced by
simple equations with non-linear elements and feedback.

Hénon Attractor

The HénonAttractor was introduced by M. Hénon in 1976, and
it was derived from a study of chaotic functions trajectories.
The Hénon equation is defined by

dx

dt
= a + by − x2,

dy

dt
= x (25)

6 Engineering Intelligent Systems



V. ALARCON-AQUINO ET AL

where a = 1.4, b = 0.3. Recall that these specific parameters
values were selected because they are the more representative
for chaotic behaviour, and also are the most commonly used
in the literature [8, 14, 15].

Lorenz Attractor

The Lorenz attractor was introduced by E. N. Lorenz, in 1963,
and it was derived from a simplified model of atmospheric
interactions. The system is most commonly expressed as three
coupled non-linear differential equations,

dx

dt
= a (y − x) ,

dy

dt
= x (b − z)−y, dz

dt
= xy−cz

(26)
where a = 10, b = 28, c = 8/3.

Mackey-Glass

It is the nonlinear a time delay differential equation described
by

dx

dt
= ax(t − T )

1 + xc(t − T )
− bx (27)

where a = 0.2, b = 0.1, c = 10. Depending on the values of
the parameters, this equation displays a range of periodic and
chaotic dynamics.

Rössler Attractor

It was introduced by Otto Rossler in 1976, but the originally
theoretical equations were later found to be useful in mod-
elling equilibrium in chemical reactions. The system is de-
scribed by three non-linear ordinary differential equations

dx

dt
= −y − z,

dy

dt
= x + ay,

dz

dt
= b + z(x − c)

(28)
where a = 0.15, b = 0.20, c = 10.

Logistic Map

It was explored by ecologists and biologists who used to model
the dynamics of the population. The map was popularized in
a seminal 1976 paper by the biologist Robert May. Mathe-
matically, the logistic map is written

xn+1 = axn(1 − xn) (29)

where a = 4, and the initial condition x(0) = 0.000104

5.2 Simulation Results

We want to state firstly that for this work and for testing pur-
poses the wavelet network reported in [1–3 and 23] is defined
as wavenet I, whilst the wavelet network with the correlation-
based initialisation and the most contributive parameter train-
ing procedure proposed in this work is defined as wavenet II.
Particularly, the work reported in this paper presents wavelet-
networks applied to the approximation of chaotic time series.
For this purpose comparisons are made between wavenet I
and wavenet II. Comparisons with the back-propagation net-
work can be found in [16]. The wavenet I was tested with

(a)

(b)

Figure 5 Lorenz Attractor Approximation with 25 samples, 10 neurons and
10 iterations: (a) wavenet I, (b) wavenet II.

the first derivative of the Gaussian wavelet (Gauss1). On the
other hand, the wavenet II was tested with the first and sec-
ond derivative of the Gaussian wavelet (denoted Gauss1 and
Gauss2 respectively) as well as Daubechies wavelet 2 (Db2),
Coiflets 2 (Coif2), and Symmlet 4 (Sym4). This shows that
the proposed approach makes possible to work with different
types of wavelets, with different support, not differentiable,
and orthogonal and non-orthogonal. The wavelet networks
(wavenet I and wavenet II) were assessed with ten neurons
and ten iterations. These wavelet networks were also assessed
with more number of neurons; however, similar results were
obtained (see e.g., [16]).

The Henón and the Logistic functions were sampled every
1 time steps, while the Lorenz equation every 0.01 time steps
and sub-sampled every 30 steps. The Rössler attractor was
sampled every 0.01 time steps and sub-sampled every 150
steps. The Mackey-Glass equation was sampled every 1 time
steps and sub-sampled every 10 steps with a sample period T
set to 18. For an appropriate learning, and to take into account
the features of the activation functions used by the networks
analysed, the series were normalised in the range of [−1, 1]
in both time and amplitude domain. As can be seen in Table
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Table 2 Simulation Results.

