
CHAPMAN & HALL/CRC

Computational
Statistics
Handbook with
MATLAB®

Wendy L. Martinez
Angel R. Martinez

Boca Raton London New York Washington, D.C.

© 2002 by Chapman & Hall/CRC

This book contains information obtained from authentic and highly regarded sources. Reprinted material
is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable
efforts have been made to publish reliable data and information, but the author and the publisher cannot
assume responsibility for the validity of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, microfilming, and recording, or by any information storage or
retrieval system, without prior permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for
creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC
for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice:

Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation, without intent to infringe.

Visit the CRC Press Web site at www.crcpress.com

© 2002 by Chapman & Hall/CRC

No claim to original U.S. Government works
International Standard Book Number 1-58488-229-8

Printed in the United States of America 1 2 3 4 5 6 7 8 9 0
Printed on acid-free paper

Library of Congress Cataloging-in-Publication Data

Catalog record is available from the Library of Congress

2298/disclaimer Page 1 Wednesday, August 22, 2001 2:50 PM

www.crcpress.com

To

Edward J. Wegman

Teacher, Mentor and Friend

© 2002 by Chapman & Hall/CRC

Table of Contents

Preface

Chapter 1
Introduction
1.1 What Is Computational Statistics?
1.2 An Overview of the Book

Philosophy
What Is Covered
A Word About Notation

1.3 MATLAB Code
Computational Statistics Toolbox
Internet Resources

1.4 Further Reading

Chapter 2
Probability Concepts
2.1 Introduction
2.2 Probability

Background
Probability
Axioms of Probability

2.3 Conditional Probability and Independence
Conditional Probability
Independence
Bayes Theorem

2.4 Expectation
Mean and Variance
Skewness
Kurtosis

2.5 Common Distributions
Binomial
Poisson
Uniform
Normal
Exponential
Gamma
Chi-Square
Weibull
Beta

© 2002 by Chapman & Hall/CRC

viii Computational Statistics Handbook with MATLAB

Multivariate Normal
2.6 MATLAB Code
2.7 Further Reading
Exercises

Chapter 3
Sampling Concepts
3.1 Introduction
3.2 Sampling Terminology and Concepts

Sample Mean and Sample Variance
Sample Moments
Covariance

3.3 Sampling Distributions
3.4 Parameter Estimation

Bias
Mean Squared Error
Relative Efficiency
Standard Error
Maximum Likelihood Estimation
Method of Moments

3.5 Empirical Distribution Function
Quantiles

3.6 MATLAB Code
3.7 Further Reading
Exercises

Chapter 4
Generating Random Variables
4.1 Introduction
4.2 General Techniques for Generating Random Variables

Uniform Random Numbers
Inverse Transform Method
Acceptance-Rejection Method

4.3 Generating Continuous Random Variables
Normal Distribution
Exponential Distribution
Gamma
Chi-Square
Beta
Multivariate Normal
Generating Variates on a Sphere

4.4 Generating Discrete Random Variables
Binomial
Poisson
Discrete Uniform

© 2002 by Chapman & Hall/CRC

Table of Contents ix

4.5 MATLAB Code
4.6 Further Reading
Exercises

Chapter 5
Exploratory Data Analysis
5.1 Introduction
5.2 Exploring Univariate Data

Histograms
Stem-and-Leaf
Quantile-Based Plots - Continuous Distributions

Q-Q Plot
Quantile Plots

Quantile Plots - Discrete Distributions
Poissonness Plot
Binomialness Plot

Box Plots
5.3 Exploring Bivariate and Trivariate Data

Scatterplots
Surface Plots
Contour Plots
Bivariate Histogram
3-D Scatterplot

5.4 Exploring Multi-Dimensional Data
Scatterplot Matrix
Slices and Isosurfaces
Star Plots
Andrews Curves
Parallel Coordinates
Projection Pursuit

Projection Pursuit Index
Finding the Structure
Structure Removal

Grand Tour
5.5 MATLAB Code
5.6 Further Reading
Exercises

Chapter 6
Monte Carlo Methods for Inferential Statistics
6.1 Introduction
6.2 Classical Inferential Statistics

Hypothesis Testing
Confidence Intervals

6.3 Monte Carlo Methods for Inferential Statistics

© 2002 by Chapman & Hall/CRC

x Computational Statistics Handbook with MATLAB

Basic Monte Carlo Procedure
Monte Carlo Hypothesis Testing
Monte Carlo Assessment of Hypothesis Testing

6.4 Bootstrap Methods
General Bootstrap Methodology
Bootstrap Estimate of Standard Error
Bootstrap Estimate of Bias
Bootstrap Confidence Intervals

Bootstrap Standard Confidence Interval
Bootstrap-t Confidence Interval
Bootstrap Percentile Interval

6.5 MATLAB Code
6.6 Further Reading
Exercises

Chapter 7
Data Partitioning
7.1 Introduction
7.2 Cross-Validation
7.3 Jackknife
7.4 Better Bootstrap Confidence Intervals
7.5 Jackknife-After-Bootstrap
7.6 MATLAB Code
7.7 Further Reading
Exercises

Chapter 8
Probability Density Estimation
8.1 Introduction
8.2 Histograms

1-D Histograms
Multivariate Histograms
Frequency Polygons
Averaged Shifted Histograms

8.3 Kernel Density Estimation
Univariate Kernel Estimators
Multivariate Kernel Estimators

8.4 Finite Mixtures
Univariate Finite Mixtures
Visualizing Finite Mixtures
Multivariate Finite Mixtures
EM Algorithm for Estimating the Parameters
Adaptive Mixtures

8.5 Generating Random Variables
8.6 MATLAB Code

© 2002 by Chapman & Hall/CRC

Table of Contents xi

8.7 Further Reading
Exercises

Chapter 9
Statistical Pattern Recognition
9.1 Introduction
9.2 Bayes Decision Theory

Estimating Class-Conditional Probabilities: Parametric Method
Estimating Class-Conditional Probabilities: Nonparametric
Bayes Decision Rule
Likelihood Ratio Approach

9.3 Evaluating the Classifier
Independent Test Sample
Cross-Validation
Receiver Operating Characteristic (ROC) Curve

9.4 Classification Trees
Growing the Tree
Pruning the Tree
Choosing the Best Tree

Selecting the Best Tree Using an Independent Test Sample
Selecting the Best Tree Using Cross-Validation

9.5 Clustering
Measures of Distance
Hierarchical Clustering
K-Means Clustering

9.6 MATLAB Code
9.7 Further Reading
Exercises

Chapter 10
Nonparametric Regression
10.1 Introduction
10.2 Smoothing

Loess
Robust Loess Smoothing
Upper and Lower Smooths

10.3 Kernel Methods
Nadaraya-Watson Estimator
Local Linear Kernel Estimator

10.4 Regression Trees
Growing a Regression Tree
Pruning a Regression Tree
Selecting a Tree

10.5 MATLAB Code
10.6 Further Reading

© 2002 by Chapman & Hall/CRC

xii Computational Statistics Handbook with MATLAB

Exercises

Chapter 11
Markov Chain Monte Carlo Methods
11.1 Introduction
11.2 Background

Bayesian Inference
Monte Carlo Integration
Markov Chains
Analyzing the Output

11.3 Metropolis-Hastings Algorithms
Metropolis-Hastings Sampler
Metropolis Sampler
Independence Sampler
Autoregressive Generating Density

11.4 The Gibbs Sampler
11.5 Convergence Monitoring

Gelman and Rubin Method
Raftery and Lewis Method

11.6 MATLAB Code
11.7 Further Reading
Exercises

Chapter 12
Spatial Statistics
12.1 Introduction

What Is Spatial Statistics?
Types of Spatial Data
Spatial Point Patterns
Complete Spatial Randomness

12.2 Visualizing Spatial Point Processes
12.3 Exploring First-order and Second-order Properties

Estimating the Intensity
Estimating the Spatial Dependence

Nearest Neighbor Distances - G and F Distributions
K-Function

12.4 Modeling Spatial Point Processes
Nearest Neighbor Distances
K-Function

12.5 Simulating Spatial Point Processes
Homogeneous Poisson Process
Binomial Process
Poisson Cluster Process
Inhibition Process
Strauss Process

© 2002 by Chapman & Hall/CRC

Table of Contents xiii

12.6 MATLAB Code
12.7 Further Reading
Exercises

Appendix A
Introduction to MATLAB

A.1 What Is MATLAB?
A.2 Getting Help in MATLAB

A.3 File and Workspace Management
A.4 Punctuation in MATLAB
A.5 Arithmetic Operators
A.6 Data Constructs in MATLAB

Basic Data Constructs
Building Arrays
Cell Arrays

A.7 Script Files and Functions
A.8 Control Flow

For Loop
While Loop
If-Else Statements
Switch Statement

A.9 Simple Plotting
A.10 Contact Information

Appendix B
Index of Notation

Appendix C
Projection Pursuit Indexes
C.1 Indexes

Friedman-Tukey Index
Entropy Index
Moment Index
Distances

C.2 MATLAB Source Code

Appendix D
MATLAB Code
D.1 Bootstrap Confidence Interval
D.2 Adaptive Mixtures Density Estimation
D.3 Classification Trees
D.4 Regression Trees

© 2002 by Chapman & Hall/CRC

xiv Computational Statistics Handbook with MATLAB

Appendix E
MATLAB Statistics Toolbox

Appendix F
Computational Statistics Toolbox

Appendix G
Data Sets

References

© 2002 by Chapman & Hall/CRC

Preface

Computational statistics is a fascinating and relatively new field within sta-
tistics. While much of classical statistics relies on parameterized functions
and related assumptions, the computational statistics approach is to let the
data tell the story. The advent of computers with their number-crunching
capability, as well as their power to show on the screen two- and three-
dimensional structures, has made computational statistics available for any
data analyst to use.

Computational statistics has a lot to offer the researcher faced with a file
full of numbers. The methods of computational statistics can provide assis-
tance ranging from preliminary exploratory data analysis to sophisticated
probability density estimation techniques, Monte Carlo methods, and pow-
erful multi-dimensional visualization. All of this power and novel ways of
looking at data are accessible to researchers in their daily data analysis tasks.
One purpose of this book is to facilitate the exploration of these methods and
approaches and to provide the tools to make of this, not just a theoretical
exploration, but a practical one. The two main goals of this book are:

• To make computational statistics techniques available to a wide
range of users, including engineers and scientists, and

• To promote the use of MATLAB® by statisticians and other data
analysts.

MATLAB a nd Handle Graphics® are reg istere d tra de marks of
The MathWorks, Inc.

There are wonderful books that cover many of the techniques in computa-
tional statistics and, in the course of this book, references will be made to
many of them. However, there are very few books that have endeavored to
forgo the theoretical underpinnings to present the methods and techniques in
a manner immediately usable to the practitioner. The approach we take in
this book is to make computational statistics accessible to a wide range of
users and to provide an understanding of statistics from a computational
point of view via algorithms applied to real applications.

This book is intended for researchers in engineering, statistics, psychology,
biostatistics, data mining and any other discipline that must deal with the
analysis of raw data. Students at the senior undergraduate level or beginning
graduate level in statistics or engineering can use the book to supplement
course material. Exercises are included with each chapter, making it suitable
as a textbook for a course in computational statistics and data analysis. Scien-

© 2002 by Chapman & Hall/CRC

xvi Computational Statistics Handbook with MATLAB

tists who would like to know more about programming methods for analyz-
ing data in MATLAB would also find it useful.

We assume that the reader has the following background:

• Calculus: Since this book is computational in nature, the reader
needs only a rudimentary knowledge of calculus. Knowing the
definition of a derivative and an integral is all that is required.

• Linear Algebra: Since MATLAB is an array-based computing lan-
guage, we cast several of the algorithms in terms of matrix algebra.
The reader should have a familiarity with the notation of linear
algebra, array multiplication, inverses, determinants, an array
transpose, etc.

• Probability and Statistics: We assume that the reader has had intro-
ductory probability and statistics courses. However, we provide a
brief overview of the relevant topics for those who might need a
refresher.

We list below some of the major features of the book.

• The focus is on implementation rather than theory, helping the
reader understand the concepts without being burdened by the
theory.

• References that explain the theory are provided at the end of each
chapter. Thus, those readers who need the theoretical underpin-
nings will know where to find the information.

• Detailed step-by-step algorithms are provided to facilitate imple-
mentation in any computer programming language or appropriate
software. This makes the book appropriate for computer users who
do not know MATLAB.

• MATLAB code in the form of a Computational Statistics Toolbox
is provided. These functions are available for download at:

http://www.infinityassociates.com
http://lib.stat.cmu.edu.

Please review the readme file for installation instructions and in-
formation on any changes.

• Exercises are given at the end of each chapter. The reader is encour-
aged to go through these, because concepts are sometimes explored
further in them. Exercises are computational in nature, which is in
keeping with the philosophy of the book.

• Many data sets are included with the book, so the reader can apply
the methods to real problems and verify the results shown in the
book. The data can also be downloaded separately from the toolbox
at http://www.infinityassociates.com. The data are pro-

© 2002 by Chapman & Hall/CRC

http://www.infinityassociates.com
http://lib.stat.cmu.edu.
http://www.infinityassociates.com.

xvii

vided in MATLAB binary files (.mat) as well as text, for those who
want to use them with other software.

• Typing in all of the commands in the examples can be frustrating.
So, MATLAB scripts containing the commands used in the exam-
ples are also available for download at

http://www.infinityassociates.com.
• A brief introduction to MATLAB is provided in Appendix A. Most

of the constructs and syntax that are needed to understand the
programming contained in the book are explained.

• An index of notation is given in Appendix B. Definitions and page
numbers are provided, so the user can find the corresponding
explanation in the text.

• Where appropriate, we provide references to internet resources for
computer code implementing the algorithms described in the chap-
ter. These include code for MATLAB, S-plus, Fortran, etc.

We would like to acknowledge the invaluable help of the reviewers: Noel
Cressie, James Gentle, Thomas Holland, Tom Lane, David Marchette, Chris-
tian Posse, Carey Priebe, Adrian Raftery, David Scott, Jeffrey Solka, and Clif-
ton Sutton. Their many helpful comments made this book a much better
product. Any shortcomings are the sole responsibility of the authors. We owe
a special thanks to Jeffrey Solka for some programming assistance with finite
mixtures. We greatly appreciate the help and patience of those at CRC Press:
Bob Stern, Joanne Blake, and Evelyn Meany. We also thank Harris Quesnell
and James Yanchak for their help with resolving font problems. Finally, we
are indebted to Naomi Fernandes and Tom Lane at The MathWorks, Inc. for
their special assistance with MATLAB.

DisDisDisDiscccclailailailaimmmmeeeerrrrssss

1. Any MATLAB programs and data sets that are included with the book
are provided in good faith. The authors, publishers or distributors do not
guarantee their accuracy and are not responsible for the consequences of
their use.

2. The views expressed in this book are those of the authors and do not
necessarily represent the views of DoD or its components.

Wendy L. and Angel R. Martinez
August 2001

© 2002 by Chapman & Hall/CRC

http://www.infinityassociates.com.

Chapter 1
Introduction

1.1 What Is Computational Statistics?

Obviously, computational statistics relates to the traditional discipline of sta-
tistics. So, before we define computational statistics proper, we need to get a
handle on what we mean by the field of statistics. At a most basic level, sta-
tistics is concerned with the transformation of raw data into knowledge
[Wegman, 1988].

When faced with an application requiring the analysis of raw data, any sci-
entist must address questions such as:

• What data should be collected to answer the questions in the anal-
ysis?

• How much data should be collected?
• What conclusions can be drawn from the data?

• How far can those conclusions be trusted?

Statistics is concerned with the science of uncertainty and can help the scien-
tist deal with these questions. Many classical methods (regression, hypothe-
sis testing, parameter estimation, confidence intervals, etc.) of statistics
developed over the last century are familiar to scientists and are widely used
in many disciplines [Efron and Tibshirani, 1991].

Now, what do we mean by computational statistics? Here we again follow
the definition given in Wegman [1988]. Wegman defines computational sta-
tistics as a collection of techniques that have a strong “focus on the exploita-
tion of computing in the creation of new statistical methodology.”

Many of these methodologies became feasible after the development of
inexpensive computing hardware since the 1980’s. This computing revolu-
tion has enabled scientists and engineers to store and process massive
amounts of data. However, these data are typically collected without a clear
idea of what they will be used for in a study. For instance, in the practice of
data analysis today, we often collect the data and then we design a study to

© 2002 by Chapman & Hall/CRC

2 Computational Statistics Handbook with MATLAB

gain some useful information from them. In contrast, the traditional
approach has been to first design the study based on research questions and
then collect the required data.

Because the storage and collection is so cheap, the data sets that analysts
must deal with today tend to be very large and high-dimensional. It is in sit-
uations like these where many of the classical methods in statistics are inad-
equate. As examples of computational statistics methods, Wegman [1988]
includes parallel coordinates for high dimensional data representation, non-
parametric functional inference, and data set mapping where the analysis
techniques are considered fixed.

Efron and Tibshirani [1991] refer to what we call computational statistics as
computer-intensive statistical methods. They give the following as examples for
these types of techniques: bootstrap methods, nonparametric regression,
generalized additive models and classification and regression trees. They
note that these methods differ from the classical methods in statistics because
they substitute computer algorithms for the more traditional mathematical
method of obtaining an answer. An important aspect of computational statis-
tics is that the methods free the analyst from choosing methods mainly
because of their mathematical tractability.

Volume 9 of the Handbook of Statistics: Computational Statistics [Rao, 1993]
covers topics that illustrate the “... trend in modern statistics of basic method-
ology supported by the state-of-the-art computational and graphical facili-
ties...” It includes chapters on computing, density estimation, Gibbs
sampling, the bootstrap, the jackknife, nonparametric function estimation,
statistical visualization, and others.

We mention the topics that can be considered part of computational statis-
tics to help the reader understand the difference between these and the more
traditional methods of statistics. Table 1.1 [Wegman, 1988] gives an excellent
comparison of the two areas.

1.2 An Overview of the Book

PPPPhhhhiiiiloslosloslosoooophphphphyyyy

The focus of this book is on methods of computational statistics and how to
implement them. We leave out much of the theory, so the reader can concen-
trate on how the techniques may be applied. In many texts and journal arti-
cles, the theory obscures implementation issues, contributing to a loss of
interest on the part of those needing to apply the theory. The reader should
not misunderstand, though; the methods presented in this book are built on
solid mathematical foundations. Therefore, at the end of each chapter, we

© 2002 by Chapman & Hall/CRC

Chapter 1: Introduction 3

include a section containing references that explain the theoretical concepts
associated with the methods covered in that chapter.

WhWhWhWhaaaat Ist Ist Ist Is CovereCovereCovereCoveredddd

In this book, we cover some of the most commonly used techniques in com-
putational statistics. While we cannot include all methods that might be a
part of computational statistics, we try to present those that have been in use
for several years.

Since the focus of this book is on the implementation of the methods, we
include algorithmic descriptions of the procedures. We also provide exam-
ples that illustrate the use of the algorithms in data analysis. It is our hope
that seeing how the techniques are implemented will help the reader under-
stand the concepts and facilitate their use in data analysis.

Some background information is given in Chapters 2, 3, and 4 for those
who might need a refresher in probability and statistics. In Chapter 2, we dis-
cuss some of the general concepts of probability theory, focusing on how they

TTTTABABABABLELELELE 1.11.11.11.1

Comparison Between Traditional Statistics and Computational Statistics
[Wegman, 1988]. Reprinted with permission from the Journal of the
Washington Academy of Sciences.

Traditional Statistics Computational Statistics

Small to moderate sample size Large to very large sample size

Independent, identically distributed
data sets

Nonhomogeneous data sets

One or low dimensional High dimensional

Manually computational Computationally intensive

Mathematically tractable Numerically tractable

Well focused questions Imprecise questions

Strong unverifiable assumptions:
Relationships (linearity, additivity)
Error structures (normality)

Weak or no assumptions:
Relationships (nonlinearity)
Error structures (distribution free)

Statistical inference Structural inference

Predominantly closed form
algorithms

Iterative algorithms possible

Statistical optimality Statistical robustness

© 2002 by Chapman & Hall/CRC

4 Computational Statistics Handbook with MATLAB

will be used in later chapters of the book. Chapter 3 covers some of the basic
ideas of statistics and sampling distributions. Since many of the methods in
computational statistics are concerned with estimating distributions via sim-
ulation, this chapter is fundamental to the rest of the book. For the same rea-
son, we present some techniques for generating random variables in
Chapter 4.

Some of the methods in computational statistics enable the researcher to
explore the data before other analyses are performed. These techniques are
especially important with high dimensional data sets or when the questions
to be answered using the data are not well focused. In Chapter 5, we present
some graphical exploratory data analysis techniques that could fall into the
category of traditional statistics (e.g., box plots, scatterplots). We include
them in this text so statisticians can see how to implement them in MATLAB
and to educate scientists and engineers as to their usage in exploratory data
analysis. Other graphical methods in this chapter do fall into the category of
computational statistics. Among these are isosurfaces, parallel coordinates,
the grand tour and projection pursuit.

In Chapters 6 and 7, we present methods that come under the general head-
ing of resampling. We first cover some of the general concepts in hypothesis
testing and confidence intervals to help the reader better understand what
follows. We then provide procedures for hypothesis testing using simulation,
including a discussion on evaluating the performance of hypothesis tests.
This is followed by the bootstrap method, where the data set is used as an
estimate of the population and subsequent sampling is done from the sam-
ple. We show how to get bootstrap estimates of standard error, bias and con-
fidence intervals. Chapter 7 continues with two closely related methods
called jackknife and cross-validation.

One of the important applications of computational statistics is the estima-
tion of probability density functions. Chapter 8 covers this topic, with an
emphasis on the nonparametric approach. We show how to obtain estimates
using probability density histograms, frequency polygons, averaged shifted
histograms, kernel density estimates, finite mixtures and adaptive mixtures.

Chapter 9 uses some of the concepts from probability density estimation
and cross-validation. In this chapter, we present some techniques for statisti-
cal pattern recognition. As before, we start with an introduction of the classi-
cal methods and then illustrate some of the techniques that can be considered
part of computational statistics, such as classification trees and clustering.

In Chapter 10 we describe some of the algorithms for nonparametric
regression and smoothing. One nonparametric technique is a tree-based
method called regression trees. Another uses the kernel densities of
Chapter 8. Finally, we discuss smoothing using loess and its variants.

An approach for simulating a distribution that has become widely used
over the last several years is called Markov chain Monte Carlo. Chapter 11
covers this important topic and shows how it can be used to simulate a pos-
terior distribution. Once we have the posterior distribution, we can use it to
estimate statistics of interest (means, variances, etc.).

© 2002 by Chapman & Hall/CRC

Chapter 1: Introduction 5

We conclude the book with a chapter on spatial statistics as a way of show-
ing how some of the methods can be employed in the analysis of spatial data.
We provide some background on the different types of spatial data analysis,
but we concentrate on spatial point patterns only. We apply kernel density
estimation, exploratory data analysis, and simulation-based hypothesis test-
ing to the investigation of spatial point processes.

We also include several appendices to aid the reader. Appendix A contains
a brief introduction to MATLAB, which should help readers understand the
code in the examples and exercises. Appendix B is an index to notation, with
definitions and references to where it is used in the text. Appendices C and D
include some further information about projection pursuit and MATLAB
source code that is too lengthy for the body of the text. In Appendices E and
F, we provide a list of the functions that are contained in the MATLAB Statis-
tics Toolbox and the Computational Statistics Toolbox, respectively. Finally,
in Appendix G, we include a brief description of the data sets that are men-
tioned in the book.

AAAA WWWWoooorrrrdddd About NAbout NAbout NAbout Noooottttaaaattttionionionion

The explanation of the algorithms in computational statistics (and the under-
standing of them!) depends a lot on notation. In most instances, we follow the
notation that is used in the literature for the corresponding method. Rather
than try to have unique symbols throughout the book, we think it is more
important to be faithful to the convention to facilitate understanding of the
theory and to make it easier for readers to make the connection between the
theory and the text. Because of this, the same symbols might be used in sev-
eral places.

In general, we try to stay with the convention that random variables are
capital letters, whereas small letters refer to realizations of random variables.
For example, X is a random variable, and x is an observed value of that ran-
dom variable. When we use the term log, we are referring to the natural log-
arithm.

A symbol that is in bold refers to an array. Arrays can be row vectors, col-
umn vectors or matrices. Typically, a matrix is represented by a bold capital
letter such as B, while a vector is denoted by a bold lowercase letter such as
b. When we are using explicit matrix notation, then we specify the dimen-
sions of the arrays. Otherwise, we do not hold to the convention that a vector
always has to be in a column format. For example, we might represent a vec-
tor of observed random variables as or a vector of parameters as

.
x1 x2 x3, ,()

µ σ,()

© 2002 by Chapman & Hall/CRC

6 Computational Statistics Handbook with MATLAB

1.3 MATLAB Code

Along with the algorithmic explanation of the procedures, we include
MATLAB commands to show how they are implemented. Any MATLAB
commands, functions or data sets are in courier bold font. For example, plot
denotes the MATLAB plotting function. The commands that are in the exam-
ples can be typed in at the command line to execute the examples. However,
we note that due to typesetting considerations, we often have to continue a
MATLAB command using the continuation punctuation (...). However,
users do not have to include that with their implementations of the algo-
rithms. See Appendix A for more information on how this punctuation is
used in MATLAB.

Since this is a book about computational statistics, we assume the reader
has the MATLAB Statistics Toolbox. In Appendix E, we include a list of func-
tions that are in the toolbox and try to note in the text what functions are part
of the main MATLAB software package and what functions are available
only in the Statistics Toolbox.

The choice of MATLAB for implementation of the methods is due to the fol-
lowing reasons:

• The commands, functions and arguments in MATLAB are not cryp-
tic. It is important to have a programming language that is easy to
understand and intuitive, since we include the programs to help
teach the concepts.

• It is used extensively by scientists and engineers.
• Student versions are available.

• It is easy to write programs in MATLAB.
• The source code or M-files can be viewed, so users can learn about

the algorithms and their implementation.

• User-written MATLAB programs are freely available.
• The graphics capabilities are excellent.

It is important to note that the MATLAB code given in the body of the book
is for learning purposes. In many cases, it is not the most efficient way to pro-
gram the algorithm. One of the purposes of including the MATLAB code is
to help the reader understand the algorithms, especially how to implement
them. So, we try to have the code match the procedures and to stay away
from cryptic programming constructs. For example, we use for loops at
times (when unnecessary!) to match the procedure. We make no claims that
our code is the best way or the only way to program the algorithms.

In some cases, the MATLAB code is contained in an appendix, rather than
in the corresponding chapter. These are applications where the MATLAB

© 2002 by Chapman & Hall/CRC

Chapter 1: Introduction 7

program does not provide insights about the algorithms. For example, with
classification and regression trees, the code can be quite complicated in
places, so the functions are relegated to an appendix (Appendix D). Including
these in the body of the text would distract the reader from the important
concepts being presented.

Computational StatistComputational StatistComputational StatistComputational Statistiiiiccccssss TTTToolboxoolboxoolboxoolbox

The majority of the algorithms covered in this book are not available in
MATLAB. So, we provide functions that implement most of the procedures
that are given in the text. Note that these functions are a little different from
the MATLAB code provided in the examples. In most cases, the functions
allow the user to implement the algorithms for the general case. A list of the
functions and their purpose is given in Appendix F. We also give a summary
of the appropriate functions at the end of each chapter.

The MATLAB functions for the book are part of what we are calling the
Computational Statistics Toolbox. To make it easier to recognize these func-
tions, we put the letters ‘cs’ in front. The toolbox can be downloaded from

• http://lib.stat.cmu.edu

• http://www.infinityassociates.com

Information on installing the toolbox is given in the readme file and on the
website.

Internet ResourcInternet ResourcInternet ResourcInternet Resourceeeessss

One of the many strong points about MATLAB is the availability of functions
written by users, most of which are freely available on the internet. With each
chapter, we provide information about internet resources for MATLAB pro-
grams (and other languages) that pertain to the techniques covered in the
chapter.

The following are some internet sources for MATLAB code. Note that these
are not necessarily specific to statistics, but are for all areas of science and
engineering.

• The main website at The MathWorks, Inc. has code written by users
and technicians of the company. The website for user contributed
M-files is:

http://www.mathworks.com/support/ftp/

The website for M-files contributed by The MathWorks, Inc. is:

ftp://ftp.mathworks.com/pub/mathworks/

• Another excellent resource for MATLAB programs is

© 2002 by Chapman & Hall/CRC

http://lib.stat.cmu.edu
http://www.infinityassociates.com
http://www.mathworks.com/support/ftp/
ftp://ftp.mathworks.com/pub/mathworks/

8 Computational Statistics Handbook with MATLAB

http://www.mathtools.net.
At this site, you can sign up to be notified of new submissions.

• The main website for user contributed statistics programs is StatLib
at Carnegie Mellon University. They have a new section containing
MATLAB code. The home page for StatLib is

http://lib.stat.cmu.edu

• We also provide the following internet sites that contain a list of
MATLAB code available for purchase or download.

http://dmoz.org/Science/Math/Software/MATLAB/

http://directory.google.com/Top/-

 Science/Math/Software/MATLAB/

1.4 Further Reading

To gain more insight on what is computational statistics, we refer the reader
to the seminal paper by Wegman [1988]. Wegman discusses many of the dif-
ferences between traditional and computational statistics. He also includes a
discussion on what a graduate curriculum in computational statistics should
consist of and contrasts this with the more traditional course work. A later
paper by Efron and Tibshirani [1991] presents a summary of the new focus in
statistical data analysis that came about with the advent of the computer age.
Other papers in this area include Hoaglin and Andrews [1975] and Efron
[1979]. Hoaglin and Andrews discuss the connection between computing
and statistical theory and the importance of properly reporting the results
from simulation experiments. Efron’s article presents a survey of computa-
tional statistics techniques (the jackknife, the bootstrap, error estimation in
discriminant analysis, nonparametric methods, and more) for an audience
with a mathematics background, but little knowledge of statistics. Chambers
[1999] looks at the concepts underlying computing with data, including the
challenges this presents and new directions for the future.

There are very few general books in the area of computational statistics.
One is a compendium of articles edited by C. R. Rao [1993]. This is a fairly
comprehensive overview of many topics pertaining to computational statis-
tics. The new text by Gentle [2001] is an excellent resource in computational
statistics for the student or researcher. A good reference for statistical com-
puting is Thisted [1988].

For those who need a resource for learning MATLAB, we recommend a
wonderful book by Hanselman and Littlefield [1998]. This gives a compre-
hensive overview of MATLAB Version 5 and has been updated for Version 6
[Hanselman and Littlefield, 2001]. These books have information about the
many capabilities of MATLAB, how to write programs, graphics and GUIs,

© 2002 by Chapman & Hall/CRC

http://www.mathtools.net.
http://lib.stat.cmu.edu
http://dmoz.org/Science/Math/Software/MATLAB/
http://directory.google.com/Top/Science/Math/Software/MATLAB/

Chapter 1: Introduction 9

and much more. For the beginning user of MATLAB, these are a good place
to start.

© 2002 by Chapman & Hall/CRC

Chapter 2
Probability Concepts

2.1 Introduction

A review of probability is covered here at the outset because it provides the
foundation for what is to follow: computational statistics. Readers who
understand probability concepts may safely skip over this chapter.

Probability is the mechanism by which we can manage the uncertainty that
underlies all real world data and phenomena. It enables us to gauge our
degree of belief and to quantify the lack of certitude that is inherent in the
process that generates the data we are analyzing. For example:

• To understand and use statistical hypothesis testing, one needs
knowledge of the sampling distribution of the test statistic.

• To evaluate the performance (e.g., standard error, bias, etc.) of an
estimate, we must know its sampling distribution.

• To adequately simulate a real system, one needs to understand the
probability distributions that correctly model the underlying pro-
cesses.

• To build classifiers to predict what group an object belongs to based
on a set of features, one can estimate the probability density func-
tion that describes the individual classes.

In this chapter, we provide a brief overview of probability concepts and
distributions as they pertain to computational statistics. In Section 2.2, we
define probability and discuss some of its properties. In Section 2.3, we cover
conditional probability, independence and Bayes’ Theorem. Expectations are
defined in Section 2.4, and common distributions and their uses in modeling
physical phenomena are discussed in Section 2.5. In Section 2.6, we summa-
rize some MATLAB functions that implement the ideas from Chapter 2.
Finally, in Section 2.7 we provide additional resources for the reader who
requires a more theoretical treatment of probability.

© 2002 by Chapman & Hall/CRC

12 Computational Statistics Handbook with MATLAB

2.2 Probability

BBBBaaaackckckckggggrrrroundoundoundound

A random experiment is defined as a process or action whose outcome cannot
be predicted with certainty and would likely change when the experiment is
repeated. The variability in the outcomes might arise from many sources:
slight errors in measurements, choosing different objects for testing, etc. The
ability to model and analyze the outcomes from experiments is at the heart of
statistics. Some examples of random experiments that arise in different disci-
plines are given below.

• Engineering: Data are collected on the number of failures of piston
rings in the legs of steam-driven compressors. Engineers would be
interested in determining the probability of piston failure in each
leg and whether the failure varies among the compressors [Hand,
et al., 1994].

• Medicine: The oral glucose tolerance test is a diagnostic tool for
early diabetes mellitus. The results of the test are subject to varia-
tion because of different rates at which people absorb the glucose,
and the variation is particularly noticeable in pregnant women.
Scientists would be interested in analyzing and modeling the vari-
ation of glucose before and after pregnancy [Andrews and
Herzberg, 1985].

• Manufacturing: Manufacturers of cement are interested in the ten-
sile strength of their product. The strength depends on many fac-
tors, one of which is the length of time the cement is dried. An
experiment is conducted where different batches of cement are
tested for tensile strength after different drying times. Engineers
would like to determine the relationship between drying time and
tensile strength of the cement [Hand, et al., 1994].

• Software Engineering: Engineers measure the failure times in CPU
seconds of a command and control software system. These data
are used to obtain models to predict the reliability of the software
system [Hand, et al., 1994].

The sample space is the set of all outcomes from an experiment. It is possi-
ble sometimes to list all outcomes in the sample space. This is especially true
in the case of some discrete random variables. Examples of these sample
spaces are:

© 2002 by Chapman & Hall/CRC

Chapter 2: Probability Concepts 13

• When observing piston ring failures, the sample space is ,
where 1 represents a failure and 0 represents a non-failure.

• If we roll a six-sided die and count the number of dots on the face,
then the sample space is .

The outcomes from random experiments are often represented by an
uppercase variable such as X. This is called a random variable, and its value
is subject to the uncertainty intrinsic to the experiment. Formally, a random
variable is a real-valued function defined on the sample space. As we see in
the remainder of the text, a random variable can take on different values
according to a probability distribution. Using our examples of experiments
from above, a random variable X might represent the failure time of a soft-
ware system or the glucose level of a patient. The observed value of a random
variable X is denoted by a lowercase x. For instance, a random variable X
might represent the number of failures of piston rings in a compressor, and

 would indicate that we observed 5 piston ring failures.
Random variables can be discrete or continuous. A discrete random vari-

able can take on values from a finite or countably infinite set of numbers.
Examples of discrete random variables are the number of defective parts or
the number of typographical errors on a page. A continuous random variable
is one that can take on values from an interval of real numbers. Examples of
continuous random variables are the inter-arrival times of planes at a run-
way, the average weight of tablets in a pharmaceutical production line or the
average voltage of a power plant at different times.

We cannot list all outcomes from an experiment when we observe a contin-
uous random variable, because there are an infinite number of possibilities.
However, we could specify the interval of values that X can take on. For
example, if the random variable X represents the tensile strength of cement,
then the sample space might be .

An event is a subset of outcomes in the sample space. An event might be
that a piston ring is defective or that the tensile strength of cement is in the
range 40 to 50 kg/cm2. The probability of an event is usually expressed using
the random variable notation illustrated below.

• Discrete Random Variables: Letting 1 represent a defective piston
ring and letting 0 represent a good piston ring, then the probability
of the event that a piston ring is defective would be written as

.

• Continuous Random Variables: Let X denote the tensile strength
of cement. The probability that an observed tensile strength is in
the range 40 to 50 kg/cm2 is expressed as

.

1 0,{ }

1 2 3 4 5 6, , , , ,{ }

x 5=

0 ∞,() kg/cm2

P X 1=()

P 40 kg/cm2 X 50 kg/cm2≤ ≤()

© 2002 by Chapman & Hall/CRC

14 Computational Statistics Handbook with MATLAB

Some events have a special property when they are considered together.
Two events that cannot occur simultaneously or jointly are called mutually
exclusive events. This means that the intersection of the two events is the
empty set and the probability of the events occurring together is zero. For
example, a piston ring cannot be both defective and good at the same time.
So, the event of getting a defective part and the event of getting a good part
are mutually exclusive events. The definition of mutually exclusive events
can be extended to any number of events by considering all pairs of events.
Every pair of events must be mutually exclusive for all of them to be mutu-
ally exclusive.

PPPPrrrrobobobobaaaabbbbiiiilitlitlitlityyyy

Probability is a measure of the likelihood that some event will occur. It is also
a way to quantify or to gauge the likelihood that an observed measurement
or random variable will take on values within some set or range of values.
Probabilities always range between 0 and 1. A probability distribution of a
random variable describes the probabilities associated with each possible
value for the random variable.

We first briefly describe two somewhat classical methods for assigning
probabilities: the equal likelihood model and the relative frequency method.
When we have an experiment where each of n outcomes is equally likely,
then we assign a probability mass of to each outcome. This is the equal
likelihood model. Some experiments where this model can be used are flip-
ping a fair coin, tossing an unloaded die or randomly selecting a card from a
deck of cards.

When the equal likelihood assumption is not valid, then the relative fre-
quency method can be used. With this technique, we conduct the experiment
n times and record the outcome. The probability of event E is assigned by

, where f denotes the number of experimental outcomes that sat-
isfy event E.

Another way to find the desired probability that an event occurs is to use a
probability density function when we have continuous random variables or
a probability mass function in the case of discrete random variables. Section
2.5 contains several examples of probability density (mass) functions. In this
text, is used to represent the probability mass or density function for
either discrete or continuous random variables, respectively. We now discuss
how to find probabilities using these functions, first for the continuous case
and then for discrete random variables.

To find the probability that a continuous random variable falls in a partic-
ular interval of real numbers, we have to calculate the appropriate area under
the curve of . Thus, we have to evaluate the integral of over the inter-
val of random variables corresponding to the event of interest. This is repre-
sented by

1 n⁄

P E() f n⁄=

f x()

f x() f x()

© 2002 by Chapman & Hall/CRC

Chapter 2: Probability Concepts 15

. (2.1)

The area under the curve of between a and b represents the probability
that an observed value of the random variable X will assume a value between
a and b. This concept is illustrated in Figure 2.1 where the shaded area repre-
sents the desired probability.

It should be noted that a valid probability density function should be non-
negative, and the total area under the curve must equal 1. If this is not the
case, then the probabilities will not be properly restricted to the interval

. This will be an important consideration in Chapter 8 where we dis-
cuss probability density estimation techniques.

The cumulative distribution function is defined as the probability
that the random variable X assumes a value less than or equal to a given x.
This is calculated from the probability density function, as follows

. (2.2)

FFFFIIIIGUGUGUGURE 2.1RE 2.1RE 2.1RE 2.1

The area under the curve of f(x) between -1 and 4 is the same as the probability that an
observed value of the random variable will assume a value in the same interval.

P a X b≤ ≤() f x() xd

a

b

∫=

f x()

−6 −4 −2 0 2 4 6
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Random Variable − X

f(
x)

0 1,[]

F x()

F x() P X x≤() f t() td

∞–

x

∫= =

© 2002 by Chapman & Hall/CRC

16 Computational Statistics Handbook with MATLAB

It is obvious that the cumulative distribution function takes on values
between 0 and 1, so . A probability density function, along with
its associated cumulative distribution function are illustrated in Figure 2.2.

For a discrete random variable X, that can take on values , the
probability mass function is given by

, (2.3)

and the cumulative distribution function is

. (2.4)

FFFFIIIIGUGUGUGURE 2.RE 2.RE 2.RE 2.2222

This shows the probability density function on the left with the associated cumulative
distribution function on the right. Notice that the cumulative distribution function takes on
values between 0 and 1.

0 F x() 1≤ ≤

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

X

f(
x)

PDF

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

X

F
(x

)

CDF

x1 x2 …, ,

f xi() P X xi=();= i 1 2 …, ,=

F a() f xi();
xi a≤
∑= i 1 2 …, ,=

© 2002 by Chapman & Hall/CRC

Chapter 2: Probability Concepts 17

Axioms ofAxioms ofAxioms ofAxioms of PPPPrrrrobaobaobaobabbbbiiiilitlitlitlityyyy

Probabilities follow certain axioms that can be useful in computational statis-
tics. We let S represent the sample space of an experiment and E represent
some event that is a subset of S.

AXIOM 1
The probability of event E must be between 0 and 1:

.

AXIOM 2

.

AXIOM 3
For mutually exclusive events, ,

.

Axiom 1 has been discussed before and simply states that a probability
must be between 0 and 1. Axiom 2 says that an outcome from our experiment
must occur, and the probability that the outcome is in the sample space is 1.
Axiom 3 enables us to calculate the probability that at least one of the mutu-
ally exclusive events occurs by summing the individual proba-
bilities.

2.3 Conditional Probability and Independence

Conditional PConditional PConditional PConditional Prrrrobobobobaaaabbbbiiiilitylitylitylity

Conditional probability is an important concept. It is used to define indepen-
dent events and enables us to revise our degree of belief given that another
event has occurred. Conditional probability arises in situations where we
need to calculate a probability based on some partial information concerning
the experiment.

The conditional probability of event E given event F is defined as follows:

0 P E() 1≤ ≤

P S() 1=

E1 E2 … Ek, , ,

P E1 E2 … Ek∪ ∪ ∪() P Ei()
i 1=

k

∑=

E1 E2 … Ek, , ,

© 2002 by Chapman & Hall/CRC

18 Computational Statistics Handbook with MATLAB

CONDITIONAL PROBABILITY

. (2.5)

Here represents the joint probability that both E and F occur
together and is the probability that event F occurs. We can rearrange
Equation 2.5 to get the following rule:

MULTIPLICATION RULE

. (2.6)

IndIndIndIndeeeependpendpendpendeeeencencencence

Often we can assume that the occurrence of one event does not affect whether
or not some other event happens. For example, say a couple would like to
have two children, and their first child is a boy. The gender of their second
child does not depend on the gender of the first child. Thus, the fact that we
know they have a boy already does not change the probability that the sec-
ond child is a boy. Similarly, we can sometimes assume that the value we
observe for a random variable is not affected by the observed value of other
random variables.

These types of events and random variables are called independent. If
events are independent, then knowing that one event has occurred does not
change our degree of belief or the likelihood that the other event occurs. If
random variables are independent, then the observed value of one random
variable does not affect the observed value of another.

In general, the conditional probability is not equal to . In these
cases, the events are called dependent. Sometimes we can assume indepen-
dence based on the situation or the experiment, which was the case with our
example above. However, to show independence mathematically, we must
use the following definition.

INDEPENDENT EVENTS
Two events E and F are said to be independent if and only if any of the following is
true:

(2.7)

P E F() P E F∩()
P F()

----------------------- P F() 0>;=

P E F∩()
P F()

P E F∩() P F()P E F()=

P E F() P E()

P E F∩() P E()P F(),=

P E() P E F().=

© 2002 by Chapman & Hall/CRC

Chapter 2: Probability Concepts 19

Note that if events E and F are independent, then the Multiplication Rule
in Equation 2.6 becomes

,

which means that we simply multiply the individual probabilities for each
event together. This can be extended to k events to give

, (2.8)

where events and (for all i and j,) are independent.

BBBBaaaayeyeyeyessss ThThThTheeeeoooorrrreeeemmmm

Sometimes we start an analysis with an initial degree of belief that an event
will occur. Later on, we might obtain some additional information about the
event that would change our belief about the probability that the event will
occur. The initial probability is called a prior probability. Using the new
information, we can update the prior probability using Bayes’ Theorem to
obtain the posterior probability.

The experiment of recording piston ring failure in compressors is an exam-
ple of where Bayes’ Theorem might be used, and we derive Bayes’ Theorem
using this example. Suppose our piston rings are purchased from two manu-
facturers: 60% from manufacturer A and 40% from manufacturer B.

Let denote the event that a part comes from manufacturer A, and
represent the event that a piston ring comes from manufacturer B. If we select
a part at random from our supply of piston rings, we would assign probabil-
ities to these events as follows:

These are our prior probabilities that the piston rings are from the individual
manufacturers.

Say we are interested in knowing the probability that a piston ring that sub-
sequently failed came from manufacturer A. This would be the posterior
probability that it came from manufacturer A, given that the piston ring
failed. The additional information we have about the piston ring is that it
failed, and we use this to update our degree of belief that it came from man-
ufacturer A.

P E F∩() P F()P E()=

P E1 E2 … Ek∩ ∩ ∩() P Ei()
i 1=

k

∏=

Ei Ej i j≠

MA MB

P MA() 0.6,=

P MB() 0.4.=

© 2002 by Chapman & Hall/CRC

20 Computational Statistics Handbook with MATLAB

Bayes’ Theorem can be derived from the definition of conditional probabil-
ity (Equation 2.5). Writing this in terms of our events, we are interested in the
following probability:

, (2.9)

where represents the posterior probability that the part came from
manufacturer A, and F is the event that the piston ring failed. Using the Mul-
tiplication Rule (Equation 2.6), we can write the numerator of Equation 2.9 in
terms of event F and our prior probability that the part came from manufac-
turer A, as follows

. (2.10)

The next step is to find . The only way that a piston ring will fail is if:
1) it failed and it came from manufacturer A or 2) it failed and it came from
manufacturer B. Thus, using the third axiom of probability, we can write

.

Applying the Multiplication Rule as before, we have

. (2.11)

Substituting this for in Equation 2.10, we write the posterior probability
as

. (2.12)

Note that we need to find the probabilities and . These are
the probabilities that a piston ring will fail given it came from the correspond-
ing manufacturer. These must be estimated in some way using available
information (e.g., past failures). When we revisit Bayes’ Theorem in the con-
text of statistical pattern recognition (Chapter 9), these are the probabilities
that are estimated to construct a certain type of classifier.

Equation 2.12 is Bayes’ Theorem for a situation where only two outcomes
are possible. In general, Bayes’ Theorem can be written for any number of
mutually exclusive events, , whose union makes up the entire sam-
ple space. This is given below.

P MA F() P MA F∩()
P F()

----------------------------=

P MA F()

P MA F() P MA F∩()
P F()

P MA()P F MA()

P F()
---= =

P F()

P F() P MA F∩() P MB F∩()+=

P F() P MA()P F MA() P MB()P F MB()+=

P F()

P MA F() P MA()P F MA()
P MA()P F MA() P MB()P F MB()+
---=

P F MA() P F MB()

E1 … Ek, ,

© 2002 by Chapman & Hall/CRC

Chapter 2: Probability Concepts 21

BAYES’ THEOREM

. (2.13)

2.4 Expectation

Expected values and variances are important concepts in statistics. They are
used to describe distributions, to evaluate the performance of estimators, to
obtain test statistics in hypothesis testing, and many other applications.

MeMeMeMeaaaannnn aaaandndndnd VVVVarianceariancearianceariance

The mean or expected value of a random variable is defined using the proba-
bility density (mass) function. It provides a measure of central tendency of
the distribution. If we observe many values of the random variable and take
the average of them, we would expect that value to be close to the mean. The
expected value is defined below for the discrete case.

EXPECTED VALUE - DISCRETE RANDOM VARIABLES

. (2.14)

We see from the definition that the expected value is a sum of all possible
values of the random variable where each one is weighted by the probability
that X will take on that value.

The variance of a discrete random variable is given by the following defi-
nition.

VARIANCE - DISCRETE RANDOM VARIABLES
For ,

. (2.15)

P Ei F() P Ei()P F Ei()
P E1()P F E1() … P Ek()P F Ek()+ +
---=

µ E X[] xif xi()
i 1=

∞

∑= =

µ ∞<

σ2 V X() E X µ–()2[] xi µ–()2f xi()
i 1=

∞

∑= = =

© 2002 by Chapman & Hall/CRC

22 Computational Statistics Handbook with MATLAB

From Equation 2.15, we see that the variance is the sum of the squared dis-
tances, each one weighted by the probability that . Variance is a mea-
sure of dispersion in the distribution. If a random variable has a large
variance, then an observed value of the random variable is more likely to be
far from the mean µ. The standard deviation is the square root of the vari-
ance.

