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Abstract. This paper describes a system for surface recovery and
visualization of the three-dimensional topography of the optic nerve
head, as support of early diagnosis and follow up of glaucoma. In
stereo vision, depth information is obtained from triangulation of cor-
responding points in a pair of stereo images. In this paper, the use
of the cepstrum transformation as a disparity measurement tech-
nique between corresponding windows of different block sizes is
described. This measurement process is embedded within a coarse-
to-fine depth-from-stereo algorithm, providing an initial range map
with the depth information encoded as gray levels. These sparse
depth data are processed through a cubic B-spline interpolation
technique in order to obtain a smoother representation. This meth-
odology is being especially refined to be used with medical images
for clinical evaluation of some eye diseases such as open angle
glaucoma, and is currently under testing for clinical evaluation and
analysis of reproducibility and accuracy. © 1999 SPIE and IS&T.
[S1017-9909(99)01101-0]

1 Introduction

scenes by triangulation of corresponding points in a pair of
stereoscopic images. Resembling the human visual system,
two cameras sense the three-dimensional scene from differ-
ent perspectives, providing a pair of stereo images which
can provide the range information. Many different stereo
systems for range determination using binocular stereo
have been developed. The different approaches can be
compared by considering their camera modeling, feature
acquisition, and matching techniques. Image matching is
clearly dependent on the choice of feature primitives. When
the elements to be matched are low level and dense, such as
the image intensity at each pixel in a neighborhood, the
matching strategy is called an area-based process, while for
sparse and usually more abstract and high-level features,
such as edges or zero crossings, the process is referred as
feature-based. Area-based techniques have been used by
Hann& and Cochran and Medichiising cross correlation

for texture matching in the image pair to obtain an initial

A physical consequence of elevated intraocular pressure irdisparity estimate. Matching more abstract features are less
an eye afflicted with glaucoma is progressive atrophy of the sensitive to noise, although some interpolation should be
optic nerve head. In addition to some other cues involving included since only sparse data are obtained. Marr and Po-
loss of the visual field and pain under pressure, change ingio proposed a computational model of the human stereo
cupping of the optic disk represents a valuable indicator for vision system using zero crossings from the Laplacian as
the ophthalmologist to diagnose and monitor the disé4se. the matching feature at different filter size$he disparity
The emphasis of this work is surface recovery from sparsearrays created for each filter are combined into a single
two-dimensional2-D) stereo data. Stereo vision allows the disparity description. Grims&rimplemented an improved

recovery of depth information of three-dimensioriaiD)
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version of this model with good results when there is a
dense set of features. He included variational methods for
surface reconstruction from sparse data. Otha and Kdnade
explored some alternatives of dynamic programming for
edge matching using interscanline search for finding an op-
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L and acoustic signal processing for echo detection. In this
e work, the cepstrum transformation is used for finding dis-
-.me,,.'f’;.aﬁo,. parity between corresponding areas in every step of the
: l depth-from-stereo algorithm described. The power cepstral
linear-siretched ) transformation is defined as
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representation

where .7 is the notation for the Fourier transform and
Fig. 1 Block diagram of the implemented method. i(x,y) is the given image function. Let us consider a com-
posed image formed by adding the two corresponding
blocks of the stereo images, which are supposed to have a
small translational difference given by,

timal matching surface. Hoff and Ahjaroposed the com-
bination of feature matching, contour detection, and surface! (X:Y) =W(X,y) +W(X=Xo,y). (3.2
interpolation in one process. Wehgxplored the use of

windowed Fourier phase profiles as the major matching The Fourier transform oif(x,y) is

primitive, and Jepson and JenKinlescribed some methods

based on the output phase behavior of bandpass Gabor fil-71j (x,y)} =W(u,v) + W(u,v)e 127, (3.3
ters. However, phase information as a primitive to match
has not offered, at this point, a better solution for false
target correspondence, featureless areas, noise sensitivit){h Fouri ¢ . - the P .
or occlusion problems. A stereo-motion model with a e Fourier transform o (x.y); the Power spectrum is
matching technique based on cepstrum was developed to bgPt@ined as

used with a sequence of nine images with small disparities _

between consecutive imagEsThe cepstrum transform was  |-7{i (x,Y)}|*=|W(u,v)[?|1+e™127%|2

then proven to be very noise tolerant and accurate in the _ 2 O 2
matcr?ing procedure. A¥1 increase in the base line while de- =[W(u,0)[*|1+cos 2ruxo—| sin 2mux|

whereu andv represent spatial frequencies amfdu,v) is

creasing the size of the matching window provided the fine =|W(u,v)|2((1+ cos 2ruxg)?