Time Series Approach Wavelet
MSE
25 samples 50 samples 100 samples

Hénon Attractor

wavenet I Gauss1 0.1789 0.1140 0.2621

wavenet II

Gauss1 0.0621 0.1859 0.2248
Gauss2 0.0878 0.1642 0.2692

Db2 0.1009 0.1651 0.2696
Coif2 0.0977 0.1676 0.2790
Sym4 0.0975 0.1666 0.2777

Lorenz Attractor

wavenet I Gauss1 0.0319 0.0710 0.0935

wavenet II

Gauss1 0.0145 0.0672 0.1116
Gauss2 0.0217 0.0733 0.1073

Db2 0.0241 0.0660 0.0983
Coif2 0.0210 0.0788 0.0900
Sym4 0.0198 0.0843 0.0954

Mackey Glass

wavenet I Gauss1 0.0315 0.0787 0.1922

wavenet II

Gauss1 0.0172 0.1809 0.2173
Gauss2 0.0177 0.1058 0.2278

Db2 0.0119 0.1101 0.2107
Coif2 0.0154 0.1290 0.2052
Sym4 0.0168 0.0973 0.2046

Logistic Map

wavenet I Gauss1 0.1136 0.1411 0.3188

wavenet II

Gauss1 0.0669 0.2533 0.3445
Gauss2 0.0683 0.2377 0.3333

Db2 0.0734 0.2686 0.3503
Coif2 0.0156 0.2695 0.3715
Sym4 0.0217 0.2521 0.3527

Rossler Attractor

wavenet I Gauss1 0.0090 0.0763 0.2102

wavenet II

Gauss1 0.0486 0.1974 0.1111
Gauss2 0.0380 0.1935 0.1419

Db2 0.0283 0.1980 0.2114
Coif2 0.0234 0.2155 0.2150
Sym4 0.0174 0.1762 0.2260

2 and Figure 5, the wavenet II outperforms the wavenet I in
terms of MSE (Mean Square Error) for the case of 25 sam-
ples in Hénon and Lorenz attractor chaotic time series. This
is due to the fact that correlation-based selection of wavelets
in a dense grid allows initialising the network with a more
correlated wavelets respect to the input signal. For the case
of 50 samples, the wavenet I outperforms the wavenet II for
the Hénon attractor and Mackey-Glass time series, and for
the case of 100 samples the wavenet II shows a better perfor-
mance than the wavenet I when using the Coiflet wavelet in
the Lorenz attractor time series. In summary, we can say that
both approaches show somehow similar performance for the
approximation of chaotic time series. Note that in some cases
wavenet I shows better performance (Mackey-Glass, Rössler
and Logistic Map) than the wavenet II (Hénon and Lorenz).
Nevertheless, the initialisation and training procedures intro-
duced in this paper show the flexibility of the network for
choosing different types of wavelets.

It is well-known from wavelet theory that if there is a major
similarity between the wavelet used for the analysis and the
signal to be analysed, then a better analysis is performed by
the wavelet decomposition. It is important to underline that
this can be realised with a minimum of wavelets. In the par-
ticular case of the signal and the wavelet used for this work,

we use the translation and dilation properties to generate dif-
ferent versions of the wavelet, and then search for the higher
similarity among them and the signal, but working with the
corresponding wavelet coefficients. Note that the proposed
training algorithm takes into consideration the rule of wavelets
selection described previously, and then modify only one di-
lation or translation parameter of the network searching the
minimum of the error function. Furthermore, this modifica-
tion has the purpose to increase the similarity between the
signal and a given most contributive wavelet. This criterion
guarantees the convergence of the learning process.

6. CONCLUSIONS

In this paper we have presented initialisation and training pro-
cedures for wavelet networks. The results reported in this
paper show clearly that the proposed wavelet network has bet-
ter approximation properties than its similar typical wavelet
networks. The reason for this is the firm theoretical link be-
tween multi-resolution analysis and correlation theory. The
understanding of this interrelation can be used to form a basis
which has the capability to explicitly represent the behaviour
of a function a different resolutions of input variables with a
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minimum of wavelets. An additional advantage of the initial-
isation and training procedures introduced in this paper is the
flexibility of the network to use different types of wavelets.
Complex wavelets that include magnitude and phase infor-
mation may also be used as neurons in the hidden layer of
wavelet networks [25]. From a general point of view, wavelet
networks can be used for black-box identification of general
non-linear systems. These were inspired by both neural net-
works and wavelet decomposition. The basic idea is to replace
the neurons by more powerful computing units obtained by
cascading an affine transforms. However, as were presented in
this work, wavelet networks can improve its well-known prop-
erties with the consideration of the important role played by
the correlation theory in wavelet analysis. Finally, it is worth
noting that for a comparable number of neurons, the com-
plexity of the input/output mapping realised by the wavelet
network reported in this paper is higher than its counterpart
realised by typical wavelet networks.

Acknowledgements

This work has been partially supported by the CONACYT-
FOMIX, contract no. 109417.

REFERENCES

1. Q. Zhang,A. Benveniste, Wavelet Networks, IEEE Transactions
on Neural Networks. Vol. 3, No. 6, July 1992.

2. Q. Zhang, Wavelet Network: The Radial Structure and an Effi-
cient Initialisation Procedure, In European Control Conference
(ECC 93), Groningen, The Netherlands, 1993.

3. S. Sitharama Iyengar, E.C. Cho, Vir V. Phoha, Foundations of
Wavelet Networks and Applications, Chapman & Hall/CRC.
U.S.A. 2002.

4. S. G. Mallat, A Wavelet Tour of Signal Processing: The Sparse
Way, Third Edition, Academic Press, 2008.

5. V. Alarcon-Aquino, E. S. García Treviño, R. Rosas-Romero,
J. F. Ramírez-Cruz, L. G. Guerrero-Ojeda, and J. Rodriguez-
Asomoza, Wavelet-Network Based on the L1-norm minimisa-
tion for Learning Chaotic Time Series, Journal of Applied Re-
search and Technology, Vol. 3, No. 3, December 2005.