The mean and variance for continuous random variables are defined simi-
larly, with the summation replaced by an integral. The mean and variance of
a continuous random variable are given below.

EXPECTED VALUE - CONTINUOUS RANDOM VARIABLES

. (2.16)

VARIANCE - CONTINUOUS RANDOM VARIABLES
For ,

. (2.17)

We note that Equation 2.17 can also be written as

.

Other expected values that are of interest in statistics are the moments of a
random variable. These are the expectation of powers of the random variable.
In general, we define the r-th moment as

, (2.18)

and the r-th central moment as

. (2.19)

The mean corresponds to and the variance is given by .

X xi=

σ

µ E X[] xf x() xd
∞–

∞

∫= =

µ ∞<

σ2 V X() E X µ–()2[] x µ–()2f x() xd
∞–

∞

∫= = =

V X() E X2[] µ2– E X2[] E X[]()2–= =

µ'r E Xr[]=

µr E X µ–()r[]=

µ'1 µ2

© 2002 by Chapman & Hall/CRC

Chapter 2: Probability Concepts 23

SSSSkkkkeeeewwwwnnnnesesesesssss

The third central moment is often called a measure of asymmetry or skew-
ness in the distribution. The uniform and the normal distribution are exam-
ples of symmetric distributions. The gamma and the exponential are
examples of skewed or asymmetric distributions. The following ratio is
called the coefficient of skewness, which is often used to measure this char-
acteristic:

. (2.20)

Distributions that are skewed to the left will have a negative coefficient of
skewness, and distributions that are skewed to the right will have a positive
value [Hogg and Craig, 1978]. The coefficient of skewness is zero for symmet-
ric distributions. However, a coefficient of skewness equal to zero does not
mean that the distribution must be symmetric.

KurtosiKurtosiKurtosiKurtosissss

Skewness is one way to measure a type of departure from normality. Kurtosis
measures a different type of departure from normality by indicating the
extent of the peak (or the degree of flatness near its center) in a distribution.
The coefficient of kurtosis is given by the following ratio:

. (2.21)

We see that this is the ratio of the fourth central moment divided by the
square of the variance. If the distribution is normal, then this ratio is equal to
3. A ratio greater than 3 indicates more values in the neighborhood of the
mean (is more peaked than the normal distribution). If the ratio is less than 3,
then it is an indication that the curve is flatter than the normal.

Sometimes the coefficient of excess kurtosis is used as a measure of kurto-
sis. This is given by

. (2.22)

In this case, distributions that are more peaked than the normal correspond
to a positive value of , and those with a flatter top have a negative coeffi-
cient of excess kurtosis.

µ3

γ1
µ3

µ2
3 2⁄

---------=

γ2
µ4

µ2
2

-----=

γ2'
µ4

µ2
2

----- 3–=

γ2'

© 2002 by Chapman & Hall/CRC

24 Computational Statistics Handbook with MATLAB

2.5 Common Distributions

In this section, we provide a review of some useful probability distributions
and briefly describe some applications to modeling data. Most of these dis-
tributions are used in later chapters, so we take this opportunity to define
them and to fix our notation. We first cover two important discrete distribu-
tions: the binomial and the Poisson. These are followed by several continuous
distributions: the uniform, the normal, the exponential, the gamma, the chi-
square, the Weibull, the beta and the multivariate normal.

BinomiaBinomiaBinomiaBinomiallll

Let’s say that we have an experiment, whose outcome can be labeled as a
‘success’ or a ‘failure’. If we let denote a successful outcome and

 represent a failure, then we can write the probability mass function as

(2.23)

where p represents the probability of a successful outcome. A random vari-
able that follows the probability mass function in Equation 2.23 for
is called a Bernoulli random variable.

Now suppose we repeat this experiment for n trials, where each trial is
independent (the outcome from one trial does not influence the outcome of
another) and results in a success with probability p. If X denotes the number
of successes in these n trials, then X follows the binomial distribution with
parameters (n, p). Examples of binomial distributions with different parame-
ters are shown in Figure 2.3.

To calculate a binomial probability, we use the following formula:

. (2.24)

The mean and variance of a binomial distribution are given by

and

X 1=
X 0=

f 0() P X 0=() 1 p,–= =

f 1() P X 1=() p,= =

0 p 1< <

f x n; p,() P X x=() n
x

 px 1 p–()n x– x; 0 1 … n, , ,= = =

E X[] np ,=

V X() np 1 p–() .=

© 2002 by Chapman & Hall/CRC

Chapter 2: Probability Concepts 25

Some examples where the results of an experiment can be modeled by a bino-
mial random variable are:

• A drug has probability 0.90 of curing a disease. It is administered
to 100 patients, where the outcome for each patient is either cured
or not cured. If X is the number of patients cured, then X is a
binomial random variable with parameters (100, 0.90).

• The National Institute of Mental Health estimates that there is a
20% chance that an adult American suffers from a psychiatric dis-
order. Fifty adult Americans are randomly selected. If we let X
represent the number who have a psychiatric disorder, then X takes
on values according to the binomial distribution with parameters
(50, 0.20).

• A manufacturer of computer chips finds that on the average 5%
are defective. To monitor the manufacturing process, they take a
random sample of size 75. If the sample contains more than five
defective chips, then the process is stopped. The binomial distri-
bution with parameters (75, 0.05) can be used to model the random
variable X, where X represents the number of defective chips.

FFFFIIIIGUGUGUGURE 2.RE 2.RE 2.RE 2.3333

Examples of the binomial distribution for different success probabilities.

0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
 n = 6, p = 0.3

X
0 1 2 3 4 5 6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
 n = 6, p = 0.7

X

© 2002 by Chapman & Hall/CRC

26 Computational Statistics Handbook with MATLAB

Example 2.1
Suppose there is a 20% chance that an adult American suffers from a psychi-
atric disorder. We randomly sample 25 adult Americans. If we let X represent
the number of people who have a psychiatric disorder, then X is a binomial
random variable with parameters . We are interested in the proba-
bility that at most 3 of the selected people have such a disorder. We can use
the MATLAB Statistics Toolbox function binocdf to determine , as
follows:

prob = binocdf(3,25,0.2);

We could also sum up the individual values of the probability mass function
from to :

prob2 = sum(binopdf(0:3,25,0.2));

Both of these commands return a probability of 0.234. We now show how to
generate the binomial distributions shown in Figure 2.3.

% Get the values for the domain, x.
x = 0:6;
% Get the values of the probability mass function.
% First for n = 6, p = 0.3:
pdf1 = binopdf(x,6,0.3);
% Now for n = 6, p = 0.7:
pdf2 = binopdf(x,6,0.7);

Now we have the values for the probability mass function (or the heights of
the bars). The plots are obtained using the following code.

% Do the plots.
subplot(1,2,1),bar(x,pdf1,1,'w')
title(' n = 6, p = 0.3')
xlabel('X'),ylabel('f(X)')
axis square
subplot(1,2,2),bar(x,pdf2,1,'w')
title(' n = 6, p = 0.7')
xlabel('X'),ylabel('f(X)')
axis square

�

PPPPooooiiiisssssosososonnnn

A random variable X is a Poisson random variable with parameter , ,
if it follows the probability mass function given by

(2.25)

25 0.20,()

P X 3≤()

X 0= X 3=

λ λ 0>

f x λ;() P X x=() e λ– λx

x!
----- x; 0 1 …, ,= = =

© 2002 by Chapman & Hall/CRC

Chapter 2: Probability Concepts 27

The expected value and variance of a Poisson random variable are both λ,
thus,

,

and

.

The Poisson distribution can be used in many applications. Examples of sit-
uations where a discrete random variable might follow a Poisson distribution
are:

• the number of typographical errors on a page,
• the number of vacancies in a company during a month, or

• the number of defects in a length of wire.

The Poisson distribution is often used to approximate the binomial. When
n is large and p is small (so is moderate), then the number of successes
occurring can be approximated by the Poisson random variable with param-
eter .

The Poisson distribution is also appropriate for some applications where
events occur at points in time or space. We see it used in this context in Chap-
ter 12, where we look at modeling spatial point patterns. Some other exam-
ples include the arrival of jobs at a business, the arrival of aircraft on a
runway, and the breakdown of machines at a manufacturing plant. The num-
ber of events in these applications can be described by a Poisson process.

Let , , represent the number of events that occur in the time inter-
val . For each interval , is a random variable that can take on
values . If the following conditions are satisfied, then the counting
process { , } is said to be a Poisson process with mean rate [Ross,
2000]:

1. .
2. The process has independent increments.

3. The number of events in an interval of length t follows a
Poisson distribution with mean . Thus, for , ,

. (2.26)

From the third condition, we know that the process has stationary incre-
ments. This means that the distribution of the number of events in an interval
depends only on the length of the interval and not on the starting point. The

E X[] λ=

V X() λ=

np

λ np=

N t() t 0≥
0 t,[] 0 t,[] N t()

0 1 2 …, , ,
N t() t 0≥ λ

N 0() 0=

N t()
λt s 0≥ t 0≥

P N t s+() N s()– k=() e λt– λt()k

k!
------------;= k 0 1 …, ,=

© 2002 by Chapman & Hall/CRC

28 Computational Statistics Handbook with MATLAB

second condition specifies that the number of events in one interval does not
affect the number of events in other intervals. The first condition states that
the counting starts at time . The expected value of is given by

.

Example 2.2
In preparing this text, we executed the spell check command, and the editor
reviewed the manuscript for typographical errors. In spite of this, some mis-
takes might be present. Assume that the number of typographical errors per
page follows the Poisson distribution with parameter . We calculate
the probability that a page will have at least two errors as follows:

.

We can get this probability using the MATLAB Statistics Toolbox function
poisscdf. Note that is the Poisson cumulative distri-
bution function for (see Equation 2.4), which is why we use 1 as the
argument to poisscdf.

prob = 1-poisscdf(1,0.25);

�

Example 2.3
Suppose that accidents at a certain intersection occur in a manner that satis-
fies the conditions for a Poisson process with a rate of 2 per week ().
What is the probability that at most 3 accidents will occur during the next 2
weeks? Using Equation 2.26, we have

.

Expanding this out yields

.

As before, we can use the poisscdf function with parameter given by
.

prob = poisscdf(3,2*2);

�

t 0= N t()

E N t()[] λt=

λ 0.25=

P X 2≥() 1 P X 0=() P X 1=()+{ }– 1 e 0.25–– e 0.25– 0.25 0.0265≈–= =

P X 0=() P X 1=()+
a 1=

λ 2=

P N 2() 3≤() P N 2() k=()
k 0=

3

∑=

P N 2() 3≤() e 4– 4e 4– 42

2!
-----e 4– 43

3!
-----e 4–+ + + 0.4335≈=

λt 2 2⋅=

© 2002 by Chapman & Hall/CRC

Chapter 2: Probability Concepts 29

UUUUnnnniiiiforforforformmmm

Perhaps one of the most important distributions is the uniform distribution
for continuous random variables. One reason is that the uniform (0, 1) distri-
bution is used as the basis for simulating most random variables as we dis-
cuss in Chapter 4.

A random variable that is uniformly distributed over the interval (a, b) fol-
lows the probability density function given by

. (2.27)

The parameters for the uniform are the interval endpoints, a and b. The mean
and variance of a uniform random variable are given by

,

and

.

The cumulative distribution function for a uniform random variable is

(2.28)

Example 2.4
In this example, we illustrate the uniform probability density function over
the interval (0, 10), along with the corresponding cumulative distribution
function. The MATLAB Statistics Toolbox functions unifpdf and unifcdf
are used to get the desired functions over the interval.

% First get the domain over which we will
% evaluate the functions.
x = -1:.1:11;
% Now get the probability density function
% values at x.
pdf = unifpdf(x,0,10);
% Now get the cdf.
cdf = unifcdf(x,0,10);

f x a; b,() 1
b a–
----------- a x b< <;=

E X[] a b+
2

-----------=

V X() b a–()2

12
------------------=

F x()

0; x a≤
x a–
b a–
-----------; a x b< <

1; x b.≥

=

© 2002 by Chapman & Hall/CRC

30 Computational Statistics Handbook with MATLAB

Plots of the functions are provided in Figure 2.4, where the probability den-
sity function is shown in the left plot and the cumulative distribution on the
right. These plots are constructed using the following MATLAB commands.

% Do the plots.
subplot(1,2,1),plot(x,pdf)
title('PDF')
xlabel('X'),ylabel('f(X)')
axis([-1 11 0 0.2])
axis square
subplot(1,2,2),plot(x,cdf)
title('CDF')
xlabel('X'),ylabel('F(X)')
axis([-1 11 0 1.1])
axis square

�

FFFFIIIIGUGUGUGURE 2.RE 2.RE 2.RE 2.4444

On the left is a plot of the probability density function for the uniform (0, 10). Note that the
height of the curve is given by . The corresponding cumulative
distribution function is shown on the right.

0 5 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
PDF

X

f(
X

)

0 5 10
0

0.2

0.4

0.6

0.8

1

CDF

X

F
(X

)

1 b a–()⁄ 1 10⁄ 0.10= =

© 2002 by Chapman & Hall/CRC

Chapter 2: Probability Concepts 31

NNNNoooorrrrmamamamallll

A well known distribution in statistics and engineering is the normal distri-
bution. Also called the Gaussian distribution, it has a continuous probability
density function given by

 (2.29)

where The normal distribution is com-
pletely determined by its parameters (and), which are also the expected
value and variance for a normal random variable. The notation
is used to indicate that a random variable X is normally distributed with
mean and variance . Several normal distributions with different param-
eters are shown in Figure 2.5.

Some special properties of the normal distribution are given here.

• The value of the probability density function approaches zero as x
approaches positive and negative infinity.

• The probability density function is centered at the mean , and
the maximum value of the function occurs at .

• The probability density function for the normal distribution is sym-
metric about the mean .

The special case of a standard normal random variable is one whose mean
is zero , and whose standard deviation is one . If X is normally
distributed, then

(2.30)

is a standard normal random variable.
Traditionally, the cumulative distribution function of a standard normal

random variable is denoted by

. (2.31)

The cumulative distribution function for a standard normal random vari-
able can be calculated using the error function, denoted by erf. The relation-
ship between these functions is given by

f x µ; σ2,() 1

σ 2π
-------------- x µ–()2

2σ2
-------------------–

,exp=

∞ x ∞ ∞ µ ∞ σ2 0.>;< <–;< <–
µ σ2

X N µ σ2,()∼

µ σ2

µ
x µ=

µ

µ 0=() σ 1=()

Z X µ–
σ

-------------=

Φ z() 1

2π
---------- y2

2
-----–

ydexp

∞–

z

∫=

© 2002 by Chapman & Hall/CRC

32 Computational Statistics Handbook with MATLAB

. (2.32)

The error function can be calculated in MATLAB using erf(x). The
MATLAB Statistics Toolbox has a function called normcdf(x,mu,sigma)
that will calculate the cumulative distribution function for values in x. Its use
is illustrated in the example given below.

Example 2.5
Similar to the uniform distribution, the functions normpdf and normcdf are
available in the MATLAB Statistics Toolbox for calculating the probability
density function and cumulative distribution function for the normal. There
is another special function called normspec that determines the probability
that a random variable X assumes a value between two limits, where X is nor-
mally distributed with mean and standard deviation This function also
plots the normal density, where the area between the specified limits is
shaded. The syntax is shown below.

FFFFIIIIGUGUGUGURE 2.5RE 2.5RE 2.5RE 2.5

Examples of probability density functions for normally distributed random variables. Note
that as the variance increases, the height of the probability density function at the mean
decreases.

−8 −6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Normal Distribution

X

f(
x)

µ = 2
σ = 0.5

µ = 0
σ = 1

µ = − 2
σ = 2

Φ z() 1
2
---erf

z
2

 1

2
---+=

µ σ.

© 2002 by Chapman & Hall/CRC

Chapter 2: Probability Concepts 33

% Set up the parameters for the normal distribution.
mu = 5;
sigma = 2;
% Set up the upper and lower limits. These are in
% the two element vector 'specs'.
specs = [2, 8];
prob = normspec(specs, mu, sigma);

The resulting plot is shown in Figure 2.6. Note that the default title and axes
labels are shown, but these can be changed easily using the title, xla-
bel, and ylabel functions. You can also obtain tail probabilities by using
-Inf as the first element of specs to designate no lower limit or Inf as the
second element to indicate no upper limit.
�

EEEExponxponxponxponeeeentntntntiiiiaaaallll

The exponential distribution can be used to model the amount of time until a
specific event occurs or to model the time between independent events. Some
examples where an exponential distribution could be used as the model are:

FFFFIIIIGUGUGUGURE 2.RE 2.RE 2.RE 2.6666

This shows the output from the function normspec. Note that it shades the area between
the lower and upper limits that are specified as input arguments.

© 2002 by Chapman & Hall/CRC

34 Computational Statistics Handbook with MATLAB

• the time until the computer locks up,
• the time between arrivals of telephone calls, or

• the time until a part fails.

The exponential probability density function with parameter is

. (2.33)

The mean and variance of an exponential random variable are given by the
following:

,

and

.

FFFFIIIIGUGUGUGURE 2.RE 2.RE 2.RE 2.7777

Exponential probability density functions for various values of .

λ

f x λ;() λe λx– x 0 λ 0>;≥;=

E X[] 1
λ
---=

V X() 1

λ2
-----=

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

f(
x)

Exponential Distribution

λ = 2

λ = 1

λ = 0.5

λ

© 2002 by Chapman & Hall/CRC

Chapter 2: Probability Concepts 35

The cumulative distribution function of an exponential random variable is
given by

(2.34)

The exponential distribution is the only continuous distribution that has
the memoryless property. This property describes the fact that the remaining
lifetime of an object (whose lifetime follows an exponential distribution) does
not depend on the amount of time it has already lived. This property is rep-
resented by the following equality, where and :

.

In words, this means that the probability that the object will operate for time
, given it has already operated for time s, is simply the probability that it

operates for time t.
When the exponential is used to represent interarrival times, then the

parameter is a rate with units of arrivals per time period. When the expo-
nential is used to model the time until a failure occurs, then is the failure
rate. Several examples of the exponential distribution are shown in
Figure 2.7.

Example 2.6
The time between arrivals of vehicles at an intersection follows an exponen-
tial distribution with a mean of 12 seconds. What is the probability that the
time between arrivals is 10 seconds or less? We are given the average interar-
rival time, so . The required probability is obtained from
Equation 2.34 as follows

.

You can calculate this using the MATLAB Statistics Toolbox function
expocdf(x, 1/). Note that this MATLAB function is based on a different
definition of the exponential probability density function, which is given by

. (2.35)

F x()
0; x 0<

1 e λx– ;– x 0.≥

=

s 0≥ t 0≥

P X s t X s>+>() P X t>()=

s t+

λ
λ

λ 1 12⁄=

P X 10≤() 1 e 1 12⁄()10– 0.57≈–=

λ

f x µ;() 1
µ
---e

x
µ
---–

x 0 µ 0>;≥;=

© 2002 by Chapman & Hall/CRC

36 Computational Statistics Handbook with MATLAB

In the Computational Statistics Toolbox, we include a function called csex-
poc(x,) that calculates the exponential cumulative distribution function
using Equation 2.34.
�

GGGGaaaammmmmmmmaaaa

The gamma probability density function with parameters and is

(2.36)

where t is a shape parameter, and λ is the scale parameter. The gamma func-
tion is defined as

. (2.37)

For integer values of t, Equation 2.37 becomes

. (2.38)

Note that for t = 1, the gamma density is the same as the exponential. When
t is a positive integer, the gamma distribution can be used to model the
amount of time one has to wait until t events have occurred, if the inter-
arrival times are exponentially distributed.

The mean and variance of a gamma random variable are

,

and

.

The cumulative distribution function for a gamma random variable is calcu-
lated using [Meeker and Escobar, 1998; Banks, et al., 2001]

λ

λ 0> t 0>

f x λ; t,() λe λx– λx()t 1–

Γ t()
------------------------------- x 0,≥;=

Γ t()

Γ t() e y– yt 1– yd
0

∞

∫=

Γ t() t 1–()!=

E X[] t
λ
---=

V X() t
λ2
-----=

© 2002 by Chapman & Hall/CRC

Chapter 2: Probability Concepts 37

(2.39)

Equation 2.39 can be evaluated easily in MATLAB using the gam-
mainc(x,t) function, where the above notation is used for the argu-
ments.

Example 2.7
We plot the gamma probability density function for (this should
look like the exponential), , and . You can use the
MATLAB Statistics Toolbox function gampdf(x,t,1/λ) or the function
csgammp(x,t,λ).

% First get the domain over which to
% evaluate the functions.
x = 0:.1:3;
% Now get the functions values for
% different values of lambda.
y1 = gampdf(x,1,1/1);
y2 = gampdf(x,2,1/2);
y3 = gampdf(x,3,1/3);
% Plot the functions.
plot(x,y1,'r',x,y2,'g',x,y3,'b')
title('Gamma Distribution')
xlabel('X')
ylabel('f(x)')

The resulting curves are shown in Figure 2.8.
�

ChiChiChiChi----SSSSquarequarequarequare

A gamma distribution where and , with a positive inte-
ger, is called a chi-square distribution (denoted as) with degrees of free-
dom. The chi-square distribution is used to derive the distribution of the
sample variance and is important for goodness-of-fit tests in statistical anal-
ysis [Mood, Graybill, and Boes, 1974].

The probability density function for a chi-square random variable with
degrees of freedom is

. (2.40)

F x λ; t,()

0; x 0≤

1
Γ t()
---------- yt 1– e y– y; x 0 .>d

0

λx

∫

=

λ*

λ t 1= =
λ t 2= = λ t 3= =

λ 0.5= t ν 2⁄= ν
χν

2 ν

ν

f x ν;() 1
Γ ν 2⁄()

1
2

ν 2⁄

xν 2 1–⁄ e
1
2
---x–

;= x 0≥

© 2002 by Chapman & Hall/CRC

38 Computational Statistics Handbook with MATLAB

The mean and variance of a chi-square random variable can be obtained from
the gamma distribution. These are given by

,

and

.

WWWWeibuleibuleibuleibulllll

The Weibull distribution has many applications in engineering. In particular,
it is used in reliability analysis. It can be used to model the distribution of the
amount of time it takes for objects to fail. For the special case where
and , the Weibull reduces to the exponential with .

The Weibull density for and is given by

FFFFIIIIGUGUGUGURE 2.RE 2.RE 2.RE 2.8888

We show three examples of the gamma probability density function. We see that when
, we have the same probability density function as the exponential with parameter

.

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

f(
x)

Gamma Distribution

λ = t = 1

λ = t = 3

λ = t = 2

λ t 1= =
λ 1=

E X[] ν=

V X() 2ν=

ν 0=
β 1= λ 1 α⁄=

α 0> β 0>

© 2002 by Chapman & Hall/CRC

Chapter 2: Probability Concepts 39

(2.41)

and the cumulative distribution is

(2.42)

The location parameter is denoted by and the scale parameter is given by
α. The shape of the Weibull distribution is governed by the parameter β.

The mean and variance [Banks, et al., 2001] of a random variable from a
Weibull distribution are given by

,

and

.

Example 2.8
Suppose the time to failure of piston rings for stream-driven compressors can
be modeled by the Weibull distribution with a location parameter of zero, β
= 1/3, and α = 500. We can find the mean time to failure using the expected
value of a Weibull random variable, as follows

Let’s say we want to know the probability that a piston ring will fail before
2000 hours. We can calculate this probability using

.

�

You can use the MATLAB Statistics Toolbox function for applications
where the location parameter is zero (). This function is called

f x ν; α β, ,()
β
α

 x ν–

α

β 1–

e

x ν–
α

β

–

x ν,>;=

F x ν; α β, ,()
0; x ν≤

1 e

x ν–
α

β

–

; x ν.>–

=

ν,

E X[] ν αΓ 1 β⁄ 1+()+=

V X() α2 Γ 2 β⁄ 1+() Γ 1 β⁄ 1+()[]
2

–

=

E X[] ν αΓ 1 β⁄ 1+()+ 500 Γ 3 1+()× 3000 hours.= = =

F 2000 0 500 1 3⁄, ,;() 1
2000
500

1 3⁄

–

exp 0.796≈–=

ν 0=

© 2002 by Chapman & Hall/CRC

40 Computational Statistics Handbook with MATLAB

weibcdf (for the cumulative distribution function), and the input arguments
are: (x,αααα−β−β−β−β,β). The reason for the different parameters is that MATLAB uses
an alternate definition for the Weibull probability density function given by

. (2.43)

Comparing this with Equation 2.41, we can see that , and
. You can also use the function csweibc(x,ν, α, β) to evaluate the

cumulative distribution function for a Weibull.

BBBBeeeettttaaaa

The beta distribution is very flexible because it covers a range of different
shapes depending on the values of the parameters. It can be used to model a
random variable that takes on values over a bounded interval and assumes
one of the shapes governed by the parameters. A random variable has a beta
distribution with parameters and if its probability density func-
tion is given by

, (2.44)

where

. (2.45)

The function can be calculated in MATLAB using the beta(α,β)
function. The mean and variance of a beta random variable are

,

and

.

The cumulative distribution function for a beta random variable is given by
integrating the beta probability density function as follows

f x a b,;() abxb 1– e ax
b

– ;= x 0>

ν 0= a α β–=
b β=

α 0> β 0>

f x α; β,() 1
B α β,()
------------------xα 1– 1 x–()β 1– 0 x 1< <;=

B α β,() xα 1– 1 x–()β 1– xd
0

1

∫ Γ α()Γ β()
Γ α β+()
-------------------------= =

B α β,()

E X[] α
α β+
-------------=

V X() αβ
α β+()2 α β 1+ +()

--=

© 2002 by Chapman & Hall/CRC

Chapter 2: Probability Concepts 41

. (2.46)

The integral in Equation 2.46 is called the incomplete beta function. This can
be calculated in MATLAB using the function betainc(x,alpha,beta).

EXAMPLE 2.9
We use the following MATLAB code to plot the beta density over the interval
(0,1). We let and .

% First get the domain over which to evaluate
% the density function.
x = 0.01:.01:.99;
% Now get the values for the density function.
y1 = betapdf(x,0.5,0.5);
y2 = betapdf(x,3,3);
% Plot the results.
plot(x,y1,'r',x,y2,'g')
title('Beta Distribution')
xlabel('x')
ylabel('f(x)')

The resulting curves are shown in Figure 2.9. You can use the MATLAB Sta-
tistics Toolbox function betapdf(x,α,β), as we did in the example, or the
function csbetap(x,α,β).
�

MultMultMultMultiiiivvvvarararariiiiaaaatttteeee NoNoNoNorrrrmamamamallll

So far, we have discussed several univariate distributions for discrete and
continuous random variables. In this section, we describe one of the impor-
tant and most commonly used multivariate densities: the multivariate nor-
mal distribution. This distribution is used throughout the rest of the text.
Some examples of where we use it are in exploratory data analysis, in proba-
bility density estimation, and in statistical pattern recognition.

The probability density function for a general multivariate normal density
for d dimensions is given by

, (2.47)

where x is a d-component column vector, is the column vector of
means, and is the covariance matrix. The superscript T represents the

F x α; β,() 1
B α β,()
------------------yα 1– 1 y–()β 1– yd

0

x

∫=

α β 0.5= = α β 3= =

f x;µµµµ ΣΣΣΣ,() 1

2π()d 2⁄ ΣΣΣΣ 1 2⁄
------------------------------- 1

2
--- x µµµµ–()TΣ 1– x µµµµ–()–

exp=

µµµµ d 1×
ΣΣΣΣ d d×

© 2002 by Chapman & Hall/CRC

42 Computational Statistics Handbook with MATLAB

transpose of an array, and the notation denotes the determinant of a
matrix.

The mean and covariance are calculated using the following formulas:

, (2.48)

and

, (2.49)

where the expected value of an array is given by the expected values of its
components. Thus, if we let represent the i-th component of x and the
i-th component of , then the elements of Equation 2.48 can be written as

.

If represents the ij-th element of , then the elements of the covariance
matrix (Equation 2.49) are given by

.

FFFFIIIIGUGUGUGURE 2.9.RE 2.9.RE 2.9.RE 2.9.

Beta probability density functions for various parameters.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

x

f(
x)

Beta Distribution

α = β = 3

α = β = 0.5

| |

µµµµ E x[]=

ΣΣΣΣ E x µµµµ–() x µµµµ–()T[]=

Xi µ i

µµµµ

µi E Xi[]=

σ ij ΣΣΣΣ

σij E Xi µ i–() Xj µ j–()[]=

© 2002 by Chapman & Hall/CRC

Chapter 2: Probability Concepts 43

The covariance matrix is symmetric positive definite (all eigenval-
ues of are greater than zero) for most applications of interest to statisticians
and engineers.

We illustrate some properties of the multivariate normal by looking at the
bivariate () case. The probability density function for a bivariate nor-
mal is represented by a bell-shaped surface. The center of the surface is deter-
mined by the mean and the shape of the surface is determined by the
covariance . If the covariance matrix is diagonal (all of the off-diagonal ele-
ments are zero), and the diagonal elements are equal, then the shape is circu-
lar. If the diagonal elements are not equal, then we get an ellipse with the
major axis vertical or horizontal. If the covariance matrix is not diagonal, then
the shape is elliptical with the axes at an angle. Some of these possibilities are
illustrated in the next example.

Example 2.10
We first provide the following MATLAB function to calculate the multivari-
ate normal probability density function and illustrate its use in the bivariate
case. The function is called csevalnorm, and it takes input arguments
x,mu,cov_mat. The input argument x is a matrix containing the points in
the domain where the function is to be evaluated, mu is a d-dimensional row
vector, and cov_mat is the covariance matrix.

function prob = csevalnorm(x,mu,cov_mat);
[n,d] = size(x);
% center the data points
x = x-ones(n,1)*mu;
a = (2*pi)^(d/2)*sqrt(det(cov_mat));
arg = diag(x*inv(cov_mat)*x');
prob = exp((-.5)*arg);
prob = prob/a;

We now call this function for a bivariate normal centered at zero and covari-
ance matrix equal to the identity matrix. The density surface for this case is
shown in Figure 2.10.

% Get the mean and covariance.
mu = zeros(1,2);
cov_mat = eye(2);% Identity matrix
% Get the domain.
% Should range (-4,4) in both directions.
[x,y] = meshgrid(-4:.2:4,-4:.2:4);
% Reshape into the proper format for the function.
X = [x(:),y(:)];
Z = csevalnorm(X,mu,cov_mat);
% Now reshape the matrix for plotting.
z = reshape(Z,size(x));
subplot(1,2,1) % plot the surface

ΣΣΣΣT ΣΣΣΣ=()
ΣΣΣΣ

d 2=

µµµµ
ΣΣΣΣ

d d×

© 2002 by Chapman & Hall/CRC

44 Computational Statistics Handbook with MATLAB

surf(x,y,z),axis square, axis tight
title('BIVARIATE STANDARD NORMAL')

Next, we plot the surface for a bivariate normal centered at the origin with
non-zero off-diagonal elements in the covariance matrix. Note the elliptical
shape of the surface shown in Figure 2.11.

FFFFIIIIGUGUGUGURE 2.1RE 2.1RE 2.1RE 2.10000

This figure shows a standard bivariate normal probability density function that is centered
at the origin. The covariance matrix is given by the identity matrix. Notice that the shape
of the surface looks circular. The plot on the right is for a viewpoint looking down on the
surface.

FFFFIIIIGUGUGUGURE 2.RE 2.RE 2.RE 2.11111111

This shows a bivariate normal density where the covariance matrix has non-zero off-diagonal
elements. Note that the surface has an elliptical shape. The plot on the right is for a viewpoint
looking down on the surface.

−4
−2

0
2

4

−4
−2

0
2

4

0.05

0.1

0.15

−4 −2 0 2 4
−4

−2

0

2

4

−4
−2

0
2

4

−4
−2

0
2

4

0.05

0.1

0.15

0.2

−4 −2 0 2 4
−4

−2

0

2

4

© 2002 by Chapman & Hall/CRC

Chapter 2: Probability Concepts 45

subplot(1,2,2) % look down on the surface
pcolor(x,y,z),axis square
title('BIVARIATE STANDARD NORMAL')
% Now do the same thing for a covariance matrix
% with non-zero off-diagonal elements.
cov_mat = [1 0.7 ; 0.7 1];
Z = csevalnorm(X,mu,cov_mat);
z = reshape(Z,size(x));
subplot(1,2,1)
surf(x,y,z),axis square, axis tight
title('BIVARIATE NORMAL')
subplot(1,2,2)
pcolor(x,y,z),axis square
title('BIVARIATE NORMAL')

�

The probability that a point will assume a value in a region
R can be found by integrating the bivariate probability density function over
the region. Any plane that cuts the surface parallel to the plane inter-
sects in an elliptic (or circular) curve, yielding a curve of constant density.
Any plane perpendicular to the plane cuts the surface in a normal
curve. This property indicates that in each dimension, the multivariate nor-
mal is a univariate normal distribution. This is discussed further in
Chapter 5.

2.6 MATLAB Code

The MATLAB Statistics Toolbox has many functions for the more common
distributions. It has functions for finding the value of the probability density
(mass) function and the value of the cumulative distribution function. The
reader is cautioned to remember that the definitions of the distributions
(exponential, gamma, and Weibull) differ from what we describe in the text.
For example, the exponential and the gamma distributions are parameter-
ized differently in the MATLAB Statistics Toolbox. For a complete list of what
is available in the toolbox for calculating probability density (mass) functions
or cumulative distribution functions, see Appendix E.

The Computational Statistics Toolbox contains functions for several of the
distributions, as defined in this chapter. In general, those functions that end
in p correspond to the probability density (mass) function, and those ending
with a c calculate the cumulative distribution function. Table 2.1 provides a
summary of the functions.

We note that a different function for evaluating the multivariate normal
probability density function is available for download at

x x1 x2,()T=

x1-x2

x1-x2

© 2002 by Chapman & Hall/CRC

46 Computational Statistics Handbook with MATLAB

ftp://ftp.mathworks.com/pub/mathworks/

under the stats directory. This function can be substituted for
csevalnorm.

2.7 Further Reading

There are many excellent books on probability theory at the undergraduate
and graduate levels. Ross [1994; 1997; 2000] is the author of several books on
probability theory and simulation. These texts contain many examples and
are appropriate for advanced undergraduate students in statistics, engineer-
ing and science. Rohatgi [1976] provides a solid theoretical introduction to
probability theory. This text can be used by advanced undergraduate and
beginning graduate students. It has recently been updated with many new
examples and special topics [Rohatgi and Saleh, 2000]. For those who want to
learn about probability, but do not want to be overwhelmed with the theory,
then we recommend Durrett [1994].

TTTTAAAABBBBLLLLEEEE 2.12.12.12.1

List of Functions from Chapter 2 Included in the
Computational Statistics Toolbox

Distribution MATLAB Function

Beta csbetap, csbetac

Binomial csbinop, csbinoc

Chi-square cschip, cschic

Exponential csexpop, csexpoc

Gamma csgammp, csgammc

Normal - univariate csnormp, csnormc

Normal - multivariate csevalnorm

Poisson cspoisp, cspoisc

Continuous Uniform csunifp, csunifc

Weibull csweibp, csweibc

© 2002 by Chapman & Hall/CRC

ftp://ftp.mathworks.com/pub/mathworks/

Chapter 2: Probability Concepts 47

At the graduate level, there is a book by Billingsley [1995] on probability
and measure theory. He uses probability to motivate measure theory and
then uses measure theory to generate more probability concepts. Another
good reference is a text on probability and real analysis by Ash [1972]. This is
suitable for graduate students in mathematics and statistics. For a book that
can be used by graduate students in mathematics, statistics and engineering,
see Port [1994]. This text provides a comprehensive treatment of the subject
and can also be used as a reference by professional data analysts. Finally,
Breiman [1992] provides an overview of probability theory that is accessible
to statisticians and engineers.

© 2002 by Chapman & Hall/CRC

48 Computational Statistics Handbook with MATLAB

Exercises

2.1. Write a function using MATLAB’s functions for numerical integration
such as quad or quadl (MATLAB 6) that will find when
the random variable is exponentially distributed with parameter .
See help for information on how to use these functions.

2.2. Verify that the exponential probability density function with param-
eter integrates to 1. Use the MATLAB functions quad or quadl
(MATLAB 6). See help for information on how to use these functions.

2.3. Radar and missile detection systems warn of enemy attacks. Suppose
that a radar detection system has a probability 0.95 of detecting a
missile attack.

a. What is the probability that one detection system will detect an
attack? What distribution did you use?

b. Suppose three detection systems are located together in the same
area and the operation of each system is independent of the others.
What is the probability that at least one of the systems will detect
the attack? What distribution did you use in this case?

2.4. When a random variable is equally likely to be either positive or
negative, then the Laplacian or the double exponential distribution
can be used to model it. The Laplacian probability density function
for is given by

.

a. Derive the cumulative distribution function for the Laplacian.

b. Write a MATLAB function that will evaluate the Laplacian proba-
bility density function for given values in the domain.

c. Write a MATLAB function that will evaluate the Laplacian cumu-
lative distribution function.

d. Plot the probability density function when .

2.5. Suppose X follows the exponential distribution with parameter .
Show that for and ,

.

2.6. The lifetime in years of a flat panel display is a random variable with
the exponential probability density function given by

P X x≤()
λ

λ

λ 0>

f x() 1
2
---λe λ– x ∞ x ∞< <–;=

λ 1=

λ
s 0≥ t 0≥

P X s t X s>+>() P X t>()=

© 2002 by Chapman & Hall/CRC

Chapter 2: Probability Concepts 49

.

a. What is the mean lifetime of the flat panel display?

b. What is the probability that the display fails within the first two
years?

c. Given that the display has been operating for one year, what is
the probability that it will fail within the next year?

2.7. The time to failure for a widget follows a Weibull distribution, with
, , and hours.

a. What is the mean time to failure of the widget?
b. What percentage of the widgets will fail by 2500 hours of oper-

ation? That is, what is the probability that a widget will fail
within 2500 hours?

2.8. Let’s say the probability of having a boy is 0.52. Using the Multipli-
cation Rule, find the probability that a family’s first and second chil-
dren are boys. What is the probability that the first child is a boy and
the second child is a girl?

2.9. Repeat Example 2.1 for and What is the shape of the
distribution?

2.10. Recall that in our piston ring example, and
 From prior experience with the two manufacturers, we

know that 2% of the parts supplied by manufacturer A are likely to
fail and 6% of the parts supplied by manufacturer B are likely to fail.
Thus, and If we observe a piston
ring failure, what is the probability that it came from manufacturer A?

2.11. Using the functions fminbnd or fmin (available in the standard
MATLAB package), find the value for x where the maximum of the

 probability density occurs. Note that you have to find the
minimum of to find the maximum of using these functions.
Refer to the help files on these functions for more information on
how to use them.

2.12. Using normpdf or csnormp, find the value of the probability density
for at . Use a small (large) value of x for ().

2.13. Verify Equation 2.38 using the MATLAB functions factorial and
gamma.

2.14. Find the height of the curve for a normal probability density function
at , where What happens to the height of the
curve as gets larger? Does the height change for different values
of ?

2.15. Write a function that calculates the Bayes’ posterior probability given
a vector of conditional probabilities and a vector of prior probabilities.

f x 0.1;() 0.1e 0.1x–=

ν 0= β 1 2⁄= α 750=

n 6= p 0.5.=

P MA() 0.6=
P MB() 0.4.=

P F MA() 0.02= P F MB() 0.06.=

N 3 1,()
f x()– f x()

N 0 1,() ∞± ∞– ∞

x µ= σ 0.5 1 2., ,=
σ

µ

© 2002 by Chapman & Hall/CRC

50 Computational Statistics Handbook with MATLAB

2.16. Compare the Poisson approximation to the actual binomial proba-
bility , using and

2.17. Using the function normspec, find the probability that the random
variable defined in Example 2.5 assumes a value that is less than 3.
What is the probability that the same random variable assumes a
value that is greater than 5? Find these probabilities again using the
function normcdf.

2.18. Find the probability for the Weibull random variable of Example 2.8
using the MATLAB Statistics Toolbox function weibcdf or the Com-
putational Statistics Toolbox function csweibc.

2.19. The MATLAB Statistics Toolbox has a GUI demo called disttool.
First view the help file on disttool. Then run the demo. Examine
the probability density (mass) and cumulative distribution functions
for the distributions discussed in the chapter.

P X 4=() n 9= p 0.1 0.2 … 0.9., , ,=

© 2002 by Chapman & Hall/CRC

Chapter 3
Sampling Concepts

3.1 Introduction

In this chapter, we cover the concepts associated with random sampling and
the sampling distribution of statistics. These notions are fundamental to com-
putational statistics and are needed to understand the topics covered in the
rest of the book. As with Chapter 2, those readers who have a basic under-
standing of these ideas may safely move on to more advanced topics.

In Section 3.2, we discuss the terminology and concepts associated with
random sampling and sampling distributions. Section 3.3 contains a brief dis-
cussion of the Central Limit Theorem. In Section 3.4, we describe some meth-
ods for deriving estimators (maximum likelihood and the method of
moments) and introduce criteria for evaluating their performance. Section 3.5
covers the empirical distribution function and how it is used to estimate
quantiles. Finally, we conclude with a section on the MATLAB functions that
are available for calculating the statistics described in this chapter and a sec-
tion on further readings.

3.2 Sampling Terminology and Concepts

In Chapter 2, we introduced the idea of a random experiment. We typically
perform an experiment where we collect data that will provide information
on the phenomena of interest. Using these data, we draw conclusions that are
usually beyond the scope of our particular experiment. The researcher gen-
eralizes from that experiment to the class of all similar experiments. This is
the heart of inferential statistics. The problem with this sort of generalization
is that we cannot be absolutely certain about our conclusions. However, by

© 2002 by Chapman & Hall/CRC

52 Computational Statistics Handbook with MATLAB

using statistical techniques, we can measure and manage the degree of uncer-
tainty in our results.

Inferential statistics is a collection of techniques and methods that enable
researchers to observe a subset of the objects of interest and using the infor-
mation obtained from these observations make statements or inferences
about the entire population of objects. Some of these methods include the
estimation of population parameters, statistical hypothesis testing, and prob-
ability density estimation.

The target population is defined as the entire collection of objects or indi-
viduals about which we need some information. The target population must
be well defined in terms of what constitutes membership in the population
(e.g., income level, geographic area, etc.) and what characteristics of the pop-
ulation we are measuring (e.g., height, IQ, number of failures, etc.).

The following are some examples of populations, where we refer back to
those described at the beginning of Chapter 2.

• For the piston ring example, our population is all piston rings
contained in the legs of steam-driven compressors. We would be
observing the time to failure for each piston ring.

• In the glucose example, our population might be all pregnant
women, and we would be measuring the glucose levels.

• For cement manufacturing, our population would be batches of
cement, where we measure the tensile strength and the number of
days the cement is cured.

• In the software engineering example, our population consists of all
executions of a particular command and control software system,
and we observe the failure time of the system in seconds.

In most cases, it is impossible or unrealistic to observe the entire popula-
tion. For example, some populations have members that do not exist yet (e.g.,
future batches of cement) or the population is too large (e.g., all pregnant
women). So researchers measure only a part of the target population, called
a sample. If we are going to make inferences about the population using the
information obtained from a sample, then it is important that the sample be
representative of the population. This can usually be accomplished by select-
ing a simple random sample, where all possible samples are equally likely to
be selected.

A random sample of size n is said to be independent and identically dis-
tributed (iid) when the random variables each have a common
probability density (mass) function given by . Additionally, when they
are both independent and identically distributed (iid), the joint probability
density (mass) function is given by

,

X1 X2 … Xn, , ,
f x()

f x1 … xn, ,() f x1() …× f xn()×=

© 2002 by Chapman & Hall/CRC

Chapter 3: Sampling Concepts 53

which is simply the product of the individual densities (or mass functions)
evaluated at each sample point.

There are two types of simple random sampling: sampling with replace-
ment and sampling without replacement. When we sample with replace-
ment, we select an object, observe the characteristic we are interested in, and
return the object to the population. In this case, an object can be selected for
the sample more than once. When the sampling is done without replacement,
objects can be selected at most one time. These concepts will be used in Chap-
ters 6 and 7 where the bootstrap and other resampling methods are dis-
cussed.

Alternative sampling methods exist. In some situations, these methods are
more practical and offer better random samples than simple random sam-
pling. One such method, called stratified random sampling, divides the pop-
ulation into levels, and then a simple random sample is taken from each level.
Usually, the sampling is done in such a way that the number sampled from
each level is proportional to the number of objects of that level that are in the
population. Other sampling methods include cluster sampling and system-
atic random sampling. For more information on these and others, see the
book by Levy and Lemeshow [1999].

Sometimes the goal of inferential statistics is to use the sample to estimate
or make some statements about a population parameter. Recall from Chapter
2 that a parameter is a descriptive measure for a population or a distribution
of random variables. For example, population parameters that might be of
interest include the mean (µ), the standard deviation (σ), quantiles, propor-
tions, correlation coefficients, etc.

A statistic is a function of the observed random variables obtained in a
random sample and does not contain any unknown population parameters.
Often the statistic is used for the following purposes:

• as a point estimate for a population parameter,
• to obtain a confidence interval estimate for a parameter, or

• as a test statistic in hypothesis testing.

Before we discuss some of the common methods for deriving statistics, we
present some of the statistics that will be encountered in the remainder of the
text. In most cases, we assume that we have a random sample, , of
independent, identically (iid) distributed random variables.

SSSSampleampleampleample MMMMeeeean and San and San and San and Saaaammmmpleplepleple VVVVaaaarrrriiiiaaaancencencence

A familiar statistic is the sample mean given by

X1 … Xn, ,

© 2002 by Chapman & Hall/CRC

54 Computational Statistics Handbook with MATLAB

. (3.1)

To calculate this in MATLAB, one can use the function called mean. If the
argument to this function is a matrix, then it provides a vector of means, each
one corresponding to the mean of a column. One can find the mean along any
dimension (dim) of multi-dimensional arrays using the syntax:
mean(x,dim).

Another statistic that we will see again is the sample variance, calculated
from

. (3.2)

The sample standard deviation is given by the square root of the variance
(Equation 3.2) and is denoted by . These statistics can be calculated in
MATLAB using the functions std(x)and var(x), where x is an array con-
taining the sample values. As with the function mean, these can have matri-
ces or multi-dimensional arrays as input arguments.

SSSSampleampleampleample MMMMomentsomentsomentsoments

The sample moments can be used to estimate the population moments
described in Chapter 2. The r-th sample moment about zero is given by

. (3.3)

Note that the sample mean is obtained when . The r-th sample
moments about the sample mean are statistics that estimate the population
central moments and can be found using the following

. (3.4)

We can use Equation 3.4 to obtain estimates for the coefficient of skewness
 and the coefficient of kurtosis . Recall that these are given by

X 1
n
--- Xi

i 1=

n

∑=

S2 1
n 1–
------------ Xi X–()2

i 1=

n

∑ 1
n n 1–()
-------------------- n Xi

2

i 1=

n

∑ Xi

i 1=

n

∑

2

–

= =

S

M'r
1
n
--- Xi

r

i 1=

n

∑=

r 1=

Mr
1
n
--- Xi X–()r

i 1=

n

∑=

γ1 γ2

© 2002 by Chapman & Hall/CRC

Chapter 3: Sampling Concepts 55

 , (3.5)

and

 . (3.6)

Substituting the sample moments for the population moments in Equations
3.5 and 3.6, we have

 , (3.7)

and

 . (3.8)

We are using the ‘hat’ notation to denote an estimate. Thus, is an estimate
for . The following example shows how to use MATLAB to obtain the sam-
ple coefficient of skewness and sample coefficient of kurtosis.

Example 3.1
In this example, we will generate a random sample that is uniformly distrib-
uted over the interval (0, 1). We would expect this sample to have a coefficient
of skewness close to zero because it is a symmetric distribution. We would
expect the kurtosis to be different from 3, because the random sample is not
generated from a normal distribution.

% Generate a random sample from the uniform
% distribution.
n = 200;
x = rand(1,200);
% Find the mean of the sample.