resolution in the disparity map corresponding to the origi- )

nal sequence of nine images. In this work, this concept is +sin? 27ruxo)

extended to be used with only one pair of stereo images, =|W(U,0)|2(2+2 cos 2rux,). (3.9

which is the usual in the medical images that were consid-
ered. An interpolation scheme was incorporated into the . L .
system23with the ultimate goal of obtaining a complete YWhen the logarithm function is applied to the power
system for surface recovery of the smooth surface corre-SPeCtrum ofi(x,y), the multiplicative terms are separated

sponding to the topography of the optic nerve head. as

T, H2=In|W(u,v)|?+1In(2+ 2 cos 2rux).
(3.5

In

2 Methodology

The work presented in this paper consists of an improved Using the logarithm series expansion, the second term
stereo vision model with several preprocessing techniquesan be expanded into a convergent infinite series, the ap-
and an interpolation scheme, as represented in Fig. 1. Thelication of the power spectrum according to the definition
method of registration used in this work is based on spec-of power spectral transformation yields

tral and cepstral transform domain manipulations. In the

next step, a correction for intensity variations based on his-p{i(x,y)} = P{w(x,y)} + As(X,y) + B&(X*+Xq,Y)

togram matching is performed. Feature extraction using a

Sobel operator and further binarization provides the edge +CA(XE2X%q,y) +-- . (3.6
information to be used for matching in the stereo algorithm.

The sparse depth map is obtained by using the stereo algo- This derivation considers only horizontal displacements
rithm based on a hierarchical window matching and ceps-because according to the concept of stereo vision, only
tral analysis. A cubicB-spline interpolation provides the horizontal disparities between corresponding blocks are ex-
smooth range map corresponding to the excavation of thepected. After removing the power cepstrumvefx,y), the
optic nerve head. A pseudointensity image obtained from atranslational difference between the two corresponding
linear stretching transformation is incorporated in the last windows can be obtained by inspecting the remaining im-
step, in order to provide the location of the blood vessels pulse train. In other words, the translational difference cor-
without adding false depth to the topography map. Theseresponds to the distance between the origin and the location
operations are further explained in detail. of the first peak in the cepstrum plane.
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Fig. 4 Schematic representation of the disparity accumulation.

Fig. 2 Random dot stereogram; three-layer cake.

5 Cubic B-Spline Interpolation

4 Hierarchical Search of Disparities Early vision is a research field in which many of the prob-

In a nonconvergent stereo vision model, the depth informa-1€ms encountered are inverse ill-posed problems. In many
tion is directly derived from the disparity between corre- €2S€S no unique solution of the problem exists unless addi-
sponding points. Random dots stereograms have beeffonal constraints are imposed. Surface recovery from
widely used to test the performance of stereo vision sys-Sampled data is a typical case in which most passive tech-
tems. In a random dot stereogram, the disparities are artifiNiques provide sparse depth information of the surface to
cially generated by introducing horizontal displacements in be reconstructed.. In the_lt situation, constraints like sm_ooth—
a computer generated image with a pattern of random dotsN€SS Or allowed discontinuities transform the problem into a
A stereogram of a three-layer cake is shown in Fig. 2. WeII-posed_ one. Formal a_naIy5|s of this ill-posed problem
When a stereoscope is used to analyze these images thHéSes the Tikhonov rc_agl_JIar|zat|on method to make the prob-
three-dimensional effect can be perceived. The goal of any'€m well posedA priori knowledge of the type of recon-
automated depth-from-stereo algorithm is to find the dis- Struction that is desired is used to determine an appropriate
parities between corresponding points in the stereo pair usStabilizer b_ased on invariant charac_terlsncs_. In our case,
ing some matching technique. Establishing these corre-feconstruction of a sm_qoth surface is required, anq first-
sponding points is, however, the most critical step in the and _secqnd—order stablhzers lead to linear and spline ap-
estimation of depth from stereo. proximations, respectively. In the first case, the recon-
The ideal situation is finding disparities between every Structed surface will be piecewise planar while the second
individual pixel in both images. However, it is obvious that ¢@se Will provide a smoother reconstruction. There is at
the intensity value of a single pixel is not enough for find- Présent no automated computational system able to perform
ing corresponding points, so a collection of pixels in a he task of dense and precise depth perception as human
neighborhood has to be used to match. The approach useBeings perform this function. Passive methods, a_md _spemﬂ—
in this work is the technique of successive refinement of Cally stereo-based systems, rely on the availability of
parallax based on hierarchical coarse-to-fine resolution€n0ugh information in the scenes to perform the matching,
stepst® The algorithm starts with a partition of the stereo the corresponding disparity detection, and finally, depth ex-
images in windows of size 3232. The two-dimensional traction from triangulation. Even when random-dot stereo-
cepstrum is used to obtained disparity between correspondd'@ms are used for experimentation, and the information to
ing windows in both images. A second partition by two is Match has a controlled and uniform density, the obtained
performed in each window in order to obtain a correction depth map is sparse with a density proportional to the mini-
value of the disparity in the corresponding subwindow. n:um size of tne dots used to fgryg th% ste_rfeogr?jm.t:]'hose
This quadrant subdivision for coarse-to-fine search of dis- S€7€09rams, NOWEver, give a vivid and uniform deptn im-
parities is represented in Fig. 3. pression, when they are fused stereoscopically by a human