6. S. H. Ling, H. H. C. Iu, F. H. F. Leung, and K.Y. Chan, Improved
Hybrid Particle Swarm Optimized Wavelet Neural Network for
Modeling the Development of Fluid Dispensing for Electronic
Packing, IEEE Transactions on Industrial Electronics, Vol. 55,
No. 9, September 2008.

7. I. Daubechies, Ten Lectures on Wavelets, New York. SIAM.
1992.

8. S. H. Strogatz, Nonlinear Dynamics and Chaos, Addison Wes-
ley Publishing Company, USA, 1994.

9. E. A. Rying, Griff L. Bilbro, and Jye-Chyi Lu, Focused Local
Learning With Wavelet Neural Networks, IEEE Transactions
on Neural Networks, Vol. 13, No. 2, March 2002.

10. X. Gao, F. Xiao, J. Zhang, and C. Cao, Short-term Prediction of
Chaotic Time Series by Wavelet Networks, WCICA 2004, Fifth
World Congress on Intelligent Control And Automation, 2004.

11. L. Deqiang, S. Zelin, and H. Shabai, A Wavelet Network Based
Classifier, In Proceedings of the 7th IEEE International Con-
ference on Signal Processing ICSP 04, September 2004.

12. M. Yeginer, Y. P. Kahya, Modeling of Pulmonary Crackles Us-
ing Wavelet Networks, In Proceedings of the 27th IEEE Engi-
neering in Medicine and Biology Conference, Shanghai, China,
September, 2005.

13. C. M. Chang and T. S. Liu, A Wavelet Network Control Method
for Disk Drives, IEEE Transactions on Control Systems Tech-
nology, Vol. 14, No. 1, January 2006.

14. R. L. Devaney, Chaotic Explosions in Simple Dynamical Sys-
tems, the Ubiquity of Chaos, Edited by Saul Krasner. American
Association for the Advancement of Science. Washington DC.,
U.S.A. 1990.

15. J. Pritchard, The Chaos CookBook: A Practical Programming
Guide, Part of Reed International Books. Oxford. Great Britain.
1992.

16. E. S. Garcia-Trevino, V. Alarcon-Aquino, and J. F. Ramirez-
Cruz, Improving Wavelet-Networks Performance with a New
Correlation-based Initialisation Method and Training Algo-
rithm, In Proceedings of the 15th IEEE International Confer-
ence on Computing, CIC ’06. November 2006.

17. E. S. Garcia-Trevino, V. Alarcon-Aquino, Single-Step Predic-
tion of Chaotic Time Series Using Wavelet-Networks, In Pro-
ceedings of the IEEE Electronics, Robotics and Automotive Me-
chanics Conference, CERMA 06, September 2006.

18. D. K. Lindner, Introduction to Signal and Systems, McGrawHill
International Edition, Electrical Engineering Series, USA 1999.

19. A. V. Oppenheim, A. S. Willisky, Signals and Systems, 2nd Edi-
tion, Prentice Hall, 1996.

20. V. Alarcon-Aquino, J. A. Barria, Multiresolution FIR Neural
Network Based Learning Algorithm Applied to Network Traffic
Prediction, IEEE Transactions on Systems, Man and Cybernet-
ics Part C: Applications and Review, Vol. 36, Issue No. 2, March
2006.

21. J.-X. Xu, Y. Tan, Nonlinear Adaptive Wavelet Control Using
Constructive Wavelet Networks, IEEE Transactions on Neural
Networks, Vol. 18, No. 1, January 2007.

22. Y. Chen; Luh, P.B.; C. Guan; Y. Zhao; Michel, L.D.; Coolbeth,
M.A.; Friedland, P.B.; Rourke, S.J.; Short-Term Load Fore-
casting: Similar Day-Based Wavelet Neural Networks, IEEE
Transactions on Power Systems, Vol. 25, No. 1, February 2010.

23. Cheng-Jian, Lin, Nonlinear Systems Control Using Self-
Constructing Wavelet Networks, Applied Soft Computing, Vol.
9, No. 1, January 2009.

24. R. N. Mahanty and P. B. Dutta Gupta, ANN based Fault Classi-
fier with Wavelet MRA Generated Inputs, International Journal
of Engineering Intelligent Systems for Electrical Engineering
and Communications, Vol. 16, No. 2, June 2008.

25. V. Alarcon-Aquino, O. Starostenko, J. M. Ramirez-Cortes, R.
Rosas-Romero, J. Rodriguez-Asomoza, O. J. Paz-Luna, and
K. Vazquez-Muñoz, Detection of Microcalcifications in Digital
Mammograms Using the Dual-Tree Complex Wavelet Trans-
form, International Journal of Engineering Intelligent Systems
for Electrical Engineering and Communications, Vol. 17, No.1,
March 2009.

vol 1 no 1 March 2010 9