γ1
µ3

µ2
3 2⁄

---------=

γ2
µ4

µ2
2

-----=

γ̂1

1
n
--- Xi X–()3

i 1=

n

∑

1
n
--- Xi X–()

2

i 1=

n

∑

3 2⁄
---=

γ̂2

1
n
--- Xi X–()4

i 1=

n

∑

1
n
--- Xi X–()

2

i 1=

n

∑

2
---=

γ̂1

γ1

© 2002 by Chapman & Hall/CRC

56 Computational Statistics Handbook with MATLAB

mu = mean(x);
% Find the numerator and denominator for gamma_1.
num = (1/n)*sum((x-mu).^3);
den = (1/n)*sum((x-mu).^2);
gam1 = num/den^(3/2);

This results in a coefficient of skewness of gam1 = -0.0542, which is not
too far from zero. Now we find the kurtosis using the following MATLAB
commands:

% Find the kurtosis.
num = (1/n)*sum((x-mu).^4);
den = (1/n)*sum((x-mu).^2);
gam2 = num/den^2;

This gives a kurtosis of gam2 = 1.8766, which is not close to 3, as expected.
�

We note that these statistics might not be the best to use in terms of bias (see
Section 3.4). However, they will prove to be useful as examples in Chapters 6
and 7, where we look at bootstrap methods for estimating the bias in a statis-
tic. The MATLAB Statistics Toolbox function called skewness returns the
coefficient of skewness for a random sample. The function kurtosis calcu-
lates the sample coefficient of kurtosis (not the coefficient of excess kurtosis).

CovCovCovCovaaaarrrrianianianiancccceeee

In the definitions given below (Equations 3.9 and 3.10), we assume that all
expectations exist. The covariance of two random variables X and Y, with
joint probability density function , is defined as

. (3.9)

The correlation coefficient of X and Y is given by

, (3.10)

where and .
The correlation is a measure of the linear relationship between two random

variables. If the joint distribution of two variables has a correlation coeffi-
cient, then . When , then X and Y are perfectly posi-
tively correlated. This means that the possible values for X and Y lie on a line
with positive slope. On the other hand, when , then the situation
is the opposite: X and Y are perfectly negatively correlated. If X and Y are

f x y,()

Cov X Y,() σX Y, E X µX–() Y µY–()[]= =

Corr X Y,() ρX Y,
Cov X Y,()

σXσY

σX Y,

σXσY

-------------= = =

σX 0> σY 0>

1 ρX Y, 1≤ ≤– ρX Y, 1=

ρX Y, 1–=

© 2002 by Chapman & Hall/CRC

Chapter 3: Sampling Concepts 57

independent, then . Note that the converse of this statement does
not necessarily hold.

There are statistics that can be used to estimate these quantities. Let’s say
we have a random sample of size n denoted as . The
sample covariance is typically calculated using the following statistic

 . (3.11)

This is the definition used in the MATLAB function cov. In some instances,
the empirical covariance is used [Efron and Tibshirani, 1993]. This is similar
to Equation 3.11, except that we divide by n instead of . The sample cor-
relation coefficient for two variables is given by

 . (3.12)

In the next example, we investigate the commands available in MATLAB that
return the statistics given in Equations 3.11 and 3.12. It should be noted that
the quantity in Equation 3.12 is also bounded below by and above by 1.

Example 3.2
In this example, we show how to use the MATLAB cov function to find the
covariance between two variables and the corrcoef function to find the
correlation coefficient. Both of these functions are available in the standard
MATLAB language. We use the cement data [Hand, et al., 1994], which were
analyzed by Hald [1952], to illustrate the basic syntax of these functions. The
relationship between the two variables is nonlinear, so Hald looked at the log
of the tensile strength as a function of the reciprocal of the drying time. When
the cement data are loaded, we get a vector x representing the drying times
and a vector y that contains the tensile strength. A scatterplot of the trans-
formed data is shown in Figure 3.1.

% First load the data.
load cement
% Now get the transformations.
xr = 1./x;
logy = log(y);
% Now get a scatterplot of the data to see if
% the relationship is linear.

ρX Y, 0=

X1 Y1,() … Xn Yn,(), ,

σ̂X Y,
1

n 1–
------------ Xi X–() Yi Y–()

i 1=

n

∑=

n 1–

ρ̂X Y,

Xi X–() Yi Y–()
i 1=

n

∑

Xi X–()2

i 1=

n

∑

1 2⁄

Yi Y–()2

i 1=

n

∑

1 2⁄
---=

1–

© 2002 by Chapman & Hall/CRC

58 Computational Statistics Handbook with MATLAB

plot(xr,logy,'x')
axis([0 1.1 2.4 4])
xlabel('Reciprocal of Drying Time')
ylabel('Log of Tensile Strength')

We now show how to get the covariance matrix and the correlation coefficient
for these two variables.

% Now get the covariance and
% the correlation coefficient.
cmat = cov(xr,logy);
cormat = corrcoef(xr,logy);

The results are:

cmat =
 0.1020 -0.1169
 -0.1169 0.1393
cormat =
 1.0000 -0.9803

 -0.9803 1.0000

Note that the sample correlation coefficient (Equation 3.12) is given by the
off-diagonal element of cormat, . We see that the variables are
negatively correlated, which is what we expect from Figure 3.1 (the log of the
tensile strength decreases with increasing reciprocal of drying time).
�

3.3 Sampling Distributions

It was stated in the previous section that we sometimes use a statistic calcu-
lated from a random sample as a point estimate of a population parameter.
For example, we might use to estimate µ or use S to estimate σ. Since we
are using a sample and not observing the entire population, there will be
some error in our estimate. In other words, it is unlikely that the statistic will
equal the parameter. To manage the uncertainty and error in our estimate, we
must know the sampling distribution for the statistic. The sampling distribu-
tion is the underlying probability distribution for a statistic. To understand
the remainder of the text, it is important to remember that a statistic is a ran-
dom variable.

The sampling distributions for many common statistics are known. For
example, if our random variable is from the normal distribution, then we
know how the sample mean is distributed. Once we know the sampling dis-
tribution of our statistic, we can perform statistical hypothesis tests and cal-
culate confidence intervals. If we do not know the distribution of our statistic,

ρ̂ 0.9803–=

X

© 2002 by Chapman & Hall/CRC

Chapter 3: Sampling Concepts 59

then we must use Monte Carlo simulation techniques or bootstrap methods
to estimate the sampling distribution (see Chapter 6).

To illustrate the concept of a sampling distribution, we discuss the sam-
pling distribution for , where the random variable X follows a distribution
given by the probability density function . It turns out that the distribu-
tion for the sample mean can be found using the Central Limit Theorem.

CENTRAL LIMIT THEOREM
Let represent a probability density with finite variance and mean . Also,
let be the sample mean for a random sample of size n drawn from this distribution.
For large n, the distribution of is approximately normally distributed with mean

 and variance given by .

�

The Central Limit Theorem states that as the sample size gets large, the dis-
tribution of the sample mean approaches the normal distribution regardless
of how the random variable X is distributed. However, if we are sampling
from a normal population, then the distribution of the sample mean is exactly
normally distributed with mean and variance .

FFFFIIIIGUGUGUGURE 3.RE 3.RE 3.RE 3.1111

This scatterplot shows the observed drying times and corresponding tensile strength of the
cement. Since the relationship is nonlinear, the variables are transformed as shown here. A
linear relationship seems to be a reasonable model for these data.

0 0.2 0.4 0.6 0.8 1
2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

Reciprocal of Drying Time

Lo
g

of
 T

en
si

le
 S

tr
en

gt
h

X
f x()

f x() σ2 µ
X

X
µ σ2 n⁄

µ σ2 n⁄

© 2002 by Chapman & Hall/CRC

60 Computational Statistics Handbook with MATLAB

This information is important, because we can use it to determine how
much error there is in using as an estimate of the population mean . We
can also perform statistical hypothesis tests using as a test statistic and can
calculate confidence intervals for . In this book, we are mainly concerned
with computational (rather than theoretical) methods for finding sampling
distributions of statistics (e.g., Monte Carlo simulation or resampling). The
sampling distribution of is used to illustrate the concepts covered in
remaining chapters.

3.4 Parameter Estimation

One of the first tasks a statistician or an engineer undertakes when faced with
data is to try to summarize or describe the data in some manner. Some of the
statistics (sample mean, sample variance, coefficient of skewness, etc.) we
covered in Section 3.2 can be used as descriptive measures for our sample. In
this section, we look at methods to derive and to evaluate estimates of popu-
lation parameters.

There are several methods available for obtaining parameter estimates.
These include the method of moments, maximum likelihood estimation,
Bayes estimators, minimax estimation, Pitman estimators, interval estimates,
robust estimation, and many others. In this book, we discuss the maximum
likelihood method and the method of moments for deriving estimates for
population parameters. These somewhat classical techniques are included as
illustrative examples only and are not meant to reflect the state of the art in
this area. Many useful (and computationally intensive!) methods are not cov-
ered here, but references are provided in Section 3.7. However, we do present
some alternative methods for calculating interval estimates using Monte
Carlo simulation and resampling methods (see Chapters 6 and 7).

Recall that a sample is drawn from a population that is distributed accord-
ing to some function whose characteristics are governed by certain parame-
ters. For example, our sample might come from a population that is normally
distributed with parameters and . Or, it might be from a population that
is exponentially distributed with parameter λ. The goal is to use the sample
to estimate the corresponding population parameters. If the sample is repre-
sentative of the population, then a function of the sample should provide a
useful estimate of the parameters.

Before we undertake our discussion of maximum likelihood, we need to
define what an estimator is. Typically, population parameters can take on val-
ues from a subset of the real line. For example, the population mean can be
any real number, , and the population standard deviation can be
any positive real number, . The set of all possible values for a parameter

 is called the parameter space. The data space is defined as the set of all pos-
sible values of the random sample of size n. The estimate is calculated from

X µ
X

µ

X

µ σ2

∞ µ ∞< <–
σ 0>

θ

© 2002 by Chapman & Hall/CRC

Chapter 3: Sampling Concepts 61

the sample data as a function of the random sample. An estimator is a func-
tion or mapping from the data space to the parameter space and is denoted as

. (3.13)

Since an estimator is calculated using the sample alone, it is a statistic. Fur-
thermore, if we have a random sample, then an estimator is also a random
variable. This means that the value of the estimator varies from one sample
to another based on its sampling distribution. In order to assess the useful-
ness of our estimator, we need to have some criteria to measure the perfor-
mance. We discuss four criteria used to assess estimators: bias, mean squared
error, efficiency, and standard error. In this discussion, we only present the
definitional aspects of these criteria.

BiasBiasBiasBias

The bias in an estimator gives a measure of how much error we have, on aver-
age, in our estimate when we use T to estimate our parameter The bias is
defined as

. (3.14)

If the estimator is unbiased, then the expected value of our estimator equals
the true parameter value, so

To determine the expected value in Equation 3.14, we must know the dis-
tribution of the statistic T. In these situations, the bias can be determined ana-
lytically. When the distribution of the statistic is not known, then we can use
methods such as the jackknife and the bootstrap (see Chapters 6 and 7) to esti-
mate the bias of T.

MeMeMeMeaaaannnn SSSSquared Erquared Erquared Erquared Errrrroooorrrr

Let θ denote the parameter we are estimating and T denote our estimate, then
the mean squared error (MSE) of the estimator is defined as

. (3.15)

Thus, the MSE is the expected value of the squared error. We can write this in
more useful quantities such as the bias and variance of T. (The reader will see
this again in Chapter 8 in the context of probability density estimation.) If we
expand the expected value on the right hand side of Equation 3.15, then we
have

T t X1 … Xn, ,()=

θ.

bias T() E T[] θ–=

E T[] θ.=

MSE T() E T θ–()2[]=

© 2002 by Chapman & Hall/CRC

62 Computational Statistics Handbook with MATLAB

. (3.16)

By adding and subtracting to the right hand side of Equation 3.16,
we have the following

. (3.17)

The first two terms of Equation 3.17 are the variance of T, and the last three
terms equal the squared bias of our estimator. Thus, we can write the mean
squared error as

(3.18)

Since the mean squared error is based on the variance and the squared bias,
the error will be small when the variance and the bias are both small. When
T is unbiased, then the mean squared error is equal to the variance only. The
concepts of bias and variance are important for assessing the performance of
any estimator.

RRRReeeellllaaaattttiiiivvvve Efficiencye Efficiencye Efficiencye Efficiency

Another measure we can use to compare estimators is called efficiency, which
is defined using the MSE. For example, suppose we have two estimators

 and for the same parameter. If the
MSE of one estimator is less than the other (e.g.,), then

 is said to be more efficient than .
The relative efficiency of to is given by

. (3.19)

If this ratio is greater than one, then is a more efficient estimator of the
parameter.

SSSStandard Ertandard Ertandard Ertandard Errrrroooorrrr

We can get a measure of the precision of our estimator by calculating the stan-
dard error. The standard error of an estimator (or a statistic) is defined as the
standard deviation of its sampling distribution:

.

MSE T() E T2 2Tθ– θ2+()[] E T2[] 2θE T[]– θ2+= =

E T[]()2

MSE T() E T2[] E T[]()2 E T[]()2 2θE T[] θ2+–+–=

MSE T() E T2[] E T[]()2– E T[] θ–()2+=

V T() bias T()[]2 .+=

T1 t1 X1 … Xn, ,()= T2 t2 X1 … Xn, ,()=
MSE T1() MSE T2()<

T1 T2

T1 T2

eff T1 T2,() MSE T2()
MSE T1()
-----------------------=

T1

SE T() V T() σT= =

© 2002 by Chapman & Hall/CRC

Chapter 3: Sampling Concepts 63

To illustrate this concept, let’s use the sample mean as an example. We
know that the variance of the estimator is

 ,

for large n. So, the standard error is given by

 . (3.20)

If the standard deviation for the underlying population is unknown, then
we can substitute an estimate for the parameter. In this case, we call it the esti-
mated standard error:

 . (3.21)

Note that the estimate in Equation 3.21 is also a random variable and has a
probability distribution associated with it.

If the bias in an estimator is small, then the variance of the estimator is
approximately equal to the MSE, . Thus, we can also use the
square root of the MSE as an estimate of the standard error.

MaMaMaMaxxxxiiiimum Likelihood Estimatiomum Likelihood Estimatiomum Likelihood Estimatiomum Likelihood Estimationnnn

A maximum likelihood estimator is that value of the parameter (or parame-
ters) that maximizes the likelihood function of the sample. The likelihood
function of a random sample of size n from density (mass) function is
the joint probability density (mass) function, denoted by

. (3.22)

Equation 3.22 provides the likelihood that the random variables take on a
particular value . Note that the likelihood function L is a function of
the unknown parameter θ, and that we allow to represent a vector of
parameters.

If we have a random sample (independent, identically distributed random
variables), then we can write the likelihood function as

, (3.23)

V X() 1
n
---σ2=

SE X() σX
σ
n

-------= =

σ

SÊ X() σ̂X
S
n

-------= =

V T() MSE T()≈

f x θ;()

L θ x1 … xn, ,;() f x1 … xn θ;, ,()=

x1 … xn, ,
θ

L θ() L θ x1 … xn, ,;() f x1 θ;() … f xn θ;()××= =

© 2002 by Chapman & Hall/CRC

64 Computational Statistics Handbook with MATLAB

which is the product of the individual density functions evaluated at each
or sample point.
In most cases, to find the value that maximizes the likelihood function,

we take the derivative of L, set it equal to 0 and solve for θ. Thus, we solve the
following likelihood equation

. (3.24)

It can be shown that the likelihood function, , and logarithm of the
likelihood function, , have their maxima at the same value of θ. It is
sometimes easier to find the maximum of , especially when working
with an exponential function. However, keep in mind that a solution to the
above equation does not imply that it is a maximum; it could be a minimum.
It is important to ensure this is the case before using the result as a maximum
likelihood estimator.

When a distribution has more than one parameter, then the likelihood func-
tion is a function of all parameters that pertain to the distribution. In these sit-
uations, the maximum likelihood estimates are obtained by taking the partial
derivatives of the likelihood function (or), setting them all equal to
zero, and solving the system of equations. The resulting estimators are called
the joint maximum likelihood estimators. We see an example of this below,
where we derive the maximum likelihood estimators for µ and for the
normal distribution.

Example 3.3
In this example, we derive the maximum likelihood estimators for the
parameters of the normal distribution. We start off with the likelihood func-
tion for a random sample of size n given by

.

Since this has the exponential function in it, we will take the logarithm to
obtain

.

This simplifies to

xi

θ̂

θd
d L θ() 0=

L θ()
L θ()ln

L θ()ln

L θ()ln

σ2

L θ() 1

σ 2π
-------------- xi µ–()2

2σ2
--------------------–

exp

i 1=

n

∏
1

2πσ2

n 2⁄
1

2σ2
--------- xi µ–()2

i 1=

n

∑–

exp= =

L θ()[]ln
1

2πσ2

n
2

1

2σ2
--------- xi µ–()2

i 1=

n

∑–

expln+ln=

© 2002 by Chapman & Hall/CRC

Chapter 3: Sampling Concepts 65

, (3.25)

with and . The next step is to take the partial derivative of
Equation 3.25 with respect to µ and . These derivatives are

, (3.26)

and

. (3.27)

We then set Equations 3.26 and 3.27 equal to zero and solve for µ and .
Solving the first equation for µ, we get the familiar sample mean for the esti-
mator.

Substituting into Equation 3.27, setting it equal to zero, and solving
for the variance, we get

(3.28)

L θ()[]ln
n
2
--- 2π[] n

2
--- σ2[] 1

2σ2
--------- xi µ–()2

i 1=

n

∑–ln–ln–=

σ 0> ∞ µ ∞< <–
σ2

µ∂
∂ Lln

1

σ2
----- xi µ–()

i 1=

n

∑=

σ2∂
∂ Lln n

2σ2
---------–

1

2σ4
--------- xi µ–()2

i 1=

n

∑+=

σ2

1

σ2
----- xi µ–()

i 1=

n

∑ 0,=

xi

i 1=

n

∑ nµ,=

µ̂ x 1
n
--- xi.

i 1=

n

∑= =

µ̂ x=

n
2σ2
---------–

1

2σ4
--------- xi x–()2

i 1=

n

∑+ 0=

σ̂2 1
n
--- xi x–()2.

i 1=

n

∑=

© 2002 by Chapman & Hall/CRC

66 Computational Statistics Handbook with MATLAB

These are the sample moments about the sample mean, and it can be verified
that these solutions jointly maximize the likelihood function [Lindgren,
1993].
�

We know that the [Mood, Graybill and Boes, 1974], so the sam-
ple mean is an unbiased estimator for the population mean. However, that is
not the case for the maximum likelihood estimate for the variance. It can be
shown [Hogg and Craig, 1978] that

,

so we know (from Equation 3.14) that the maximum likelihood estimate, ,
for the variance is biased. If we want to obtain an unbiased estimator for the
variance, we simply multiply our maximum likelihood estimator by

. This yields the familiar statistic for the sample variance given by

.

Method ofMethod ofMethod ofMethod of MMMMomentomentomentomentssss

In some cases, it is difficult finding the maximum of the likelihood function.
For example, the gamma distribution has the unknown parameter t that is
used in the gamma function, . This makes it hard to take derivatives and
solve the equations for the unknown parameters. The method of moments is
one way to approach this problem.

In general, we write the unknown population parameters in terms of the
population moments. We then replace the population moments with the cor-
responding sample moments. We illustrate these concepts in the next exam-
ple, where we find estimates for the parameters of the gamma distribution.

Example 3.4
The gamma distribution has two parameters, t and . Recall that the mean
and variance are given by and , respectively. Writing these in terms
of the population moments, we have

, (3.29)

and

E X[] µ=

E σ̂2[] n 1–()σ2

n
-----------------------=

σ̂2

n n 1–()⁄

s2 1
n 1–
------------ xi x–()2

i 1=

n

∑=

Γ t()

λ
t λ⁄ t λ2⁄

E X[] t
λ
---=

© 2002 by Chapman & Hall/CRC

Chapter 3: Sampling Concepts 67

. (3.30)

The next step is to solve Equations 3.29 and 3.30 for t and . From
Equation 3.29, we have , and substituting this in the second equa-
tion yields

. (3.31)

Rearranging Equation 3.31 gives the following expression for

. (3.32)

We can now obtain the parameter t in terms of the population moments (sub-
stitute Equation 3.32 for in Equation 3.29) as

. (3.33)

To get our estimates, we substitute the sample moments for and
in Equations 3.32 and 3.33. This yields

 , (3.34)

and

 . (3.35)

�

In Table 3.1, we provide some suggested point estimates for several of the
distributions covered in Chapter 2. This table also contains the names of func-
tions to calculate the estimators. In Section 3.6, we discuss the MATLAB code
available in the Statistics Toolbox for calculating maximum likelihood esti-
mates of distribution parameters. The reader is cautioned that the estimators

V X() E X2[] E X[]()2– t
λ2
-----= =

λ
t λE X[]=

E X2[] E X[]()2– λE X[]
λ2

----------------=

λ

λ E X[]
E X2[] E X[]()2–
---------------------------------------=

λ

t E X[]()2

E X2[] E X[]()2–
---------------------------------------=

E X[] E X2[]

t̂ X
2

1
n
--- Xi

2 X
2

–
i 1=

n

∑
------------------------------=

λ̂ X

1
n
--- Xi

2 X
2

–
i 1=

n

∑
------------------------------=

© 2002 by Chapman & Hall/CRC

68 Computational Statistics Handbook with MATLAB

discussed in this chapter are not necessarily the best in terms of bias, vari-
ance, etc.

3.5 Empirical Distribution Function

Recall from Chapter 2 that the cumulative distribution function is given by

(3.36)

TTTTABABABABLLLLE 3.1E 3.1E 3.1E 3.1

Suggested Point Estimators for Parameters

Distribution Suggested Estimator MATLAB Function

Binomial
Note: X is the number of

successes in n trials

csbinpar

Exponential csexpar

Gamma csgampar

Normal mean
var

Multivariate Normal mean
cov

Poisson cspoipar

p̂ X
n
----=

λ̂ 1 X⁄=

t̂ X
2 1

n
--- Xi

2 X
2

–∑
 ⁄=

λ̂ X 1
n
--- Xi

2 X
2

–∑
 ⁄=

µ̂ X=

σ̂2
S2=

µ j
ˆ 1

n
--- Xij

i 1=

n

∑=

Σ
ˆ

ij

n XikXjk

k 1=

n

∑ Xik

k 1=

n

∑ Xjk

k 1=

n

∑–

n n 1–()
---=

λ̂ X=

F x() P X x≤() f t() td

∞–

x

∫= =

© 2002 by Chapman & Hall/CRC

Chapter 3: Sampling Concepts 69

for a continuous random variable and by

(3.37)

for a discrete random variable. In this section, we examine the sample analog
of the cumulative distribution function called the empirical distribution
function. When it is not suitable to assume a distribution for the random vari-
able, then we can use the empirical distribution function as an estimate of the
underlying distribution. One can call this a nonparametric estimate of the
distribution function, because we are not assuming a specific parametric
form for the distribution that generates the random phenomena. In a para-
metric setting, we would assume a particular distribution generated the sam-
ple and estimate the cumulative distribution function by estimating the
appropriate parameters.

The empirical distribution function is based on the order statistics. The
order statistics for a sample are obtained by putting the data in ascending
order. Thus, for a random sample of size n, the order statistics are defined as

,

with denoting the i-th order statistic. The order statistics for a random
sample can be calculated easily in MATLAB using the sort function.

The empirical distribution function is defined as the number of data
points less than or equal to x () divided by the sample size n. It can
be expressed in terms of the order statistics as follows

(3.38)

Figure 3.2 illustrates these concepts. We show the empirical cumulative dis-
tribution function for a standard normal and include the theoretical distribu-
tion function to verify the results. In the following section, we describe a
descriptive measure for a population called a quantile, along with its corre-
sponding estimate. Quantiles are introduced here, because they are based on
the cumulative distribution function.

QuQuQuQuaaaannnnttttilesilesilesiles

Quantiles have a fundamental role in statistics. For example, they can be used
as a measure of central tendency and dispersion, they provide the critical val-

F a() f xi()
xi a≤
∑=

X 1() X 2() … X n()≤ ≤ ≤

X i()

F̂n x()
Xi x≤()

F̂n x()

0 x X 1()<;

j n⁄ X j() x X j 1+()<≤;

1 x X n() .≥;

=

© 2002 by Chapman & Hall/CRC

70 Computational Statistics Handbook with MATLAB

ues in hypothesis testing (see Chapter 6), and they are used in exploratory
data analysis for assessing distributions (see Chapter 5).

The quantile of a random variable (or equivalently of its distribution) is
defined as the smallest number q such that the cumulative distribution func-
tion is greater than or equal to some p, where . This can be calculated
for a continuous random variable with density function by solving

(3.39)

for , or by using the inverse of the cumulative distribution function,

. (3.40)

Stating this another way, the p-th quantile of a random variable X is the value
qp such that

(3.41)

for .
Some well known examples of quantiles are the quartiles. These are

denoted by q0.25, q0.5, and q0.75. In essence, these divide the distribution into
four equal (in terms of probability or area under the curve) segments. The
second quartile is also called the median and satisfies

FFFFIIIIGUGUGUGURE 3.RE 3.RE 3.RE 3.2222

This shows the theoretical and empirical distribution functions for a standard normal dis-
tribution.

−2 0 2
0

0.2

0.4

0.6

0.8

1

Random Variable X

Empirical CDF

−2 0 2
0

0.2

0.4

0.6

0.8

1

Random Variable X

Theoretical CDF

qp

0 p 1< <
f x()

p f x() xd
∞–

qp

∫=

qp

qp F 1– p()=

F qp() P X qp≤() p= =

0 p 1< <

© 2002 by Chapman & Hall/CRC

Chapter 3: Sampling Concepts 71

. (3.42)

We can get a measure of the dispersion of the random variable by looking at
the interquartile range (IQR) given by

. (3.43)

One way to obtain an estimate of the quantiles is based on the empirical
distribution function. If we let denote the order statistics for
a random sample of size n, then is an estimate of the quantile
[Banks, 2001; Cleveland, 1993]:

. (3.44)

We are not limited to a value of 0.5 in Equation 3.44. In general, we can esti-
mate the p-th quantile using the following

. (3.45)

As already stated, Equation 3.45 is not the only way to estimate quantiles.
For more information on other methods, see Kotz and Johnson [Vol. 7, 1986].
The analyst should exercise caution when calculating quartiles (or other
quantiles) using computer packages. Statistical software packages define
them differently [Frigge, Hoaglin, and Iglewicz, 1989], so these statistics
might vary depending on the formulas that are used.

EXAMPLE 3.5
In this example, we will show one way to determine the sample quartiles.
The second sample quartile is the sample median of the data set. We can
calculate this using the function median. We could calculate the first quartile

 as the median of the ordered data that are at the median or below. The
third quartile would be calculated as the median of the data that are at

 or above. The following MATLAB code illustrates these concepts.

% Generate the random sample and sort.
x = sort(rand(1,100));
% Find the median of the lower half - first quartile.
q1 = median(x(1:50));
% Find the median.
q2 = median(x);

0.5 f x() xd

∞–

q0.5

∫=

IQR q0.75 q0.25–=

X 1() X 2() … X n(), , ,
X j() j 0.5–() n⁄

X j() F 1– j 0.5–
n

 ≈

q̂p X j();=
j 1–

n
---------- p j

n
---;≤< j 1 … n, ,=

q̂0.5

q̂0.25

q̂0.75

q̂0.5

© 2002 by Chapman & Hall/CRC

72 Computational Statistics Handbook with MATLAB

% Find the median of the upper half - third quartile.
q3 = median(x(51:100));

The quartiles obtained from this random sample are:

q1 = 0.29, q2 = 0.53, q3 = 0.79

The theoretical quartiles for the uniform distribution are ,
, and . So we see that the estimates seem reasonable.

�

Equation 3.44 provides one way to estimate the quantiles from a random
sample. In some situations, we might need to determine an estimate of a
quantile that does not correspond to . For instance, this is the case
when we are constructing q-q plots (see Chapter 5), and the sample sizes dif-
fer. We can use interpolation to find estimates of quantiles that are not repre-
sented by Equation 3.44.

Example 3.6
The MATLAB function interp1 (in the standard package) returns the inter-
polated value at a given , based on some observed values and

. The general syntax is

yint = interp1(xobs, yobs, xint);

In our case, the argument of in Equation 3.44 represents the observed val-
ues , and the order statistics correspond to the . The MATLAB
code for this procedure is shown below.

% First generate some standard normal data.
x = randn(500,1);
% Now get the order statistics. These will serve
% as the observed values for the ordinate (Y_obs).
xs = sort(x);
% Now get the observed values for the abscissa (X_obs).
n=length(x);
phat = ((1:n)-0.5)/n;
% We want to get the quartiles.
p = [0.25, 0.5, 0.75];
% The following provides the estimates of the quartiles
% using linear interpolation.
qhat = interp1(phat,xs,p);

The resulting estimates are

qhat = -0.6928 0.0574 0.6453.

The reader is asked to explore this further in the exercises.
�

q0.25 0.25=
q0.5 0.5= q0.75 0.75=

j 0.5–() n⁄

YI XI Xobs

Yobs

F 1–

Xobs X j() Yobs

© 2002 by Chapman & Hall/CRC

Chapter 3: Sampling Concepts 73

3.6 MATLAB Code

The MATLAB Statistics Toolbox has functions for calculating the maximum
likelihood estimates for most of the common distributions, including the
gamma and the Weibull distributions. It is important to remember that the
parameters estimated for some of the distributions (e.g., exponential and
gamma) are different from those defined in Chapters 2 and 3. We refer the
reader to Appendix E for a complete list of the functions appropriate to this
chapter. Table 3.2 provides a partial list of MATLAB functions for calculating
statistics.We also provide some functions for statistics with the Computa-
tional Statistics Toolbox. These are summarized in Table 3.3.

TTTTAAAABBBBLLLLEEEE 3333.2.2.2.2

List of MATLAB functions for calculating statistics

Purpose MATLAB Function

These functions are available in the
standard MATLAB package.

mean
var
std
cov

median
corrcoef
max, min

sort

These functions for calculating
descriptive statistics are available in the
MATLAB Statistics Toolbox.

harmmean
iqr

kurtosis
mad

moment
prctile
range

skewness
trimmean

These MATLAB Statistics Toolbox
functions provide the maximum
likelihood estimates for distributions.

betafit
binofit
expfit
gamfit
normfit
poissfit
weibfit
unifit
mle

© 2002 by Chapman & Hall/CRC

74 Computational Statistics Handbook with MATLAB

3.7 Further Reading

Many books discuss sampling distributions and parameter estimation. These
topics are covered at an undergraduate level in most introductory statistics
books for engineers or non-statisticians. For the advanced undergraduate
and beginning graduate student, we recommend the text on mathematical
statistics by Hogg and Craig [1978]. Another excellent introductory book on
mathematical statistics that contains many applications and examples is writ-
ten by Mood, Graybill and Boes [1974]. Other texts at this same level include
Bain and Engelhardt [1992], Bickel and Doksum [2001], and Lindgren [1993].
For the reader interested in the theory of point estimation on a more
advanced graduate level, the book by Lehmann and Casella [1998] and Leh-
mann [1994] are classics.

Most of the texts already mentioned include descriptions of other methods
(Bayes methods, minimax methods, Pitman estimators, etc.) for estimating
parameters. For an introduction to robust estimation methods, see the books
by Wilcox [1997], Launer and Wilkinson [1979], Huber [1981], or Rousseeuw
and Leroy [1987] or see the survey paper by Hogg [1974]. Finally, the text by

TTTTAAAABBBBLLLLE 3E 3E 3E 3....3333

List of Functions from Chapter 3 Included in the Computational
Statistics Toolbox

Purpose MATLAB Function

These functions are used to obtain
parameter estimates for a distribution.

csbinpar
csexpar
csgampar
cspoipar
csunipar

These functions return the quantiles. csbinoq
csexpoq
csunifq
csweibq
csnormq

csquantiles

Other descriptive statistics csmomentc
cskewness
cskurtosis
csmoment
csecdf

© 2002 by Chapman & Hall/CRC

Chapter 3: Sampling Concepts 75

Keating, Mason and Sen [1993] provides an introduction to Pitman’s measure
of closeness as a way to assess the performance of competing estimators.

© 2002 by Chapman & Hall/CRC

76 Computational Statistics Handbook with MATLAB

Exercises

3.1. Generate 500 random samples from the standard normal distribution
for sample sizes of n = 2, 15, and 45. At each sample size, calculate
the sample mean for all 500 samples. How are the means distributed
as n gets large? Look at a histogram of the sample means to help
answer this question. What is the mean and variance of the sample
means for each n? Is this what you would expect from the Central
Limit Theorem? Here is some MATLAB code to get you started.

For each n:

% Generate 500 random samples of size n:
x = randn(n, 500);
% Get the mean of each sample:
xbar = mean(x);
% Do a histogram with superimposed normal density.
% This function is in the MATLAB Statistics Toolbox.
% If you do not have this, then just use the
% function hist instead of histfit.
histfit(xbar);

3.2. Repeat problem 3.1 for random samples drawn from a uniform dis-
tribution. Use the MATLAB function rand to get the samples.

3.3. We have two unbiased estimators and of the parameter θ. The
variances of the estimators are given by and .
What is the MSE of the estimators? Which estimator is better and
why? What is the relative efficiency of the two estimators?

3.4. Repeat Example 3.1 using different sample sizes. What happens to
the coefficient of skewness and kurtosis as the sample size gets large?

3.5. Repeat Example 3.1 using samples generated from a standard normal
distribution. You can use the MATLAB function randn to generate
your samples. What happens to the coefficient of skewness and kur-
tosis as the sample size gets large?

3.6. Generate a random sample that is uniformly distributed over the
interval Plot the empirical distribution function over the inter-
val (-0.5, 1.5). There is also a function in the Statistics Toolbox called
cdfplot that will do this.

3.7. Generate a random sample of size 100 from a normal distribution
with mean 10 and variance of 2 (use randn(1,100)*sqrt(2)+10).
Plot the empirical cumulative distribution function. What is the value
of the empirical distribution function evaluated at a point less than

T1 T2

V T2() 8= V T1() 4=

0 1,() .

© 2002 by Chapman & Hall/CRC

Chapter 3: Sampling Concepts 77

the smallest observation in your random sample? What is the value
of the empirical cumulative distribution function evaluated at a point
that is greater than the largest observation in your random sample?

3.8. Generate a random sample of size 100 from a normal distribution.
What are the estimated quartiles?

3.9. Generate a random sample of size 100 from a uniform distribution
(use the MATLAB function rand to generate the samples). What are
the sample quantiles for ? Is this what you
would expect from theory?

3.10. Write a MATLAB function that will return the sample quartiles based
on the general definition given for sample quantiles (Equation 3.44).

3.11. Repeat Examples 3.5 and 3.6 for larger sample sizes. Do your esti-
mates for the quartiles get closer to the theoretical values?

3.12. Derive the median for an exponential random variable.

3.13. Calculate the quartiles for the exponential distribution.
3.14. Compare the values obtained for the estimated quartiles in Example

3.6 with the theoretical quantities. You can find the theoretical quan-
tities using norminv. Increase the sample size to . Does your
estimate get better?

3.15. Another measure of skewness, called the quartile coefficient of
skewness, for a sample is given by

.

Write a MATLAB function that returns this statistic.

3.16. Investigate the bias in the maximum likelihood estimate of the vari-
ance that is given in Equation 3.28. Generate a random sample from
the standard normal distribution. You can use the randn function
that is available in the standard MATLAB package. Calculate using
Equation 3.28 and record the value in a vector. Repeat this process
(generate a random sample from the standard normal distribution,
estimate the variance, save the value) many times. Once you are done
with this procedure, you should have many estimates for the variance.
Take the mean of these estimates to get an estimate of the expected
value of . How does this compare with the known value of ?
Does this indicate that the maximum likelihood estimate for the vari-
ance is biased? What is the estimated bias from this procedure?

p 0.33 0.40 0.63 0.90, , ,=

n 1000=

γ̂1q

q̂0.75 2q̂0.5– q̂0.25+
q̂0.75 q̂0.25–

--=

σ̂2

σ̂2 σ2 1=

© 2002 by Chapman & Hall/CRC

Chapter 4
Generating Random Variables

4.1 Introduction

Many of the methods in computational statistics require the ability to gener-
ate random variables from known probability distributions. This is at the
heart of Monte Carlo simulation for statistical inference (Chapter 6), boot-
strap and resampling methods (Chapters 6 and 7), Markov chain Monte
Carlo techniques (Chapter 11), and the analysis of spatial point processes
(Chapter 12). In addition, we use simulated random variables to explain
many other topics in this book, such as exploratory data analysis (Chapter 5),
density estimation (Chapter 8), and statistical pattern recognition
(Chapter 9).

There are many excellent books available that discuss techniques for gen-
erating random variables and the underlying theory; references will be pro-
vided in the last section. Our purpose in covering this topic is to give the
reader the tools they need to generate the types of random variables that
often arise in practice and to provide examples illustrating the methods. We
first discuss general techniques for generating random variables, such as the
inverse transformation and acceptance-rejection methods. We then provide
algorithms and MATLAB code for generating random variables for some
useful distributions.

4.2 General Techniques for Generating Random Variables

UUUUnnnniiiiforforforformmmm Random NumbeRandom NumbeRandom NumbeRandom Numberrrrssss

Most methods for generating random variables start with random numbers
that are uniformly distributed on the interval . We will denote these
random variables by the letter U. With the advent of computers, we now have

0 1,()

© 2002 by Chapman & Hall/CRC

80 Computational Statistics Handbook with MATLAB

the ability to generate uniform random variables very easily. However, we
have to caution the reader that the numbers generated by computers are
really pseudorandom because they are generated using a deterministic algo-
rithm. The techniques used to generate uniform random variables have been
widely studied in the literature, and it has been shown that some generators
have serious flaws [Gentle, 1998].

The basic MATLAB program has a function rand for generating uniform
random variables. There are several optional arguments, and we take a
moment to discuss them because they will be useful in simulation. The func-
tion rand with no arguments returns a single instance of the random variable
U. To get an array of uniform variates, you can use the syntax
rand(m,n). A note of caution: if you use rand(n), then you get an
matrix.

The sequence of random numbers that is generated in MATLAB depends
on the seed or the state of the generator. The state is reset to the default when
it starts up, so the same sequences of random variables are generated when-
ever you start MATLAB. This can sometimes be an advantage in situations
where we would like to obtain a specific random sample, as we illustrate in
the next example. If you call the function using rand('state',0), then
MATLAB resets the generator to the initial state. If you want to specify
another state, then use the syntax rand('state',j) to set the generator to
the j-th state. You can obtain the current state using S = rand(‘state’),
where S is a 35 element vector. To reset the state to this one, use
rand(‘state’,S).

It should be noted that random numbers that are uniformly distributed
over an interval a to b may be generated by a simple transformation, as fol-
lows

. (4.1)

Example 4.1
In this example, we illustrate the use of MATLAB’s function rand.

% Obtain a vector of uniform random variables in (0,1).
x = rand(1,1000);
% Do a histogram to plot.
% First get the height of the bars.
[N,X] = hist(x,15);
% Use the bar function to plot.
bar(X,N,1,'w')
title('Histogram of Uniform Random Variables')
xlabel('X')
ylabel('Frequency')

The resulting histogram is shown in Figure 4.1. In some situations, the ana-
lyst might need to reproduce results from a simulation, say to verify a con-

m n×
n n×

X b a–() U⋅ a+=

© 2002 by Chapman & Hall/CRC

Chapter 4: Generating Random Variables 81

clusion or to illustrate an interesting sample. To accomplish this, the state of
the uniform random number generator should be specified at each iteration
of the loop. This is accomplished in MATLAB as shown below.

% Generate 3 random samples of size 5.
x = zeros(3,5); % Allocate the memory.
for i = 1:3
 rand('state',i) % set the state
 x(i,:) = rand(1,5);
end

The three sets of random variables are

0.9528 0.7041 0.9539 0.5982 0.8407
0.8752 0.3179 0.2732 0.6765 0.0712
0.5162 0.2252 0.1837 0.2163 0.4272

We can easily recover the five random variables generated in the second sam-
ple by setting the state of the random number generator, as follows

rand('state',2)
xt = rand(1,5);

FFFFIIIIGUGUGUGURE 4.RE 4.RE 4.RE 4.1111

This figure shows a histogram of a random sample from the uniform distribution on the
interval (0, 1).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80
Histogram of Uniform Random Variables

X

F
re

qu
en

cy

© 2002 by Chapman & Hall/CRC

82 Computational Statistics Handbook with MATLAB

From this, we get

xt = 0.8752 0.3179 0.2732 0.6765 0.0712

which is the same as before.
�

InInInInvvvverseerseerseerse TTTTranranranranssssfffform Methoorm Methoorm Methoorm Methodddd

The inverse transform method can be used to generate random variables
from a continuous distribution. It uses the fact that the cumulative distribu-
tion function F is uniform [Ross, 1997]:

. (4.2)

If U is a uniform random variable, then we can obtain the desired ran-
dom variable X from the following relationship

. (4.3)

We see an example of how to use the inverse transform method when we dis-
cuss generating random variables from the exponential distribution (see
Example 4.6). The general procedure for the inverse transformation method
is outlined here.

PROCEDURE - INVERSE TRANSFORM METHOD (CONTINUOUS)

1. Derive the expression for the inverse distribution function .
2. Generate a uniform random number U.

3. Obtain the desired X from .

This same technique can be adapted to the discrete case [Banks, 2001]. Say
we would like to generate a discrete random variable X that has a probability
mass function given by

. (4.4)

We get the random variables by generating a random number U and then
deliver the random number X according to the following

. (4.5)

0 1,()

U F X()=

0 1,()

X F 1– U()=

F 1– U()

X F 1– U()=

P X xi=() pi= ; x0 x1 x2 …< < < ; pi

i
∑ 1=

X xi,= if F xi 1–() U F xi()≤<

© 2002 by Chapman & Hall/CRC

Chapter 4: Generating Random Variables 83

We illustrate this procedure using a simple example.

Example 4.2
We would like to simulate a discrete random variable X that has probability
mass function given by

The cumulative distribution function is

We generate random variables for X according to the following scheme

This is easily implemented in MATLAB and is left as an exercise. The proce-
dure is illustrated in Figure 4.2, for the situation where a uniform random
variable 0.73 was generated. Note that this would return the variate .
�

We now outline the algorithmic technique for this procedure. This will be
useful when we describe a method for generating Poisson random variables.

PROCEDURE - INVERSE TRANSFORM (DISCRETE)

1. Define a probability mass function for , . Note that k
could grow infinitely.

2. Generate a uniform random number U.

3. If deliver
4. else if deliver

5. else if deliver

P X 0=() 0.3,=

P X 1=() 0.2,=

P X 2=() 0.5.=

F x()

0; x 0<
0.3; 0 x 1<≤
0.5; 1 x 2<≤
1.0; 2 x .≤

=

X
0; U 0.3≤
1; 0.3 U 0.5≤<
2; 0.5 U 1.≤<

=

x 2=

xi i 1 … k, ,=

U p0≤ X x0=

U p0 p1+≤ X x1=

U p0 p1 p2+ +≤ X x2=

© 2002 by Chapman & Hall/CRC

84 Computational Statistics Handbook with MATLAB

6. ... else if deliver .

Example 4.3
We repeat the previous example using this new procedure and implement it
in MATLAB. We first generate 100 variates from the desired probability mass
function.

% Set up storage space for the variables.
X = zeros(1,100);
% These are the x's in the domain.
x = 0:2;
% These are the probability masses.
pr = [0.3 0.2 0.5];
% Generate 100 rv’s from the desired distribution.
for i = 1:100
 u = rand; % Generate the U.
 if u <= pr(1)
 X(i) = x(1);
 elseif u <= sum(pr(1:2))

% It has to be between 0.3 and 0.5.
 X(i) = x(2);

FFFFIIIIGUGUGUGURE 4.RE 4.RE 4.RE 4.2222

This figure illustrates the inverse transform procedure for generating discrete random vari-
ables. If we generate a uniform random number of then this yields a random
variable of .

0 1 2 0
0

0.2

0.4

0.6

0.8

1
F

(X
)

X

0.73

u 0.73,=
x 2=

U p0 … pk+ +≤ X xk=

© 2002 by Chapman & Hall/CRC

Chapter 4: Generating Random Variables 85

 else
 X(i) = x(3); % It has to be between 0.5 and 1.
 end
end

One way to verify that our random variables are from the desired distribu-
tion is to look at the relative frequency of each x.

% Find the proportion of each number.
x0 = length(find(X==0))/100;
x1 = length(find(X==1))/100;
x2 = length(find(X==2))/100;

The resulting estimated probabilities are

These values are reasonable when compared with the desired probability
mass values.
�

AcAcAcAccccceptaneptaneptaneptancccceeee----RRRReeeejjjjeeeectionctionctionction MMMMethoethoethoethodddd

In some cases, we might have a simple method for generating a random vari-
able from one density, say , instead of the density we are seeking. We can
use this density to generate from the desired continuous density . We
first generate a random number Y from and accept the value with a
probability proportional to the ratio .

If we define c as a constant that satisfies

, (4.6)

then we can generate the desired variates using the procedure outlined
below. The constant c is needed because we might have to adjust the height
of to ensure that it is above . We generate points from , and
those points that are inside the curve are accepted as belonging to the
desired density. Those that are outside are rejected. It is best to keep the num-
ber of rejected variates small for maximum efficiency.

P̂ x x0=() 0.26=

P̂ x x1=() 0.21=

P̂ x x2=() 0.53.=

g y()
f x()

g y()
f Y() g Y()()⁄

f y()
g y()
----------- c;≤ for all y

g y() f y() cg y()
f y()

© 2002 by Chapman & Hall/CRC

86 Computational Statistics Handbook with MATLAB

PROCEDURE - ACCEPTANCE-REJECTION METHOD (CONTINUOUS)

1. Choose a density that is easy to sample from.

2. Find a constant c such that Equation 4.6 is satisfied.
3. Generate a random number Y from the density .

4. Generate a uniform random number U.
5. If

,

then accept , else go to step 3.

Example 4.4
We shall illustrate the acceptance-rejection method by generating random
variables from the beta distribution with parameters and
[Ross, 1997]. This yields the following probability density function

. (4.7)

Since the domain of this density is 0 to 1, we use the uniform distribution for
our . We must find a constant that we can use to inflate the uniform so it
is above the desired beta density. This constant is given by the maximum
value of the density function, and from Equation 4.7, we see that . For
more complicated functions, techniques from calculus or the MATLAB func-
tion fminsearch may be used. The following MATLAB code generates 100
random variates from the desired distribution. We save both the accepted
and the rejected variates for display purposes only.

c = 2; % constant
n = 100; % Generate 100 random variables.
% Set up the arrays to store variates.
x = zeros(1,n); % random variates
xy = zeros(1,n);% corresponding y values
rej = zeros(1,n);% rejected variates
rejy = zeros(1,n); % corresponding y values
irv = 1;
irej = 1;
while irv <= n
 y = rand(1); % random number from g(y)
 u = rand(1); % random number for comparison
 if u <= 2*y/c;
 x(irv) = y;
 xy(irv) = u*c;

g y()

g y()

U f Y()
cg Y()
---------------≤

X Y=

α 2= β 1=

f x() 2x;= 0 x 1< <

g y()

c 2=

© 2002 by Chapman & Hall/CRC

Chapter 4: Generating Random Variables 87

 irv = irv+1
 else
 rej(irej) = y;
 rejy(irej) = u*c; % really comparing u*c<=2*y
 irej = irej + 1
 end
end

In Figure 4.3, we show the accepted and rejected random variates that were
generated in this process. Note that the accepted variates are those that are
less than .
�

We can easily adapt this method to generate random variables from a dis-
crete distribution. Here we have a method for simulating a random variable
with a probability mass function , and we would like to obtain
a random variable X having a probability mass function . As in
the continuous case, we generate a random variable Y from and accept this
value with probability .

FFFFIIIIGUGUGUGURE 4.RE 4.RE 4.RE 4.3333

This shows the points that were accepted (‘o’) as being generated by and those
points that were rejected (‘*’). The curve represents , so we see that the accepted variates
are the ones below the curve.

f x()

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f(x)

f x() 2x=
f x()

qi P Y i=()=
pi P X i=()=

qi

pY cqY()⁄

© 2002 by Chapman & Hall/CRC

88 Computational Statistics Handbook with MATLAB

PROCEDURE - REJECTION METHOD (DISCRETE)

1. Choose a probability mass function that is easy to sample from.

2. Find a constant c such that .
3. Generate a random number Y from the density .

4. Generate a uniform random number U.
5. If

,

then deliver , else go to step 3.

Example 4.5
In this example, we use the discrete form of the acceptance-rejection method
to generate random variables according to the probability mass function
defined as follows

We let be the discrete uniform distribution on , where the proba-
bility mass function is given by

.