The coarse disparity assigned initially to the first win- bemg. .
dow is modified in every step to determine the most de- |t IS @pparent that in every case, only sparse data of the
tailed disparity information. This procedure continues until COrrésponding surface are available. Invariant surface re-
the size of the window is so small that the matching tech- COVEy from sparse data in 3-D space is then required. The
nigue cannot be applied. In the implementation described in0asic problem in surfa(;e recovery Is to compute a com-
this work this point was reached usually at a window size PI€te, dense, and consistent representation of 3-D shapes,
of 4x 4 pixels. This accumulation of disparities is repre- WNeN only scattered points on the surface are available as
sented in Fig. 4. |n_|t|al input. Form_al a_naIyS|s of this ill-posed problem uses
Tikhonov regularization to make the problem well posed.
A priori knowledge of the type of reconstruction that is
desired is used to determine an appropriate stabilizer based
4 nj2 n nfd 02 n on invariant characteristics. Invariant surface recovery is an
_l J' inverse mathematical problem. Visual reconstructions are
inverse problems which tend to be ill posed in the sense
REREERS S SRR that existence, uniqueness, and stability of the solution are
; ; not guaranteed when additional constraints are not consid-
' ' ered. Constraints such as smoothness have been useful
a priori information for possible solutions. The obtained
Fig. 3 Quadrant division for coarse-to-fine search. representation should be independent of the viewpoint for a
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stable shape description. Because of their formulations, the
surface reconstruction techniques can be considered as e%l[f(u)]=f (2H?(u)—K(u)dA. (5.4
treme problems in which a functional minimization is in- v
volved. The classic problem of finding some value of the A imation is t h i f
independent variable where the function is minimized be- common approximation 1s to use the assumption o
longs to traditional calculus, but the problem of minimizing Small values ot andzy, in such a way that the Gaussian
a definite integral is considered as part of the calculus of @Nd mean curvatures can be approximated by
variations.

. Consider the direct problem of finding the fun(.:tign H(X,y) = Zyxt Zyy, (5.5)
given z as Az=y, wherez corresponds to the original, 2
total, and dense representations of some surface, and the
functiony is the sparse data of the surface obtained whenK(X,Yy)=Zz,,z,,— Z>2<y,
the mappindA is applied. The inverse problem of findiag N
from y is an ill-posed problem, which can be solved using and the stabilizer becomes
regularization theory. The main idea is to restrict the ad- 1
missible solution space by introducirgpriori knowledge _- 2 2 .2
as previously discussed. The solution can be found, then, asg[z]‘]_ 2 f fU(ZXXJr 2Zyt ZVV)dX dy. (5.6
the function that minimizes some functional. This func-

tional can be represented as The surface reconstructed by minimization using this stabi-
lizer is referred as the thin plate spline approximation or
0(2)=|Az—y|?*+\Pz. (5.0 minimal energyB-spline approximation. The complete ex-

pression directly related to the last equation of the func-
This functional can be interpreted as an energy or costtional to be minimized is
function, which provides a measurement of how close the
solution is to the data in the first term, and how well it

& = . s)— H A 2
follows thea priori constraints of the desired function to be 0) (x %EQ [o(xi.yi) = c(xi.yi)]
recovered in the second termis the regularization param-
eter which controls the compromise between the degree of 1 .., >
regularization of the solution and closeness to the data, +f fﬂ 2 (A)7= (1= o) (vowyy = vy dx dy,
whereasP is the regularization function. The problem is
then finding a functiorz which minimizes that expression. (5.7

Stevenson and Defpdeveloped a mathematical analy- where the roughness of the obtained function is measured

sis for invariant surface recovery from the constraint data by the energy in the functional of the second term, and the

based on regularization theory. From parametric represeny, o vorm “minimizes least-squared error at the discrete

;[/?ﬁﬁ:usng{ c()::].llrves End surfaces, they construct a Sta.b'l'z.erpoints. The equivalent analysis in one dimension is the
y makes the problem well posed, but which is minimization of the functional:

also based on invariant surface characteristics. First, they '

analyze the problem of invariant curve recovery from b

sparse data, and then they extended the approach to thg(y)= >, [S(Xi)_c(xi)]2+)\j |s"(x)[? dx. (5.9

problem of surface reconstruction. In their work, they use xje(a,b) a

vector analysis for the surface representation. For the spe-

cific part of surface recovery, their approach is the use of a  The solution of this variational problem is referred to as

model of an ideal thin flexible plate of elastic material, and the minimal energyB splines.