We describe a method for generating random variables from the discrete uni-
form distribution in a later section. The value for c is obtained as the maxi-
mum value of , which is 1.65. This quantity is obtained by taking the
maximum , which is , and dividing by 1/5:

.

The steps for generating the variates are:

qi

pY cqY<
qi

U
pY

cqY

--------≤

X Y=

P X 1=() 0.15,=

P X 2=() 0.22,=

P X 3=() 0.33,=

P X 4=() 0.10,=

P X 5=() 0.20.=

qY 1 … 5, ,

qy
1
5
---;= y 1 … 5, ,=

py qy⁄
py P X 3=() 0.33=

max py()
1 5⁄

--------------------- 0.33 5× 1.65= =

© 2002 by Chapman & Hall/CRC

Chapter 4: Generating Random Variables 89

1. Generate a variate Y from the discrete uniform density on .
(One could use the MATLAB Statistics Toolbox function unidrnd
or csdunrnd.)

2. Generate a uniform random number U.

3. If

,

then deliver , else return to step 1.

The implementation of this example in MATLAB is left as an exercise.
�

4.3 Generating Continuous Random Variables

NNNNoooorrrrmal Dmal Dmal Dmal Diiiissssttttributributributributiiiionononon

The main MATLAB program has a function that will generate numbers from
the standard normal distribution, so we do not discuss any techniques for
generating random variables from the normal distribution. For the reader
who is interested in how normal random variates can be generated, most of
the references provided in Section 4.6 contain this information.

The MATLAB function for generating standard normal random variables
is called randn, and its functionality is similar to the function rand that was
discussed in the previous section. As with the uniform random variable U,
we can obtain a normal random variable X with mean and variance by
means of a transformation. Letting Z represent a standard normal random
variable (possibly generated from randn), we get the desired X from the rela-
tionship

. (4.8)

EEEExponxponxponxponeeeentntntntiiiiaaaallll DistrDistrDistrDistriiiibutiobutiobutiobutionnnn

The inverse transform method can be used to generate random variables
from the exponential distribution and serves as an example of this procedure.
The distribution function for an exponential random variable with parameter

 is given by

1 … 5, ,

U
pY

cqY

--------≤ pY

1.65 1 5⁄⋅

pY

0.33
----------= =

X Y=

µ σ2

X Z σ µ+⋅=

λ

© 2002 by Chapman & Hall/CRC

90 Computational Statistics Handbook with MATLAB

. (4.9)

Letting

, (4.10)

we can solve for x, as follows

By making note of the fact that is also uniformly distributed over the
interval (0,1), we can generate exponential random variables with parameter

 using the transformation

. (4.11)

Example 4.6
The following MATLAB code will generate exponential random variables for
a given .

% Set up the parameters.
lam = 2;
n = 1000;
% Generate the random variables.
uni = rand(1,n);
X = -log(uni)/lam;

We can generate a set of random variables and plot them to verify that the
function does yield exponentially distributed random variables. We plot a
histogram of the results along with the theoretical probability density func-
tion in Figure 4.4. The MATLAB code given below shows how we did this.

% Get the values to draw the theoretical curve.
x = 0:.1:5;
% This is a function in the Statistics Toolbox.
y = exppdf(x,1/2);
% Get the information for the histogram.
[N,h] = hist(X,10);
% Change bar heights to make it correspond to

F x() 1 e λ x– ;–= 0 x ∞< <

u F x() 1 e λx––= =

u 1 e λ x––=

e λx– 1 u–=

λx– 1 u–()log=

x 1
λ
--- 1 u–().log–=

1 u–

λ

X 1
λ
--- U()log–=

λ

© 2002 by Chapman & Hall/CRC

Chapter 4: Generating Random Variables 91

% the theoretical density - see Chapter 5.
N = N/(h(2)-h(1))/n;
% Do the plots.
bar(h,N,1,'w')
hold on
plot(x,y)
hold off
xlabel('X')
ylabel('f(x) - Exponential')

�

GGGGaaaammmmmamamama

In this section, we present an algorithm for generating a gamma random vari-
able with parameters , where t is an integer. Recall that it has the follow-
ing distribution function

FFFFIIIIGUGUGUGURE 4.RE 4.RE 4.RE 4.4444

This shows a probability density histogram of the random variables generated in
Example 4.6. We also superimpose the curve corresponding to the theoretical probability
density function with . The histogram and the curve match quite well.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

X

f(
x)

 −
 E

xp
on

en
tia

l

λ 2=

t λ,()

© 2002 by Chapman & Hall/CRC

92 Computational Statistics Handbook with MATLAB

. (4.12)

The inverse transform method cannot be used in this case, because a simple
closed form solution for its inverse is not possible. It can be shown [Ross,
1997] that the sum of t independent exponentials with the same parameter
is a gamma random variable with parameters t and . This leads to the fol-
lowing transformation based on t uniform random numbers,

. (4.13)

We can simplify this and compute only one logarithm by using a familiar
relationship of logarithms. This yields the following

. (4.14)

Example 4.7
The MATLAB code given below implements the algorithm described above
for generating gamma random variables, when the parameter t is an integer.

n = 1000;
t = 3;
lam = 2;
% Generate the uniforms needed. Each column
% contains the t uniforms for a realization of a
% gamma random variable.
U = rand(t,n);
% Transform according to Equation 4.13.
% See Example 4.8 for an illustration of Equation 4.14.
logU = -log(U)/lam;
X = sum(logU);

To see whether the implementation of the algorithm is correct, we plot them
in a probability density histogram.

% Now do the histogram.
[N,h] = hist(X,10);
% Change bar heights.
N = N/(h(2)-h(1))/n;
% Now get the theoretical probability density.
% This is a function in the Statistics Toolbox.
x = 0:.1:6;

F x() e y– yt 1–

t 1–()!
----------------- yd

0

λx

∫=

λ
λ

X 1
λ
--- U1 …–

1
λ
--- Utlog–log–=

X 1
λ
--- U1 … Ut××()log–

1
λ
--- Ui

i 1=

t

∏

log–= =

© 2002 by Chapman & Hall/CRC

Chapter 4: Generating Random Variables 93

y = gampdf(x,t,1/lam);
bar(h,N,1,'w')
hold on
plot(x,y,'k')
hold off

The histogram and the corresponding theoretical probability density func-
tion are shown in Figure 4.5.
�

ChiChiChiChi----SSSSquarquarquarquareeee

A chi-square random variable with degrees of freedom is a special case of
the gamma distribution, where , and is a positive inte-
ger. This can be generated using the gamma distribution method described
above with one change. We have to make this change, because the method we
presented for generating gamma random variables is for integer t, which
works for even values of .

When is even, say , we can obtain a chi-square random variable from

FFFFIIIIGUGUGUGURE 4.RE 4.RE 4.RE 4.5555

This shows the probability density histogram for a set of gamma random variables with
 and .

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

X

f(
x)

 −
 G

am
m

a

t 3= λ 2=

ν
λ 1 2⁄= t ν 2⁄= ν

ν
ν 2k

© 2002 by Chapman & Hall/CRC

94 Computational Statistics Handbook with MATLAB

. (4.15)

When is odd, say , we can use the fact that the chi-square distribu-
tion with degrees of freedom is the sum of squared independent stan-
dard normals [Ross, 1997]. We obtain the required random variable by first
simulating a chi-square with degrees of freedom and adding a squared
standard normal variate Z, as follows

. (4.16)

Example 4.8
In this example, we provide a function that will generate chi-square random
variables.

% function X = cschirnd(n,nu)
% This function will return n chi-square
% random variables with degrees of freedom nu.

function X = cschirnd(n,nu)
% Generate the uniforms needed.
rm = rem(nu,2);
k = floor(nu/2);
if rm == 0 % then even degrees of freedom
 U = rand(k,n);
 if k ~= 1
 X = -2*log(prod(U));
 else
 X = -2*log(U);
 end
else % odd degrees of freedom
 U = rand(k,n);
 Z = randn(1,n);
 if k ~= 1
 X = Z.^2-2*log(prod(U));
 else
 X = Z.^2-2*log(U);
 end
end

The use of this function to generate random variables is left as an exercise.
�

X 2 Ui

i 1=

k

∏

log–=

ν 2k 1+
ν ν

2k

X Z2 2 Ui

i 1=

k

∏

log–=

© 2002 by Chapman & Hall/CRC

Chapter 4: Generating Random Variables 95

The chi-square distribution is useful in situations where we need to system-
atically investigate the behavior of a statistic by changing the skewness of the
distribution. As the degrees of freedom for a chi-square increases, the distri-
bution changes from being right skewed to one approaching normality and
symmetry.

BBBBeeeettttaaaa

The beta distribution is useful in simulations because it covers a wide range
of distribution shapes, depending on the values of the parameters and
These shapes include skewed, uniform, approximately normal, and a bimo-
dal distribution with an interior dip.

First, we describe a simple approach for generating beta random variables
with parameters and , when both are integers [Rubinstein, 1981; Gentle,
1998]. It is known [David, 1981] that the -th order statistic of n uniform (0,1)
variates is distributed according to a beta distribution with parameters and

. This means that we can generate random variables from the beta
distribution using the following procedure.

PROCEDURE - BETA RANDOM VARIABLES (INTEGER PARAMETERS)

1. Generate uniform random numbers:

2. Deliver which is the -th order statistic.

One simple way to generate random variates from the beta distribution is
to use the following result from Rubinstein [1981]. If and are indepen-
dent random variables, where has a gamma distribution with parameters

 and 1, and follows a gamma distribution with parameters and 1, then

(4.17)

is from a beta distribution with parameters and . This is the method that
is used in the MATLAB Statistics Toolbox function betarnd that generates
random variates from the beta distribution. We illustrate the use of betarnd
in the following example.

Example 4.9
We use this example to illustrate the use of the MATLAB Statistics Toolbox
function that generates beta random variables. In general, most of these tool-
box functions for generating random variables use the following general syn-
tax:

rvs = pdfrnd(par1,par2,nrow,ncol);

α β.

α β
k

k
n k– 1+

α β 1–+ U1 … Uα β 1–+, ,
X U α()= α

Y1 Y2

Y1

α Y2 β

X
Y1

Y1 Y2+
------------------=

α β

© 2002 by Chapman & Hall/CRC

96 Computational Statistics Handbook with MATLAB

Here, pdf refers to the type of distribution (see Table 4.1, on page 106). The
first several arguments represent the appropriate parameters of the distribu-
tion, so the number of them might change. The last two arguments denote the
number of rows and the number of columns in the array of random variables
that are returned by the function. We use the function betarnd to generate
random variables from two beta distributions with different parameters
and . First we look at the case where and So, to generate

 beta random variables (that are returned in a row vector), we use
the following commands:

% Let a = 3, b = 3
n = 500;
a = 3;
b = 3;
rvs = betarnd(a,b,1,n);

We can construct a histogram of the random variables and compare it to the
corresponding beta probability density function. This is easily accomplished
in MATLAB as shown below.

% Now do the histogram.
[N,h] = hist(rvs,10);
% Change bar heights.
N = N/(h(2)-h(1))/n;
% Now get the theoretical probability density.
x = 0:.05:1;
y = betapdf(x,a,b);
plot(x,y)
axis equal
bar(h,N,1,'w')
hold on
plot(x,y,'k')
hold off

The result is shown in the left plot of Figure 4.6. Notice that this density looks
approximately bell-shaped. The beta density on the right has parameters

 and We see that this curve has a dip in the middle with
modes on either end. The reader is asked to construct this plot in the exer-
cises.
�

MultMultMultMultiiiivvvvarararariiiiaaaatttteeee NoNoNoNorrrrmamamamallll

In the following chapters, we will have many applications where we need to
generate multivariate random variables in order to study the algorithms of
computational statistics as they apply to multivariate distributions. Thus, we
need some methods for generating multivariate random variables. The easi-

α
β α 3= β 3.=

n 500=

α 0.5= β 0.5.=

© 2002 by Chapman & Hall/CRC

Chapter 4: Generating Random Variables 97

est distribution of this type to generate is the multivariate normal. We cover
other methods for generating random variables from more general multivari-
ate distributions in Chapter 11.

The method is similar to the one used to generate random variables from a
univariate normal distribution. One starts with a d-dimensional vector of
standard normal random numbers. These can be transformed to the desired
distribution using

. (4.18)

Here z is a vector of standard normal random numbers, is a
vector representing the mean, and R is a matrix such that
The matrix R can be obtained in several ways, one of which is the Cholesky
factorization of the covariance matrix This is the method we illustrate
below. Another possibility is to factor the matrix using singular value decom-
position, which will be shown in the examples provided in Chapter 5.

FFFFIIIIGUGUGUGURE 4.RE 4.RE 4.RE 4.6666

This figure shows two histograms created from random variables generated from the beta
distribution. The beta distribution on the left has parameters and while the
one on the right has parameters and

0 0.5 1
0

0.5

1

1.5

2

2.5
α = β = 3

0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5
α = β = 0.5

α 3= β 3,=
α 0.5= β 0.5 .=

x RTz µ+=

d 1× µµµµ d 1×
d d× RTR Σ.=

Σ.

© 2002 by Chapman & Hall/CRC

98 Computational Statistics Handbook with MATLAB

Example 4.10
The function csmvrnd generates multivariate normal random variables
using the Cholesky factorization. Note that we are transposing the transfor-
mation given in Equation 4.18, yielding the following

,

where X is an matrix of d-dimensional random variables and Z is an
 matrix of standard normal random variables.

% function X = csmvrnd(mu,covm,n);
% This function will return n multivariate random
% normal variables with d-dimensional mean mu and
% covariance matrix covm. Note that the covariance
% matrix must be positive definite (all eigenvalues
% are greater than zero), and the mean
% vector is a column

function X = csmvrnd(mu,covm,n)
d = length(mu);
% Get Cholesky factorization of covariance.
R = chol(covm);
% Generate the standard normal random variables.
Z = randn(n,d);
X = Z*R + ones(n,1)*mu';

We illustrate its use by generating some multivariate normal random vari-
ables with and covariance

.

% Generate the multivariate random normal variables.
mu = [-2;3];
covm = [1 0.7 ; 0.7 1];
X = csmvrnd(mu,covm,500);

To check the results, we plot the random variables in a scatterplot in
Figure 4.7. We can also calculate the sample mean and sample covariance
matrix to compare with what we used as input arguments to csmvrnd. By
typing mean(X) at the command line, we get

-2.0629 2.9394

Similarly, entering corrcoef(X)at the command line yields

X ZR µT+=

n d×
n d×

µT 2 3,–()=

Σ 1 0.7

0.7 1
=

© 2002 by Chapman & Hall/CRC

Chapter 4: Generating Random Variables 99

1.0000 0.6957
0.6957 1.0000

We see that these values for the sample statistics correspond to the desired
mean and covariance. We note that you could also use the cov function to
compare the variances.
�

GGGGeeeeneratingneratingneratingnerating VVVVaaaarrrriateiateiateiatessss onononon a Sa Sa Sa Spherpherpherphereeee

In some applications, we would like to generate d-dimensional random vari-
ables that are distributed on the surface of the unit hypersphere ,

. Note that when the surface is a circle, and for the
surface is a sphere. We will be using this technique in Chapter 5, where we
present an algorithm for exploratory data analysis using projection pursuit.
The easiest method is to generate d standard normal random variables and
then to scale them such that the magnitude of the vector is one. This is illus-
trated in the following example.

FFFFIIIIGUGUGUGURE 4.RE 4.RE 4.RE 4.7777

This shows the scatter plot of the random variables generated using the function csmvrnd.

−6 −5 −4 −3 −2 −1 0 1
0

1

2

3

4

5

6

7

X
1

X
2

Sd

d 2 …,= d 2= d 3=

© 2002 by Chapman & Hall/CRC

100 Computational Statistics Handbook with MATLAB

Example 4.11
The following function cssphrnd generates random variables on a d-dimen-
sional unit sphere. We illustrate its use by generating random variables that
are on the unit circle .

% function X = cssphrnd(n,d);
% This function will generate n d-dimensional
% random variates that are distributed on the
% unit d-dimensional sphere. d >= 2

function X = cssphrnd(n,d)
if d < 2
 error('ERROR - d must be greater than 1.')
 break
end
% Generate standard normal random variables.
tmp = randn(d,n);
% Find the magnitude of each column.
% Square each element, add and take the square root.
mag = sqrt(sum(tmp.^2));
% Make a diagonal matrix of them - inverses.
dm = diag(1./mag);
% Multiply to scale properly.
% Transpose so X contains the observations.
X = (tmp*dm)';

We can use this function to generate a set of random variables for and
plot the result in Figure 4.8.

X = cssphrnd(500,2);
plot(X(:,1),X(:,2),'x')
axis equal
xlabel('X_1'),ylabel('X_2')

�

4.4 Generating Discrete Random Variables

BinomiaBinomiaBinomiaBinomiallll

A binomial random variable with parameters n and p represents the number
of successes in n independent trials. We can obtain a binomial random vari-

S2

d 2=

© 2002 by Chapman & Hall/CRC

Chapter 4: Generating Random Variables 101

able by generating n uniform random numbers and letting X
be the number of that are less than or equal to p. This is easily imple-
mented in MATLAB as illustrated in the following example.

Example 4.12
We implement this algorithm for generating binomial random variables in
the function csbinrnd.

% function X = csbinrnd(n,p,N)
% This function will generate N binomial
% random variables with parameters n and p.

function X = csbinrnd(n,p,N)
X = zeros(1,N);
% Generate the uniform random numbers:
% N variates of n trials.
U = rand(N,n);
% Loop over the rows, finding the number
% less than p
for i = 1:N
 ind = find(U(i,:) <= p);
 X(i) = length(ind);

FFFFIIIIGUGUGUGURE 4.RE 4.RE 4.RE 4.8888

This is the scatter plot of the random variables generated in Example 4.11. These random
variables are distributed on the surface of a 2-D unit sphere (i.e., a unit circle).

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

X
1

X
2

U1 U2 … Un, , ,
Ui

© 2002 by Chapman & Hall/CRC

102 Computational Statistics Handbook with MATLAB

end

We use this function to generate a set of random variables that are distributed
according to the binomial distribution with parameters and
The histogram of the random variables is shown in Figure 4.9. Before moving
on, we offer the following more efficient way to generate binomial random
variables in MATLAB:

X = sum(rand(n,N) <= p);

�

PPPPooooiiiisssssosososonnnn

We use the inverse transform method for discrete random variables as
described in Ross [1997] to generate variates from the Poisson distribution.
We need the following recursive relationship between successive Poisson
probabilities

.

FFFFIIIIGUGUGUGURE 4.RE 4.RE 4.RE 4.9999

This is the histogram for the binomial random variables generated in Example 4.12. The
parameters for the binomial are and

n 6= p 0.5.=

0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

X

n 6= p 0.5.=

pi 1+ P X i=() λ
i 1+
-----------pi;= = i 0≥

© 2002 by Chapman & Hall/CRC

Chapter 4: Generating Random Variables 103

This leads to the following algorithm.

PROCEDURE - GENERATING POISSON RANDOM VARIABLES

1. Generate a uniform random number U.

2. Initialize the quantities: , , and .
3. If , then deliver . Return to step 1.

4. Else increment the values: , , and
.

5. Return to step 3.

This algorithm could be made more efficient when is large. The interested
reader is referred to Ross [1997] for more details.

Example 4.13
The following shows how to implement the procedure for generating Pois-
son random variables in MATLAB.

% function X = cspoirnd(lam,n)
% This function will generate Poisson
% random variables with parameter lambda.
% The reference for this is Ross, 1997, page 50.

function x = cspoirnd(lam,n)
x = zeros(1,n);
j = 1;
while j <= n
 flag = 1;
 % initialize quantities
 u = rand(1);
 i = 0;
 p = exp(-lam);
 F = p;
 while flag % generate the variate needed
 if u <= F % then accept
 x(j) = i;
 flag = 0;
 j = j+1;
 else % move to next probability
 p = lam*p/(i+1);
 i = i+1;
 F = F + p;
 end
 end

i 0= p0 e λ–= F0 p0=

U Fi≤ X i=

pi 1+ λpi i 1+()⁄= i i 1+=
Fi 1+ Fi pi 1++=

λ

© 2002 by Chapman & Hall/CRC

104 Computational Statistics Handbook with MATLAB

end

We can use this to generate a set of Poisson random variables with ,
and show a histogram of the data in Figure 4.10.

% Set the parameter for the Poisson.
lam = .5;
N = 500; % Sample size
x = cspoirnd(lam,N);
edges = 0:max(x);
f = histc(x,edges);
bar(edges,f/N,1,'w')

As an additional check to ensure that our algorithm is working correctly, we
can determine the observed relative frequency of each value of the random
variable X and compare that to the corresponding theoretical values.

% Determine the observed relative frequencies.
% These are the estimated values.
relf = zeros(1,max(x)+1);
for i = 0:max(x)
 relf(i+1) = length(find(x==i))/N;
end
% Use the Statistics Toolbox function to get the
% theoretical values.
y = poisspdf(0:4,.5);

When we print these to the MATLAB command window, we have the follow-
ing

% These are the estimated values.
relf = 0.5860 0.3080 0.0840 0.0200 0.0020
% These are the theoretical values.
y = 0.6065 0.3033 0.0758 0.0126 0.0016

�

DisDisDisDisccccrrrreeeetttteeee UnUnUnUniiiiforforforformmmm

When we implement some of the Monte Carlo methods in Chapter 6 (such as
the bootstrap), we will need the ability to generate numbers that follow the
discrete uniform distribution. This is a distribution where X takes on values
in the set , and the probability that X equals any of the numbers
is . This distribution can be used to randomly sample without replace-
ment from a group of N objects.

We can generate from the discrete uniform distribution using the following
transform

λ 0.5=

1 2 … N, , ,{ }
1 N⁄

© 2002 by Chapman & Hall/CRC

Chapter 4: Generating Random Variables 105

,

where the function , means to round up the argument y. The next
example shows how to implement this in MATLAB.

Example 4.14
The method for generating discrete uniform is implemented in the function
csdunrnd, given below.

% function X = csdunrnd(N,n)
% This function will generate random variables
% from the discrete uniform distribution. It picks
% numbers uniformly between 1 and N.

function X = csdunrnd(N,n)
X = ceil(N*rand(1,n));

To verify that we are generating the right random variables, we can look at
the observed relative frequencies. Each should have relative frequency of

.This is shown below where and the sample size is 500.

N = 5;
n = 500;
x = csdunrnd(N,n);

FFFFIIIIGUGUGUGURE 4.1RE 4.1RE 4.1RE 4.10000

This is the histogram for random variables generated from the Poisson with .

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

X

λ 0.5=

X NU=

y y 0≥

1 N⁄ N 5=

© 2002 by Chapman & Hall/CRC

106 Computational Statistics Handbook with MATLAB

% Determine the estimated relative frequencies.
relf = zeros(1,N);
for i = 1:N
 relf(i) = length(find(x==i))/n;
end

Printing out the observed relative frequencies, we have

relf = 0.1820 0.2080 0.2040 0.1900 0.2160

which is close to the theoretical value of .
�

4.5 MATLAB Code

The MATLAB Statistics Toolbox has functions that will generate random
variables from all of the distributions discussed in Section 2.6. As we
explained in that section, the analyst must keep in mind that probability dis-
tributions are often defined differently, so caution should be exercised when
using any software package. Table 4.1 provides a partial list of the MATLAB
functions that are available for random number generation. A complete list
can be found in Appendix E. As before, the reader should note that the
gamrnd, weibrnd, and exprnd functions use the alternative definition for
the given distribution (see 24).

TTTTAAAABBBBLLLLEEEE 4.14.14.14.1

Partial List of Functions in the MATLAB Statistics Toolbox for
Generating Random Variables

Distribution MATLAB Function

Beta betarnd

Binomial binornd

Chi-Square chi2rnd

Discrete Uniform unidrnd

Exponential exprnd

Gamma gamrnd

Normal normrnd

Poisson poissrnd

Continuous Uniform unifrnd

Weibull weibrnd

1 N⁄ 1 5⁄ 0.2= =

© 2002 by Chapman & Hall/CRC

Chapter 4: Generating Random Variables 107

Another function that might prove useful in implementing computational
statistics methods is called randperm. This is provided with the standard
MATLAB software package, and it generates random permutations of the
integers 1 to n. The result can be used to permute the elements of a vector. For
example, to permute the elements of a vector x of size n, use the following
MATLAB statements:

% Get the permuted indices.
ind = randperm(n);
% Now re-order based on the permuted indices.
xperm = x(ind);

We also provide some functions in the Computational Statistics Toolbox for
generating random variables. These are outlined in Table 4.2. Note that these
generate random variables using the distributions as defined in Chapter 2.

4.6 Further Reading

In this text we do not attempt to assess the computational efficiency of the
methods for generating random variables. If the statistician or engineer is
performing extensive Monte Carlo simulations, then the time it takes to gen-
erate random samples becomes important. In these situations, the reader is
encouraged to consult Gentle [1998] or Rubinstein [1981] for efficient algo-
rithms. Our goal is to provide methods that are easily implemented using
MATLAB or other software, in case the data analyst must write his own func-
tions for generating random variables from non-standard distributions.

TTTTAAAABBBBLLLLEEEE 4444.2.2.2.2

List of Functions from Chapter 4 Included in the Computational
Statistics Toolbox

Distribution MATLAB Function

Beta csbetarnd

Binomial csbinrnd

Chi-Square cschirnd

Discrete Uniform csdunrnd

Exponential csexprnd

Gamma csgamrnd

Multivariate Normal csmvrnd

Poisson cspoirnd

Points on a sphere cssphrnd

© 2002 by Chapman & Hall/CRC

108 Computational Statistics Handbook with MATLAB

There has been considerable research into methods for random number
generation, and we refer the reader to the sources mentioned below for more
information on the theoretical foundations. The book by Ross [1997] is an
excellent resource and is suitable for advanced undergraduate students. He
addresses simulation in general and includes a discussion of discrete event
simulation and Markov chain Monte Carlo methods. Another text that covers
the topic of random number generation and Monte Carlo simulation is Gen-
tle [1998]. This book includes an extensive discussion of uniform random
number generation and covers more advanced topics such as Gibbs sam-
pling. Two other resources on random number generation are Rubinstein
[1981] and Kalos and Whitlock [1986]. For a description of methods for gen-
erating random variables from more general multivariate distributions, see
Johnson [1987]. The article by Deng and Lin [2000] offers improvements on
some of the standard uniform random number generators.

A recent article in the MATLAB News & Notes [Spring, 2001] describes the
method employed in MATLAB for obtaining normally distributed random
variables. The algorithm that MATLAB uses for generating uniform random
numbers is described in a similar newsletter article and is available for down-
load at:

www.mathworks.com/company/newsletter/pdf/Cleve.pdf.

© 2002 by Chapman & Hall/CRC

www.mathworks.com/company/newsletter/pdf/Cleve.pdf.

Chapter 4: Generating Random Variables 109

Exercises

4.1. Repeat Example 4.3 using larger sample sizes. What happens to the
estimated probability mass function (i.e., the relative frequencies from
the random samples) as the sample size gets bigger?

4.2. Write the MATLAB code to implement Example 4.5. Generate 500
random variables from this distribution and construct a histogram
(hist function) to verify your code.

4.3. Using the algorithm implemented in Example 4.3, write a MATLAB
function that will take any probability mass function (i.e., a vector of
probabilities) and return the desired number of random variables
generated according to that probability function.

4.4. Write a MATLAB function that will return random numbers that are
uniformly distributed over the interval .

4.5. Write a MATLAB function that will return random numbers from the
normal distribution with mean and variance . The user should
be able to set values for the mean and variance as input arguments.

4.6. Write a function that will generate chi-square random variables with
 degrees of freedom by generating standard normals, squaring

them and then adding them up. This uses the fact that

is chi-square with degrees of freedom. Generate some random
variables and plot in a histogram. The degrees of freedom should be
an input argument set by the user.

4.7. An alternative method for generating beta random variables is
described in Rubinstein [1981]. Generate two variates and

, where the are from the uniform distribution. If
, then

,

is from a beta distribution with parameters and Implement this
algorithm.

4.8. Run Example 4.4 and generate 1000 random variables. Determine the
number of variates that were rejected and the total number generated
to obtain the random sample. What percentage were rejected? How
efficient was it?

a b,()

µ σ2

ν ν

X Z1
2 … Zν

2+ +=

ν

Y1 U1
1 α⁄=

Y2 U2
1 β⁄= Ui

Y1 Y2 1≤+

X
Y1

Y1 Y2+
------------------=

α β.

© 2002 by Chapman & Hall/CRC

110 Computational Statistics Handbook with MATLAB

4.9. Run Example 4.4 and generate 500 random variables. Plot a histogram
of the variates. Does it match the probability density function shown
in Figure 4.3?

4.10. Implement Example 4.5 in MATLAB. Generate 100 random variables.
What is the relative frequency of each value of the random variable

? Does this match the probability mass function?

4.11. Generate four sets of random variables with using
the function cschirnd. Create histograms for each sample. How does
the shape of the distribution depend on the degrees of freedom ?

4.12. Repeat Example 4.13 for larger sample sizes. Is the agreement better
between the observed relative frequencies and the theoretical values?

4.13. Generate 1000 binomial random variables for and
 In each case, determine the observed relative fre-

quencies and the corresponding theoretical probabilities. How is the
agreement between them?

4.14. The MATLAB Statistics Toolbox has a GUI called randtool. This
is an interactive demo that generates random variables from distri-
butions that are available in the toolbox. The user can change param-
eter values and see the results via a histogram. There are options to
change the sample size and to output the results. To start the GUI,
simply type randtool at the command line. Run the function and
experiment with the distributions that are discussed in the text (nor-
mal, exponential, gamma, beta, etc.).

4.15. The plot on the right in Figure 4.6 shows a histogram of beta random
variables with parameters . Construct a similar plot
using the information in Example 4.9.

1 … 5, ,
ν 2 5 15 20,, , ,=

ν

n 5=
p 0.3 0.5 0.8., ,=

α β 0.5= =

© 2002 by Chapman & Hall/CRC

Chapter 5
Exploratory Data Analysis

5.1 Introduction

Exploratory data analysis (EDA) is quantitative detective work according to
John Tukey [1977]. EDA is the philosophy that data should first be explored
without assumptions about probabilistic models, error distributions, number
of groups, relationships between the variables, etc. for the purpose of discov-
ering what they can tell us about the phenomena we are investigating. The
goal of EDA is to explore the data to reveal patterns and features that will
help the analyst better understand, analyze and model the data. With the
advent of powerful desktop computers and high resolution graphics capabil-
ities, these methods and techniques are within the reach of every statistician,
engineer and data analyst.

EDA is a collection of techniques for revealing information about the data
and methods for visualizing them to see what they can tell us about the
underlying process that generated it. In most situations, exploratory data
analysis should precede confirmatory analysis (e.g., hypothesis testing,
ANOVA, etc.) to ensure that the analysis is appropriate for the data set. Some
examples and goals of EDA are given below to help motivate the reader.

• If we have a time series, then we would plot the values over time
to look for patterns such as trends, seasonal effects or change
points. In Chapter 11, we have an example of a time series that
shows evidence of a change point in a Poisson process.

• We have observations that relate two characteristics or variables,
and we are interested in how they are related. Is there a linear or
a nonlinear relationship? Are there patterns that can provide
insight into the process that relates the variables? We will see exam-
ples of this application in Chapters 7 and 10.

• We need to provide some summary statistics that describe the data
set. We should look for outliers or aberrant observations that might
contaminate the results. If EDA indicates extreme observations are

© 2002 by Chapman & Hall/CRC

112 Computational Statistics Handbook with MATLAB

in the data set, then robust statistical methods might be more
appropriate. In Chapter 10, we illustrate an example where a graph-
ical look at the data indicates the presence of outliers, so we use a
robust method of nonparametric regression.

• We have a random sample that will be used to develop a model.
This model will be included in our simulation of a process (e.g.,
simulating a physical process such as a queue). We can use EDA
techniques to help us determine how the data might be distributed
and what model might be appropriate.

In this chapter, we will be discussing graphical EDA and how these tech-
niques can be used to gain information and insights about the data. Some
experts include techniques such as smoothing, probability density estima-
tion, clustering and principal component analysis in exploratory data analy-
sis. We agree that these can be part of EDA, but we do not cover them in this
chapter. Smoothing techniques are discussed in Chapter 10 where we present
methods for nonparametric regression. Techniques for probability density
estimation are presented in Chapter 8, but we do discuss simple histograms
in this chapter. Methods for clustering are described in Chapter 9. Principal
component analysis is not covered in this book, because the subject is dis-
cussed in many linear algebra texts [Strang, 1988; Jackson, 1991].

It is likely that some of the visualization methods in this chapter are famil-
iar to statisticians, data analysts and engineers. As we stated in Chapter 1,
one of the goals of this book is to promote the use of MATLAB for statistical
analysis. Some readers might not be familiar with the extensive graphics
capabilities of MATLAB, so we endeavor to describe the most useful ones for
data analysis. In Section 5.2, we consider techniques for visualizing univari-
ate data. These include such methods as stem-and-leaf plots, box plots, histo-
grams, and quantile plots. We turn our attention to techniques for visualizing
bivariate data in Section 5.3 and include a description of surface plots, scat-
terplots and bivariate histograms. Section 5.4 offers several methods for
viewing multi-dimensional data, such as slices, isosurfaces, star plots, paral-
lel coordinates, Andrews curves, projection pursuit, and the grand tour.

5.2 Exploring Univariate Data

Two important goals of EDA are: 1) to determine a reasonable model for the
process that generated the data, and 2) to locate possible outliers in the sam-
ple. For example, we might be interested in finding out whether the distribu-
tion that generated the data is symmetric or skewed. We might also like to
know whether it has one mode or many modes. The univariate visualization
techniques presented here will help us answer questions such as these.

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 113

HistoHistoHistoHistoggggrrrraaaammmmssss

A histogram is a way to graphically represent the frequency distribution of a
data set. Histograms are a good way to

• summarize a data set to understand general characteristics of the
distribution such as shape, spread or location,

• suggest possible probabilistic models, or

• determine unusual behavior.

In this chapter, we look only at the simple, basic histogram. Variants and
extensions of the histogram are discussed in Chapter 8.

A frequency histogram is obtained by creating a set of bins or intervals that
cover the range of the data set. It is important that these bins do not overlap
and that they have equal width. We then count the number of observations
that fall into each bin. To visualize this, we plot the frequency as the height of
a bar, with the width of the bar representing the width of the bin. The histo-
gram is determined by two parameters, the bin width and the starting point
of the first bin. We discuss these issues in greater detail in Chapter 8. Relative
frequency histograms are obtained by representing the height of the bin by
the relative frequency of the observations that fall into the bin.

The basic MATLAB package has a function for calculating and plotting a
univariate histogram. This function is illustrated in the example given below.

Example 5.1
In this example, we look at a histogram of the data in forearm. These data
[Hand, et al., 1994; Pearson and Lee, 1903] consist of 140 measurements of the
length in inches of the forearm of adult males. We can obtain a simple histo-
gram in MATLAB using these commands:

load forearm
subplot(1,2,1)
% The hist function optionally returns the
% bin centers and frequencies.
[n,x] = hist(forearm);
% Plot and use the argument of width=1
% to produce bars that touch.
bar(x,n,1);
axis square
title('Frequency Histogram')
% Now create a relative frequency histogram.
% Divide each box by the total number of points.
subplot(1,2,2)
bar(x,n/140,1)
title('Relative Frequency Histogram')
axis square

© 2002 by Chapman & Hall/CRC

114 Computational Statistics Handbook with MATLAB

These plots are shown in Figure 5.1. Notice that the shapes of the histograms
are the same in both types of histograms, but the vertical axis is different.
From the shape of the histograms, it seems reasonable to assume that the data
are normally distributed.
�

One problem with using a frequency or relative frequency histogram is that
they do not represent meaningful probability densities, because they do not
integrate to one. This can be seen by superimposing a corresponding normal
distribution over the relative frequency histogram as shown in Figure 5.2.

A density histogram is a histogram that has been normalized so it will inte-
grate to one. That means that if we add up the areas represented by the bars,
then they should add up to one. A density histogram is given by the follow-
ing equation

, (5.1)

where denotes the k-th bin, represents the number of data points that
fall into the k-th bin and h represents the width of the bins. In the following

FFFFIIIIGUGUGUGURE 5.RE 5.RE 5.RE 5.1111

On the left is a frequency histogram of the forearm data, and on the right is the relative
frequency histogram. These indicate that the distribution is unimodal and that the normal
distribution is a reasonable model.

16 18 20 22
0

5

10

15

20

25

30
Frequency Histogram

Length (inches)
16 18 20 22

0

0.05

0.1

0.15

0.2

0.25
Relative Frequency Histogram

Length (inches)

f̂ x() νk

nh
------= x in Bk

Bk νk

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 115

example, we reproduce the histogram of Figure 5.2 using the density histo-
gram.

Example 5.2
Here we explore the forearm data using a density histogram. Assuming a
normal distribution and estimating the parameters from the data, we can
superimpose a smooth curve that represents an estimated density for the nor-
mal distribution.

% Get parameter estimates for the normal distribution.
mu = mean(forearm);
v = var(forearm);
% Obtain normal pdf based on parameter estimates.
xp = linspace(min(forearm),max(forearm));
yp = normp(xp,mu,v);
% Get the information needed for a histogram.
[nu,x] = hist(forearm);
% Get the widths of the bins.
h = x(2)-x(1);

FFFFIIIIGUGUGUGURE 5.RE 5.RE 5.RE 5.2222

This shows a relative frequency histogram of the forearm data. Superimposed on the
histogram is the normal probability density function using parameters estimated from the
data. Note that the curve is higher than the histogram, indicating that the histogram is not
a valid probability density function.

16 17 18 19 20 21 22
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Relative Frequency Histogram and Density Estimate

Length (inches)

© 2002 by Chapman & Hall/CRC

116 Computational Statistics Handbook with MATLAB

% Plot as density histogram - Equation 5.1.
bar(x,nu/(140*h),1)
hold on
plot(xp,yp)
xlabel(‘Length (inches)’)
title('Density Histogram and Density Estimate')
hold off

The results are shown in Figure 5.3. Note that the assumption of normality
for the data is not unreasonable. The estimated density function and the den-
sity histogram match up quite well.
�

SSSStemtemtemtem----aaaandndndnd----LLLLeeeeaaaaffff

Stem-and-leaf plots were introduced by Tukey [1977] as a way of displaying
data in a structured list. Presenting data in a table or an ordered list does not
readily convey information about how the data are distributed, as is the case
with histograms.

FFFFIIIIGUGUGUGURE 5.RE 5.RE 5.RE 5.3333

Density histogram for the forearm data. The curve represents a normal probability density
function with parameters given by the sample mean and sample variance of the data. From
this we see that the normal distribution is a reasonable probabilistic model.

16 17 18 19 20 21 22
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Density Histogram and Density Estimate

Length (inches)

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 117

If we have data where each observation consists of at least two digits, then
we can construct a stem-and-leaf diagram. To display these, we separate each
measurement into two parts: the stem and the leaf. The stems are comprised
of the leading digit or digits, and the remaining digit makes up the leaf. For
example, if we had the number 75, then the stem is the 7, and the leaf is the 5.
If the number is 203, then the stem is 20 and the leaf is 3.

The stems are listed to the left of a vertical line with all of the leaves corre-
sponding to that stem listed to the right. If the data contain decimal places,
then they can be rounded for easier display. An alternative is to move the dec-
imal place to specify the appropriate leaf unit. We provide a function with the
text that will construct stem-and-leaf plots, and its use is illustrated in the
next example.

Example 5.3
The heights of 32 Tibetan skulls [Hand, et al. 1994; Morant, 1923] measured
in millimeters is given in the file tibetan. These data comprise two groups
of skulls collected in Tibet. One group of 17 skulls comes from graves in Sik-
kim and nearby areas of Tibet and the other 15 skulls come from a battlefield
in Lhasa. The original data contain five measurements, but for this example,
we only use the fourth measurement. This is the upper face height, and we
round to the nearest millimeter. We use the function csstemleaf that is pro-
vided with the text.

load tibetan
% This loads up all 5 measurements of the skulls.
% We use the fourth characteristic to illustrate
% the stem-and-leaf plot. We first round them.
x = round(tibetan(:,4));
csstemleaf(x)
title('Height (mm) of Tibetan Skulls')

The resulting stem-and-leaf is shown in Figure 5.4. From this plot, we see
there is not much evidence that there are two groups of skulls, if we look only
at the characteristic of upper face height. We will explore these data further
in Chapter 9, where we apply pattern recognition methods to the problem.
�

It is possible that we do not see much evidence for two groups of skulls
because there are too few stems. EDA is an iterative process, where the ana-
lyst should try several visualization methods in search of patterns and infor-
mation in the data. An alternative approach is to plot more than one line per
stem. The function csstemleaf has an optional argument that allows the
user to specify two lines per stem. The default value is one line per stem, as
we saw in Example 5.3. When we plot two lines per stem, leaves that corre-
spond to the digits 0 through 4 are plotted on the first line and those that have
digits 5 through 9 are shown on the second line. A stem-and-leaf with two
lines per stem for the Tibetan skull data is shown in Figure 5.5. In practice,

© 2002 by Chapman & Hall/CRC

118 Computational Statistics Handbook with MATLAB

FFFFIIIIGUGUGUGURE 5.RE 5.RE 5.RE 5.4444

This shows the stem-and-leaf plot for the upper face height of 32 Tibetan skulls. The data
have been rounded to the nearest millimeter.

FFFFIIIIGUGUGUGURE 5.RE 5.RE 5.RE 5.5555

This shows a stem-and-leaf plot for the upper face height of 32 Tibetan skulls where we
now have two lines per stem. Note that we see approximately the same information (a
unimodal distribution) as in Figure 5.4.

6

7

8

2 3 5 5 6 8 9

0 0 1 1 1 2 2 3 4 4 4 4 5 6 6 7 7 7 8 9 9

0 1 2 3

Height (mm) of Tibetan Skulls

6

6

7

7

8

8

2 3

5 5 6 8 9

0 0 1 1 1 2 2 3 4 4 4 4

5 6 6 7 7 7 8 9 9

0 1 2 3

Height (mm) of Tibetan Skulls

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 119

one could plot a stem-and-leaf with one and with two lines per stem as a way
of discovering more about the data. The stem-and-leaf is useful in that it
approximates the shape of the density, and it also provides a listing of the
data. One can usually recover the original data set from the stem-and-leaf (if
it has not been rounded), unlike the histogram. A disadvantage of the stem-
and-leaf plot is that it is not useful for large data sets, while a histogram is
very effective in reducing and displaying massive data sets.

QuQuQuQuaaaannnnttttile-Basile-Basile-Basile-Baseeeed Plotsd Plotsd Plotsd Plots - Continuous- Continuous- Continuous- Continuous DDDDiiiissssttttributionributionributionributionssss

If we need to compare two distributions, then we can use the quantile plot to
visually compare them. This is also applicable when we want to compare a
distribution and a sample or to compare two samples. In comparing the dis-
tributions or samples, we are interested in knowing how they are shifted rel-
ative to each other. In essence, we want to know if they are distributed in the
same way. This is important when we are trying to determine the distribution
that generated our data, possibly with the goal of using that information to
generate data for Monte Carlo simulation. Another application where this is
useful is in checking model assumptions, such as normality, before we con-
duct our analysis.

In this part, we discuss several versions of quantile-based plots. These
include quantile-quantile plots (q-q plots) and quantile plots (sometimes
called a probability plot). Quantile plots for discrete data are discussed next.
The quantile plot is used to compare a sample with a theoretical distribution.
Typically, a q-q plot (sometimes called an empirical quantile plot) is used to
determine whether two random samples are generated by the same distribu-
tion. It should be noted that the q-q plot can also be used to compare a ran-
dom sample with a theoretical distribution by generating a sample from the
theoretical distribution as the second sample.

Q-Q-Q-Q-QQQQ PloPloPloPlotttt

The q-q plot was originally proposed by Wilk and Gnanadesikan [1968] to
visually compare two distributions by graphing the quantiles of one versus
the quantiles of the other. Say we have two data sets consisting of univariate
measurements. We denote the order statistics for the first data set by

.

Let the order statistics for the second data set be

,

with .

x 1() x 2() … x n(), , ,

y 1() y 2() … y m(), , ,

m n≤

© 2002 by Chapman & Hall/CRC

120 Computational Statistics Handbook with MATLAB

We look first at the case where the sizes of the data sets are equal, so
. In this case, we plot as points the sample quantiles of one data set

versus the other data set. This is illustrated in Example 5.4. If the data sets
come from the same distribution, then we would expect the points to approx-
imately follow a straight line.

A major strength of the quantile-based plots is that they do not require the
two samples (or the sample and theoretical distribution) to have the same
location and scale parameter. If the distributions are the same, but differ in
location or scale, then we would still expect the quantile-based plot to pro-
duce a straight line.

Example 5.4
We will generate two sets of normal random variables and construct a q-q
plot. As expected, the q-q plot (Figure 5.6) follows a straight line, indicating
that the samples come from the same distribution.

% Generate the random variables.
x = randn(1,75);
y = randn(1,75);
% Find the order statistics.
xs = sort(x);
ys = sort(y);
% Now construct the q-q plot.
plot(xs,ys,'o')
xlabel('X - Standard Normal')
ylabel('Y - Standard Normal')
axis equal

If we repeat the above MATLAB commands using a data set generated from
an exponential distribution and one that is generated from the standard nor-
mal, then we have the plot shown in Figure 5.7. Note that the points in this q-
q plot do not follow a straight line, leading us to conclude that the data are
not generated from the same distribution.
�

We now look at the case where the sample sizes are not equal. Without loss
of generality, we assume that . To obtain the q-q plot, we graph the ,

 against the quantile of the other data set. Note that
this definition is not unique [Cleveland, 1993]. The quantiles of
the x data are usually obtained via interpolation, and we show in the next
example how to use the function csquantiles to get the desired plot.

Users should be aware that q-q plots provide a rough idea of how similar
the distribution is between two random samples. If the sample sizes are
small, then a lot of variation is expected, so comparisons might be suspect. To
help aid the visual comparison, some q-q plots include a reference line. These
are lines that are estimated using the first and third quartiles of
each data set and extending the line to cover the range of the data. The

m n=

m n< y i()

i 1 … m, ,= i 0.5–() m⁄
i 0.5–() m⁄

q0.25 q0.75,()

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 121

MATLAB Statistics Toolbox provides a function called qqplot that displays
this type of plot. We show below how to add the reference line.

Example 5.5
This example shows how to do a q-q plot when the samples do not have the
same number of points. We use the function csquantiles to get the
required sample quantiles from the data set that has the larger sample size.
We then plot these versus the order statistics of the other sample, as we did
in the previous examples. Note that we add a reference line based on the first
and third quartiles of each data set, using the function polyfit (see
Chapter 7 for more information on this function).

% Generate the random variables.
m = 50;
n = 75;
x = randn(1,n);
y = randn(1,m);
% Find the order statistics for y.
ys = sort(y);
% Now find the associated quantiles using the x.
% Probabilities for quantiles:
p = ((1:m) - 0.5)/m;

FFFFIIIIGUGUGUGURE 5.RE 5.RE 5.RE 5.6666

This is a q-q plot of x and y where both data sets are generated from a standard normal
distribution. Note that the points follow a line, as expected.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

X − Standard Normal

Y
 −

 S
ta

nd
ar

d
N

or
m

al

© 2002 by Chapman & Hall/CRC

122 Computational Statistics Handbook with MATLAB

xs = csquantiles(x,p);
% Construct the plot.
plot(xs,ys,'ko')
% Get the reference line.
% Use the 1st and 3rd quartiles of each set to
% get a line.
qy = csquantiles(y,[0.25,0.75]);
qx = csquantiles(x,[0.25,0.75]);
[pol, s] = polyfit(qx,qy,1);
% Add the line to the figure.
yhat = polyval(pol,xs);
hold on
plot(xs,yhat,'k')
xlabel('Sample Quantiles - X'),
ylabel('Sorted Y Values')
hold off

From Figure 5.8, the assumption that each data set is generated according to
the same distribution seems reasonable.
�

FFFFIIIIGUGUGUGURE 5.RE 5.RE 5.RE 5.7777

This is a q-q plot where one random sample is generated from the exponential distribution
and one is generated by a standard normal distribution. Note that the points do not follow
a straight line, indicating that the distributions that generated the random variables are not
the same.

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−3

−2

−1

0

1

2

3

X − Exponential

Y
 −

 S
ta

nd
ar

d
N

or
m

al

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 123

QuQuQuQuaaaannnnttttile Plotile Plotile Plotile Plotssss

A quantile plot or probability plot is one where the theoretical quantiles are
plotted against the order statistics for the sample. Thus, on one axis we plot
the and on the other axis we plot

,

where denotes the inverse of the cumulative distribution function for
the hypothesized distribution. As before, the 0.5 in the above argument can
be different [Cleveland, 1993]. A well-known example of a quantile plot is the
normal probability plot, where the ordered sample versus the quantiles of
the normal distribution are plotted.

The MATLAB Statistics Toolbox has two functions for obtaining quantile
plots. One is called normplot, and it produces a normal probability plot. So,
if one would like to assess the assumption that a data set comes from a nor-
mal distribution, then this is the one to use. There is also a function for con-
structing a quantile plot that compares a data set to the Weibull distribution.
This is called weibplot. For quantile plots with other theoretical distribu-

FFFFIIIIGUGUGUGURE 5.RE 5.RE 5.RE 5.8888

Here we show the q-q plot of Example 5.5. In this example, we also show the reference line
estimated from the first and third quartiles. The q-q plot shows that the data do seem to
come from the same distribution.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Sample Quantiles − X

S
or

te
d

Y
 V

al
ue

s

x i()

F 1– i 0.5–
n

F 1– .()

© 2002 by Chapman & Hall/CRC

124 Computational Statistics Handbook with MATLAB

tions, one can use the MATLAB code given below, substituting the appropri-
ate function to get the theoretical quantiles.

Example 5.6
This example illustrates how you can display a quantile plot in MATLAB. We
first generate a random sample from the standard normal distribution as our
data set. The sorted sample is an estimate of the quantile, so we
next calculate these probabilities and get the corresponding theoretical quan-
tiles. Finally, we use the function norminv from the Statistics Toolbox to get
the theoretical quantiles for the normal distribution. The resulting quantile
plot is shown in Figure 5.9.

% Generate a random sample from a standard normal.
x = randn(1,100);
% Get the probabilities.
prob = ((1:100)-0.5)/100;
% Now get the theoretical quantiles.
qp = norminv(prob,0,1);
% Now plot theoretical quantiles versus
% the sorted data.
plot(sort(x),qp,'ko')
xlabel('Sorted Data')
ylabel('Standard Normal Quantiles')

To further illustrate these concepts, let’s see what happens when we generate
a random sample from a uniform distribution and check it against the
normal distribution. The MATLAB code is given below, and the quantile plot
is shown in Figure 5.10. As expected, the points do not lie on a line, and we
see that the data are not from a normal distribution.

% Generate a random sample from a
% uniform distribution.
x = rand(1,100);
% Get the probabilities.
prob = ((1:100)-0.5)/100;
% Now get the theoretical quantiles.
qp = norminv(prob,0,1);
% Now plot theoretical quantiles versus
% the sorted data.
plot(sort(x),qp,'ko')
ylabel('Standard Normal Quantiles')
xlabel('Sorted Data')

�

i 0.5–() n⁄

0 1,()

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 125

FFFFIIIIGUGUGUGURE 5.RE 5.RE 5.RE 5.9999

This is a quantile plot or normal probability plot of a random sample generated from a
standard normal distribution. Note that the points approximately follow a straight line,
indicating that the normal distribution is a reasonable model for the sample.

FFFFIIIIGUGUGUGURE 5.10RE 5.10RE 5.10RE 5.10

Here we have a quantile plot where the sample is generated from a uniform distribution,
and the theoretical quantiles are from the normal distribution. The shape of the curve verifies
that the sample is not from a normal distribution.

−3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

Sorted Data

S
ta

nd
ar

d
N

or
m

al
 Q

ua
nt

ile
s

0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0

1

2

3

S
ta

nd
ar

d
N

or
m

al
 Q

ua
nt

ile
s

Sorted Data

© 2002 by Chapman & Hall/CRC

126 Computational Statistics Handbook with MATLAB

QuQuQuQuaaaannnnttttile Plotsile Plotsile Plotsile Plots ---- Discrete DistDiscrete DistDiscrete DistDiscrete Distrrrributionibutionibutionibutionssss

Previously, we discussed quantile plots that are primarily used for continu-
ous data. We would like to have a similar technique for graphically compar-
ing the shapes of discrete distributions. Hoaglin and Tukey [1985] developed
several plots to accomplish this. We present two of them here: the Poisson-
ness plot and the binomialness plot. These will enable us to search for evi-
dence that our discrete data follow a Poisson or a binomial distribution. They
also serve to highlight which points might be incompatible with the model.

PPPPooooiiiisssssonnesonnesonnesonnesssss Ps Ps Ps Pllllooootttt

Typically, discrete data are whole number values that are often obtained by
counting the number of times something occurs. For example, these might be
the number of traffic fatalities, the number of school-age children in a house-
hold, the number of defects on a hard drive, or the number of errors in a com-
puter program. We sometimes have the data in the form of a frequency
distribution that lists the possible count values (e.g.,) and the num-
ber of observations that are equal to the count values.

The counts will be denoted as k, with . We will assume that
L is the maximum observed value for our discrete variable or counts in the
data set and that we are interested in all counts between 0 and L. Thus, the
total number of observations in the sample is

,

where represents the number of observations that are equal to the count k.
A basic Poissonness plot is constructed by plotting the count values k on

the horizontal axis and

(5.2)

on the vertical axis. These are plotted as symbols, similar to the quantile plot.
If a Poisson distribution is a reasonable model for the data, then this should
follow a straight line. Systematic curvature in the plot would indicate that
these data are not consistent with a Poisson distribution. The values for
tend to have more variability when is small, so Hoaglin and Tukey [1985]
suggest plotting a special symbol or a ‘1’ to highlight these points.

Example 5.7
This example is taken from Hoaglin and Tukey [1985]. In the late 1700’s, Alex-
ander Hamilton, John Jay and James Madison wrote a series of 77 essays
under the title of The Federalist. These appeared in the newspapers under a

0.1 2 …, ,

k 0 1 … L, , ,=

N nk

k 0=

L

∑=

nk

ϕ nk() k!nk N⁄()ln=

ϕ nk()
nk

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 127

pseudonym. Most analysts accept that John Jay wrote 5 essays, Alexander
Hamilton wrote 43, Madison wrote 14, and 3 were jointly written by Hamil-
ton and Madison. Later, Hamilton and Madison claimed that they each solely
wrote the remaining 12 papers. To verify this claim, Mosteller and Wallace
[1964] used statistical methods, some of which were based on the frequency
of words in blocks of text. Table 5.1 gives the frequency distribution for the
word may in papers that were known to be written by Madison. We are not
going to repeat the analysis of Mosteller and Wallace, we are simply using the
data to illustrate a Poissonness plot. The following MATLAB code produces
the Poissonness plot shown in Figure 5.11.

k = 0:6; % vector of counts
n_k = [156 63 29 8 4 1 1];
N=sum(n_k);
% Get vector of factorials.
fact = zeros(size(k));
for i = k
 fact(i+1) = factorial(i);
end
% Get phi(n_k) for plotting.
phik = log(fact.*n_k/N);
% Find the counts that are equal to 1.
% Plot these with the symbol 1.
% Plot rest with a symbol.
ind = find(n_k~=1);
plot(k(ind),phik(ind),'o')
ind = find(n_k==1);
if ~isempty(ind)
 text(k(ind),phik(ind),'1')

TTTTAAAABBBBLLLLEEEE 5.15.15.15.1

Frequency distribution of the word may in essays known to
be written by James Madison. The represent the number
of blocks of text that contained k occurrences of the word may
[Hoaglin and Tukey, 1985].

Number of Occurrences of the
Word may Number of Blocks

0 156
1 63
2 29
3 8
4 4
5 1
6 1

nk

k() nk()

© 2002 by Chapman & Hall/CRC

128 Computational Statistics Handbook with MATLAB

end
% Add some whitespace to see better.
axis([-0.5 max(k)+1 min(phik)-1 max(phik)+1])
xlabel('Number of Occurrences - k')
ylabel('\phi (n_k)')

The Poissonness plot has significant curvature indicating that the Poisson
distribution is not a good model for these data. There are also a couple of
points with a frequency of 1 that seem incompatible with the rest of the data.
Thus, if a statistical analysis of these data relies on the Poisson model, then
any results are suspect.
�

Hoaglin and Tukey [1985] suggest a modified Poissonness plot that is
obtained by changing the , which helps account for the variability of the
individual values. They propose the following change:

(5.3)

FFFFIIIIGUGUGUGURE 5.RE 5.RE 5.RE 5.11111111

This is a basic Poissonness plot using the data in Table 5.1. The symbol 1 indicates that
.

0 1 2 3 4 5 6 7

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

1

1

Number of Occurrences − k

φ
(n

k)

nk 1=

nk

nk
*

nk 0.67– 0.8nk N;⁄– nk 2≥

1 e⁄ ; nk 1=

undefined; nk 0.=

=

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 129

As we will see in the following example where we apply the modified Pois-
sonness plot to the word frequency data, the main effect of the modified plot
is to highlight those data points with small counts that do not behave con-
trary to the other observations. Thus, if a point that is plotted as a 1 in a mod-
ified Poissonness plot seems different from the rest of the data, then it should
be investigated.

Example 5.8
We return to the word frequency data in Table 5.1 and show how to get a
modified Poissonness plot. In this modified version shown in Figure 5.12, we
see that the points where do not seem so different from the rest of the
data.

% Poissonness plot - modified
k = 0:6; % vector of counts
% Find n*_k.
n_k = [156 63 29 8 4 1 1];
N = sum(n_k);
phat = n_k/N;
nkstar = n_k-0.67-0.8*phat;
% Get vector of factorials.
fact = zeros(size(k));
for i = k
 fact(i+1) = factorial(i);
end
% Find the frequencies that are 1; nkstar=1/e.
ind1 = find(n_k==1);
nkstar(ind1)= 1/2.718;
% Get phi(n_k) for plotting.
phik = log(fact.*nkstar/N);
ind = find(n_k~=1);
plot(k(ind),phik(ind),'o')
if ~isempty(ind1)
 text(k(ind1),phik(ind1),'1')
end
% Add some whitespace to see better.
axis([-0.5 max(k)+1 min(phik)-1 max(phik)+1])
xlabel('Number of Occurrences - k')
ylabel('\phi (n^*_k)')

�

BinomialnesBinomialnesBinomialnesBinomialnesssss PloPloPloPlotttt

A binomialness plot is obtained by plotting k along the horizontal axis and
plotting

nk 1=

© 2002 by Chapman & Hall/CRC

130 Computational Statistics Handbook with MATLAB

, (5.4)

along the vertical axis. Recall that n represents the number of trials, and is
given by Equation 5.3. As with the Poissonness plot, we are looking for an
approximate linear relationship between k and . An example of the
binomialness plot is given in Example 5.9.

Example 5.9
Hoaglin and Tukey [1985] provide a frequency distribution representing the
number of females in 100 queues of length 10. These data are given in Table
5.2. The MATLAB code to display a binomialness plot for is given
below. Note that we cannot display for (in this example),
because it is not defined for . The resulting binomialness plot is shown
in Figure 5.13, and it indicates a linear relationship. Thus, the binomial model
for these data seems adequate.

% Binomialness plot.

FFFFIIIIGUGUGUGURE 5.1RE 5.1RE 5.1RE 5.12222

This is a modified Poissonness plot for the word frequency data in Table 5.1. Here the counts
where do not seem radically different from the rest of the observations.

0 1 2 3 4 5 6 7

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1

1

Number of Occurrences − k

φ
(n

* k)

nk 1=

ϕ nk
*()

nk
*

N
n

k

×

ln=

nk
*

ϕ nk
*()

n 10=
ϕ nk

*() k 10=
nk 0=

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 131

k = 0:9;
n = 10;
n_k = [1 3 4 23 25 19 18 5 1 1];
N = sum(n_k);
nCk = zeros(size(k));
for i = k
 nCk(i+1) = cscomb(n,i);
end
phat = n_k/N;
nkstar = n_k-0.67-0.8*phat;
% Find the frequencies that are 1; nkstar=1/e.
ind1 = find(n_k==1);
nkstar(ind1) = 1/2.718;
% Get phi(n_k) for plotting.
phik = log(nkstar./(N*nCk));
% Find the counts that are equal to 1.
ind = find(n_k~=1);
plot(k(ind),phik(ind),'o')
if ~isempty(ind1)
 text(k(ind1),phik(ind1),'1')
end
% Add some whitespace to see better.
axis([-0.5 max(k)+1 min(phik)-1 max(phik)+1])
xlabel('Number of Females - k')
ylabel('\phi (n^*_k)')

�

TTTTAAAABBBBLLLLEEEE 5.25.25.25.2

Frequency Distribution for the Number of Females in a
Queue of Size 10 [Hoaglin and Tukey, 1985]

Number of Females Number of Blocks

0 1
1 3
2 4
3 23
4 25
5 19
6 18
7 5
8 1
9 1

10 0

k() nk()

© 2002 by Chapman & Hall/CRC

132 Computational Statistics Handbook with MATLAB

BoBoBoBoxxxx PlotsPlotsPlotsPlots

Box plots (sometimes called box-and-whisker diagrams) have been in use for
many years [Tukey, 1977]. As with most visualization techniques, they are
used to display the distribution of a sample. Five values from a data set are
used to construct the box plot. These are the three sample quartiles

, the minimum value in the sample and the maximum value.
There are many variations of the box plot, and it is important to note that

they are defined differently depending on the software package that is used.
Frigge, Hoaglin and Iglewicz [1989] describe a study on how box plots are
implemented in some popular statistics programs such as Minitab, S, SAS,
SPSS and others. The main difference lies in how outliers and quartiles are
defined. Therefore, depending on how the software calculates these, different
plots might be obtained [Frigge, Hoaglin and Iglewicz, 1989].

Before we describe the box plot, we need to define some terms. Recall from
Chapter 3, that the interquartile range (IQR) is the difference between the
first and the third sample quartiles. This gives the range of the middle 50% of
the data. It is estimated from the following

. (5.5)

FFFFIIIIGUGUGUGURE 5.1RE 5.1RE 5.1RE 5.13333

This shows the binomialness plot for the data in Table 5.2. From this it seems reasonable to
use the binomial distribution to model the data.

0 1 2 3 4 5 6 7 8 9 10

−10

−9.5

−9

−8.5

−8

−7.5

−7

−6.5

−6

−5.5

−5

1

1

1

Number of Females − k

φ
(n

* k)

q̂0.25 q̂0.5 q̂0.75, ,()

IQRˆ q̂0.75 q̂0.25–=

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 133

Two limits are also defined: a lower limit (LL) and an upper limit (UL). These
are calculated from the estimated IQR as follows

(5.6)

The idea is that observations that lie outside these limits are possible outliers.
Outliers are data points that lie away from the rest of the data. This might
mean that the data were incorrectly measured or recorded. On the other
hand, it could mean that they represent extreme points that arise naturally
according to the distribution. In any event, they are sample points that are
suitable for further investigation.

Adjacent values are the most extreme observations in the data set that are
within the lower and the upper limits. If there are no potential outliers, then
the adjacent values are simply the maximum and the minimum data points.

To construct a box plot, we place horizontal lines at each of the three quar-
tiles and draw vertical lines to create a box. We then extend a line from the
first quartile to the smallest adjacent value and do the same for the third quar-
tile and largest adjacent value. These lines are sometimes called the whiskers.
Finally, any possible outliers are shown as an asterisk or some other plotting
symbol. An example of a box plot is shown in Figure 5.14.

Box plots for different samples can be plotted together for visually compar-
ing the corresponding distributions. The MATLAB Statistics Toolbox con-
tains a function called boxplot for creating this type of display. It displays
one box plot for each column of data. When we want to compare data sets, it
is better to display a box plot with notches. These notches represent the
uncertainty in the locations of central tendency and provide a rough measure
of the significance of the differences between the values. If the notches do not
overlap, then there is evidence that the medians are significantly different.
The length of the whisker is easily adjusted using optional input arguments
to boxplot. For more information on this function and to find out what
other options are available, type help boxplot at the MATLAB command
line.

Example 5.10
In this example, we first generate random variables from a uniform distribu-
tion on the interval , a standard normal distribution, and an exponen-
tial distribution. We will then display the box plots corresponding to each
sample using the MATLAB function boxplot.

% Generate a sample from the uniform distribution.
xunif = rand(100,1);
% Generate sample from the standard normal.
xnorm = randn(100,1);
% Generate a sample from the exponential distribution.

LL q̂0.25 1.5 IQRˆ⋅–=

UL q̂0.75 1.5 IQR .ˆ⋅+=

0 1,()

© 2002 by Chapman & Hall/CRC

134 Computational Statistics Handbook with MATLAB

% NOTE: this function is from the Statistics Toolbox.
xexp = exprnd(1,100,1);
boxplot([xunif,xnorm,xexp],1)

It can be seen in Figure 5.15 that the box plot readily conveys the shape of the
distribution. A symmetric distribution will have whiskers with approxi-
mately equal lengths, and the two sides of the box will also be approximately
equal. This would be the case for the uniform or normal distribution. A
skewed distribution will have one side of the box and whisker longer than
the other. This is seen in Figure 5.15 for the exponential distribution. If the
interquartile range is small, then the data in the middle are packed around
the median. Conversely, if it is large, then the middle 50% of the data are
widely dispersed.
�

FFFFIIIIGUGUGUGURE 5.1RE 5.1RE 5.1RE 5.14444

An example of a box plot with possible outliers shown as points.

1

−3

−2

−1

0

1

2

3

V
al

ue
s

Column Number

Quartiles

Possible Outliers

Adjacent
Values

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 135

5.3 Exploring Bivariate and Trivariate Data

Using Cartesian coordinates, we can view up to three dimensions. For exam-
ple, we could view bivariate data as points or trivariate data as a point cloud.
We could also view a bivariate function, as a surface. Visualizing
anything more than three dimensions is very difficult, but we do offer some
techniques in the next section. In this section, we present several methods for
visualizing 2-D and 3-D data, looking first at bivariate data. Most of the tech-
niques that we discuss are readily available in the basic MATLAB program.

SSSSccccaaaattttterplotterplotterplotterplotssss

Perhaps one of the easiest ways to visualize bivariate data is with the scatter-
plot. A scatterplot is obtained by displaying the ordered pairs as points using
some plotting symbol. This type of plot conveys useful information such as
how the data are distributed in the two dimensions and how the two vari-
ables are related (e.g., a linear or a nonlinear relationship). Before any model-

FFFFIIIIGUGUGUGURE 5.1RE 5.1RE 5.1RE 5.15555

Here we have three box plots. The one on the left is for a sample from the uniform distri-
bution. The data for the middle box plot came from a standard normal distribution, while
the data for the box plot on the right came from an exponential. Notice that the shape of
each distribution is apparent from the information contained in the box plots.

1 2 3

−3

−2

−1

0

1

2

3

4

5

6
V

al
ue

s

Column Number

z f x y,()=

© 2002 by Chapman & Hall/CRC

136 Computational Statistics Handbook with MATLAB

ing, such as regression, is done using bivariate data, the analyst should
always look at a scatterplot to see what type of relationship is reasonable. We
will explore this further in Chapters 7 and 10.

A scatterplot can be obtained easily in MATLAB using the plot command.
One simply enters the marker style or plotting symbol as one of the argu-
ments. See the help on plot for more information on what characters are
available. By entering a marker (or line) style, you tell MATLAB that you do
not want to connect the points with a straight line, which is the default. We
have already seen many examples of how to use the plot function in this
way when we constructed the quantile and q-q plots.

An alternative function for scatterplots that is available with MATLAB is
the function called scatter. This function takes the input vectors x and y
and plots them as symbols. There are optional arguments that will plot the
markers as different colors and sizes. These alternatives are explored in
Example 5.11.

Example 5.11
We first generate a set of bivariate normal random variables using the tech-
nique described in Chapter 4. However, it should be noted that we find the
matrix R in Equation 4.19 using singular value decomposition rather than
Cholesky factorization. We then create a scatterplot using the plot function
and the scatter function. The resulting plots are shown in Figure 5.16 and
Figure 5.17.

% Create a positive definite covariance matrix.
vmat = [2, 1.5; 1.5, 9];
% Create mean at (2,3).
mu = [2 3];
[u,s,v] = svd(vmat);
vsqrt = (v*(u'.*sqrt(s)))';
% Get standard normal random variables.
td = randn(250,2);
% Use x=z*sigma+mu to transform - see Chapter 4.
data = td*vsqrt+ones(250,1)*mu;
% Create a scatterplot using the plot function.
% Figure 5.16.
plot(data(:,1),data(:,2),'x')
axis equal
% Create a scatterplot using the scatter fumction.
% Figure 5.17.
% Use filled-in markers.
scatter(data(:,1),data(:,2),'filled')
axis equal
box on

�

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 137

FFFFIIIIGUGUGUGURE 5.1RE 5.1RE 5.1RE 5.16666

This is a scatterplot of the sample in Example 5.11 using the plot function. We can see that
the data seem to come from a bivariate normal distribution. Here we use 'x' as an argument
to the plot function to plot the symbols as x’s.

FFFFIIIIGUGUGUGURE 5.1RE 5.1RE 5.1RE 5.17777

This is a scatterplot of the sample in Example 5.11 using the scatter function with filled
markers.

0 0.5 1 1.5 2 2.5 3 3.5

2

2.5

3

3.5

4

4.5

0 0.5 1 1.5 2 2.5 3 3.5

2

2.5

3

3.5

4

4.5

© 2002 by Chapman & Hall/CRC

138 Computational Statistics Handbook with MATLAB

SSSSuuuurrrrffffaaaace Plotce Plotce Plotce Plotssss

If we have data that represents a function defined over a bivariate domain,
such as , then we can view our values for z as a surface. MATLAB
provides two functions that display a matrix of z values as a surface: mesh
and surf.

The mesh function displays the values as points above a rectangular grid
in the x-y plane and connects adjacent points with straight lines. The mesh
lines can be colored using various options, but the default method maps the
height of the surface to a color.

The surf function is similar to mesh, except that the open spaces between
the lines are filled in with color, with lines shown in black. Other options
available with the shading command remove the lines or interpolate the
color across the patches. An example of where the ability to display a surface
can be used is in visualizing a probability density function (see Chapter 8).

Example 5.12
In this example, we begin by generating a grid over which we evaluate a
bivariate normal density function. We then calculate the z values that corre-
spond to the function evaluated at each x and y. We can display this as a sur-
face using surf, which is shown in Figure 5.18.

% Create a bivariate standard normal.
% First create a grid for the domain.
[x,y] = meshgrid(-3:.1:3,-3:.1:3);
% Evaluate using the bivariate standard normal.
z = (1/(2*pi))*exp(-0.5*(x.^2+y.^2));
% Do the plot as a surface.
surf(x,y,z)

�

Special effects can be achieved by changing color maps and using lighting.
For example, lighting and color can help highlight structure or features on
functions that have many bumps or a jagged surface. We will see some exam-
ples of how to use these techniques in the next section and in the exercises at
the end of the chapter.

Contour PlotContour PlotContour PlotContour Plotssss

We can also use contour plots to view our surface. Contour plots show lines
of constant surface values, similar to topographical maps. Two functions are
available in MATLAB for creating 2-D and 3-D contour plots. These are called
contour and contour3.

The pcolor function shows the same information that is in a contour plot
by mapping the surface height to a set of colors. It is sometimes useful to com-
bine the two on the same plot. MATLAB provides the contourf function

z f x y,()=

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 139

that will create a combination pcolor and contour plot. The various
options that are available for creating contour plots are illustrated in
Example 5.13.

Example 5.13
MATLAB has a function called peaks that returns a surface with peaks and
depressions that can be used to illustrate contour plots. We show how to use
the peaks function in this example. The following MATLAB code demon-
strates how to create the 2-D contour plot in Figure 5.19.

% Get the data for plotting.
[x,y,z] = peaks;
% Create a 2-D contour plot with labels.
% This returns the information for the labels.
c = contour(x,y,z);
% Add the labels to the plot.
clabel(c)

A filled contour plot, which is a combination of pcolor and contour, is
given in Figure 5.20. The MATLAB command needed to get this plot is given
here.

% Create a 2-D filled contour plot.
contourf(x,y,z,15)

FFFFIIIIGUGUGUGURE 5.1RE 5.1RE 5.1RE 5.18888

This shows a surf plot of a bivariate normal probability density function.

−3
−2

−1
0

1
2

3

−2

0

2

0.02

0.04

0.06

0.08

0.1

0.12

0.14

© 2002 by Chapman & Hall/CRC

140 Computational Statistics Handbook with MATLAB

FFFFIIIIGUGUGUGURE 5.1RE 5.1RE 5.1RE 5.19999

This is a labeled contour plot of the peaks function. The labels make it easier to understand
the hills and valleys in the surface.

FFFFIIIIGUGUGUGURE 5.2RE 5.2RE 5.2RE 5.20000

This is a filled contour plot of the peaks surface. It is created using the contourf function.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−6

−4

−2

−2
0

0

0

2

2

4

6
8

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 141

Finally, a 3-D contour plot is easily obtained using the contour3 function as
shown below. The resulting contour plot is shown in Figure 5.21.

% Create a 3-D contour plot.
contour3(x,y,z,15)

�

BivBivBivBivaaaarrrriatiatiatiateeee HistoHistoHistoHistoggggrrrraaaammmm

In the last section, we described the univariate density histogram as a way of
viewing how our data are distributed over the range of the data. We can
extend this to any number of dimensions over a partition of the space [Scott,
1992]. However, in this section we restrict our attention to the bivariate histo-
gram given by

, (5.7)

where represents the number of observations falling into the bivariate bin
 and is the width of the bin for the coordinate axis. Example 5.14

shows how to get the bivariate density histogram in MATLAB.

FFFFIIIIGUGUGUGURE 5.2RE 5.2RE 5.2RE 5.21111

This is a 3-D contour plot of the peaks function.

−3
−2

−1
0

1
2

3

−2

0

2

−10

−5

0

5

10

f̂ x() νk

nh1h2

--------------= x in Bk

νk

Bk hi xi

© 2002 by Chapman & Hall/CRC

142 Computational Statistics Handbook with MATLAB

Example 5.14
We generate bivariate standard normal random variables and use them to
illustrate how to get the bivariate density histogram. We use the optimal bin
width for data generated from a standard bivariate normal given in Scott
[1992]. We postpone discussion of the optimal bin width and how to obtain it
until Chapter 8. A scatterplot of the data and the resulting histogram are
shown in Figure 5.22.

% Generate sample that is
% standard normal in each dimension.
n = 1000;
d = 2;
x = randn(n,d);
% Need bin origins.
bin0 = [floor(min(x(:,1))) floor(min(x(:,2)))];
% The bin widths - h - are covered later.
h = 3.504*n^(-0.25)*ones(1,2);
% find the number of bins
nb1 = ceil((max(x(:,1))-bin0(1))/h(1));
nb2 = ceil((max(x(:,2))-bin0(2))/h(2));
% find the mesh
t1 = bin0(1):h(1):(nb1*h(1)+bin0(1));
t2 = bin0(2):h(2):(nb2*h(2)+bin0(2));
[X,Y] = meshgrid(t1,t2);
% Find bin frequencies.
[nr,nc] = size(X);
vu = zeros(nr-1,nc-1);
for i = 1:(nr-1)
 for j = 1:(nc-1)

 xv = [X(i,j) X(i,j+1) X(i+1,j+1) X(i+1,j)];
 yv = [Y(i,j) Y(i,j+1) Y(i+1,j+1) Y(i+1,j)];
 in = inpolygon(x(:,1),x(:,2),xv,yv);
 vu(i,j) = sum(in(:));
 end
end
Z = vu/(n*h(1)*h(2));
% Get some axes that make sense.
[XX,YY] = meshgrid(linspace(-3,3,nb1),...

linspace(-3,3,nb2));
surf(XX,YY,Z)

�

We displayed the resulting bivariate histogram using the surf plot in
MATLAB. The matrix Z in Example 5.14 contains the bin heights. When
MATLAB constructs a mesh or surf plot, the elements of the Z matrix repre-
sent heights above the x-y plane. The surface is obtained by plotting the

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 143

points and joining adjacent points with straight lines. Therefore, a surf or
mesh plot of the bivariate histogram bin heights is a linear interpolation
between adjacent bins. In essence, it provides a smooth version of a histo-
gram. In the next example, we offer another method for viewing the bivariate
histogram.

Example 5.15
In this example, we show the bin heights of the bivariate histogram as bars
using the MATLAB function bar3. The colors are mapped to the column
number of the Z matrix, not to the heights of the bins. The resulting histogram
is shown in Figure 5.23.

% The Z matrix is obtained in Example 5.14.
bar3(Z,1)
% Use some Handle Graphics.
set(gca,'YTickLabel',' ','XTickLabel',' ')
set(gca,'YTick',0,'XTick',0)
grid off

The following MATLAB code constructs a plot that displays the distribution
in a different way. We can use the scatter plotting function with arguments

FFFFIIIIGUGUGUGURE 5.2RE 5.2RE 5.2RE 5.22222

On the left is a scatterplot of the data. A surface plot of the bivariate density histogram is
on the right. Compare the estimated density given by the surface with the one shown in
Figure 5.18.

−4 −2 0 2 4
−4

−2

0

2

4

−2
0

2

−2
0

2

0

0.05

0.1

© 2002 by Chapman & Hall/CRC

144 Computational Statistics Handbook with MATLAB

FFFFIIIIGUGUGUGURE 5.2RE 5.2RE 5.2RE 5.23333

This shows the same bivariate histogram of Figure 5.22, where the heights of the bars are
plotted using the MATLAB function bar3.

FFFFIIIIGUGUGUGURE 5.2RE 5.2RE 5.2RE 5.24444

Here is a different display of the bivariate histogram of Example 5.15. The size and color of
the markers indicate the heights of the bins.

0

0.05

0.1

0.02

0.04

0.06

0.08

0.1

0.12

0.14

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 145

that relate the marker size and color to the height of the bins. We add the
colorbar to map the heights of the bins to the color.

% Plot the 2-D histogram as a scatterplot with
% heights proportional to marker size.
% Find the bin centers to use in the scatterplot.
n1 = length(t1);
n2 = length(t2);
tt1 = linspace((t1(1)+t1(2))/2,...

(t1(n1-1)+t1(n1))/2,nb1);
tt2 = linspace((t2(1)+t2(2))/2,...

(t2(n2-1)+t2(n2))/2,nb2);
[xxs,yys] = meshgrid(tt1,tt2);
scatter(xxs(:),yys(:),(Z(:)+eps)*1000,...

(Z(:)+eps)*1000,'filled')
% Create a colorbar and set the axis
% to the correct scale
h_ax = colorbar;
% Get the current labels.
temp = get(h_ax,'Yticklabel');
[nr,nc] = size(temp);
% Convert from strings to numbers.
newlab = cell(nr,1);
tempcell = cellstr(temp);
% Re-scale and convert back to numbers.
for i=1:nr
 newlab{i}=num2str((str2num(tempcell{i})/1000));
end
set(h_ax,'Yticklabel',newlab)

This graphic is given in Figure 5.24. Note that we still see the same bivariate
normal distribution. The reader might want to compare this plot with the
scatterplot of the sample shown in Figure 5.22.
�

3333----D ScD ScD ScD Scaaaatttttttteeeerrrrploploploplotttt

As with 2-D data, one way we can view trivariate data is with the scatterplot.
This is the 3-D analog of the bivariate scatterplot. In this case, the ordered tri-
ples are plotted as points. MATLAB provides a function called
scatter3 that will create a 3-D scatterplot. Analogous to the bivariate case,
you can also use the plot3 function using a symbol for the marker style to
obtain a 3-D scatterplot.

A useful MATLAB command when visualizing anything in 3-D is
rotate3d. Simply type this in at the command line, and you will be able to
rotate your graphic using the mouse. There is also a toolbar button that acti-

x y z, ,()

© 2002 by Chapman & Hall/CRC

146 Computational Statistics Handbook with MATLAB

vates the same capability. One reason for looking at scatterplots of the data is
to look for interesting structures. The ability to view these structures for 3-D
data is dependent on the viewpoint or projection to the screen. When looking
at 3-D scatterplots, the analyst should rotate them to search the data for pat-
terns or structure.

Example 5.16
Three variables were measured on ten insects from each of three species
[Hand, et al.,1994]. The variables correspond to the width of the first joint of
the first tarsus, the width of the first joint of the second tarsus and the maxi-
mal width of the aedeagus. All widths are measured in microns. These data
were originally used in cluster analysis [Lindsey, Herzberg, and Watts, 1987].
What we would like to see from the scatterplot is whether the data for each
species can be separated from the others. In other words, is there clear sepa-
ration or clustering between the species using these variables? The 3-D scat-
terplot for these data is shown in Figure 5.25. This view of the scatterplot
indicates that using these variables for pattern recognition or clustering (see
Chapter 9) is reasonable.

% Load the insect data
load insect
% Create a 3-D scatter plot using a
% different color and marker
% for each class of insect.
% Plot the first class and hold the plot.
plot3(insect(1:10,1),insect(1:10,2),...

insect(1:10,3),'ro')
hold on
% Plot the second class.
plot3(insect(11:20,1),insect(11:20,2),...

insect(11:20,3),'gx')
% Plot the third class.
plot3(insect(21:30,1),insect(21:30,2),...

insect(21:30,3),'b*')
% Be sure to turn the hold off!
hold off

�

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 147

5.4 Exploring Multi-Dimensional Data

Several methods have been developed to address the problem of visualizing
multi-dimensional data. Here we consider applications where we are trying
to explore data that has more than three dimensions .

We discuss several ways of statically visualizing multi-dimensional data.
These include the scatterplot matrix, slices, 3-D contours, star plots, Andrews
curves, and parallel coordinates. We finish this section with a description of
projection pursuit exploratory data analysis and the grand tour. The grand
tour provides a dynamic display of projections of multi-dimensional data,
and projection pursuit looks for structure in 1-D or 2-D projections. It should
be noted that some of the methods presented here are not restricted to the
case where the dimensionality of our data is greater than 3-D.

SSSSccccaaaattttterplot Matterplot Matterplot Matterplot Matrrrrixixixix

In the previous sections, we presented the scatterplot as a way of looking at
2-D and 3-D data. We can extend this to multi-dimensional data by looking

FFFFIIIIGUGUGUGURE 5.2RE 5.2RE 5.2RE 5.25555

This is a 3-D scatterplot of the insect data. Each species is plotted using a different symbol.
This plot indicates that we should be able to identify (with reasonable success) the species
based on these three variables.

100
150

200
250

100

120

140

160
40

45

50

55

60

Width 1st TarsusWidth 2nd Tarsus

M
ax

im
al

 W
id

th
 o

f A
ed

eg
us

d 3>()

© 2002 by Chapman & Hall/CRC

148 Computational Statistics Handbook with MATLAB

at 2-D scatterplots of all possible pairs of variables. This allows one to view
pairwise relationships and to look for interesting structures in two dimen-
sions. MATLAB provides a function called plotmatrix that will create a
scatterplot matrix. Its use is illustrated below.

Example 5.17
The iris data are well-known to statisticians and are often used to illustrate
classification, clustering or visualization techniques. The data were collected
by Anderson [1935] and were analyzed by Fisher [1936], so the data are often
called Fisher’s iris data by statisticians. The data consist of 150 observations
containing four measurements based on the petals and sepals of three species
of iris. These three species are: Iris setosa, Iris virginica and Iris versicolor. We
apply the plotmatrix function to the iris data set.

load iris
% This loads up three matrices, one for each species.
% Get the plotmatrix display of the Iris setosa data.
[H,ax,bigax,P] = plotmatrix(setosa);
axes(bigax),title('Iris Setosa')

FFFFIIIIGUGUGUGURE 5.2RE 5.2RE 5.2RE 5.26666

This is the scatterplot matrix for the Iris setosa data using the plotmatrix function.

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 149

The results are shown in Figure 5.26. Several argument options are available
for the plotmatrix function. If the first two arguments are matrices, then
MATLAB plots one column versus the other column. In our example, we use
a single matrix argument, and MATLAB creates scatterplots of all possible
pairs of variables. Histograms of each variable or column are shown along
the diagonal of the scatterplot matrix. Optional output arguments allow one
to add a title or change the plot as shown in the following MATLAB com-
mands. Here we replace the histograms with text that identifies the variable
names and display the result in Figure 5.27.

% Create the labels as a cell array of strings.
labs = {'Sepal Length','Sepal Width',...

'Petal Length', 'Petal Width'};
[H,ax,bigax,P] = plotmatrix(virginica);
axes(bigax)
title('Virginica')
% Delete the histograms.
delete(P)
%Put the labels in - the positions might have
% to be adjusted depending on the text.
for i = 1:4
 txtax = axes('Position',get(ax(i,i),'Position'),...
 'units','normalized');
 text(.1, .5,labs{i})
 set(txtax,'xtick',[],'ytick',[],...
 'xgrid','off','ygrid','off','box','on')
end

�

SSSSlllliiiicccces anes anes anes andddd IsoIsoIsoIsossssuuuurrrrfafafafacccceeeessss

If we have a function defined over a volume, , then we can view it
using the MATLAB slice function or the isosurface function (available
in MATLAB 5.3 and higher). This situation could arise in cases where we
have a probability density function defined over a volume. The slice capa-
bility allows us to view the distribution of our data on slices through a vol-
ume. The isosurface function allows us to view 3-D contours through our
volume. These are illustrated in the following examples.

Example 5.18
To illustrate the slice function, we need values that are defined
over a 3-D grid or volume. We will use a trivariate normal distribution cen-
tered at the origin with covariance equal to the identity matrix. The following
MATLAB code displays slices through the , , and planes,
and the resulting display is shown in Figure 5.28. A standard normal bivari-

f x y z, ,()

f x y z, ,()

x 0= y 0= z 0=

© 2002 by Chapman & Hall/CRC

150 Computational Statistics Handbook with MATLAB

ate density is given in Figure 5.29 to help the reader understand what the
slice function is showing. The density or height of the surface defined over
the volume is mapped to a color. Therefore, in the slice plot, you can see
that the maximum density or surface height is at the origin with the height
decreasing at the edges of the slices. The color at each point is obtained by
interpolation into the volume .

% Create a grid for the domain.
[x,y,z] = meshgrid(-3:.1:3,-3:.1:3,-3:.1:3);
[n,d] = size(x(:));
% Evaluate the trivariate standard normal.
a = (2*pi)^(3/2);
arg = (x.^2 + y.^2 + z.^2);
prob = exp((-.5)*arg)/a;
% Slice through the x=0, y=0, z=0 planes.
slice(x,y,z,prob,0,0,0)
xlabel('X Axis'),ylabel('Y Axis'),zlabel('Z Axis')

�

Isosurfaces are a way of viewing contours through a volume. An isosurface
is a surface where the function values are constant. These are similar
to -level contours [Scott, 1992], which are defined by

FFFFIIIIGUGUGUGURE 5.2RE 5.2RE 5.2RE 5.27777

By using MATLAB’s Handle Graphics, we can add text for the variable name to the diagonal
boxes.

1 2 34 6 82 3 44 6 8

1

2

3
4

6

8
2

3

4
4

6

8

Virginica

Sepal Length

Sepal Width

Petal Length

Petal Width

f x y z, ,()

f x y z, ,()
α

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 151

, (5.8)

where x is a d-dimensional vector. Generally, the -level contours are nested
surfaces.

The MATLAB function isosurface(X,Y,Z,V,isosvalue) deter-
mines the contour from the volume data V at the value given by isovalue.
The arrays in X, Y, and Z define the coordinates for the volume. The outputs
from this function are the faces and vertices corresponding to the isosurface
and can be passed directly into the patch function for displaying.

Example 5.19
We illustrate several isosurfaces of 3-D contours for data that is uniformly
distributed over the volume defined by a unit cube. We display two contours
of different levels in Figures 5.30 and 5.31.

% Get some data that will be between 0 and 1.
data = rand(10,10,10);
data = smooth3(data,'gaussian');

FFFFIIIIGUGUGUGURE 5.2RE 5.2RE 5.2RE 5.28888

These are slices through the planes for a standard trivariate normal
distribution. Each of these planes slice through the volume, and the value of the volume (in
this case, the height of the trivariate normal density) is represented by the color. The mode
at the origin is clearly seen. We can also see that it is symmetric, because the volume is a
mirror image in every slice. Finally, note that the ranges for all the axes are consistent with
a standard normal distribution.

0.01

0.02

0.03

0.04

0.05

0.06

−3
−2

−1
0

1
2

3

−3
−2

−1
0

1
2

3
−3

−2

−1

0

1

2

3

X Axis
Y Axis

Z
 A

xi
s

x 0 y, 0 z, 0= = =

Sα x: f x() αfmax={ };= 0 α 1≤ ≤

α

© 2002 by Chapman & Hall/CRC

152 Computational Statistics Handbook with MATLAB

% Just in case there are some figure windows
% open - we should start anew.
close all
for i = [0.4 0.6]

figure
hpatch=patch(isosurface(data,i),...

 'Facecolor','blue',...
 'Edgecolor','none',...
 'AmbientStrength',.2,...
 'SpecularStrength',.7,...
 'DiffuseStrength',.4);
 isonormals(data,hpatch)

title(['f(x,y,z) = ' num2str(i)])
daspect([1,1,1])
axis tight
axis off
view(3)
camlight right
camlight left
lighting phong
drawnow

end

FFFFIIIIGUGUGUGURE 5.2RE 5.2RE 5.2RE 5.29999

This is the surface plot for a standard normal bivariate distribution. to help the reader
understand what is shown in Figure 5.28.

−3
−2

−1
0

1
2

3

−2

0

2

0.01

0.02

0.03

0.04

0.05

0.06

X AxisY Axis

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 153

In Figure 5.30, we have the isosurface for The isosurface for
 is given in Figure 5.31. Again, these are surface contours

where the value of the volume is the same.
�

It would be better if we had a context to help us understand what we are
viewing with the isosurfaces. This can be done easily in MATLAB using the
function called isocaps. This function puts caps on the boundaries of the
domain and shows the distribution of the volume above the isosur-
face. The color of the cap is mapped to the values that are above the
given value isovalue. Values below the isovalue can be shown on the
isocap via the optional input argument, enclose. The following example
illustrates this concept by adding isocaps to the surfaces obtained in
Example 5.19.

Example 5.20
These MATLAB commands show how to add isocaps to the isosurfaces in
the previous example.

for i=[0.4 0.6]
figure
hpatch = patch(isosurface(data,i),...

'Facecolor','blue',...
'Edgecolor','none',...

FFFFIIIIGUGUGUGURE 5.3RE 5.3RE 5.3RE 5.30000

This is the isosurface of Example 5.19 for .

f x y z, ,() 0.4.=
f x y z, ,() 0.6=

f x y z, ,() 0.4=

f x y z, ,()
f x y z, ,()

© 2002 by Chapman & Hall/CRC

154 Computational Statistics Handbook with MATLAB

'AmbientStrength',.2,...
'SpecularStrength',.7,...
'DiffuseStrength',.4);

isonormals(data,hpatch)
patch(isocaps(data,i),...

'Facecolor','interp',...
'EdgeColor','none')

colormap hsv
title(['f(x,y,z) = ' num2str(i)])
daspect([1,1,1])
axis tight
axis off
view(3)
camlight right
camlight left
lighting phong
drawnow

end

Figure 5.32 shows the isosurface of Figure 5.30 with the isocaps. It is
easier now to see what values are ‘inside’ the isosurface or contour.
Figure 5.33 shows the isocaps added to the isosurface corresponding to
Figure 5.31.
�

FFFFIIIIGUGUGUGURE 5.3RE 5.3RE 5.3RE 5.31111

This is the isosurface of Example 5.19 for f x y z, ,() 0.6.=

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 155

SSSStatatatarrrr PlotPlotPlotPlotssss

Star diagrams were developed by Fienberg [1979] as a way of viewing multi-
dimensional observations as a glyph or star. Each observed data point in the
sample is plotted as a star, with the value of each measurement shown as a
radial line from a common center point. Thus, each measured value for an
observation is plotted as a spoke that is proportional to the size of the mea-
sured variable with the ends of the spokes connected with line segments to
form a star. Star plots are a nice way to view the entire data set over all dimen-
sions, but they are not suitable when there is a large number of observations
() or many dimensions (e.g.,).

The next example applies this technique to data obtained from ratings of
eight brands of cereal [Chakrapani and Ehrenberg, 1981; Venables and Ripley,
1994]. In our version of the star plot, the first variable is plotted as the spoke
at angle , and the rest are shown counter-clockwise from there.

Example 5.21
This example shows the MATLAB code to plot d-dimensional observations in
a star plot. The cereal file contains a matrix where each row corresponds to

FFFFIIIIGUGUGUGURE 5.3RE 5.3RE 5.3RE 5.32222

This is the isosurface of Figure 5.30 with isocaps added. Note that the color of the
edges is mapped to the volume. The default is to map all values above to
the color on the isocaps. This can be changed by an input argument to isocaps.

f x y z, ,() 0.4=

n 10> d 15>

θ 0=

© 2002 by Chapman & Hall/CRC

156 Computational Statistics Handbook with MATLAB

an observation and each column represents one of the variables or the per-
cent agreement with the following statements about the cereal:

• come back to
• tastes nice

• popular with all the family
• very easy to digest

• nourishing
• natural flavor

• reasonably priced
• a lot of food value

• stays crispy in milk
• helps to keep you fit

• fun for children to eat

The resulting star plot is shown in Figure 5.34.

load cereal
% This file contains the labels and
% the matrix of 8 observations.

FFFFIIIIGUGUGUGURE 5.3RE 5.3RE 5.3RE 5.33333

This is the isosurface of Figure 5.31 with isocaps added. Note that the color of the
edges is mapped to the volume.

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 157

clf
n = 8;
p = 11;
% Find number of rows and columns for the stars.
ncol = floor(sqrt(n));
nrow = ceil(n/ncol);
% Re-scale the data.
md = min(cereal(:));
data = 1 + cereal - md;
% Get angles that are linearly spaced.
% Do not use the last point.
theta = linspace(0,2*pi,p+1);
theta(end) = [];
k = 0;
for i = 1:n

k = k+1;
% get the observation for plotting
r = data(k,:);
[x,y] = pol2cart(theta,r);
X = x(:); % make col vectors
Y = y(:);
X = [zeros(p,1) X];
Y = [zeros(p,1) Y];
x = [x(:); x(1)];
y = [y(:); y(1)];
subplot(nrow,ncol,k),
patch(x,y,'w')
hold on
plot(X(1,:),Y(1,:))
for ii = 2:p

 plot(X(ii,:),Y(ii,:))
end
title(labs{k})
axis off
hold off

end

�

AndrewsAndrewsAndrewsAndrews CCCCurvurvurvurveeeessss

Andrews curves [Andrews, 1972] were developed as a method for visualiz-
ing multi-dimensional data by mapping each observation onto a function.
This is similar to star plots in that each observation or sample point is repre-
sented by a glyph, except that in this case the glyph is a curve. This function
is defined as

© 2002 by Chapman & Hall/CRC

158 Computational Statistics Handbook with MATLAB

, (5.9)

where the range of t is given by . Each observation is projected onto
a set of orthogonal basis functions represented by sines and cosines and then
plotted. Thus, each sample point is now represented by a curve given by
Equation 5.9. We illustrate how to get the Andrews curves in Example 5.22.

Example 5.22
We use a simple example to show how to get Andrews curves. The data we
have are the following observations:

FFFFIIIIGUGUGUGURE 5.3RE 5.3RE 5.3RE 5.34444

This is the star plot of the cereal data.

Cereal 1 Cereal 2

Cereal 3 Cereal 4

Cereal 5 Cereal 6

Cereal 7 Cereal 8

fx t() x1 2⁄ x2 tsin x3 tcos x4 2tsin x5 2tcos …+ + + + +=

π– t π≤ ≤

x1 2 6 4, ,()=

x2 5 7 3, ,()=

x3 1 8 9, ,().=

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 159

Using Equation 5.9, we construct three curves, one corresponding to each
data point. The Andrews curves for the data are:

We can plot these three functions in MATLAB using the following com-
mands. The Andrews curves for these data are shown in Figure 5.35.