as the corresponding stabilizer, a measure of the strain en- The functional is called the energy functional and the

ergy of the deformed plate. The potential-energy density iscubic spline corresponds to the minimum energy configu-

expressed as ration of a flexible wire. The spline interpolation minimizes
the least-square error of the function values and its deriva-
k2(u) +K3(u) tives at the values of the discrete input data or points of
= > +Bk;(u)ky(u), (5.2 interpolation. AB spline of degree is obtained>'®as the
following piecewise polynomial:
or in terms of Gaussian and mean curvatures given byg (x:x,,X,, ... X,+1)
K(u)=k1(u)k2(u), and H(u)=Kk;(u)+ky(u), respec- i1 ]
tively, as :(_1)n+12 (x—x,)"U(x xk), 5.9
k=0 w(Xy)
¥ =2AH(u)2— (A—b)K(u). (5.3
where
After a further simplification withA=1 and B=0O,
whereA andB are constants of the material, they define an nt
invariant stabilizer by integrating this energy density over W(x) = 1:[0 (Xk=Xj)- (5.10
the surface area as 1%k
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(a) Two stereo Fundus pair of a Glaucoma patient taken 3 years apart.

Y L

(b) Binarized images of part (a)

. Fig. 6 3-D reconstruction of the deformation of the optic nerve head
in a glaucomatous retina.

(c) Disparity map from each pair.

from sparse data is an inverse and ill-posed problem, which
is currently a research area. Typical solutions involve regu-
larization techniques, but in one form or another the final
solution yield to some type of interpolation. Figure 5 shows
the image processing steps and Fig. 6 shows the three-
dimensional representation of the topography of a typical
fundus image and the optic nerve head, obtained with the
described algorithm.

7 Concluding Remarks

This paper presented a depth-from-stereo algorithm based
on disparity detection by the cepstrum transform as the re-
quired matching procedure. In this context, the cepstrum
transform represents a good alternative in terms of robust-
. . . . ness, accuracy, and execution time, to find disparity be-
The interpolated function obtained when the third-order ,een corresponding blocks. This technique is embedded in
B spline is applied consists of a sequence of third degree; coarse-to-fine search strategy, which provides the control
piecewise polynomials, which join at successive points petween the various scales at which the operator is to be
_contlnuou_sly t_ogethe_r with their slopes and curvatures. Th'sapplied. The performance of the matching procedure was
mterpolatlo_n is easily gxtended to the two-dimensional {ggted using computer generated stereograms formed of
case, and incorporated in the whole procedure of surfacgandom dots as well as natural stereo images with good
recovery for obtaining the three-dimensional topography of regyits. In every case, and especially when natural stereo
the_ optic nerve head, according to the block diagram de'imagery is used, the range image obtained consists of
scribed. sparse information with density according to the available
number of features which can be matched. A cubic
6 Results B-spline interpolation was used in the last step as the final
A series of synthesized as well as natural stereo imagedefinement of the range images, and it was shown to be a
were tested to evaluate the depth-from-stereo algorithm degood alternative to get a dense representation from the
scribed in this paper. In the first case, a random-dot stereo2vailable sparse depth data obtained from the depth-from-
gram whose underlying structure is a half sphere, wasstereo algorithm. The whole system has been used for ob-
tested yielding good results. If a maximum error bfl taining a three-dimensional representation of the optic
pixel is tolerated, the percentage of correct values obtained'€"ve head topography, as medical support for the early
in the case of random-dot stereograms was 95% on averdiagnosis and follow up of glaucoma. This methodology is
age. This figure can be estimated in the case of random-dotinder testing for clinical evaluation and analysis of repro-
stereograms because they are computer generated and viiCibility and accuracy.
know in advance the correct values expected. This is dif-
ferent when real stereo imagery is processed. The algorithnfXeferences
was applied to the obtention of three-dimensional topogra- 1. . B. Shields, “The future of computerized image analysis in the
phy of the optic nerve head from a stereo pair of images. A management of glaucoma,’Am. J. Ophthalmol.108 319-323
cubic B-spline interpolation was performed in the last step (1989.

) : A. W. Dreher, P. C. Tso, and R. N. Weinreb, “Reproducibility of
in order to obtain a smoother surface. Surface recovery topographic measurements of the normal and glaucomatous optic

(e) 3-D topography for each pair.

Fig. 5 Image processing steps.
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