% Get the domain.
t = linspace(-pi,pi);
% Evaluate function values for each observation.
f1 = 2/sqrt(2)+6*sin(t)+4*cos(t);
f2 = 5/sqrt(2)+7*sin(t)+3*cos(t);
f3 = 1/sqrt(2)+8*sin(t)+9*cos(t);
plot(t,f1,'.',t,f2,'*',t,f3,'o')
legend('F1','F2','F3')
xlabel('t')

�

FFFFIIIIGUGUGUGURE 5.3RE 5.3RE 5.3RE 5.35555

Andrews curves for the three data points in Example 5.22.

fx1
t() 2 2⁄ 6 tsin 4 tcos+ +=

fx2
t() 5 2⁄ 7 tsin 3 tcos+ +=

fx3
t() 1 2⁄ 8 tsin 9 t .cos+ +=

−4 −3 −2 −1 0 1 2 3 4
−15

−10

−5

0

5

10

15

t

F1
F2
F3

© 2002 by Chapman & Hall/CRC

160 Computational Statistics Handbook with MATLAB

It has been shown [Andrews, 1972; Embrechts and Herzberg, 1991] that
because of the mathematical properties of the trigonometric functions, the
Andrews curves preserve means, distance (up to a constant) and variances.
One consequence of this is that Andrews curves showing functions close
together suggest that the corresponding data points will also be close
together. Thus, one use of Andrews curves is to look for clustering of the data
points.

Example 5.23
We show how to construct Andrews curves for the iris data, using only the
observations for Iris setosa and Iris virginica observations. We plot the curves
for each species in a different line style to see if there is evidence that we can
distinguish between the species using these variables.

load iris
% This defines the domain that will be plotted.
theta = (-pi+eps):0.1:(pi-eps);
n = 50;
p = 4;
ysetosa = zeros(n,p);
% There will n curves plotted,
% one for each data point.
yvirginica = zeros(n,p);
% Take dot product of each row with observation.
ang = zeros(length(theta),p);
fstr = '[1/sqrt(2) sin(i) cos(i) sin(2*i)]';
k = 0;
% Evaluate sin and cos functions at each angle theta.
for i = theta
 k = k+1;
 ang(k,:) = eval(fstr);
end
% Now generate a ‘y’ for each observation.
for i = 1:n
 for j = 1:length(theta)
 % Find dot product with observation.
 ysetosa(i,j)=setosa(i,:)*ang(j,:)';
 yvirginica(i,j)=virginica(i,:)*ang(j,:)';
 end
end
% Do all of the plots.
plot(theta,ysetosa(1,:),'r',...

theta,yvirginica(1,:),'b-.')
legend('Iris Setosa','Iris Virginica')
hold
for i = 2:n

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 161

 plot(theta,ysetosa(i,:),'r',...
theta,yvirginica(i,:),'b-.')

end
hold off
title('Andrews Plot')
xlabel('t')
ylabel('Andrews Curve')

The curves are shown in Figure 5.36. By plotting the two groups with differ-
ent line styles, we can gain some insights about whether or not these two spe-
cies of iris can be distinguished based on these features. From the Andrews
curves, we see that the observations exhibit similarity within each class and
that they show differences between the classes. Thus, we might get reason-
able discrimination using these features.
�

Andrews curves are dependent on the order of the variables. Lower fre-
quency terms exert more influence on the shape of the curves, so re-ordering
the variables and viewing the resulting plot might provide insights about the
data. By lower frequency terms, we mean those that are first in the sum given

FFFFIIIIGUGUGUGURE 5.3RE 5.3RE 5.3RE 5.36666

These are the Andrews curves for the Iris setosa and Iris virginica data. The curves corre-
sponding to each species are plotted with different line styles. Note that the observations
within each group show similar curves, and that we seem to be able to separate these two
species.

−4 −3 −2 −1 0 1 2 3 4
−2

0

2

4

6

8

10

12

14

16
Andrews Plot

t

A
nd

re
w

s
C

ur
ve

Iris Setosa
Iris Virginica

© 2002 by Chapman & Hall/CRC

162 Computational Statistics Handbook with MATLAB

in Equation 5.9. Embrechts and Herzberg [1991] also suggest that the data be
rescaled so they are centered at the origin and have covariance equal to the
identity matrix. Andrews curves can be extended by using orthogonal bases
other than sines and cosines. For example, Embrechts and Herzberg [1991]
illustrate Andrews curves using Legendre polynomials and Chebychev poly-
nomials.

PPPPaaaarrrraaaalllllllleeeellll CooCooCooCoorrrrdindindindinaaaatttteeeessss

In the Cartesian coordinate system the axes are orthogonal, so the most we
can view is three dimensions. If instead we draw the axes parallel to each
other, then we can view many axes on the same display. This technique was
developed by Wegman [1986] as a way of viewing and analyzing multi-
dimensional data and was introduced by Inselberg [1985] in the context of
computational geometry and computer vision. Parallel coordinate tech-
niques were expanded on and described in a statistical setting by Wegman
[1990]. Wegman [1990] also gave a rigorous explanation of the properties of
parallel coordinates as a projective transformation and illustrated the duality
properties between the parallel coordinate representation and the Cartesian
orthogonal coordinate representation.

A parallel coordinate plot for d-dimensional data is constructed by draw-
ing d lines parallel to each other. We draw d copies of the real line represent-
ing the coordinates for The lines are the same distance apart and
are perpendicular to the Cartesian y axis. Additionally, they all have the same
positive orientation as the Cartesian x axis. Some versions of parallel coordi-
nates [Inselberg, 1985] draw the parallel axes perpendicular to the Cartesian
x axis.

A point is shown in Figure 5.37 with the MATLAB code
that generates it given in Example 5.24. We see that the point is a polygonal
line with vertices at in Cartesian coordinates on the
parallel axis. Thus, a point in Cartesian coordinates is represented in parallel
coordinates as a series of connected line segments.

Example 5.24
We now plot the point in parallel coordinates using these
MATLAB commands.

c = [1 3 7 2];
% Get range of parallel axes.
x = [1 7];
% Plot the 4 parallel axes.
plot(x,zeros(1,2),x,ones(1,2),x,...

2*ones(1,2),x,3*ones(1,2))
hold on
% Now plot point c as a polygonal line.

x1 x2 … xd., , ,

C c1 … c4, ,()=

ci i 1–,() i, 1 … d, ,= xi

C 1 3 7 2, , ,()=

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 163

plot(c,0:3,c,0:3,'*')
ax = axis;
axis([ax(1) ax(2) -1 4])
set(gca,'ytick',0)
hold off

�

If we plot observations in parallel coordinates with colors designating
what class they belong to, then the parallel coordinate display can be used to
determine whether or not the variables will enable us to separate the classes.
This is similar to the Andrews curves in Example 5.23, where we used the
Andrews curves to view the separation between two species of iris. The par-
allel coordinate plot provides graphical representations of multi-dimensional
relationships [Wegman, 1990]. The next example shows how parallel coordi-
nates can display the correlation between two variables.

Example 5.25
We first generate a set of 20 bivariate normal random variables with correla-
tion given by 1. We plot the data using the function called csparallel to
show how to recognize various types of correlation in parallel coordinate
plots.

% Get a covariance matrix with correlation 1.
covmat = [1 1; 1 1];

FFFFIIIIGUGUGUGURE 5.3RE 5.3RE 5.3RE 5.37777

This shows the parallel coordinate representation for the 4-D point (1,3,7,2).

1 2 3 4 5 6 7

0

© 2002 by Chapman & Hall/CRC

164 Computational Statistics Handbook with MATLAB

% Generate the bivariate normal random variables.
% Note: you could use csmvrnd to get these.
[u,s,v] = svd(covmat);
vsqrt = (v*(u'.*sqrt(s)))';
subdata = randn(20,2);
data = subdata*vsqrt;
% Close any open figure windows.
close all
% Create parallel plot using CS Toolbox function.
csparallel(data)
title('Correlation of 1')

This is shown in Figure 5.38. The direct linear relationship between the first
variable and the second variable is readily apparent. We can generate data
that are correlated differently by changing the covariance matrix. For exam-
ple, to obtain a random sample for data with a correlation of 0.2, we can use

covmat = [4 1.2; 1.2, 9];

In Figure 5.39, we show the parallel coordinates plot for data that have a cor-
relation coefficient of -1. Note the different structure that is visible in the par-
allel coordinates plot.
�

In the previous example, we showed how parallel coordinates can indicate
the relationship between variables. To provide further insight, we illustrate
how parallel coordinates can indicate clustering of variables in a dimension.
Figure 5.40 shows data that can be separated into clusters in both of the
dimensions. This is indicated on the parallel coordinate representation by
separation or groups of lines along the and parallel axes. In Figure 5.41,
we have data that are separated into clusters in only one dimension, , but
not in the dimension. This appears in the parallel coordinates plot as a gap
in the parallel axis.

As with Andrews curves, the order of the variables makes a difference.
Adjacent parallel axes provide some insights about the relationship between
consecutive variables. To see other pairwise relationships, we must permute
the order of the parallel axes. Wegman [1990] provides a systematic way of
finding all permutations such that all adjacencies in the parallel coordinate
display will be visited.

Before we proceed to other topics, we provide an example applying paral-
lel coordinates to the iris data. In Example 5.26, we illustrate a parallel
coordinates plot of the two classes: Iris setosa and Iris virginica.

Example 5.26
First we load up the iris data. An optional input argument of the
csparallel function is the line style for the lines. This usage is shown

x1 x2

x1

x2

x1

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 165

FFFFIIIIGUGUGUGURE 5.3RE 5.3RE 5.3RE 5.38888

This is a parallel coordinate plot for bivariate data that have a correlation coefficient of 1.

FFFFIIIIGUGUGUGURE 5.3RE 5.3RE 5.3RE 5.39999

The data shown in this parallel coordinate plot are negatively correlated.

Correlation of 1

x2

x1

Correlation of −1

x2

x1

© 2002 by Chapman & Hall/CRC

166 Computational Statistics Handbook with MATLAB

FFFFIIIIGUGUGUGURE 5.4RE 5.4RE 5.4RE 5.40000

Clustering in two dimensions produces gaps in both parallel axes.

FFFFIIIIGUGUGUGURE 5.4RE 5.4RE 5.4RE 5.41111

Clustering in only one dimension produces a gap in the corresponding parallel axis.

Clustering in Both Dimensions

x2

x1

Clustering in x
1

x2

x1

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 167

below, where we plot the Iris setosa observations as dot-dash lines and the Iris
virginica as solid lines. The parallel coordinate plots is given in Figure 5.42.

load iris
figure
csparallel(setosa,'-.')
hold on
csparallel(virginica,'-')
hold off

From this plot, we see evidence of groups or separation in coordinates
and .
�

FFFFIIIIGUGUGUGURE 5.4RE 5.4RE 5.4RE 5.42222

Here we see an example of a parallel coordinate plot for the iris data. The Iris setosa is
shown as dot-dash lines and the Iris virginica as solid lines. There is evidence of groups in
two of the coordinate axes, indicating that reasonable separation between these species could
be made based on these features.

x2

x3

x4

x3

x2

x1

x4

x3

x2

x1

© 2002 by Chapman & Hall/CRC

168 Computational Statistics Handbook with MATLAB

PPPPrrrrojeojeojeojeccccttttion Pursuiion Pursuiion Pursuiion Pursuitttt

The Andrews curves and parallel coordinate plots are attempts to visualize
all of the data points and all of the dimensions at once. An Andrews curve
accomplishes this by mapping a data point to a curve. Parallel coordinate dis-
plays accomplish this by mapping each observation to a polygonal line with
vertices on parallel axes. Another option is to tackle the problem of visualiz-
ing multi-dimensional data by reducing the data to a smaller dimension via
a suitable projection. These methods reduce the data to 1-D or 2-D by project-
ing onto a line or a plane and then displaying each point in some suitable
graphic, such as a scatterplot. Once the data are reduced to something that
can be easily viewed, then exploring the data for patterns or interesting struc-
ture is possible.

One well-known method for reducing dimensionality is principal compo-
nent analysis (PCA) [Jackson, 1991]. This method uses the eigenvector
decomposition of the covariance (or the correlation) matrix. The data are then
projected onto the eigenvector corresponding to the maximum eigenvalue
(sometimes known as the first principal component) to reduce the data to one
dimension. In this case, the eigenvector is one that follows the direction of the
maximum variation in the data. Therefore, if we project onto the first princi-
pal component, then we will be using the direction that accounts for the max-
imum amount of variation using only one dimension. We illustrate the notion
of projecting data onto a line in Figure 5.43.

We could project onto two dimensions using the eigenvectors correspond-
ing to the largest and second largest eigenvalues. This would project onto the
plane spanned by these eigenvectors. As we see shortly, PCA can be thought
of in terms of projection pursuit, where the interesting structure is the vari-
ance of the projected data.

There are an infinite number of planes that we can use to reduce the dimen-
sionality of our data. As we just mentioned, the first two principal compo-
nents in PCA span one such plane, providing a projection such that the
variation in the projected data is maximized over all possible 2-D projections.
However, this might not be the best plane for highlighting interesting and
informative structure in the data. Structure is defined to be departure from
normality and includes such things as clusters, linear structures, holes, outli-
ers, etc. Thus, the objective is to find a projection plane that provides a 2-D
view of our data such that the structure (or departure from normality) is max-
imized over all possible 2-D projections.

We can use the Central Limit Theorem to motivate why we are interested
in departures from normality. Linear combinations of data (even Bernoulli
data) look normal. Since in most of the low-dimensional projections, one
observes a Gaussian, if there is something interesting (e.g., clusters, etc.), then
it has to be in the few non-normal projections.

Freidman and Tukey [1974] describe projection pursuit as a way of search-
ing for and exploring nonlinear structure in multi-dimensional data by exam-
ining many 2-D projections. The idea is that 2-D orthogonal projections of the

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 169

data should reveal structure that is in the original data. The projection pursuit
technique can also be used to obtain 1-D projections, but we look only at the
2-D case. Extensions to this method are also described in the literature by
Friedman [1987], Posse [1995a, 1995b], Huber [1985], and Jones and Sibson
[1987]. In our presentation of projection pursuit exploratory data analysis, we
follow the method of Posse [1995a, 1995b].

Projection pursuit exploratory data analysis (PPEDA) is accomplished by
visiting many projections to find an interesting one, where interesting is mea-
sured by an index. In most cases, our interest is in non-normality, so the pro-
jection pursuit index usually measures the departure from normality. The
index we use is known as the chi-square index and is developed in Posse
[1995a, 1995b]. For completeness, other projection indexes are given in
Appendix C, and the interested reader is referred to Posse [1995b] for a sim-
ulation analysis of the performance of these indexes.

PPEDA consists of two parts:

1) a projection pursuit index that measures the degree of the structure
(or departure from normality), and

2) a method for finding the projection that yields the highest value
for the index.

FFFFIIIIGUGUGUGURE 5.4RE 5.4RE 5.4RE 5.43333

This illustrates the projection of 2-D data onto a line.

−2 0 2 4 6 8 10 12

0

2

4

6

8

10

© 2002 by Chapman & Hall/CRC

170 Computational Statistics Handbook with MATLAB

Posse [1995a, 1995b] uses a random search to locate the global optimum of the
projection index and combines it with the structure removal of Freidman
[1987] to get a sequence of interesting 2-D projections. Each projection found
shows a structure that is less important (in terms of the projection index) than
the previous one. Before we describe this method for PPEDA, we give a sum-
mary of the notation that we use in projection pursuit exploratory data anal-
ysis.

NOTATION - PROJECTION PURSUIT EXPLORATORY DATA ANALYSIS

X is an matrix, where each row corresponds to a d-dimen-
sional observation and n is the sample size.

Z is the sphered version of X.

 is the sample mean:

. (5.10)

 is the sample covariance matrix:

. (5.11)

 are orthonormal (and) d-dimensional
vectors that span the projection plane.

 is the projection plane spanned by and .

 are the sphered observations projected onto the vectors and
:

(5.12)

 denotes the plane where the index is maximum.

 denotes the chi-square projection index evaluated using
the data projected onto the plane spanned by and .
 is the standard bivariate normal density.

 is the probability evaluated over the k-th region using the standard
bivariate normal,

. (5.13)

n d× X i()

µµµµ̂ 1 d×

µµµµ̂ Xi n⁄∑=

ΣΣΣΣ
ˆ

ΣΣΣΣij
ˆ 1

n 1–
------------ Xi µµµµ̂–() X j µµµµ̂–()

T

∑=

α β, αTα 1 βTβ= = αTβ 0=

P α β,() α β
zi

α zi
β, α

β

zi
α zi

Tα=

zi
β zi

Tβ=

α* β*,()
PIχ2 α β,()

α β
φ2

ck

ck φ2 zd 1 z2d
Bk

∫∫=

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 171

 is a box in the projection plane.
 is the indicator function for region .

, is the angle by which the data are rotated in
the plane before being assigned to regions .

 and are given by

(5.14)

c is a scalar that determines the size of the neighborhood around
 that is visited in the search for planes that provide better

values for the projection pursuit index.
v is a vector uniformly distributed on the unit d-dimensional sphere.

half specifies the number of steps without an increase in the projection
index, at which time the value of the neighborhood is halved.

m represents the number of searches or random starts to find the best
plane.

PPPPrrrrojeojeojeojeccccttttion Pursuition Pursuition Pursuition Pursuit IndIndIndIndeeeexxxx

Posse [1995a, 1995b] developed an index based on the chi-square. The plane
is first divided into 48 regions or boxes that are distributed in rings. See
Figure 5.44 for an illustration of how the plane is partitioned. All regions have
the same angular width of 45 degrees and the inner regions have the same
radial width of . This choice for the radial width provides
regions with approximately the same probability for the standard bivariate
normal distribution. The regions in the outer ring have probability . The
regions are constructed in this way to account for the radial symmetry of the
bivariate normal distribution.

Posse [1995a, 1995b] provides the population version of the projection
index. We present only the empirical version here, because that is the one that
must be implemented on the computer. The projection index is given by

. (5.15)

The chi-square projection index is not affected by the presence of outliers.
This means that an interesting projection obtained using this index will not
be one that is interesting solely because of outliers, unlike some of the other
indexes (see Appendix C). It is sensitive to distributions that have a hole in
the core, and it will also yield projections that contain clusters. The chi-square
projection pursuit index is fast and easy to compute, making it appropriate

Bk

IBk
Bk

η j πj 36⁄= j 0 … 8, ,=
Bk

α η j() β η j()

α η j() α η jcos β η jsin–=

β η j() α η jsin β ηjcos+=

α* β*,()

Bk

2 6log()1 2⁄ 5⁄

1 48⁄

PI
χ2 α β,() 1

9
--- 1

ck

---- 1
n
--- IBk

zi

α ηj()
zi

β η j()
,()

i 1=

n

∑ ck–

2

k 1=

48

∑
j 1=

8

∑=

© 2002 by Chapman & Hall/CRC

172 Computational Statistics Handbook with MATLAB

for large sample sizes. Posse [1995a] provides a formula to approximate the
percentiles of the chi-square index so the analyst can assess the significance
of the observed value of the projection index.

FFFFindingindingindinginding tttthhhhe Ste Ste Ste Strrrruuuuccccttttuuuurrrreeee

The second part of PPEDA requires a method for optimizing the projection
index over all possible projections onto 2-D planes. Posse [1995a] shows that
his optimization method outperforms the steepest-ascent techniques [Fried-
man and Tukey, 1974]. The Posse algorithm starts by randomly selecting a
starting plane, which becomes the current best plane . The method
seeks to improve the current best solution by considering two candidate solu-
tions within its neighborhood. These candidate planes are given by

(5.16)

In this approach, we start a global search by looking in large neighborhoods
of the current best solution plane and gradually focus in on a maxi-
mum by decreasing the neighborhood by half after a specified number of

FFFFIIIIGUGUGUGURE 5.4RE 5.4RE 5.4RE 5.44444

This shows the layout of the regions for the chi-square projection index. [Posse, 1995a]

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Bk

α* β*,()

a1
α* cv+

α* cv+
----------------------= b1

β* a1
Tβ*()a1–

β* a1
Tβ*()a1–

------------------------------------=

a2
α* cv–

α* cv–
----------------------= b1

β* a2
Tβ*()a2–

β* a2
Tβ*()a2–

------------------------------------ .=

α* β*,()

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 173

steps with no improvement in the value of the projection pursuit index.
When the neighborhood is small, then the optimization process is termi-
nated.

A summary of the steps for the exploratory projection pursuit algorithm is
given here. Details on how to implement these steps are provided in
Example 5.27 and in Appendix C. The complete search for the best plane
involves repeating steps 2 through 9 of the procedure m times, using m ran-
dom starting planes. Keep in mind that the best plane is the plane
where the projected data exhibit the greatest departure from normality.

PROCEDURE - PROJECTION PURSUIT EXPLORATORY DATA ANALYSIS

1. Sphere the data using the following transformation

,

where the columns of are the eigenvectors obtained from ,
is a diagonal matrix of corresponding eigenvalues, and is the
i-th observation.

2. Generate a random starting plane, . This is the current best
plane, .

3. Evaluate the projection index for the starting plane.
4. Generate two candidate planes and according to

Equation 5.16.

5. Evaluate the value of the projection index for these planes,
 and .

6. If one of the candidate planes yields a higher value of the projection
pursuit index, then that one becomes the current best plane

.

7. Repeat steps 4 through 6 while there are improvements in the
projection pursuit index.

8. If the index does not improve for half times, then decrease the value
of c by half.

9. Repeat steps 4 through 8 until c is some small number set by the
analyst.

Note that in PPEDA we are working with sphered or standardized versions
of the original data. Some researchers in this area [Huber, 1985] discuss the
benefits and the disadvantages of this approach.

α* β*,()

Zi ΛΛΛΛ 1 2⁄– QT X i µµµµ̂–()= i 1 … n, ,=

Q ΣΣΣΣ̂ ΛΛΛΛ
Xi

α0 β0,()
α* β*,()

PIχ2 α0 β0,()
a1 b1,() a2 b2,()

PIχ2 a1 b1,() PIχ2 a2 b2,()

α* β*,()

© 2002 by Chapman & Hall/CRC

174 Computational Statistics Handbook with MATLAB

SSSSttttrrrruuuucccctttture Removure Removure Removure Removaaaallll

In PPEDA, we locate a projection that provides a maximum of the projection
index. We have no reason to assume that there is only one interesting projec-
tion, and there might be other views that reveal insights about our data. To
locate other views, Friedman [1987] devised a method called structure
removal. The overall procedure is to perform projection pursuit as outlined
above, remove the structure found at that projection, and repeat the projec-
tion pursuit process to find a projection that yields another maximum value
of the projection pursuit index. Proceeding in this manner will provide a
sequence of projections providing informative views of the data.

Structure removal in two dimensions is an iterative process. The procedure
repeatedly transforms data that are projected to the current solution plane
(the one that maximized the projection pursuit index) to standard normal
until they stop becoming more normal. We can measure ‘more normal’ using
the projection pursuit index.

We start with a matrix , where the first two rows of the matrix are
the vectors of the projection obtained from PPEDA. The rest of the rows of
have ones on the diagonal and zero elsewhere. For example, if , then

We use the Gram-Schmidt process [Strang, 1988] to make orthonormal.
We denote the orthonormal version as .

The next step in the structure removal process is to transform the Z matrix
using the following

. (5.17)

In Equation 5.17, T is , so each column of the matrix corresponds to a d-
dimensional observation. With this transformation, the first two dimensions
(the first two rows of T) of every transformed observation are the projection
onto the plane given by .

We now remove the structure that is represented by the first two dimen-
sions. We let be a transformation that transforms the first two rows of T to
a standard normal and the rest remain unchanged. This is where we actually
remove the structure, making the data normal in that projection (the first two
rows). Letting and represent the first two rows of T, we define the
transformation as follows

d d× U*

U*

d 4=

U*

α1
* α2

* α3
* α4

*

β1
* β2

* β3
* β4

*

0 0 1 0

0 0 0 1

.=

U*

U

T UZT=

d n×

α* β*,()

Θ

T1 T2

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 175

(5.18)

where is the inverse of the standard normal cumulative distribution
function and is a function defined below (see Equations 5.19 and 5.20). We
see from Equation 5.18, that we will be changing only the first two rows of T.

We now describe the transformation of Equation 5.18 in more detail, work-
ing only with and . First, we note that can be written as

,

and as

.

Recall that and would be coordinates of the j-th observation projected
onto the plane spanned by .

Next, we define a rotation about the origin through the angle as follows

(5.19)

where and represents the j-th element of at
the t-th iteration of the process. We now apply the following transformation
to the rotated points,

, (5.20)

where represents the rank (position in the ordered list) of .
This transformation replaces each rotated observation by its normal score

in the projection. With this procedure, we are deflating the projection index
by making the data more normal. It is evident in the procedure given below,
that this is an iterative process. Friedman [1987] states that during the first
few iterations, the projection index should decrease rapidly. After approxi-
mate normality is obtained, the index might oscillate with small changes.
Usually, the process takes between 5 to 15 complete iterations to remove the
structure.

Θ T1() Φ 1– F T1()[]=

Θ T2() Φ 1– F T2()[]=

Θ Ti() T i= ; i 3 … d ,, ,=

Φ 1–

F

T1 T2 T1

T1 z1
α*

… zj
α*

… zn
α*

, , , ,()=

T2

T2 z1
β*

… zj
β*

… zn
β*

, , , ,()=

zj
α*

zj
β*

α* β*,()
γ

z̃j
1 t() zj

1 t() γcos zj
2 t() γsin+=

z̃j
2 t() zj

2 t() γcos zj
1 t() γ,sin–=

γ 0 π 4⁄ π 8⁄ 3π 8⁄, , ,= zj
1 t() T1

zj
1 t 1+() Φ 1– r z̃j

1 t()() 0.5–
n

= zj
2 t 1+() Φ 1– r z̃j

2 t()() 0.5–
n

=

r z̃j
1 t()() z̃j

1 t()

© 2002 by Chapman & Hall/CRC

176 Computational Statistics Handbook with MATLAB

Once the structure is removed using this process, we must transform the
data back using

. (5.21)

In other words, we transform back using the transpose of the orthonormal
matrix U. From matrix theory [Strang, 1988], we see that all directions orthog-
onal to the structure (i.e., all rows of T other than the first two) have not been
changed. Whereas, the structure has been Gaussianized and then trans-
formed back.

PROCEDURE - STRUCTURE REMOVAL

1. Create the orthonormal matrix U, where the first two rows of U
contain the vectors .

2. Transform the data Z using Equation 5.17 to get T.

3. Using only the first two rows of T, rotate the observations using
Equation 5.19.

4. Normalize each rotated point according to Equation 5.20.

5. For angles of rotation , repeat steps 3
through 4.

6. Evaluate the projection index using and , after going
through an entire cycle of rotation (Equation 5.19) and normaliza-
tion (Equation 5.20).

7. Repeat steps 3 through 6 until the projection pursuit index stops
changing.

8. Transform the data back using Equation 5.21.

Example 5.27
We use a synthetic data set to illustrate the MATLAB functions used for
PPEDA. The source code for the functions used in this example is given in
Appendix C. These data contain two structures, both of which are clusters. So
we will search for two planes that maximize the projection pursuit index.
First we load the data set that is contained in the file called ppdata. This
loads a matrix X containing 400 six-dimensional observations. We also set up
the constants we need for the algorithm.

% First load up a synthetic data set.
% This has structure
% in two planes - clusters.
% Note that the data is in
% ppdata.mat
load ppdata

Z′ UTΘ UZT()=

α* β*,

γ 0 π 4⁄ π 8⁄ 3π 8⁄, , ,=

zj
1 t 1+() zj

2 t 1+()

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 177

% For m random starts, find the best projection plane
% using N structure removal procedures.
% Two structures:
N = 2;
% Four random starts:
m = 4;
c = tan(80*pi/180);
% Number of steps with no increase.
half = 30;

We now set up some arrays to store the results of projection pursuit.

% To store the N structures:
astar = zeros(d,N);
bstar = zeros(d,N);
ppmax = zeros(1,N);

Next we have to sphere the data.

% Sphere the data.
[n,d] = size(X);
muhat = mean(X);
[V,D] = eig(cov(X));
Xc = X-ones(n,1)*muhat;
Z = ((D)^(-1/2)*V'*Xc')';

We use the sphered data as input to the function csppeda. The outputs from
this function are the vectors that span the plane containing the structure and
the corresponding value of the projection pursuit index.

% Now do the PPEDA.
% Find a structure, remove it,
% and look for another one.
Zt = Z;
for i = 1:N

[astar(:,i),bstar(:,i),ppmax(i)] =,...
 csppeda(Zt,c,half,m);
 % Now remove the structure.
 Zt = csppstrtrem(Zt,astar(:,i),bstar(:,i));
end

Note that each column of astar and bstar contains the projections for a
structure, each one found using m random starts of the Posse algorithm. To
see the first structure and second structures, we project onto the best planes
as follows:

% Now project and see the structure.
proj1 = [astar(:,1), bstar(:,1)];
proj2 = [astar(:,2), bstar(:,2)];
Zp1 = Z*proj1;

© 2002 by Chapman & Hall/CRC

178 Computational Statistics Handbook with MATLAB

Zp2 = Z*proj2;
figure
plot(Zp1(:,1),Zp1(:,2),'k.'),title('Structure 1')
xlabel('\alpha^*'),ylabel('\beta^*')
figure
plot(Zp2(:,1),Zp2(:,2),'k.'),title('Structure 2')
xlabel('\alpha^*'),ylabel('\beta^*')

The results are shown in Figure 5.45 and Figure 5.46, where we see that pro-
jection pursuit did find two structures. The first structure has a projection
pursuit index of 2.67, and the second structure has an index equal to 0.572.
�

GrandGrandGrandGrand TTTTouououourrrr

The grand tour of Asimov [1985] is an interactive visualization technique that
enables the analyst to look for interesting structure embedded in multi-
dimensional data. The idea is to project the d-dimensional data to a plane and
to rotate the plane through all possible angles, searching for structure in the
data. As with projection pursuit, structure is defined as departure from nor-
mality, such as clusters, spirals, linear relationships, etc.

In this procedure, we first determine a plane, project the data onto it, and
then view it as a 2-D scatterplot. This process is repeated for a sequence of
planes. If the sequence of planes is smooth (in the sense that the orientation
of the plane changes slowly), then the result is a movie that shows the data
points moving in a continuous manner. Asimov [1985] describes two meth-
ods for conducting a grand tour, called the torus algorithm and the random
interpolation algorithm. Neither of these methods is ideal. With the torus
method we may end up spending too much time in certain regions, and it is
computationally intensive. The random interpolation method is better com-
putationally, but cannot be reversed easily (to recover the projection) unless
the set of random numbers used to generate the tour is retained. Thus, this
method requires a lot of computer storage. Because of these limitations, we
describe the pseudo grand tour described in Wegman and Shen [1993].

One of the important aspects of the torus grand tour is the need for a con-
tinuous space-filling path through the manifold of planes. This requirement
satisfies the condition that the tour will visit all possible orientations of the
projection plane. Here, we do not follow a space-filling curve, so this will be
called a pseudo grand tour. In spite of this, the pseudo grand tour has many
benefits:

• It can be calculated easily;
• It does not spend a lot of time in any one region;

• It still visits an ample set of orientations; and
• It is easily reversible.

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 179

FFFFIIIIGUGUGUGURE 5.4RE 5.4RE 5.4RE 5.45555

Here we see the first structure that was found using PPEDA. This structure yields a value
of 2.67 for the chi-square projection pursuit index.

FFFFIIIIGUGUGUGURE 5.4RE 5.4RE 5.4RE 5.46666

Here is the second structure we found using PPEDA. This structure has a value of 0.572 for
the chi-square projection pursuit index.

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Structure 1

α*

β*

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−3

−2

−1

0

1

2

3
Structure 2

α*

β*

© 2002 by Chapman & Hall/CRC

180 Computational Statistics Handbook with MATLAB

The fact that the pseudo grand tour is easily reversible enables the analyst to
recover the projection for further analysis. Two versions of the pseudo grand
tour are available: one that projects onto a line and one that projects onto a
plane.

As with projection pursuit, we need unit vectors that comprise the desired
projection. In the 1-D case, we require a unit vector such that

for every t, where t represents a point in the sequence of projections. For the
pseudo grand tour, must be a continuous function of t and should pro-
duce all possible orientations of a unit vector.

We obtain the projection of the data using

, (5.22)

where is the i-th d-dimensional data point. To get the movie view of the
pseudo grand tour, we plot on a fixed 1-D coordinate system, re-display-
ing the projected points as t increases.

The grand tour in two dimensions is similar. We need a second unit vector
 that is orthonormal to ,

.

We project the data onto the second vector using

. (5.23)

To obtain the movie view of the 2-D pseudo grand tour, we display and
 in a 2-D scatterplot, replotting the points as t increases.

The basic idea of the grand tour is to project the data onto a 1-D or 2-D
space and plot the projected data, repeating this process many times to pro-
vide many views of the data. It is important for viewing purposes to make
the time steps small to provide a nearly continuous path and to provide
smooth motion of the points. The reader should note that the grand tour is an
interactive approach to EDA. The analyst must stop the tour when an inter-
esting projection is found.

Asimov [1985] contends that we are viewing more than one or two dimen-
sions because the speed vectors provide further information. For example,
the further away a point is from the computer screen, the faster the point

αααα t()

αααα t() 2 αααα i
2 t()

i 1=

d

∑ 1= =

αααα t()

zi
αααα t() ααααT t()x i=

xi

zi
αααα t()

ββββ t() αααα t()

ββββ t() 2 ββββi
2 t()

i 1=

d

∑ 1= = ααααT t()ββββ t() 0=

zi
ββββ t() ββββT t()xi=

zi
αααα t()

zi
ββββ t()

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 181

rotates. We believe that the extra dimension conveyed by the speed is difficult
to understand unless the analyst has experience looking at grand tour mov-
ies.

In order to implement the pseudo grand tour, we need a way of obtaining
the projection vectors and . First we consider the data vector x. If d
is odd, then we augment each data point with a zero, to get an even number
of elements. In this case,

This will not affect the projection. So, without loss of generality, we present
the method with the understanding that d is even. We take the vector to
be

, (5.24)

and the vector as

. (5.25)

We choose and such that the ratio is irrational for every i and
j. Additionally, we must choose these such that no is a rational multi-
ple of any other ratio. It is also recommended that the time step be a small
positive irrational number. One way to obtain irrational values for is to let

, where is the i-th prime number.
The steps for implementing the 2-D pseudo grand tour are given here. The

details on how to implement this in MATLAB are given in Example 5.28.

PROCEDURE - PSEUDO GRAND TOUR

1. Set each to an irrational number.
2. Find vectors and using Equations 5.24 and 5.25.

3. Project the data onto the plane spanned by these vectors using
Equations 5.23 and 5.24.

4. Display the projected points, and , in a 2-D scatterplot.

5. Using irrational, increment the time, and repeat steps 2
through 4.

Before we illustrate this in an example, we note that once we stop the tour at
an interesting projection, we can easily recover the projection by knowing the
time step.

αααα t() ββββ t()

x x1 … xd 0, , ,();= for d odd.

αααα t()

αααα t() 2 d⁄ ω1t ω1t … ωd 2⁄ t ωd 2⁄ tcos,sin, ,cos,sin()=

ββββ t()

ββββ t() 2 d⁄ ω1t ω1t …,sin– ωd 2⁄ t ωd 2⁄ tsin–,cos, ,cos()=

ωi ω j ωi ωj⁄
ωi ωj⁄

∆t
ωi

ωi Pi= Pi

ωi

αααα t() ββββ t()

zi
αααα t() zi

ββββ t()

∆t

© 2002 by Chapman & Hall/CRC

182 Computational Statistics Handbook with MATLAB

Example 5.28
In this example, we use the iris data to illustrate the grand tour. First we
load up the data and set up some preliminaries.

% This is for the iris data.
load iris
% Put data into one matrix.
x = [setosa;virginica;versicolor];
% Set up vector of frequencies.
th = sqrt([2 3]);
% Set up other constants.
[n,d] = size(x);
% This is a small irrational number:
delt = eps*10^14;
% Do the tour for some specified time steps.
maxit = 1000;
cof = sqrt(2/d);
% Set up storage space for projection vectors.
a = zeros(d,1);
b = zeros(d,1);
z = zeros(n,2);

We now do some preliminary plotting, just to get the handles we need to use
MATLAB’s Handle Graphics for plotting. This enables us to update the
points that are plotted rather than replotting the entire figure.

% Get an initial plot, so the tour can be implemented
% using Handle Graphics.
Hlin1 = plot(z(1:50,1),z(1:50,2),'ro');
set(gcf,'backingstore','off')
set(gca,'Drawmode','fast')
hold on
Hlin2 = plot(z(51:100,1),z(51:100,2),'go');
Hlin3 = plot(z(101:150,1),z(101:150,2),'bo');
hold off
axis equal
axis vis3d
axis off

Now we do the actual pseudo grand tour, where we use a maximum number
of iterations given by maxit.

for t = 0:delt:(delt*maxit)
% Find the transformation vectors.
for j = 1:d/2

a(2*(j-1)+1) = cof*sin(th(j)*t);
a(2*j) = cof*cos(th(j)*t);
b(2*(j-1)+1) = cof*cos(th(j)*t);

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 183

b(2*j) = cof*(-sin(th(j)*t));
end
% Project onto the vectors.
z(:,1) = x*a;
z(:,2) = x*b;
set(Hlin1,'xdata',z(1:50,1),'ydata',z(1:50,2))
set(Hlin2,'xdata',z(51:100,1),'ydata',z(51:100,2))
set(Hlin3,'xdata',z(101:150,1),'ydata',z(101:150,2))
drawnow

end

�

5.5 MATLAB Code

MATLAB has many functions for visualizing data, both in the main package
and in the Statistics Toolbox. Many of these were mentioned in the text and
are summarized in Appendix E. Basic MATLAB has functions for scatterplots
(scatter) , h is to gram s (hist , bar) , and scat te rp lot m atr i ce s
(plotmatrix). The Statistics Toolbox has functions for constructing q-q
plots (normplot, qqplot, weibplot), the empirical cumulative distribu-
tion function (cdfplot), grouped versions of plots (gscatter,
gplotmatrix), and others. Some other graphing functions in the standard
MATLAB package that might be of interest include pie charts (pie), stair
plots (stairs), error bars (errorbar), and stem plots (stem).

The methods for statistical graphics described in Cleveland’s Visualizing
Data [1993] have been implemented in MATLAB. They are available for
download at

http://www.datatool.com/Dataviz_home.htm.

This book contains many useful techniques for visualizing data. Since
MATLAB code is available for these methods, we urge the reader to refer to
this highly readable text for more information on statistical visualization.

Rousseeuw, Ruts and Tukey [1999] describe a bivariate generalization of
the univariate boxplot called a bagplot. This type of plot displays the loca-
tion, spread, correlation, skewness and tails of the data set. Software
(MATLAB and S-Plus®) for constructing a bagplot is available for download
at

http://win-www.uia.ac.be/u/statis/index.html.

© 2002 by Chapman & Hall/CRC

http://www.datatool.com/Dataviz_home.htm.
http://win-www.uia.ac.be/u/statis/index.html.

184 Computational Statistics Handbook with MATLAB

In the Computational Statistics Toolbox, we include several functions that
implement some of the algorithms and graphics covered in Chapter 5. These
are summarized in Table 5.3.

5.6 Further Reading

One of the first treatises on graphical exploratory data analysis is John
Tukey’s Exploratory Data Analysis [1977]. In this book, he explains many
aspects of EDA, including smoothing techniques, graphical techniques and
others. The material in this book is practical and is readily accessible to read-
ers with rudimentary knowledge of data analysis. Another excellent book on
this subject is Graphical Exploratory Data Analysis [du Toit, Steyn and Stumpf,
1986], which includes several techniques (e.g., Chernoff faces and profiles)
that we do not cover. For texts that emphasize the visualization of technical
data, see Fortner and Meyer [1997] and Fortner [1995]. The paper by Weg-
man, Carr and Luo [1993] discusses many of the methods we present, along
with others such as stereoscopic displays, generalized nonlinear regression
using skeletons and a description of d-dimensional grand tour. This paper
and Wegman [1990] provide an excellent theoretical treatment of parallel
coordinates.

The Grammar of Graphics by Wilkinson [1999] describes a foundation for
producing graphics for scientific journals, the internet, statistical packages, or

TTTTAAAABBBBLLLLEEEE 5.35.35.35.3

List of Functions from Chapter 5 Included in the
Computational Statistics Toolbox

Purpose MATLAB Function

Star Plot csstars

Stem-and-leaf Plot csstemleaf

Parallel Coordinates Plot csparallel

Q-Q Plot csqqplot

Poissonness Plot cspoissplot

Andrews Curves csandrews

Exponential Probability Plot csexpoplot

Binomial Plot csbinoplot

PPEDA csppeda
csppstrtrem

csppind

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 185

any visualization system. It looks at the rules for producing pie charts, bar
charts scatterplots, maps, function plots, and many others.

For the reader who is interested in visualization and information design,
the three books by Edward Tufte are recommended. His first book, The Visual
Display of Quantitative Information [Tufte, 1983], shows how to depict num-
bers. The second in the series is called Envisioning Information [Tufte, 1990],
and illustrates how to deal with pictures of nouns (e.g., maps, aerial photo-
graphs, weather data). The third book is entitled Visual Explanations [Tufte,
1997], and it discusses how to illustrate pictures of verbs. These three books
also provide many examples of good graphics and bad graphics. We highly
recommend the book by Wainer [1997] for any statistician, engineer or data
analyst. Wainer discusses the subject of good and bad graphics in a way that
is accessible to the general reader.

Other techniques for visualizing multi-dimensional data have been pro-
posed in the literature. One method introduced by Chernoff [1973] represents
d-dimensional observations by a cartoon face, where features of the face
reflect the values of the measurements. The size and shape of the nose, eyes,
mouth, outline of the face and eyebrows, etc. would be determined by the
value of the measurements. Chernoff faces can be used to determine simple
trends in the data, but they are hard to interpret in most cases.

Another graphical EDA method that is often used is called brushing.
Brushing [Venables and Ripley, 1994; Cleveland, 1993] is an interactive tech-
nique where the user can highlight data points on a scatterplot and the same
points are highlighted on all other plots. For example, in a scatterplot matrix,
highlighting a point in one plot shows up as highlighted in all of the others.
This helps illustrate interesting structure across plots.

High-dimensional data can also be viewed using color histograms or data
images. Color histograms are described in Wegman [1990]. Data images are
discussed in Minotte and West [1998] and are a special case of color histo-
grams.

For more information on the graphical capabilities of MATLAB, we refer
the reader to the MATLAB documentation Using MATLAB Graphics. Another
excellent resource is the book called Graphics and GUI’s with MATLAB by
Marchand [1999]. These go into more detail on the graphics capabilities in
MATLAB that are useful in data analysis such as lighting, use of the camera,
animation, etc.

We now describe references that extend the techniques given in this book.

• Stem-and-leaf: Various versions and extensions of the stem-and-
leaf plot are available. We show an ordered stem-and-leaf plot in
this book, but ordering is not required. Another version shades the
leaves. Most introductory applied statistics books have information
on stem-and-leaf plots (e.g., Montgomery, et al. [1998]). Hunter
[1988] proposes an enhanced stem-and-leaf called the digidot plot.
This combines a stem-and-leaf with a time sequence plot. As data

© 2002 by Chapman & Hall/CRC

186 Computational Statistics Handbook with MATLAB

are collected they are plotted as a sequence of connected dots and
a stem-and-leaf is created at the same time.

• Discrete Quantile Plots: Hoaglin and Tukey [1985] provide similar
plots for other discrete distributions. These include the negative
binomial, the geometric and the logarithmic series. They also dis-
cuss graphical techniques for plotting confidence intervals instead
of points. This has the advantage of showing the confidence one
has for each count.

• Box plots: Other variations of the box plot have been described in
the literature. See McGill, Tukey and Larsen [1978] for a discussion
of the variable width box plot. With this type of display, the width
of the box represents the number of observations in each sample.

• Scatterplots: Scatterplot techniques are discussed in Carr, et al.
[1987]. The methods presented in this paper are especially pertinent
to the situation facing analysts today, where the typical data set
that must be analyzed is often very large . They
recommend various forms of binning (including hexagonal bin-
ning) and representation of the value by gray scale or symbol area.

• PPEDA: Jones and Sibson [1987] describe a steepest-ascent algo-
rithm that starts from either principal components or random
starts. Friedman [1987] combines steepest-ascent with a stepping
search to look for a region of interest. Crawford [1991] uses genetic
algorithms to optimize the projection index.

• Projection Pursuit: Other uses for projection pursuit have been
proposed. These include projection pursuit probability density esti-
mation [Friedman, Stuetzle, and Schroeder, 1984], projection pur-
suit regression [Friedman and Stuetzle, 1981], robust estimation [Li
and Chen, 1985], and projection pursuit for pattern recognition
[Flick, et al., 1990]. A 3-D projection pursuit algorithm is given in
Nason [1995]. For a theoretical and comprehensive description of
projection pursuit, the reader is directed to Huber [1985]. This
invited paper with discussion also presents applications of projec-
tion pursuit to computer tomography and to the deconvolution of
time series. Another paper that provides applications of projection
pursuit is Jones and Sibson [1987]. Not surprisingly, projection
pursuit has been combined with the grand tour by Cook, et al.
[1995]. Montanari and Lizzani [2001] apply projection pursuit to
the variable selection problem. Bolton and Krzanowski [1999]
describe the connection between projection pursuit and principal
component analysis.

n 103 106 …, ,=()

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 187

Exercises

5.1. Generate a sample of 1000 univariate standard normal random vari-
ables using randn. Construct a frequency histogram, relative fre-
quency histogram, and density histogram. For the density histogram,
superimpose the corresponding theoretical probability density func-
tion. How well do they match?

5.2. Repeat problem 5.1 for random samples generated from the exponen-
tial, gamma, and beta distributions.

5.3. Do a quantile plot of the Tibetan skull data of Example 5.3 using the
standard normal quantiles. Is it reasonable to assume the data follow
a normal distribution?

5.4. Try the following MATLAB code using the 3-D multivariate normal
as defined in Example 5.18. This will create a slice through the volume
at an arbitrary angle. Notice that the colors indicate a normal distri-
bution centered at the origin with the covariance matrix equal to the
identity matrix.

% Draw a slice at an arbitrary angle
hs = surf(linspace(-3,3,20),...

linspace(-3,3,20),zeros(20));
% Rotate the surface :
rotate(hs,[1,-1,1],30)
% Get the data that will define the
% surface at an arbitrary angle.
xd = get(hs,'XData');
yd = get(hs,'YData');
zd = get(hs,'ZData');
delete(hs)
% Draw slice:
slice(x,y,z,prob,xd,yd,zd)
axis tight
% Now plot this using the peaks surface as the slice.
% Try plotting against the peaks surface
[xd,yd,zd] = peaks;
slice(x,y,z,prob,xd,yd,zd)
axis tight

5.5. Repeat Example 5.23 using the data for Iris virginica and Iris versicolor.
Do the Andrews curves indicate separation between the classes? Do
you think it will be difficult to separate these classes based on these
features?

5.6. Repeat Example 5.4, where you generate random variables such that

© 2002 by Chapman & Hall/CRC

188 Computational Statistics Handbook with MATLAB

(a) and
(b) and

How can you tell from the q-q plot that the scale and the location
parameters are different?

5.7. Write a MATLAB program that permutes the axes in a parallel coor-
dinates plot. Apply it to the iris data.

5.8. Write a MATLAB program that permutes the order of the variables
and plots the resulting Andrews curves. Apply it to the iris data.

5.9. Implement Andrews curves using a different set of basis functions as
suggested in the text.

5.10. Repeat Example 5.16 and use rotate3d (or the rotate toolbar button)
to rotate about the axes. Do you see any separation of the different
types of insects?

5.11. Do a scatterplot matrix of the Iris versicolor data.
5.12. Verify that the two vectors used in Equations 5.24 and 5.25 are

orthonormal.

5.13. Write a function that implements Example 5.17 for any data set. The
user should have the opportunity to input the labels.

5.14. Define a trivariate normal as your volume, Use the
MATLAB functions isosurface and isocaps to obtain contours of
constant volume or probability (in this case).

5.15. Construct a quantile plot using the forearm data, comparing the
sample to the quantiles of a normal distribution. Is it reasonable to
model the data using the normal distribution?

5.16. The moths data represent the number of moths caught in a trap over
24 consecutive nights [Hand, et al., 1994]. Use the stem-and-leaf to
explore the shape of the distribution.

5.17. The biology data set contains the number of research papers for
1534 biologists [Tripathi and Gupta, 1988; Hand, et al., 1994]. Con-
struct a binomial plot of these data. Analyze your results.

5.18. In the counting data set, we have the number of scintillations in
72 second intervals arising from the radioactive decay of polonium
[Rutherford and Geiger, 1910; Hand, et al., 1994]. Construct a Pois-
sonness plot. Does this indicate agreement with the Poisson distribu-
tion?

5.19. Use the MATLAB Statistics Toolbox function boxplot to compare
box plots of the features for each species of iris data.

5.20. The thrombos data set contains measurements of urinary-thrombo-
globulin excretion in 12 normal and 12 diabetic patients [van Oost, et
al.; 1983; Hand, et al., 1994]. Put each of these into a column of a

X N 0 2,()∼ Y N 0 1,()∼
X N 5 1,()∼ Y N 0 1,()∼

f x y z, ,().

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 189

matrix and use the boxplot function to compare normal versus
diabetic patients.

5.21. To explore the shading options in MATLAB, try the following code
from the documentation:

% The ezsurf function is available in MATLAB 5.3
% and later.
% First get a surface.
ezsurf('sin(sqrt(x^2+y^2))/sqrt(x^2+y^2)',...
 [-6*pi,6*pi])
% Now add some lighting effects:
view(0,75)
shading interp
lightangle(-45,30)
set(findobj('type','surface'),...
 'FaceLighting','phong',...
 'AmbientStrength',0.3,'DiffuseStrength',0.8,...
 'SpecularStrength',0.9,'SpecularExponent',25,...
 'BackFaceLighting','unlit')
axis off

5.22. The bank data contains two matrices comprised of measurements
made on genuine money and forged money. Combine these two
matrices into one and use PPEDA to discover any clusters or groups
in the data. Compare your results with the known groups in the data.

5.23. Using the data in Example 5.27, do a scatterplot matrix of the original
sphered data set. Note the structures in the first four dimensions. Get
the first structure and construct another scatterplot matrix of the
sphered data after the first structure has been removed. Repeat this
process after both structures are removed.

5.24. Load the data sets in posse. These contain several data sets from
Posse [1995b]. Apply the PPEDA method to these data.

© 2002 by Chapman & Hall/CRC

© 2002 by Chapman & Hall/CRC

Chapter 6
Monte Carlo Methods for Inferential Statistics

6.1 Introduction

Methods in inferential statistics are used to draw conclusions about a popu-
lation and to measure the reliability of these conclusions using information
obtained from a random sample. Inferential statistics involves techniques
such as estimating population parameters using point estimates, calculating
confidence interval estimates for parameters, hypothesis testing, and model-
ing (e.g., regression and density estimation). To measure the reliability of the
inferences that are made, the statistician must understand the distribution of
any statistics that are used in the analysis. In situations where we use a well-
understood statistic, such as the sample mean, this is easily done analytically.
However, in many applications, we do not want to be limited to using such
simple statistics or to making simplifying assumptions. The goal of this chap-
ter is to explain how simulation or Monte Carlo methods can be used to make
inferences when the traditional or analytical statistical methods fail.

According to Murdoch [2000], the term Monte Carlo originally referred to
simulations that involved random walks and was first used by Jon von Neu-
mann and S. M. Ulam in the 1940’s. Today, the Monte Carlo method refers to
any simulation that involves the use of random numbers. In the following
sections, we show that Monte Carlo simulations (or experiments) are an easy
and inexpensive way to understand the phenomena of interest [Gentle, 1998].
To conduct a simulation experiment, you need a model that represents your
population or phenomena of interest and a way to generate random numbers
(according to your model) using a computer. The data that are generated
from your model can then be studied as if they were observations. As we will
see, one can use statistics based on the simulated data (means, medians,
modes, variance, skewness, etc.) to gain understanding about the population.

In Section 6.2, we give a short overview of methods used in classical infer-
ential statistics, covering such topics as hypothesis testing, power, and confi-
dence intervals. The reader who is familiar with these may skip this section.
In Section 6.3, we discuss Monte Carlo simulation methods for hypothesis
testing and for evaluating the performance of the tests. The bootstrap method

© 2002 by Chapman & Hall/CRC

192 Computational Statistics Handbook with MATLAB

for estimating the bias and variance of estimates is presented in Section 6.4.
Finally, Sections 6.5 and 6.6 conclude the chapter with information about
available MATLAB code and references on Monte Carlo simulation and the
bootstrap.

6.2 Classical Inferential Statistics

In this section, we will cover two of the main methods in inferential statistics:
hypothesis testing and calculating confidence intervals. With confidence
intervals, we are interested in obtaining an interval of real numbers that we
expect (with specified confidence) contains the true value of a population
parameter. In hypothesis testing, our goal is to make a decision about not
rejecting or rejecting some statement about the population based on data
from a random sample. We give a brief summary of the concepts in classical
inferential statistics, endeavoring to keep the theory to a minimum. There are
many books available that contain more information on these topics. We rec-
ommend Casella and Berger [1990], Walpole and Myers [1985], Bickel and
Doksum [1977], Lindgren [1993], Montgomery, Runger and Hubele [1998],
and Mood, Graybill and Boes [1974].

HHHHyyyypothesispothesispothesispothesis TTTTestinestinestinestingggg

In hypothesis testing, we start with a statistical hypothesis, which is a con-
jecture about one or more populations. Some examples of these are:

• A transportation official in the Washington, D.C. area thinks that
the mean travel time to work for northern Virginia residents has
increased from the average time it took in 1995.

• A medical researcher would like to determine whether aspirin
decreases the risk of heart attacks.

• A pharmaceutical company needs to decide whether a new vaccine
is superior to the one currently in use.

• An engineer has to determine whether there is a difference in
accuracy between two types of instruments.

We generally formulate our statistical hypotheses in two parts. The first is
the null hypothesis represented by , which denotes the hypothesis we
would like to test. Usually, we are searching for departures from this state-
ment. Using one of the examples given above, the engineer would have the
null hypothesis that there is no difference in the accuracy between the two
instruments.

H0

© 2002 by Chapman & Hall/CRC

Chapter 6: Monte Carlo Methods for Inferential Statistics 193

There must be an alternative hypothesis such that we would decide in
favor of one or the other, and this is denoted by . If we reject , then this
leads to the acceptance of . Returning to the engineering example, the
alternative hypothesis might be that there is a difference in the instruments
or that one is more accurate than the other. When we perform a statistical
hypothesis test, we can never know with certainty what hypothesis is true.
For ease of exposition, we will use the terms accept the null hypothesis and
reject the null hypothesis for our decisions resulting from statistical hypoth-
esis testing.

To clarify these ideas, let’s look at the example of the transportation official
who wants to determine whether the average travel time to work has
increased from the time it took in 1995. The mean travel time to work for
northern Virginia residents in 1995 was 45 minutes. Since he wants to deter-
mine whether the mean travel time has increased, the statistical hypotheses
are given by:

The logic behind statistical hypothesis testing is summarized below, with
details and definitions given after.

STEPS OF HYPOTHESIS TESTING

1. Determine the null and alternative hypotheses, using mathematical
expressions if applicable. Usually, this is an expression that in-
volves a characteristic or descriptive measure of a population.

2. Take a random sample from the population of interest.

3. Calculate a statistic from the sample that provides information
about the null hypothesis. We use this to make our decision.

4. If the value of the statistic is consistent with the null hypothesis,
then do not reject .

5. If the value of the statistic is not consistent with the null hypothesis,
then reject and accept the alternative hypothesis.

The problem then becomes one of determining when a statistic is consistent
with the null hypothesis. Recall from Chapter 3 that a statistic is itself a ran-
dom variable and has a probability distribution associated with it. So, in
order to decide whether or not an observed value of the statistic is consistent
with the null hypothesis, we must know the distribution of the statistic when
the null hypothesis is true. The statistic used in step 3 is called a test statistic.

Let’s return to the example of the travel time to work for northern Virginia
residents. To perform the analysis, the transportation official takes a random
sample of 100 residents in northern Virginia and measures the time it takes

H1 H0

H1

H0: µ 45 minutes=

H1: µ 45 minutes.>

H0

H0

© 2002 by Chapman & Hall/CRC

194 Computational Statistics Handbook with MATLAB

them to travel to work. He uses the sample mean to help determine whether
there is sufficient evidence to reject the null hypothesis and conclude that the
mean travel time has increased. The sample mean that he calculates is 47.2
minutes. This is slightly higher than the mean of 45 minutes for the null
hypothesis. However, the sample mean is a random variable and has some
variation associated with it. If the variance of the sample mean under the null
hypothesis is large, then the observed value of minutes might not
be inconsistent with . This is explained further in Example 6.1.

Example 6.1
We continue with the transportation example. We need to determine whether
or not the value of the statistic obtained from a random sample drawn from
the population is consistent with the null hypothesis. Here we have a random
sample comprised of commute times. The sample mean of these
observations is minutes. If the transportation official assumes that
the travel times to work are normally distributed with minutes (one
might know a reasonable value for based on previous experience with the
population), then we know from Chapter 3 that is approximately normally
distributed with mean and standard deviation . Standardiz-
ing the observed value of the sample mean, we have

, (6.1)

where is the observed value of the test statistic, and is the mean under
the null hypothesis. Thus, we have that the value of minutes is 1.47
standard deviations away from the mean, if the null hypothesis is really true.
(This is why we use in Equation 6.1.) We know that approximately 95% of
normally distributed random variables fall within two standard deviations
either side of the mean. Thus, minutes is not inconsistent with the
null hypothesis.
�

In hypothesis testing, the rule that governs our decision might be of the
form: if the observed statistic is within some region, then we reject the null hypoth-
esis. The critical region is an interval for the test statistic over which we
would reject . This is sometimes called the rejection region. The critical
value is that value of the test statistic that divides the domain of the test sta-
tistic into a region where will be rejected and one where will be
accepted. We need to know the distribution of the test statistic under the null
hypothesis to find the critical value(s).

The critical region depends on the distribution of the statistic under the
null hypothesis, the alternative hypothesis, and the amount of error we are
willing to tolerate. Typically, the critical regions are areas in the tails of the
distribution of the test statistic when is true. It could be in the lower tail,

x 47.2=
H0

n 100=
x 47.2=

σ 15=
σ

x
µX σX σX n⁄=

zo
x µ0–

σX n⁄

x µ0–
σX

-------------- 47.2 45–

15 100⁄
----------------------- 2.2

1.5
------- 1.47= = = = =

zo µ0

x 47.2=

µ0

x 47.2=

H0

H0 H0

H0

© 2002 by Chapman & Hall/CRC

Chapter 6: Monte Carlo Methods for Inferential Statistics 195

the upper tail or both tails, and which one is appropriate depends on the
alternative hypothesis. For example:

• If a large value of the test statistic would provide evidence for the
alternative hypothesis, then the critical region is in the upper tail
of the distribution of the test statistic. This is sometimes referred
to as an upper tail test.

• If a small value of the test statistic provides evidence for the alter-
native hypothesis, then the critical region is in the lower tail of the
distribution of the test statistic. This is sometimes referred to as a
lower tail test.

• If small or large values of the test statistic indicate evidence for the
alternative hypothesis, then the critical region is in the lower and
upper tails. This is sometimes referred to as a two-tail test.

There are two types of errors that can occur when we make a decision in
statistical hypothesis testing. The first is a Type I error, which arises when we
reject when it is really true. The other error is called Type II error, and this
happens when we fail to detect that is actually false. These errors are sum-
marized in Table 6.1.

Recall that we are usually searching for significant evidence that the alter-
native hypothesis is valid, and we do not want to change from the status quo
(i.e., reject) unless there is sufficient evidence in the data to lead us in that
direction. So, when setting up a hypothesis test we ensure that the probability
of wrongly rejecting is controlled. The probability of making a Type I
error is denoted by and is sometimes called the significance level of the
test. The is set by the analyst, and it represents the maximum probability
of Ty pe I error tha t wil l b e to lerated. Typical values of are

 The critical value is found as the quantile (under the
null hypothesis) that gives a significance level of

The specific procedure for conducting an hypothesis test using these ideas
is given below. This is called the critical value approach, because the decision

TTTTAAAABBBBLLLLE 6E 6E 6E 6....1111

Types of Error in Statistical Hypothesis Testing

Type of Error Description
Probability of

Error

Type I Error Rejecting
when it is true

Type II Error Not rejecting
when it is false

H0

H0

H0 α

H0 β

H0

H0

α
α

α
α 0.01 0.05 0.10., ,=

α .

© 2002 by Chapman & Hall/CRC

196 Computational Statistics Handbook with MATLAB

is based on whether the value of the test statistic falls in the rejection region.
We will discuss an alternative method later in this section. The concepts of
hypothesis testing using the critical value approach are illustrated in Exam-
ple 6.2.

PROCEDURE - HYPOTHESIS TESTING (CRITICAL VALUE APPROACH)

1. Determine the null and alternative hypotheses.

2. Find a test statistic T that will provide evidence that should be
accepted or rejected (e.g, a large value of the test statistic indicates

 should be rejected).
3. Obtain a random sample from the population of interest and com-

pute the observed value of the test statistic using the sample.

4. Using the sampling distribution of the test statistic under the null
hypothesis and the significance level, find the critical value(s). That
is, find the t such that

Upper Tail Test:

Lower Tail Test:

Two-Tail Test: and ,

where denotes the probability under the null hypothesis.

5. If the value of the test statistic falls in the critical region, then
reject the null hypothesis.

Example 6.2
Here, we illustrate the critical value approach to hypothesis testing using the
transportation example. Our test statistic is given by

,

and we observed a value of based on the random sample of
 commute times. We want to conduct the hypothesis test at a signif-

icance level given by Since our alternative hypothesis is that the
commute times have increased, a large value of the test statistic provides evi-
dence for We can find the critical value using the MATLAB Statistics
Toolbox as follows:

cv = norminv(0.95,0,1);

H0

H0

to

PH0
T t≤() 1 α–=

PH0
T t≤() α=

PH0
T t1≤() α 2⁄= PH0

T t2≤() 1 α– 2⁄=

PH0
.()

to

z
x µ0–

σX

--------------=

zo 1.47=
n 100=

α 0.05.=

H1.

© 2002 by Chapman & Hall/CRC

Chapter 6: Monte Carlo Methods for Inferential Statistics 197

This yields a critical value of 1.645. Thus, if then we reject
Since the observed value of the test statistic is less than the critical value, we
do not reject . The regions corresponding to this hypothesis test are illus-
trated in Figure 6.1.
�

The probability of making a Type II error is represented by and it
depends on the sample size, the significance level of the test, and the alterna-
tive hypothesis. The last part is important to remember: the probability that we
will not detect a departure from the null hypothesis depends on the distribution of the
test statistic under the alternative hypothesis. Recall that the alternative hypoth-
esis allows for many different possibilities, yielding many distributions
under So, we must determine the Type II error for every alternative
hypothesis of interest.

A more convenient measure of the performance of a hypothesis test is to
determine the probability of not making a Type II error. This is called the
power of a test. We can consider this to be the probability of rejecting
when it is really false. Roughly speaking, one can think of the power as the

FFFFIIIIGUGUGUGURE 6.RE 6.RE 6.RE 6.1111

This shows the critical region (shaded region) for the hypothesis test of Examples 6.1 and 6.2.
If the observed value of the test statistic falls in the shaded region, then we reject the null
hypothesis. Note that this curve reflects the distribution for the test statistic under the null
hypothesis.

zo 1.645,≥ H0.

H0

−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

D
en

si
ty

Z

Rejection
Region

Non−rejection
Region

β,

H1.

H0

© 2002 by Chapman & Hall/CRC

198 Computational Statistics Handbook with MATLAB

ability of the hypothesis test to detect a false null hypothesis. The power is
given by

. (6.2)

As we see in Example 6.3, the power of the test to detect departures from the
null hypothesis depends on the true value of .

Example 6.3
Returning to the transportation example, we illustrate the concepts of Type II
error and power. It is important to keep in mind that these values depend on
the true mean so we have to calculate the Type II error for different values
of First we get a vector of values for

% Get several values for the mean under the alternative
% hypothesis. Note that we are getting some values
% below the null hypothesis.
mualt = 40:60;

It is actually easier to understand the power when we look at a test statistic
based on rather than So, we convert the critical value to its correspond-
ing value:

% Note the critical value:
cv = 1.645;
% Note the standard deviation for x-bar:
sig = 1.5;
% It's easier to use the non-standardized version,
% so convert:
ct = cv*1.5 + 45;

We find the area under the curve to the left of the critical value (the non rejec-
tion region) for each of these values of the true mean. That would be the prob-
ability of not rejecting the null hypothesis.

% Get a vector of critical values that is
% the same size as mualt.
ctv = ct*ones(size(mualt));
% Now get the probabilities to the left of this value.
% These are the probabilities of the Type II error.
beta = normcdf(ctv,mualt,sig);

Note that the variable beta contains the probability of Type II error (the area
to the left of the critical value ctv under a normal curve with mean mualt
and standard deviation sig) for every . To get the power, simply subtract
all of the values for beta from one.

% To get the power: 1-beta

Power 1 β–=

µ

µ,
µ . µ:

x zo.
x

µ

© 2002 by Chapman & Hall/CRC

Chapter 6: Monte Carlo Methods for Inferential Statistics 199

pow = 1 - beta;

We plot the power against the true value of the population mean in Figure
6.2. Note that as , the power (or the likelihood that we can detect the
alternative hypothesis) increases.

plot(mualt,pow);
xlabel('True Mean \mu')
ylabel('Power')
axis([40 60 0 1.1])

We leave it as an exercise for the reader to plot the probability of making a
Type II error.
�

There is an alternative approach to hypothesis testing, which uses a quan-
tity called a p-value. A p-value is defined as the probability of observing a
value of the test statistic as extreme as or more extreme than the one that is
observed, when the null hypothesis is true. The word extreme refers to the
direction of the alternative hypothesis. For example, if a small value of the
test statistic (a lower tail test) indicates evidence for the alternative hypothe-
sis, then the p-value is calculated as

FFFFIIIIGUGUGUGURE 6.RE 6.RE 6.RE 6.2222

This shows the power (or probability of not making a Type II error) as a function of the true
value of the population mean . Note that as the true mean gets larger, then the likelihood
of not making a Type II error increases.

µ µ0>

40 42 44 46 48 50 52 54 56 58 60
0

0.2

0.4

0.6

0.8

1

True Mean µ

P
ow

er

µ

H0

© 2002 by Chapman & Hall/CRC

200 Computational Statistics Handbook with MATLAB

,

where is the observed value of the test statistic T, and denotes the
probability under the null hypothesis. The p-value is sometimes referred to
as the observed significance level.

In the p-value approach, a small value indicates evidence for the alternative
hypothesis and would lead to rejection of . Here small refers to a p-value
that is less than or equal to . The steps for performing hypothesis testing
using the p-value approach are given below and are illustrated in
Example 6.4.

PROCEDURE - HYPOTHESIS TESTING (P-VALUE APPROACH)

1. Determine the null and alternative hypotheses.

2. Find a test statistic T that will provide evidence about .
3. Obtain a random sample from the population of interest and com-

pute the value of the test statistic from the sample.

4. Calculate the p-value:

Lower Tail Test:

Upper Tail Test:

5. If the , then reject the null hypothesis.

For a two-tail test, the p-value is determined similarly.

Example 6.4
In this example, we repeat the hypothesis test of Example 6.2 using the p-
value approach. First we set some of the values we need:

mu = 45;
sig = 1.5;
xbar = 47.2;
% Get the observed value of test statistic.
zobs = (xbar - mu)/sig;

The p-value is the area under the curve greater than the value for zobs. We
can find it using the following command:

pval = 1-normcdf(zobs,0,1);

p value– PH0
T to≤()=

to PH0
.()

H0

α

H0

to

p value – PH0
T to≤()=

p value – PH0
T to≥()=

p-value α≤

© 2002 by Chapman & Hall/CRC

Chapter 6: Monte Carlo Methods for Inferential Statistics 201

We get a p-value of 0.071. If we are doing the hypothesis test at the 0.05 sig-
nificance level, then we would not reject the null hypothesis. This is consis-
tent with the results we had previously.
�

Note that in each approach, knowledge of the distribution of T under the
null hypothesis is needed. How to tackle situations where we do not
know the distribution of our statistic is the focus of the rest of the chapter.

ConfidenConfidenConfidenConfidencccceeee IIIIntntntnteeeerrrrvvvvaaaallllssss

In Chapter 3, we discussed several examples of estimators for population
parameters such as the mean, the variance, moments, and others. We call
these point estimates. It is unlikely that a point estimate obtained from a ran-
dom sample will exactly equal the true value of the population parameter.
Thus, it might be more useful to have an interval of numbers that we expect
will contain the value of the parameter. This type of estimate is called an
interval estimate. An understanding of confidence intervals is needed for the
bootstrap methods covered in Section 6.4.

Let represent a population parameter that we wish to estimate, and let T
denote a statistic that we will use as a point estimate for The observed
value of the statistic is denoted as An interval estimate for will be of the
form

, (6.3)

where and depend on the observed value and the distribution of
the statistic T.

If we know the sampling distribution of T, then we are able to determine
values for and such that

, (6.4)

where Equation 6.4 indicates that we have a probability of
that we will select a random sample that produces an interval that contains

 This interval (Equation 6.3) is called a confidence interval.
The philosophy underlying confidence intervals is the following. Suppose
we repeatedly take samples of size n from the population and compute the
random interval given by Equation 6.3. Then the relative frequency of the
intervals that contain the parameter would approach . It
should be noted that one-sided confidence intervals can be defined similarly
[Mood, Graybill and Boes, 1974].

To illustrate these concepts, we use Equation 6.4 to get a confidence interval
for the population mean . Recall from Chapter 3 that we know the distribu-
tion for . We define as the z value that has an area under the standard

H0

θ
θ.

θ̂. θ

θ̂Lo θ θ̂Up< <

θ̂Lo θ̂Up θ̂

θ̂Lo θ̂Up

P θ̂Lo θ θ̂Up< <() 1 α–=

0 α 1.< < 1 α–

θ. 1 α–() 100%⋅

θ 1 α–() 100%⋅

µ
X z α 2⁄()

© 2002 by Chapman & Hall/CRC

202 Computational Statistics Handbook with MATLAB

normal curve of size to the left of it. In other words, we use to
denote that value such that

.

Thus, the area between and is This is shown in
Figure 6.3.

We can see from this that the shaded area has probability , and

, (6.5)

where

. (6.6)

If we substitute this into Equation 6.5, then we have

FFFFIIIIGUGUGUGURE 6.RE 6.RE 6.RE 6.3333

The left vertical line corresponds to , and the right vertical line is at . So, the
non-shaded areas in the tails each have an area of , and the shaded area in the middle
is .

α 2⁄ z α 2⁄()

P Z z α 2⁄()<() α 2⁄=

z α 2⁄() z 1 α– 2⁄() 1 α .–

−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

z α 2⁄() z 1 α 2⁄–()

α 2⁄
1 α–

1 α–

P z α 2⁄() Z z 1 α– 2⁄()< <() 1 α–=

Z X µ–

σ n⁄
---------------=

© 2002 by Chapman & Hall/CRC

Chapter 6: Monte Carlo Methods for Inferential Statistics 203

. (6.7)

Rearranging the inequalities in Equation 6.7, we obtain

. (6.8)

Comparing Equations 6.8 and 6.4, we see that

.

Example 6.5
We provide an example of finding a 95% confidence interval, using the trans-
portation application of before. Recall that , minutes, and
the standard deviation of the travel time to work is minutes. Since we
want a 95% confidence interval,

mu = 45;
sig = 15;
n = 100;
alpha = 0.05;
xbar = 47.2;

We can get the endpoints for a 95% confidence interval as follows:

% Get the 95% confidence interval.
% Get the value for z_alpha/2.
zlo = norminv(1-alpha/2,0,1);
zhi = norminv(alpha/2,0,1);
thetalo = xbar - zlo*sig/sqrt(n);
thetaup = xbar - zhi*sig/sqrt(n);

We get a value of and .
�

We return to confidence intervals in Section 6.4 and Chapter 7, where we
discuss bootstrap methods for obtaining them. First, however, we look at
Monte Carlo methods for hypothesis testing.

P z α 2⁄() X µ–

σ n⁄
--------------- z 1 α– 2⁄()< <

 1 α–=

P X z 1 α– 2⁄() σ
n

-------– µ X z α 2⁄() σ
n

-------–< <

1 α–=

θ̂Lo X z 1 α– 2⁄() σ
n

-------–= θ̂Up X z α 2⁄() σ
n

-------–=

n 100= x 47.2=
σ 15=

α 0.05.=

θ̂Lo 44.26= θ̂Up 50.14=

© 2002 by Chapman & Hall/CRC

204 Computational Statistics Handbook with MATLAB

6.3 Monte Carlo Methods for Inferential Statistics

The sampling distribution is known for many statistics. However, these are
typically derived using assumptions about the underlying population under
study or for large sample sizes. In many cases, we do not know the sampling
distribution for the statistic, or we cannot be sure that the assumptions are
satisfied. We can address these cases using Monte Carlo simulation methods,
which is the topic of this section. Some of the uses of Monte Carlo simulation
for inferential statistics are the following:

• Performing inference when the distribution of the test statistic is
not known analytically,

• Assessing the performance of inferential methods when parametric
assumptions are violated,

• Testing the null and alternative hypotheses under various condi-
tions,

• Evaluating the performance (e.g., power) of inferential methods,
• Comparing the quality of estimators.

In this section, we cover situations in inferential statistics where we do
know something about the distribution of the population our sample came
from or we are willing to make assumptions about the distribution. In Section
6.4, we discuss bootstrap methods that can be used when no assumptions are
made about the underlying distribution of the population.

BBBBaaaasicsicsicsic MMMMonte Caronte Caronte Caronte Carllllo Procedo Procedo Procedo Proceduuuurrrreeee

The fundamental idea behind Monte Carlo simulation for inferential statis-
tics is that insights regarding the characteristics of a statistic can be gained by
repeatedly drawing random samples from the same population of interest
and observing the behavior of the statistic over the samples. In other words,
we estimate the distribution of the statistic by randomly sampling from the
population and recording the value of the statistic for each sample. The
observed values of the statistic for these samples are used to estimate the dis-
tribution.

The first step is to decide on a pseudo-population that the analyst assumes
represents the real population in all relevant aspects. We use the word pseudo
here to emphasize the fact that we obtain our samples using a computer and
pseudo random numbers. For example, we might assume that the underly-
ing population is exponentially distributed if the random variable represents
the time before a part fails, or we could assume the random variable comes
from a normal distribution if we are measuring IQ scores. The pseudo-popu-

© 2002 by Chapman & Hall/CRC

Chapter 6: Monte Carlo Methods for Inferential Statistics 205

lation must be something we can sample from using the computer. In this
text, we consider this type of Monte Carlo simulation to be a parametric tech-
nique, because we sample from a known or assumed distribution.

The basic Monte Carlo procedure is outlined here. Later, we provide proce-
dures illustrating some specific uses of Monte Carlo simulation as applied to
statistical hypothesis testing.

PROCEDURE - BASIC MONTE CARLO SIMULATION

1. Determine the pseudo-population or model that represents the true
population of interest.

2. Use a sampling procedure to sample from the pseudo-population.
3. Calculate a value for the statistic of interest and store it.

4. Repeat steps 2 and 3 for M trials.
5. Use the M values found in step 4 to study the distribution of the

statistic.

It is important to keep in mind, that when sampling from the pseudo-popu-
lation, the analyst should ensure that all relevant characteristics reflect the
statistical situation. For example, the same sample size and sampling strategy
should be used when trying to understand the performance of a statistic. This
means that the distribution for the statistic obtained via Monte Carlo simula-
tion is valid only for the conditions of the sampling procedure and the
assumptions about the pseudo-population.

Note that in the last step of the Monte Carlo simulation procedure, the ana-
lyst can use the estimated distribution of the statistic to study characteristics
of interest. For example, one could use this information to estimate the skew-
ness, bias, standard deviation, kurtosis and many other characteristics.

MonteMonteMonteMonte CCCCaaaarrrrlo Hypothelo Hypothelo Hypothelo Hypothessssiiiissss TTTTeeeessssttttinginginging

Recall that in statistical hypothesis testing, we have a test statistic that pro-
vides evidence that the null hypothesis should be rejected or not. Once we
observe the value of the test statistic, we decide whether or not that particular
value is consistent with the null hypothesis. To make that decision, we must
know the distribution of the statistic when the null hypothesis is true. Esti-
mating the distribution of the test statistic under the null hypothesis is one of
the goals of Monte Carlo hypothesis testing. We discuss and illustrate the
Monte Carlo method as applied to the critical value and p-value approaches
to hypothesis testing.

Recall that in the critical value approach to hypothesis testing, we are given
a significance level . We then use this significance level to find the appro-
priate critical region in the distribution of the test statistic when the null
hypothesis is true. Using the Monte Carlo method, we determine the critical

α

© 2002 by Chapman & Hall/CRC

206 Computational Statistics Handbook with MATLAB

value using the estimated distribution of the test statistic. The basic proce-
dure is to randomly sample many times from the pseudo-population repre-
senting the null hypothesis, calculate the value of the test statistic at each
trial, and use these values to estimate the distribution of the test statistic.

PROCEDURE - MONTE CARLO HYPOTHESIS TESTING (CRITICAL VALUE)

1. Using an available random sample of size n from the population
of interest, calculate the observed value of the test statistic, .

2. Decide on a pseudo-population that reflects the characteristics of
the true population under the null hypothesis.

3. Obtain a random sample of size n from the pseudo-population.

4. Calculate the value of the test statistic using the random sample in
step 3 and record it.

5. Repeat steps 3 and 4 for M trials. We now have values ,
that serve as an estimate of the distribution of the test statistic, T,
when the null hypothesis is true.

6. Obtain the critical value for the given significance level :

Lower Tail Test: get the sample quantile, , from the
.

Upper Tail Test: get the sample quantile, , from the
.

Two-Tail Test: get the sample quantiles and from the
.

7. If falls in the critical region, then reject the null hypothesis.

The critical values in step 6 can be obtained using the estimate of a sample
quantile that we discussed in Chapter 3. The function csquantiles from
the Computational Statistics Toolbox is also available to find these values.

In the examples given below, we apply the Monte Carlo method to a famil-
iar hypothesis testing situation where we are testing an hypothesis about the
population mean. As we saw earlier, we can use analytical approaches for
this type of test. We use this simple application in the hope that the reader
will better understand the ideas of Monte Carlo hypothesis testing and then
easily apply them to more complicated problems.

Example 6.6
This toy example illustrates the concepts of Monte Carlo hypothesis testing.
The mcdata data set contains 25 observations. We are interested in using
these data to test the following null and alternative hypotheses:

to

t1 … tM, ,

α

α-th q̂α

t1 … tM, ,
1 α–()-th q̂1 α–

t1 … tM, ,
q̂α 2⁄ q̂1 α 2⁄–

t1 … tM, ,

to

© 2002 by Chapman & Hall/CRC

Chapter 6: Monte Carlo Methods for Inferential Statistics 207

We will perform our hypothesis test using simulation to get the critical val-
ues. We decide to use the following as our test statistic

.

First, we take care of some preliminaries.

% Load up the data.
load mcdata
n = length(mcdata);
% Population sigma is known.
sigma = 7.8;
sigxbar = sigma/sqrt(n);
% Get the observed value of the test statistic.
Tobs = (mean(mcdata)-454)/sigxbar;

The observed value of the test statistic is The next step is to
decide on a model for the population that generated our data. We suspect
that the normal distribution with is a good model, and we check this
assumption using a normal probability plot. The resulting plot in Figure 6.4
shows that we can use the normal distribution as the pseudo-population.

% This command generates the normal probability plot.
% It is a function in the MATLAB Statistics Toolbox.
normplot(mcdata)

We are now ready to implement the Monte Carlo simulation. We use 1000 tri-
als in this example. At each trial, we randomly sample from the distribution
of the test statistic under the null hypothesis (the normal distribution with

 and) and record the value of the test statistic.

M = 1000;% Number of Monte Carlo trials
% Storage for test statistics from the MC trials.
Tm = zeros(1,M);
% Start the simulation.
for i = 1:M

% Generate a random sample under H_0
% where n is the sample size.
xs = sigma*randn(1,n) + 454;
Tm(i) = (mean(xs) - 454)/sigxbar;

end

H0: µ 454 =

H1: µ 454.<

z x 454–

σ n⁄
------------------=

to 2.56.–=

σ 7.8=

µ 454= σ 7.8=

© 2002 by Chapman & Hall/CRC

208 Computational Statistics Handbook with MATLAB

Now that we have the estimated distribution of the test statistic contained in
the variable Tm, we can use that to estimate the critical value for a lower tail
test.

% Get the critical value for alpha.
% This is a lower-tail test, so it is the
% alpha quantile.
alpha = 0.05;
cv = csquantiles(Tm,alpha);

We get an estimated critical value of -1.75. Since the observed value of our test
statistic is , which is less than the estimated critical value, we reject

.
�

The procedure for Monte Carlo hypothesis testing using the p-value
approach is similar. Instead of finding the critical value from the simulated
distribution of the test statistic, we use it to estimate the p-value.

FFFFIIIIGUGUGUGURE 6.RE 6.RE 6.RE 6.4444

This normal probability plot for the mcdata data shows that assuming a normal distribution
for the data is reasonable.

435 440 445 450 455 460 465
0.01
0.02

0.05

0.10

0.25

0.50

0.75

0.90

0.95

0.98
0.99

Data

P
ro

ba
bi

lit
y

Normal Probability Plot

to 2.56–=
H0

© 2002 by Chapman & Hall/CRC

Chapter 6: Monte Carlo Methods for Inferential Statistics 209

PROCEDURE - MONTE CARLO HYPOTHESIS TESTING (P-VALUE)

1. For a random sample of size n to be used in a statistical hypothesis
test, calculate the observed value of the test statistic, .

2. Decide on a pseudo-population that reflects the characteristics of
the population under the null hypothesis.

3. Obtain a random sample of size n from the pseudo-population.

4. Calculate the value of the test statistic using the random sample in
step 3 and record it as .

5. Repeat steps 3 and 4 for M trials. We now have values ,
that serve as an estimate of the distribution of the test statistic, T,
when the null hypothesis is true.

6. Estimate the p-value using the distribution found in step 5, using
the following.
Lower Tail Test:

Upper Tail Test:

7. If , then reject the null hypothesis.

Example 6.7
We return to the situation in Example 6.6 and apply Monte Carlo simulation
to the p-value approach to hypothesis testing. Just to change things a bit, we
use the sample mean as our test statistic.

% Let's change the test statistic to xbar.
Tobs = mean(mcdata);
% Number of Monte Carlo trials.
M = 1000;
% Start the simulation.
Tm = zeros(1,M);
for i = 1:M

% Generate a random sample under H_0.
xs = sigma*randn(1,n) + 454;
Tm(i) = mean(xs);

end

to

ti

t1 … tM, ,

p̂-value
ti to≤()

M
---------------------;= i 1 … M, ,=

p̂-value
ti to≥()

M
---------------------;= i 1 … M, ,=

p̂-value α≤

© 2002 by Chapman & Hall/CRC

210 Computational Statistics Handbook with MATLAB

We find the estimated p-value by counting the number of observations in Tm
that are below the value of the observed value of the test statistic and divid-
ing by M.

% Get the p-value. This is a lower tail test.
% Find all of the values from the simulation that are
% below the observed value of the test statistic.
ind = find(Tm <= Tobs);
pvalhat = length(ind)/M;

We have an estimated p-value given by 0.007. If the significance level of our
test is then we would reject the null hypothesis.
�

MonteMonteMonteMonte CCCCaaaarrrrlolololo AAAAsssssessessessesssssmmmmeeeennnntttt of Hypotheof Hypotheof Hypotheof Hypothessssiiiissss TTTTeeeessssttttinginginging

Monte Carlo simulation can be used to evaluate the performance of an infer-
ence model or hypothesis test in terms of the Type I error and the Type II
error. For some statistics, such as the sample mean, these errors can be deter-
mined analytically. However, what if we have an inference test where the
assumptions of the standard methods might be violated or the analytical
methods cannot be applied? For instance, suppose we choose the critical
value by using a normal approximation (when our test statistic is not nor-
mally distributed), and we need to assess the results of doing that? In these
situations, we can use Monte Carlo simulation to estimate the Type I and the
Type II error.

We first outline the procedure for estimating the Type I error. Because the
Type I error occurs when we reject the null hypothesis test when it is true, we
must sample from the pseudo-population that represents .

PROCEDURE - MONTE CARLO ASSESSMENT OF TYPE I ERROR

1. Determine the pseudo-population when the null hypothesis is true.

2. Generate a random sample of size n from this pseudo-population.
3. Perform the hypothesis test using the critical value.

4. Determine whether a Type I error has been committed. In other
words, was the null hypothesis rejected? We know that it should
not be rejected because we are sampling from the distribution
according to the null hypothesis. Record the result for this trial as,

5. Repeat steps 2 through 4 for M trials.

α 0.05,=

H0

Ii

1; Type I error is made

0; Type I error is not made.

=

© 2002 by Chapman & Hall/CRC

Chapter 6: Monte Carlo Methods for Inferential Statistics 211

6. The probability of making a Type I error is

. (6.9)

Note that in step 6, this is the same as calculating the proportion of times the
null hypothesis is falsely rejected out of M trials. This provides an estimate of
the significance level of the test for a given critical value.

The procedure is similar for estimating the Type II error of a hypothesis
test. However, this error is determined by sampling from the distribution
when the null hypothesis is false. There are many possibilities for the Type II
error, and the analyst should investigate the Type II error for those alternative
hypotheses that are of interest.

PROCEDURE - MONTE CARLO ASSESSMENT OF TYPE II ERROR

1. Determine a pseudo-population of interest where the null hypoth-
esis is false.

2. Generate a random sample of size n from this pseudo-population.

3. Perform the hypothesis test using the significance level and
corresponding critical value.

4. Note whether a Type II error has been committed; i.e., was the null
hypothesis not rejected? Record the result for this trial as,

5. Repeat steps 2 through 4 for M trials.
6. The probability of making a Type II error is

. (6.10)

The Type II error rate is estimated using the proportion of times the null
hypothesis is not rejected (when it should be) out of M trials.

Example 6.8
For the hypothesis test in Example 6.6, we had a critical value (from theory)
of -1.645. We can estimate the significance level of the test using the following
steps:

α̂ 1
M
----- Ii

i 1=

M

∑=

α

Ii

1; Type II error is made

0; Type II error is not made.

=

β̂ 1
M
----- Ii

i 1=

M

∑=

© 2002 by Chapman & Hall/CRC

212 Computational Statistics Handbook with MATLAB

M = 1000;
alpha = 0.05;
% Get the critical value, using z as test statistic.
cv = norminv(alpha,0,1);
% Start the simulation.
Im = 0;
for i = 1:M
% Generate a random sample under H_0.
xs = sigma*randn(1,n) + 454;
Tm = (mean(xs)-454)/sigxbar;
if Tm <= cv % then reject H_0

Im = Im +1;
end

end
alphahat = Im/M;

A critical value of -1.645 in this situation corresponds to a desired probability
of Type I error of 0.05. From this simulation, we get an estimated value of
0.045, which is very close to the theoretical value. We now check the Type II
error in this test. Note that we now have to sample from the alternative
hypotheses of interest.

% Now check the probability of Type II error.
% Get some alternative hypotheses:
mualt = 445:458;
betahat = zeros(size(mualt));
for j = 1:length(mualt)
 Im = 0;
 % Get the true mean.
 mu = mualt(j);
 for i = 1:M
 % Generate a sample from H_1.
 xs = sigma*randn(1,n) + mu;
 Tm = (mean(xs)-454)/sigxbar;
 if Tm > cv % Then did not reject H_0.
 Im = Im +1;
 end
 end
 betahat(j) = Im/M;
end
% Get the estimated power.
powhat = 1-betahat;

We plot the estimated power as a function of in Figure 6.5. As expected, as
the true value for gets closer to 454 (the mean under the null hypothesis),
the power of the test decreases.
�

µ
µ

© 2002 by Chapman & Hall/CRC

Chapter 6: Monte Carlo Methods for Inferential Statistics 213

An important point to keep in mind about the Monte Carlo simulations dis-
cussed in this section is that the experiment is applicable only for the situa-
tion that has been simulated. For example, when we assess the Type II error
in Example 6.8, it is appropriate only for those alternative hypotheses, sam-
ple size and critical value. What would be the probability of Type II error, if
some other departure from the null hypothesis is used in the simulation? In
other cases, we might need to know whether the distribution of the statistic
changes with sample size or skewness in the population or some other char-
acteristic of interest. These variations are easily investigated using multiple
Monte Carlo experiments.

One quantity that the researcher must determine is the number of trials that
are needed in Monte Carlo simulations. This often depends on the computing
assets that are available. If time and computer resources are not an issue, then
M should be made as large as possible. Hope [1968] showed that results from
a Monte Carlo simulation are unbiased for any M, under the assumption that
the programming is correct.

Mooney [1997] states that there is no general theory that governs the num-
ber of trials in Monte Carlo simulation. However, he recommends the follow-
ing general guidelines. The researcher should first use a small number of
trials and ensure that the program is working properly. Once the code has
been checked, the simulation or experiments can be run for very large M.

FFFFIIIIGUGUGUGURE 6.RE 6.RE 6.RE 6.5555

Here is the curve for the estimated power corresponding to the hypothesis test of Example
6.8.

444 446 448 450 452 454 456 458
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

µ

E
st

im
at

ed
 P

ow
er

© 2002 by Chapman & Hall/CRC

214 Computational Statistics Handbook with MATLAB

Most simulations would have , but M between 10,000 and 25,000 is
not uncommon. One important guideline for determining the number of tri-
als, is the purpose of the simulation. If the tail of the distribution is of interest
(e.g., estimating Type I error, getting p-values, etc.), then more trials are
needed to ensure that there will be a good estimate of that area.

6.4 Bootstrap Methods

The treatment of the bootstrap methods described here comes from Efron and
Tibshirani [1993]. The interested reader is referred to that text for more infor-
mation on the underlying theory behind the bootstrap. There does not seem
to be a consistent terminology in the literature for what techniques are con-
sidered bootstrap methods. Some refer to the resampling techniques of the
previous section as bootstrap methods. Here, we use bootstrap to refer to
Monte Carlo simulations that treat the original sample as the pseudo-popu-
lation or as an estimate of the population. Thus, in the steps where we ran-
domly sample from the pseudo-population, we now resample from the
original sample.

In this section, we discuss the general bootstrap methodology, followed by
some applications of the bootstrap. These include bootstrap estimates of the
standard error, bootstrap estimates of bias, and bootstrap confidence inter-
vals.

GGGGeeeeneralneralneralneral BBBBoooooooottttssssttttraprapraprap MMMMeeeethodologthodologthodologthodologyyyy

The bootstrap is a method of Monte Carlo simulation where no parametric
assumptions are made about the underlying population that generated the
random sample. Instead, we use the sample as an estimate of the population.
This estimate is called the empirical distribution where each has proba-
bility mass . Thus, each has the same likelihood of being selected in a
new sample taken from .

When we use as our pseudo-population, then we resample with replace-
ment from the original sample . We denote the new sample
obtained in this manner by . Since we are sampling with
replacement from the original sample, there is a possibility that some points

 will appear more than once in or maybe not at all. We are looking at the
univariate situation, but the bootstrap concepts can also be applied in the d-
dimensional case.

A small example serves to illustrate these ideas. Let’s say that our random
sample consists of the four numbers . The following are pos-
sible samples , when we sample with replacement from :

M 1000>

F̂ xi

1 n⁄ xi

F̂
F̂

x x1 … xn, ,()=
x* x1

* … xn
*, ,()=

xi x*

x 5 8 3 2, , ,()=
x* x

© 2002 by Chapman & Hall/CRC

Chapter 6: Monte Carlo Methods for Inferential Statistics 215

We use the notation , for the b-th bootstrap data set.
In many situations, the analyst is interested in estimating some parameter
 by calculating a statistic from the random sample. We denote this estimate

by

. (6.11)

We might also like to determine the standard error in the estimate and the
bias. The bootstrap method can provide an estimate of this when analytical
methods fail. The method is also suitable for situations when the estimator

 is complicated.
To get estimates of bias or standard error of a statistic, we obtain B boot-

strap samples by sampling with replacement from the original sample. For
every bootstrap sample, we calculate the same statistic to obtain the boot-
strap replications of , as follows

. (6.12)

These B bootstrap replicates provide us with an estimate of the distribution
of . This is similar to what we did in the previous section, except that we are
not making any assumptions about the distribution for the original sample.
Once we have the bootstrap replicates in Equation 6.12, we can use them to
understand the distribution of the estimate.

The steps for the basic bootstrap methodology are given here, with detailed
procedures for finding specific characteristics of provided later. The issue
of how large to make B is addressed with each application of the bootstrap.

PROCEDURE - BASIC BOOTSTRAP

1. Given a random sample, , calculate .
2. Sample with replacement from the original sample to get

.

3. Calculate the same statistic using the bootstrap sample in step 2 to
get, .

4. Repeat steps 2 through 3, B times.

5. Use this estimate of the distribution of (i.e., the bootstrap repli-
cates) to obtain the desired characteristic (e.g., standard error, bias
or confidence interval).

x*1 x4 x4 x2 x1, , ,() 2 2 8 5, , ,()= =

x*2 x4 x2 x3 x4, , ,() 2 8 3 2, , ,() .= =

x*b b 1 … B, ,=

θ

θ̂ T t x1 … xn, ,()= =

θ̂

θ̂ t x()=

θ̂

θ̂*b
t x*b();= b 1 … B, ,=

θ̂

θ̂

x x1 … xn, ,()= θ̂

x*b x1
*b … xn

*b, ,()=

θ̂*b

θ̂

© 2002 by Chapman & Hall/CRC

216 Computational Statistics Handbook with MATLAB

Efron and Tibshirani [1993] discuss a method called the parametric boot-
strap. In this case, the data analyst makes an assumption about the distribu-
tion that generated the original sample. Parameters for that distribution are
estimated from the sample, and resampling (in step 2) is done using the
assumed distribution and the estimated parameters. The parametric boot-
strap is closer to the Monte Carlo methods described in the previous section.

For instance, say we have reason to believe that the data come from an
exponential distribution with parameter . We need to estimate the variance
and use

(6.13)

as the estimator. We can use the parametric bootstrap as outlined above to
understand the behavior of . Since we assume an exponential distribution
for the data, we estimate the parameter from the sample to get . We then
resample from an exponential distribution with parameter to get the boot-
strap samples. The reader is asked to implement the parametric bootstrap in
the exercises.

Bootstrap Estimate of Standard ErBootstrap Estimate of Standard ErBootstrap Estimate of Standard ErBootstrap Estimate of Standard Errrrroooorrrr

When our goal is to estimate the standard error of using the bootstrap
method, we proceed as outlined in the previous procedure. Once we have the
estimated distribution for , we use it to estimate the standard error for .
This estimate is given by

, (6.14)

where

. (6.15)

Note that Equation 6.14 is just the sample standard deviation of the bootstrap
replicates, and Equation 6.15 is the sample mean of the bootstrap replicates.

Efron and Tibshirani [1993] show that the number of bootstrap replicates B
should be between 50 and 200 when estimating the standard error of a statis-
tic. Often the choice of B is dictated by the computational complexity of ,
the sample size n, and the computer resources that are available. Even using

λ

θ̂ 1
n
--- xi x–()2

i 1=

n

∑=

θ̂
λ λ̂

λ̂

θ̂

θ̂ θ̂

SÊB θ̂() 1
B 1–
------------ θ̂*b θ̂*

–()
2

b 1=

B

∑

1
2

=

θ̂* 1
B
--- θ̂*b

b 1=

B

∑=

θ̂

© 2002 by Chapman & Hall/CRC

Chapter 6: Monte Carlo Methods for Inferential Statistics 217

a small value of B, say , the analyst will gain information about the
variability of . In most cases, taking more than 200 bootstrap replicates to
estimate the standard error is unnecessary.

The procedure for finding the bootstrap estimate of the standard error is
given here and is illustrated in Example 6.9

PROCEDURE - BOOTSTRAP ESTIMATE OF THE STANDARD ERROR

1. Given a random sample, , calculate the statistic .
2. Sample with replacement from the original sample to get

.

3. Calculate the same statistic using the sample in step 2 to get the
bootstrap replicates, .

4. Repeat steps 2 through 3, B times.

5. Estimate the standard error of using Equations 6.14 and 6.15.

Example 6.9
The lengths of the forearm (in inches) of 140 adult males are contained in the
file forearm [Hand, et al., 1994]. We use these data to estimate the skewness
of the population. We then estimate the standard error of this statistic using
the bootstrap method. First we load the data and calculate the skewness.

load forearm
% Sample with replacement from this.
% First get the sample size.
n = length(forearm);
B = 100;% number of bootstrap replicates
% Get the value of the statistic of interest.
theta = skewness(forearm);

The estimated skewness in the forearm data is -0.11. To implement the boot-
strap, we use the MATLAB Statistics Toolbox function unidrnd to sample
with replacement from the original sample. The corresponding function from
the Computational Statistics Toolbox can also be used. The output from this
function will be indices from 1 to n that point to what observations have been
selected for the bootstrap sample.

% Use unidrnd to get the indices to the resamples.
% Note that each column corresponds to indices
% for a bootstrap resample.
inds = unidrnd(n,n,B);
% Extract these from the data.
xboot = forearm(inds);
% We can get the skewness for each column using the
% MATLAB Statistics Toolbox function skewness.

B 25=
θ̂

x x1 … xn, ,()= θ̂

x*b x1
*b … xn

*b, ,()=

θ̂*b

θ̂

© 2002 by Chapman & Hall/CRC

218 Computational Statistics Handbook with MATLAB

thetab = skewness(xboot);
seb = std(thetab);

From this we get an estimated standard error in the skewness of 0.14. Efron
and Tibshirani [1993] recommend that one look at histograms of the boot-
strap replicates as a useful tool for understanding the distribution of . We
show the histogram in Figure 6.6.

The MATLAB Statistics Toolbox has a function called bootstrp that
returns the bootstrap replicates. We now show how to get the bootstrap esti-
mate of standard error using this function.

% Now show how to do it with MATLAB Statistics Toolbox
% function: bootstrp.
Bmat = bootstrp(B,'skewness',forearm);
% What we get back are the bootstrap replicates.
% Get an estimate of the standard error.
sebmat = std(Bmat);

Note that one of the arguments to bootstrp is a string representing the
function that calculates the statistics. From this, we get an estimated standard
error of 0.12.
�

FFFFIIIIGUGUGUGURE 6.RE 6.RE 6.RE 6.6666

This is a histogram for the bootstrap replicates in Example 6.9. This shows the estimated
distribution of the sample skewness of the forearm data.

θ̂

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3
0

0.5

1

1.5

2

2.5

© 2002 by Chapman & Hall/CRC

Chapter 6: Monte Carlo Methods for Inferential Statistics 219

Bootstrap Estimate ofBootstrap Estimate ofBootstrap Estimate ofBootstrap Estimate of BBBBiasiasiasias

The standard error of an estimate is one measure of its performance. Bias is
another quantity that measures the statistical accuracy of an estimate. From
Chapter 3, the bias is defined as the difference between the expected value of
the statistic and the parameter,

. (6.16)

The expectation in Equation 6.16 is taken with respect to the true distribution
F. To get the bootstrap estimate of bias, we use the empirical distribution
as before. We resample from the empirical distribution and calculate the sta-
tistic using each bootstrap resample, yielding the bootstrap replicates . We
use these to estimate the bias from the following:

, (6.17)

where is given by the mean of the bootstrap replicates (Equation 6.15).
Presumably, one is interested in the bias in order to correct for it. The bias-

corrected estimator is given by

. (6.18)

Using Equation 6.17 in Equation 6.18, we have

. (6.19)

More bootstrap samples are needed to estimate the bias, than are required
to estimate the standard error. Efron and Tibshirani [1993] recommend that

.
It is useful to have an estimate of the bias for , but caution should be used

when correcting for the bias. Equation 6.19 will hopefully yield a less biased
estimate, but it could turn out that will have a larger variation or standard
error. It is recommended that if the estimated bias is small relative to the esti-
mate of standard error (both of which can be estimated using the bootstrap
method), then the analyst should not correct for the bias [Efron and Tibshi-
rani, 1993]. However, if this is not the case, then perhaps some other, less
biased, estimator should be used to estimate the parameter .

PROCEDURE - BOOTSTRAP ESTIMATE OF THE BIAS

1. Given a random sample, , calculate the statistic .

bias T() E T[] θ–=

F̂

θ̂*b

biasB
ˆ θ̂* θ̂–=

θ̂*

θ θ̂ biasB
ˆ–=

)

θ 2θ̂ θ̂*
–=

)

B 400≥
θ̂

θ

)

θ

x x1 … xn, ,()= θ̂

© 2002 by Chapman & Hall/CRC

220 Computational Statistics Handbook with MATLAB

2. Sample with replacement from the original sample to get
.

3. Calculate the same statistic using the sample in step 2 to get the
bootstrap replicates, .

4. Repeat steps 2 through 3, B times.
5. Using the bootstrap replicates, calculate .

6. Estimate the bias of using Equation 6.17.

Example 6.10
We return to the forearm data of Example 6.9, where now we want to esti-
mate the bias in the sample skewness. We use the same bootstrap replicates
as before, so all we have to do is to calculate the bias using Equation 6.17.

% Use the same replicates from before.
% Evaluate the mean using Equation 6.15.
meanb = mean(thetab);
% Now estimate the bias using Equation 6.17.
biasb = meanb - theta;

We have an estimated bias of -0.011. Note that this is small relative to the stan-
dard error.
�

In the next chapter, we discuss another method for estimating the bias and
the standard error of a statistic called the jackknife. The jackknife method is
related to the bootstrap. However, since it is based on the reuse or partition-
ing of the original sample rather than resampling, we do not include it here.

BootstrapBootstrapBootstrapBootstrap CCCConfideonfideonfideonfidennnnce Intece Intece Intece Interrrrvvvvalalalalssss

There are several ways of constructing confidence intervals using the boot-
strap. We discuss three of them here: the standard interval, the bootstrap-t
interval and the percentile method. Because it uses the jackknife procedure,
an improved bootstrap confidence interval called the will be presented
in the next chapter.

Bootstrap StandBootstrap StandBootstrap StandBootstrap Standaaaarrrrd Confd Confd Confd Confiiiiddddeeeence Intervance Intervance Intervance Intervallll

The bootstrap standard confidence interval is based on the parametric form
of the confidence interval that was discussed in Section 6.2. We showed that
the confidence interval for the mean can be found using

. (6.20)

x*b x1
*b … xn

*b, ,()=

θ̂*b

θ̂*

θ̂

BCa

1 α–() 100%⋅

P X z 1 α– 2⁄() σ
n

-------– µ X z α 2⁄() σ
n

-------–< <

1 α–=

© 2002 by Chapman & Hall/CRC

Chapter 6: Monte Carlo Methods for Inferential Statistics 221

Similar to this, the bootstrap standard confidence interval is given by

, (6.21)

where is the standard error for the statistic obtained using the boot-
strap [Mooney and Duval, 1993]. The confidence interval in Equation 6.21 can
be used when the distribution for is normally distributed or the normality
assumption is plausible. This is easily coded in MATLAB using previous
results and is left as an exercise for the reader.

Bootstrap-Bootstrap-Bootstrap-Bootstrap-tttt ConfConfConfConfiiiiddddeeeencncncnceeee IntervaIntervaIntervaIntervallll

The second type of confidence interval using the bootstrap is called the boot-
strap-t. We first generate B bootstrap samples, and for each bootstrap sample
the following quantity is computed:

. (6.22)

As before, is the bootstrap replicate of , but is the estimated stan-
dard error of for that bootstrap sample. If a formula exists for the stan-
dard error of , then we can use that to determine the denominator of
Equation 6.22. For instance, if is the mean, then we can calculate the stan-
dard error as explained in Chapter 3. However, in most situations where we
have to resort to using the bootstrap, these formulas are not available. One
option is to use the bootstrap method of finding the standard error, keeping
in mind that you are estimating the standard error of using the bootstrap
sample . In other words, one resamples with replacement from the boot-
strap sample to get an estimate of .

Once we have the B bootstrapped values from Equation 6.22, the next
step is to estimate the quantiles needed for the endpoints of the interval. The

-th quantile, denoted by of the , is estimated by

. (6.23)

This says that the estimated quantile is the such that % of the
points are less than this number. For example, if and

, then could be estimated as the fifth largest value of the
 . One could also use the quantile estimates dis-

cussed previously in Chapter 3 or some other suitable estimate.
We are now ready to calculate the bootstrap-t confidence interval. This is

given by

θ̂ z 1 α– 2⁄()SEθ̂– θ̂ z α 2⁄()SEθ̂–,()

SEθ̂ θ̂

θ̂

z*b θ̂*b θ̂–

SÊ*b
----------------=

θ̂*b θ̂ SÊ*b

θ̂*b

θ̂*b

θ̂

θ̂*b

x*b

x*b SÊ*b

z*b

α 2⁄ t̂
α 2⁄()

z*b

α 2⁄ # z*b t̂
α 2⁄()≤()

B
---------------------------------=

t̂
α 2⁄()

100 α 2⁄⋅
z*b B 100=

α 2⁄ 0.05= t̂
0.05()

z*b B α 2⁄⋅ 100 0.05⋅ 5= =()

© 2002 by Chapman & Hall/CRC

222 Computational Statistics Handbook with MATLAB

, (6.24)

where is an estimate of the standard error of . The bootstrap- t interval
is suitable for location statistics such as the mean or quantiles. However, its
accuracy for more general situations is questionable [Efron and Tibshirani,
1993]. The next method based on the bootstrap percentiles is more reliable.

PROCEDURE - BOOTSTRAP-T CONFIDENCE INTERVAL

1. Given a random sample, , calculate .
2. Sample with replacement from the original sample to get

.

3. Calculate the same statistic using the sample in step 2 to get .
4. Use the bootstrap sample to get the standard error of . This

can be calculated using a formula or estimated by the bootstrap.

5. Calculate using the information found in steps 3 and 4.
6. Repeat steps 2 through 5, B times, where .

7. Order the from smallest to largest. Find the quantiles
and .

8. Estimate the standard error of using the B bootstrap repli-
cates of (from step 3).

9. Use Equation 6.24 to get the confidence interval.

The number of bootstrap replicates that are needed is quite large for confi-
dence intervals. It is recommended that B should be 1000 or more. If no for-
mula exists for calculating the standard error of , then the bootstrap
method can be used. This means that there are two levels of bootstrapping:
one for finding the and one for finding the , which can greatly
increase the computational burden. For example, say that and we
use 50 bootstrap replicates to find , then this results in a total of 50,000
resamples.

Example 6.11
Say we are interested in estimating the variance of the forearm data, and we
decide to use the following statistic,

,

θ̂ t̂
1 α 2⁄–()

SÊθ̂⋅– θ̂ t̂
α 2⁄()

SÊθ̂⋅–,()

SÊ θ̂

x x1 … xn, ,()= θ̂

x*b x1
*b … xn

*b, ,()=

θ̂*b

x*b θ̂*b

z*b

B 1000≥
z*b t̂

1 α 2⁄–()

t̂ α 2⁄()

SÊθ̂ θ̂
θ̂*b

θ̂
*b

SÊ*b z*b

B 1000=
SÊ*b

σ̂2 1
n
--- Xi X–()2

i 1=

n

∑=

© 2002 by Chapman & Hall/CRC

Chapter 6: Monte Carlo Methods for Inferential Statistics 223

which is the sample second central moment. We write our own simple func-
tion called mom (included in the Computational Statistics Toolbox) to estimate
this.

% This function will calculate the sample 2nd
% central moment for a given sample vector x.
function mr = mom(x)
n = length(x);
mu = mean(x);
mr = (1/n)*sum((x-mu).^2);

We use this function as an input argument to bootstrp to get the bootstrap-
t confidence interval. The MATLAB code given below also shows how to get
the bootstrap estimate of standard error for each bootstrap sample. First we
load the data and get the observed value of the statistic.

load forearm
n = length(forearm);
alpha = 0.1;
B = 1000;
thetahat = mom(forearm);

Now we get the bootstrap replicates using the function bootstrp. One of
the optional output arguments from this function is a matrix of indices for the
resamples. As shown below, each column of the output bootsam contains
the indices to a bootstrap sample. We loop through all of the bootstrap sam-
ples to estimate the standard error of the bootstrap replicate using that resa-
mple.

% Get the bootstrap replicates and samples.
[bootreps, bootsam] = bootstrp(B,'mom',forearm);
% Set up some storage space for the SE’s.
sehats = zeros(size(bootreps));
% Each column of bootsam contains indices
% to a bootstrap sample.
for i = 1:B
 % Extract the sample from the data.

xstar = forearm(bootsam(:,i));
 bvals(i) = mom(xstar);
 % Do bootstrap using that sample to estimate SE.
 sehats(i) = std(bootstrp(25,'mom',xstar));
end
zvals = (bootreps - thetahat)./sehats;

Then we get the estimate of the standard error that we need for the endpoints
of the interval.

% Estimate the SE using the bootstrap.
SE = std(bootreps);

© 2002 by Chapman & Hall/CRC

224 Computational Statistics Handbook with MATLAB

Now we get the quantiles that we need for the interval given in Equation 6.24
and calculate the interval.

% Get the quantiles.
k = B*alpha/2;
szval = sort(zvals);
tlo = szval(k);
thi = szval(B-k);
% Get the endpoints of the interval.
blo = thetahat - thi*SE;
bhi = thetahat - tlo*SE;

The bootstrap-t interval for the variance of the forearm data is .
�

Bootstrap PerceBootstrap PerceBootstrap PerceBootstrap Percennnnttttile Intervaile Intervaile Intervaile Intervallll

An improved bootstrap confidence interval is based on the quantiles of the
distribution of the bootstrap replicates. This technique has the benefit of
being more stable than the bootstrap-t, and it also enjoys better theoretical
coverage properties [Efron and Tibshirani, 1993]. The bootstrap percentile
confidence interval is

, (6.25)

where is the quantile in the bootstrap distribution of . For
example, if and , then is the in the 25th
position of the ordered bootstrap replicates. Similarly, is the replicate
in position 975. As discussed previously, some other suitable estimate for the
quantile can be used.

The procedure is the same as the general bootstrap method, making it easy
to understand and to implement. We outline the steps below.

PROCEDURE - BOOTSTRAP PERCENTILE INTERVAL

1. Given a random sample, , calculate .

2. Sample with replacement from the original sample to get
.

3. Calculate the same statistic using the sample in step 2 to get the
bootstrap replicates, .

4. Repeat steps 2 through 3, B times, where .
5. Order the from smallest to largest.

6. Calculate and .

1.00 1.57,()

θ̂B
* α 2⁄() θ̂B

* 1 α 2⁄–(),()

θ̂B
* α 2⁄() α 2⁄ θ̂*

α 2⁄ 0.025= B 1000= θ̂B
* 0.025() θ̂*b

θ̂B
* 0.975()

x x1 … xn, ,()= θ̂

x*b x1
*b … xn

*b, ,()=

θ̂*b

B 1000≥
θ̂*b

B α 2⁄⋅ B 1 α 2⁄–()⋅

© 2002 by Chapman & Hall/CRC

Chapter 6: Monte Carlo Methods for Inferential Statistics 225

7. The lower endpoint of the interval is given by the bootstrap repli-
cate that is in the -th position of the ordered , and the
upper endpoint is given by the bootstrap replicate that is in the

-th position of the same ordered list. Alternatively,
using quantile notation, the lower endpoint is the estimated quan-
tile and the upper endpoint is the estimated quantile ,
where the estimates are taken from the bootstrap replicates.

Example 6.12
Let’s find the bootstrap percentile interval for the same forearm data. The
confidence interval is easily found from the bootstrap replicates, as shown
below.

% Use Statistics Toolbox function
% to get the bootstrap replicates.
bvals = bootstrp(B,'mom',forearm);
% Find the upper and lower endpoints
k = B*alpha/2;
sbval = sort(bvals);
blo = sbval(k);
bhi = sbval(B-k);

This interval is given by , which is slightly narrower than the
bootstrap-t interval from Example 6.11.
�

So far, we discussed three types of bootstrap confidence intervals. The stan-
dard interval is the easiest and assumes that is normally distributed. The
bootstrap-t interval estimates the standardized version of from the data,
avoiding the normality assumptions used in the standard interval. The per-
centile interval is simple to calculate and obtains the endpoints directly from
the bootstrap estimate of the distribution for It has another advantage in
that it is range-preserving. This means that if the parameter can take on
values in a certain range, then the confidence interval will reflect that. This is
not always the case with the other intervals.

According to Efron and Tibshirani [1993], the bootstrap-t interval has good
coverage probabilities, but does not perform well in practice. The bootstrap
percentile interval is more dependable in most situations, but does not enjoy
the good coverage property of the bootstrap-t interval. There is another boot-
strap confidence interval, called the interval, that has both good cover-
age and is dependable. This interval is described in the next chapter.

The bootstrap estimates of bias and standard error are also random vari-
ables, and they have their own error associated with them. So, how accurate
are they? In the next chapter, we discuss how one can use the jackknife
method to evaluate the error in the bootstrap estimates.

As with any method, the bootstrap is not appropriate in every situation.
When analytical methods are available to understand the uncertainty associ-

B α 2⁄⋅ θ̂*b

B 1 α 2⁄–()⋅

q̂α 2⁄ q̂1 α 2⁄–

1.03 1.45,()

θ̂
θ̂

θ̂ .
θ

BCa

© 2002 by Chapman & Hall/CRC

226 Computational Statistics Handbook with MATLAB

ated with an estimate, then those are more efficient than the bootstrap. In
what situations should the analyst use caution in applying the bootstrap?
One important assumption that underlies the theory of the bootstrap is the
notion that the empirical distribution function is representative of the true
population distribution. If this is not the case, then the bootstrap will not
yield reliable results. For example, this can happen when the sample size is
small or the sample was not gathered using appropriate random sampling
techniques. Chernick [1999] describes other examples from the literature
where the bootstrap should not be used. We also address a situation in Chap-
ter 7 where the bootstrap fails. This can happen when the statistic is non-
smooth, such as the median.

6.5 MATLAB Code

We include several functions with the Computational Statistics Toolbox that
implement some of the bootstrap techniques discussed in this chapter. These
are listed in Table 6.2. Like bootstrp, these functions have an input argu-
ment that specifies a MATLAB function that calculates the statistic.

As we saw in the examples, the MATLAB Statistics Toolbox has a function
called bootstrp that will return the bootstrap replicates from the input
argument bootfun (e.g., mean, std, var, etc.). It takes an input data set,
finds the bootstrap resamples, applies the bootfun to the resamples, and
stores the replicate in the first row of the output argument. The user can get
two outputs from the function: the bootstrap replicates and the indices that
correspond to the points selected in the resample.

There is a Bootstrap MATLAB Toolbox written by Zoubir and Iskander at
the Curtin University of Technology. It is available for download at

TTTTAAAABBBBLLLLEEEE 6.26.26.26.2

List of MATLAB Functions for Chapter 6

Purpose MATLAB Function

General bootstrap: resampling,
estimates of standard error and bias

csboot
bootstrp

Constructing bootstrap confidence
Intervals

csbootint
csbooperint
csbootbca

© 2002 by Chapman & Hall/CRC

Chapter 6: Monte Carlo Methods for Inferential Statistics 227

www.atri.curtin.edu.au/csp. It requires the MATLAB Statistics Tool-
box and has a postscript version of the reference manual.

Other software exists for Monte Carlo simulation as applied to statistics.
The Efron and Tibshirani [1993] book has a description of S code for imple-
menting the bootstrap. This code, written by the authors, can be downloaded
from the statistics archive at Carnegie-Mellon University that was mentioned
in Chapter 1. Another software package that has some of these capabilities is
called Resampling Stats® [Simon, 1999], and information on this can be
found at www.resample.com. Routines are available from Resampling Stats
for MATLAB [Kaplan, 1999] and Excel.

6.6 Further Reading

Mooney [1997] describes Monte Carlo simulation for inferential statistics that
is written in a way that is accessible to most data analysts. It has some excel-
lent examples of using Monte Carlo simulation for hypothesis testing using
multiple experiments, assessing the behavior of an estimator, and exploring
the distribution of a statistic using graphical techniques. The text by Gentle
[1998] has a chapter on performing Monte Carlo studies in statistics. He dis-
cusses how simulation can be considered as a scientific experiment and
should be held to the same high standards. Hoaglin and Andrews [1975] pro-
vide guidelines and standards for reporting the results from computations.
Efron and Tibshirani [1991] explain several computational techniques, writ-
ten at a level accessible to most readers. Other articles describing Monte
Carlo inferential methods can be found in Joeckel [1991], Hope [1968], Besag
and Diggle [1977], Diggle and Gratton [1984], Efron [1979], Efron and Gong
[1983], and Teichroew [1965].

There has been a lot of work in the literature on bootstrap methods. Per-
haps the most comprehensive and easy to understand treatment of the topic
can be found in Efron and Tibshirani [1993]. Efron’s [1982] earlier monogram
on resampling techniques describes the jackknife, the bootstrap and cross-
validation. A more recent book by Chernick [1999] gives an updated descrip-
tion of results in this area, and it also has an extensive bibliography (over
1,600 references!) on the bootstrap. Hall [1992] describes the connection
between Edgeworth expansions and the bootstrap. A volume of papers on
the bootstrap was edited by LePage and Billard [1992], where many applica-
tions of the bootstrap are explored. Politis, Romano, and Wolf [1999] present
subsampling as an alternative to the bootstrap. A subset of articles that
present the theoretical justification for the bootstrap are Efron [1981, 1985,
1987]. The paper by Boos and Zhang [2000] looks at a way to ease the compu-
tational burden of Monte Carlo estimation of the power of tests that uses res-
ampling methods. For a nice discussion on the coverage of the bootstrap
percentile confidence interval, see Polansky [1999].

© 2002 by Chapman & Hall/CRC

www.atri.curtin.edu.au/csp.
www.resample.com.

228 Computational Statistics Handbook with MATLAB

Exercises

6.1. Repeat Example 6.1 where the population standard deviation for the
travel times to work is minutes. Is minutes still
consistent with the null hypothesis?

6.2. Using the information in Example 6.3, plot the probability of Type II
error as a function of . How does this compare with Figure 6.2?

6.3. Would you reject the null hypothesis in Example 6.4 if ?

6.4. Using the same value for the sample mean, repeat Example 6.3 for
different sample sizes of . What happens to the curve
showing the power as a function of the true mean as the sample size
changes?

6.5. Repeat Example 6.6 using a two-tail test. In other words, test for the
alternative hypothesis that the mean is not equal to 454.

6.6. Repeat Example 6.8 for larger M. Does the estimated Type I error get
closer to the true value?

6.7. Write MATLAB code that implements the parametric bootstrap. Test
it using the forearm data. Assume that the normal distribution is a
reasonable model for the data. Use your code to get a bootstrap
estimate of the standard error and the bias of the coefficient of skew-
ness and the coefficient of kurtosis. Get a bootstrap percentile interval
for the sample central second moment using your parametric boot-
strap approach.

6.8. Write MATLAB code that will get the bootstrap standard confidence
interval. Use it with the forearm data to get a confidence interval
for the sample central second moment. Compare this interval with
the ones obtained in the examples and in the previous problem.

6.9. Use your program from problem 6.8 and the forearm data to get a
bootstrap confidence interval for the mean. Compare this to the the-
oretical one.

6.10. The remiss data set contains the remission times for 42 leukemia
patients. Some of the patients were treated with the drug called 6-
mercaptopurine (mp), and the rest were part of the control group
(control). Use the techniques from Chapter 5 to help determine a
suitable model (e.g., Weibull, exponential, etc.) for each group. Devise
a Monte Carlo hypothesis test to test for the equality of means between
the two groups [Hand, et al., 1994; Gehan, 1965]. Use the p-value
approach.

6.11. Load the lawpop data set [Efron and Tibshirani, 1993]. These data
contain the average scores on the LSAT (lsat) and the corresponding

σX 5= x 47.2=

µ
α 0.10=

n 50 100 200, ,=

© 2002 by Chapman & Hall/CRC

Chapter 6: Monte Carlo Methods for Inferential Statistics 229

average undergraduate grade point average (gpa) for the 1973 fresh-
man class at 82 law schools. Note that these data constitute the entire
population. The data contained in law comprise a random sample of
15 of these classes. Obtain the true population variances for the lsat
and the gpa. Use the sample in law to estimate the population vari-
ance using the sample central second moment. Get bootstrap esti-
mates of the standard error and the bias in your estimate of the
variance. Make some comparisons between the known population
variance and the estimated variance.

6.12. Using the lawpop data, devise a test statistic to test for the signifi-
cance of the correlation between the LSAT scores and the correspond-
ing grade point averages. Get a random sample from the population,
and use that sample to test your hypothesis. Do a Monte Carlo sim-
ulation of the Type I and Type II error of the test you devise.

6.13. In 1961, 16 states owned the retail liquor stores. In 26 others, the
stores were owned by private citizens. The data contained in whisky
reflect the price (in dollars) of a fifth of whisky from these 42 states.
Note that this represents the population, not a sample. Use the
whisky data to get an appropriate bootstrap confidence interval for
the median price of whisky at the state owned stores and the median
price of whisky at the privately owned stores. First get the random
sample from each of the populations, and then use the bootstrap with
that sample to get the confidence intervals. Do a Monte Carlo study
where you compare the confidence intervals for different sample
sizes. Compare the intervals with the known population medians
[Hand, et al., 1994].

6.14. The quakes data [Hand, et al., 1994] give the time in days between
successive earthquakes. Use the bootstrap to get an appropriate con-
fidence interval for the average time between earthquakes.

© 2002 by Chapman & Hall/CRC

Chapter 7
Data Partitioning

7.1 Introduction

In this book, data partitioning refers to procedures where some observations
from the sample are removed as part of the analysis. These techniques are
used for the following purposes:

• To evaluate the accuracy of the model or classification scheme;

• To decide what is a reasonable model for the data;
• To find a smoothing parameter in density estimation;

• To estimate the bias and error in parameter estimation;
• And many others.

We start off with an example to motivate the reader. We have a sample
where we measured the average atmospheric temperature and the corre-
sponding amount of steam used per month [Draper and Smith, 1981]. Our
goal in the analysis is to model the relationship between these variables. Once
we have a model, we can use it to predict how much steam is needed for a
given average monthly temperature. The model can also be used to gain
understanding about the structure of the relationship between the two vari-
ables.

The problem then is deciding what model to use. To start off, one should
always look at a scatterplot (or scatterplot matrix) of the data as discussed in
Chapter 5. The scatterplot for these data is shown in Figure 7.1 and is exam-
ined in Example 7.3. We see from the plot that as the temperature increases,
the amount of steam used per month decreases. It appears that using a line
(i.e., a first degree polynomial) to model the relationship between the vari-
ables is not unreasonable. However, other models might provide a better fit.
For example, a cubic or some higher degree polynomial might be a better
model for the relationship between average temperature and steam usage.

So, how can we decide which model is better? To make that decision, we
need to assess the accuracy of the various models. We could then choose the

© 2002 by Chapman & Hall/CRC

232 Computational Statistics Handbook with MATLAB

model that has the best accuracy or lowest error. In this chapter, we use the
prediction error (see Equation 7.5) to measure the accuracy. One way to
assess the error would be to observe new data (average temperature and cor-
responding monthly steam usage) and then determine what is the predicted
monthly steam usage for the new observed average temperatures. We can
compare this prediction with the true steam used and calculate the error. We
do this for all of the proposed models and pick the model with the smallest
error. The problem with this approach is that it is sometimes impossible to
obtain new data, so all we have available to evaluate our models (or our sta-
tistics) is the original data set. In this chapter, we consider two methods that
allow us to use the data already in hand for the evaluation of the models.
These are cross-validation and the jackknife.

Cross-validation is typically used to determine the classification error rate
for pattern recognition applications or the prediction error when building
models. In Chapter 9, we will see two applications of cross-validation where
it is used to select the best classification tree and to estimate the misclassifica-
tion rate. In this chapter, we show how cross-validation can be used to assess
the prediction accuracy in a regression problem.

In the previous chapter, we covered the bootstrap method for estimating
the bias and standard error of statistics. The jackknife procedure has a similar
purpose and was developed prior to the bootstrap [Quenouille,1949]. The
connection between the methods is well known and is discussed in the liter-
ature [Efron and Tibshirani, 1993; Efron, 1982; Hall, 1992]. We include the
jackknife procedure here, because it is more a data partitioning method than
a simulation method such as the bootstrap. We return to the bootstrap at the
end of this chapter, where we present another method of constructing boot-
strap confidence intervals using the jackknife. In the last section, we show
how the jackknife method can be used to assess the error in our bootstrap
estimates.

7.2 Cross-Validation

Often, one of the jobs of a statistician or engineer is to create models using
sample data, usually for the purpose of making predictions. For example,
given a data set that contains the drying time and the tensile strength of
batches of cement, can we model the relationship between these two vari-
ables? We would like to be able to predict the tensile strength of the cement
for a given drying time that we will observe in the future. We must then
decide what model best describes the relationship between the variables and
estimate its accuracy.

Unfortunately, in many cases the naive researcher will build a model based
on the data set and then use that same data to assess the performance of the
model. The problem with this is that the model is being evaluated or tested

© 2002 by Chapman & Hall/CRC

Chapter 7: Data Partitioning 233

with data it has already seen. Therefore, that procedure will yield an overly
optimistic (i.e., low) prediction error (see Equation 7.5). Cross-validation is a
technique that can be used to address this problem by iteratively partitioning
the sample into two sets of data. One is used for building the model, and the
other is used to test it.

We introduce cross-validation in a linear regression application, where we
are interested in estimating the expected prediction error. We use linear
regression to illustrate the cross-validation concept, because it is a topic that
most engineers and data analysts should be familiar with. However, before
we describe the details of cross-validation, we briefly review the concepts in
linear regression. We will return to this topic in Chapter 10, where we discuss
methods of nonlinear regression.

Say we have a set of data, , where denotes a predictor variable
and represents the corresponding response variable. We are interested in
modeling the dependency of Y on X. The easiest example of linear regression
is in situations where we can fit a straight line between X and Y. In Figure 7.1,
we show a scatterplot of 25 observed pairs [Draper and Smith, 1981].
The X variable represents the average atmospheric temperature measured in
degrees Fahrenheit, and the Y variable corresponds to the pounds of steam
used per month. The scatterplot indicates that a straight line is a reasonable
model for the relationship between these variables. We will use these data to
illustrate linear regression.

The linear, first-order model is given by

, (7.1)

where and are parameters that must be estimated from the data, and
 represents the error in the measurements. It should be noted that the word

linear refers to the linearity of the parameters . The order (or degree) of the
model refers to the highest power of the predictor variable X. We know from
elementary algebra that is the slope and is the y-intercept. As another
example, we represent the linear, second-order model by

. (7.2)

To get the model, we need to estimate the parameters and . Thus, the
estimate of our model given by Equation 7.1 is

, (7.3)

where denotes the predicted value of Y for some value of X, and and
 are the estimated parameters. We do not go into the derivation of the esti-

mators, since it can be found in most introductory statistics textbooks.

Xi Yi,() Xi

Yi

Xi Yi,()

Y β0 β1X ε+ +=

β0 β1

ε
βi

β1 β0

Y β0 β1X β2X2 ε+ + +=

β0 β1

Ŷ β̂0 β̂1X+=

Ŷ β̂0

β̂1

© 2002 by Chapman & Hall/CRC

234 Computational Statistics Handbook with MATLAB

Assume that we have a sample of observed predictor variables with corre-
sponding responses. We denote these by , . The least
squares fit is obtained by finding the values of the parameters that minimize
the sum of the squared errors

, (7.4)

where RSE denotes the residual squared error.
Estimates of the parameters and are easily obtained in MATLAB

using the function polyfit, and other methods available in MATLAB will
be explored in Chapter 10. We use the function polyfit in Example 7.1 to
model the linear relationship between the atmospheric temperature and the
amount of steam used per month (see Figure 7.1).

Example 7.1
In this example, we show how to use the MATLAB function polyfit to fit a
line to the steam data. The polyfit function takes three arguments: the

FFFFIIIIGUGUGUGURE 7.RE 7.RE 7.RE 7.1111

Scatterplot of a data set where we are interested in modeling the relationship between
average temperature (the predictor variable) and the amount of steam used per month (the
response variable). The scatterplot indicates that modeling the relationship with a straight
line is reasonable.

20 30 40 50 60 70 80
6

7

8

9

10

11

12

13

Average Temperature (° F)

S
te

am
 p

er
 M

on
th

 (
po

un
ds

)

Xi Yi,() i 1 … n, ,=

RSE ε2

i 1=

n

∑ Yi β0 β1Xi+()–()2

i 1=

n

∑= =

β̂0 β̂1

© 2002 by Chapman & Hall/CRC

Chapter 7: Data Partitioning 235

observed x values, the observed y values and the degree of the polynomial
that we want to fit to the data. The following commands fit a polynomial of
degree one to the steam data.

% Loads the vectors x and y.
load steam
% Fit a first degree polynomial to the data.
[p,s] = polyfit(x,y,1);

The output argument p is a vector of coefficients of the polynomial in
decreasing order. So, in this case, the first element of p is the estimated slope

 and the second element is the estimated y-intercept The resulting
model is

.

The predictions that would be obtained from the model (i.e., points on the
line given by the estimated parameters) are shown in Figure 7.2, and we see
that it seems to be a reasonable fit.
�

FFFFIIIIGUGUGUGURE 7.RE 7.RE 7.RE 7.2222

This figure shows a scatterplot of the steam data along with the line obtained using
polyfit. The estimate of the slope is and the estimate of the y-intercept is

.

β̂1 β̂0.

β̂0 13.62= β̂1 0.08–=

20 30 40 50 60 70 80
6

7

8

9

10

11

12

13

Average Temperature (° F)

S
te

am
 p

er
 M

on
th

 (
po

un
ds

)

β̂1 0.08,–=
β̂0 13.62=

© 2002 by Chapman & Hall/CRC

236 Computational Statistics Handbook with MATLAB

The prediction error is defined as

, (7.5)

where the expectation is with respect to the true population. To estimate the
error given by Equation 7.5, we need to test our model (obtained from poly-
fit) using an independent set of data that we denote by . This means
that we would take an observed and obtain the estimate of using
our model:

. (7.6)

We then compare with the true value of . Obtaining the outputs or
from the model is easily done in MATLAB using the polyval function as
shown in Example 7.2.

Say we have m independent observations that we can use to test
the model. We estimate the prediction error (Equation 7.5) using

. (7.7)

Equation 7.7 measures the average squared error between the predicted
response obtained from the model and the true measured response. It should
be noted that other measures of error can be used, such as the absolute differ-
ence between the observed and predicted responses.

Example 7.2
We now show how to estimate the prediction error using Equation 7.7. We
first choose some points from the steam data set and put them aside to use
as an independent test sample. The rest of the observations are then used to
obtain the model.

load steam
% Get the set that will be used to
% estimate the line.
indtest = 2:2:20; % Just pick some points.
xtest = x(indtest);
ytest = y(indtest);
% Now get the observations that will be
% used to fit the model.
xtrain = x;
ytrain = y;
% Remove the test observations.

PE E Y Ŷ–()2[]=

xi' yi',()
xi' yi',() ŷi'

ŷi' β̂0 β̂1xi'+=

ŷi' yi' ŷi'

xi' yi',()

PÊ 1
m
---- yi' ŷi'–()2

i 1=

m

∑=

© 2002 by Chapman & Hall/CRC

Chapter 7: Data Partitioning 237

xtrain(indtest) = [];
ytrain(indtest) = [];

The next step is to fit a first degree polynomial:

% Fit a first degree polynomial (the model)
% to the data.
[p,s] = polyfit(xtrain,ytrain,1);

We can use the MATLAB function polyval to get the predictions at the x val-
ues in the testing set and compare these to the observed y values in the testing
set.

% Now get the predictions using the model and the
% testing data that was set aside.
yhat = polyval(p,xtest);
% The residuals are the difference between the true
% and the predicted values.
r = (ytest - yhat);

Finally, the estimate of the prediction error (Equation 7.7) is obtained as fol-
lows:

pe = mean(r.^2);

The estimated prediction error is The reader is asked to explore
this further in the exercises.
�

What we just illustrated in Example 7.2 was a situation where we parti-
tioned the data into one set for building the model and one for estimating the
prediction error. This is perhaps not the best use of the data, because we have
all of the data available for evaluating the error in the model. We could repeat
the above procedure, repeatedly partitioning the data into many training and
testing sets. This is the fundamental idea underlying cross-validation.

The most general form of this procedure is called K-fold cross-validation.
The basic concept is to split the data into K partitions of approximately equal
size. One partition is reserved for testing, and the rest of the data are used for
fitting the model. The test set is used to calculate the squared error
Note that the prediction is from the model obtained using the current
training set (one without the i-th observation in it). This procedure is
repeated until all K partitions have been used as a test set. Note that we have
n squared errors because each observation will be a member of one testing
set. The average of these errors is the estimated expected prediction error.

In most situations, where the size of the data set is relatively small, the ana-
lyst can set , so the size of the testing set is one. Since this requires fit-
ting the model n times, this can be computationally expensive if n is large. We
note, however, that there are efficient ways of doing this [Gentle 1998; Hjorth,

PÊ 0.91.=

yi ŷi–()2
.

ŷi

K n=

© 2002 by Chapman & Hall/CRC

238 Computational Statistics Handbook with MATLAB

1994]. We outline the steps for cross-validation below and demonstrate this
approach in Example 7.3.

PROCEDURE - CROSS-VALIDATION

1. Partition the data set into K partitions. For simplicity, we assume
that , so there are r observations in each set.

2. Leave out one of the partitions for testing purposes.
3. Use the remaining data points for training (e.g., fit the model,

build the classifier, estimate the probability density function).

4. Use the test set with the model and determine the squared error
between the observed and predicted response: .

5. Repeat steps 2 through 4 until all K partitions have been used as a
test set.

6. Determine the average of the n errors.

Note that the error mentioned in step 4 depends on the application and the
goal of the analysis [Hjorth, 1994]. For example, in pattern recognition appli-
cations, this might be the cost of misclassifying a case. In the following exam-
ple, we apply the cross-validation technique to help decide what type of
model should be used for the steam data.

Example 7.3
In this example, we apply cross-validation to the modeling problem of Exam-
ple 7.1. We fit linear, quadratic (degree 2) and cubic (degree 3) models to the
data and compare their accuracy using the estimates of prediction error
obtained from cross-validation.

% Set up the array to store the prediction errors.
n = length(x);
r1 = zeros(1,n);% store error - linear fit
r2 = zeros(1,n);% store error - quadratic fit
r3 = zeros(1,n);% store error - cubic fit
% Loop through all of the data. Remove one point at a
% time as the test point.
for i = 1:n
 xtest = x(i);% Get the test point.
 ytest = y(i);
 xtrain = x;% Get the points to build model.
 ytrain = y;
 xtrain(i) = [];% Remove test point.
 ytrain(i) = [];
 % Fit a first degree polynomial to the data.
 [p1,s] = polyfit(xtrain,ytrain,1);

n r K⋅=

n r–

yi ŷi–()2

© 2002 by Chapman & Hall/CRC

Chapter 7: Data Partitioning 239

 % Fit a quadratic to the data.
 [p2,s] = polyfit(xtrain,ytrain,2);
 % Fit a cubic to the data
 [p3,s] = polyfit(xtrain,ytrain,3);
 % Get the errors
 r1(i) = (ytest - polyval(p1,xtest)).^2;
 r2(i) = (ytest - polyval(p2,xtest)).^2;
 r3(i) = (ytest - polyval(p3,xtest)).^2;
end

We obtain the estimated prediction error of both models as follows,

% Get the prediction error for each one.
pe1 = mean(r1);
pe2 = mean(r2);
pe3 = mean(r3);

From this, we see that the estimated prediction error for the linear model is
0.86; the corresponding error for the quadratic model is 0.88; and the error for
the cubic model is 0.95. Thus, between these three models, the first-degree
polynomial is the best in terms of minimum expected prediction error.
�

7.3 Jackknife

The jackknife is a data partitioning method like cross-validation, but the goal
of the jackknife is more in keeping with that of the bootstrap. The jackknife
method is used to estimate the bias and the standard error of statistics.

Let’s say that we have a random sample of size n, and we denote our esti-
mator of a parameter as

. (7.8)

So, might be the mean, the variance, the correlation coefficient or some
other statistic of interest. Recall from Chapters 3 and 6 that is also a random
variable, and it has some error associated with it. We would like to get an esti-
mate of the bias and the standard error of the estimate so we can assess
the accuracy of the results.

When we cannot determine the bias and the standard error using analytical
techniques, then methods such as the bootstrap or the jackknife may be used.
The jackknife is similar to the bootstrap in that no parametric assumptions
are made about the underlying population that generated the data, and the
variation in the estimate is investigated by looking at the sample data.

θ

θ̂ T t x1 x2 … xn, , ,()= =

θ̂
T

T,

© 2002 by Chapman & Hall/CRC

240 Computational Statistics Handbook with MATLAB

The jackknife method is similar to cross-validation in that we leave out one
observation from our sample to form a jackknife sample as follows

 .

This says that the i-th jackknife sample is the original sample with the i-th
data point removed. We calculate the value of the estimate using this reduced
jackknife sample to obtain the i-th jackknife replicate. This is given by

.

This means that we leave out one point at a time and use the rest of the sam-
ple to calculate our statistic. We continue to do this for the entire sample, leav-
ing out one observation at a time, and the end result is a sequence of n
jackknife replications of the statistic.

The estimate of the bias of obtained from the jackknife technique is given
by [Efron and Tibshirani, 1993]

, (7.9)

where

. (7.10)

We see from Equation 7.10 that is simply the average of the jackknife rep-
lications of .

The estimated standard error using the jackknife is defined as follows

. (7.11)

Equation 7.11 is essentially the sample standard deviation of the jackknife
replications with a factor in front of the summation instead of

. Efron and Tibshirani [1993] show that this factor ensures that the
jackknife estimate of the standard error of the sample mean, , is an
unbiased estimate.

xi

x1 … xi 1– xi 1+ … xn, , , , ,

T i–() t x1 … xi 1– xi 1+ … xn, , , , ,()=

T

Biasˆ
Jack T() n 1–() T J() T–()=

T J() T i–() n⁄
i 1=

n

∑=

T J()

T

SÊJack T() n 1–
n

------------ T i–() T J()–()
2

i 1=

n

∑
1 2⁄

=

n 1–() n⁄
1 n 1–()⁄

SÊJack x()

© 2002 by Chapman & Hall/CRC

Chapter 7: Data Partitioning 241

PROCEDURE - JACKKNIFE

1. Leave out an observation.

2. Calculate the value of the statistic using the remaining sample
points to obtain .

3. Repeat steps 1 and 2, leaving out one point at a time, until all n
 are recorded.

4. Calculate the jackknife estimate of the bias of T using Equation 7.9.
5. Calculate the jackknife estimate of the standard error of T using

Equation 7.11.

The following two examples show how this is used to obtain jackknife esti-
mates of the bias and standard error for an estimate of the correlation coeffi-
cient.

Example 7.4
In this example, we use a data set that has been examined in Efron and Tib-
shirani [1993]. Note that these data are also discussed in the exercises for
Chapter 6. These data consist of measurements collected on the freshman
class of 82 law schools in 1973. The average score for the entering class on a
national law test (lsat) and the average undergraduate grade point average
(gpa) were recorded. A random sample of size was taken from the
population. We would like to use these sample data to estimate the correla-
tion coefficient between the test scores (lsat) and the grade point average
(gpa). We start off by finding the statistic of interest.

% Loads up a matrix - law.
load law
% Estimate the desired statistic from the sample.
lsat = law(:,1);
gpa = law(:,2);
tmp = corrcoef(gpa,lsat);
% Recall from Chapter 3 that the corrcoef function
% returns a matrix of correlation coefficients. We
% want the one in the off-diagonal position.
T = tmp(1,2);

We get an estimated correlation coefficient of and we would like
to get an estimate of the bias and the standard error of this statistic. The fol-
lowing MATLAB code implements the jackknife procedure for estimating
these quantities.

% Set up memory for jackknife replicates.
n = length(gpa);
reps = zeros(1,n);
for i = 1:n

T i–()

T i–()

n 15=

ρ

ρ̂ 0.78,=

© 2002 by Chapman & Hall/CRC

242 Computational Statistics Handbook with MATLAB

% Store as temporary vector:
gpat = gpa;
lsatt = lsat;
% Leave i-th point out:
gpat(i) = [];
lsatt(i) = [];
% Get correlation coefficient:
% In this example, we want off-diagonal element.
tmp = corrcoef(gpat,lsatt);
reps(i) = tmp(1,2);

end
mureps = mean(reps);
sehat = sqrt((n-1)/n*sum((reps-mureps).^2));
% Get the estimate of the bias:
biashat = (n-1)*(mureps-T);

Our estimate of the standard error of the sample correlation coefficient is

,

and our estimate of the bias is

.

This data set will be explored further in the exercises.
�

Example 7.5
We provide a MATLAB function called csjack that implements the jack-
knife procedure. This will work with any MATLAB function that takes the
random sample as the argument and returns a statistic. This function can be
one that comes with MATLAB, such as mean or var, or it can be one written
by the user. We illustrate its use with a user-written function called corr that
returns the single correlation coefficient between two univariate random
variables.

function r = corr(data)
% This function returns the single correlation
% coefficient between two variables.
tmp = corrcoef(data);
r = tmp(1,2);

The data used in this example are taken from Hand, et al. [1994]. They were
originally from Anscombe [1973], where they were created to illustrate the
point that even though an observed value of a statistic is the same for data
sets , that does not tell the entire story. He also used them to show

SÊJack ρ̂() 0.14=

Biasˆ
Jack ρ̂() 0.0065–=

ρ̂ 0.82=()

© 2002 by Chapman & Hall/CRC

Chapter 7: Data Partitioning 243

the importance of looking at scatterplots, because it is obvious from the plots
that the relationships between the variables are not similar. The scatterplots
are shown in Figure 7.3.

% Here is another example.
% We have 4 data sets with essentially the same
% correlation coefficient.
% The scatterplots look very different.
% When this file is loaded, you get four sets
% of x and y variables.
load anscombe
% Do the scatterplots.
subplot(2,2,1),plot(x1,y1,'k*');
subplot(2,2,2),plot(x2,y2,'k*');
subplot(2,2,3),plot(x3,y3,'k*');
subplot(2,2,4),plot(x4,y4,'k*');

We now determine the jackknife estimate of bias and standard error for
using csjack.

% Note that 'corr' is something we wrote.
[b1,se1,jv1] = csjack([x1,y1],'corr');
[b2,se2,jv2] = csjack([x2,y2],'corr');
[b3,se3,jv3] = csjack([x3,y3],'corr');
[b4,se4,jv4] = csjack([x4,y4],'corr');

The jackknife estimates of bias are:

b1 = -0.0052
b2 = 0.0008
b3 = 0.1514
b4 = NaN

The jackknife estimates of the standard error are:

se1 = 0.1054
se2 = 0.1026
se3 = 0.1730
se4 = NaN

Note that the jackknife procedure does not work for the fourth data set,
because when we leave out the last data point, the correlation coefficient is
undefined for the remaining points.
�

The jackknife method is also described in the literature using pseudo-val-
ues. The jackknife pseudo-values are given by

, (7.12)

ρ̂

T i nT n 1–()T i–()–= i 1 … n, ,=

)

© 2002 by Chapman & Hall/CRC

244 Computational Statistics Handbook with MATLAB

where is the value of the statistic computed on the sample with the i-th
data point removed.

We take the average of the pseudo-values given by

, (7.13)

and use this to get the jackknife estimate of the standard error, as follows

. (7.14)

PROCEDURE - PSEUDO-VALUE JACKKNIFE

1. Leave out an observation.
2. Calculate the value of the statistic using the remaining sample

points to obtain .

FFFFIIIIGUGUGUGURE 7.RE 7.RE 7.RE 7.3333

This shows the scatterplots of the four data sets discussed in Example 7.5. These data were
created to show the importance of looking at scatterplots [Anscombe, 1973]. All data sets
have the same estimated correlation coefficient of , but it is obvious that the
relationship between the variables is very different.

5 10 15 20
4

6

8

10

12

14

5 10 15 20
4

6

8

10

12

14

5 10 15 20
4

6

8

10

12

14

5 10 15 20
4

6

8

10

12

14

ρ̂ 0.82=

T i–()

J T() T i n⁄
i 1=

n

∑=

)

SÊJackP T() 1
n n 1–()
-------------------- T i J T()–()

2

i 1=

n

∑
1 2⁄

=

)

T i–()

© 2002 by Chapman & Hall/CRC

Chapter 7: Data Partitioning 245

3. Calculate the pseudo-value using Equation 7.12.
4. Repeat steps 2 and 3 for the remaining data points, yielding n values

of .

5. Determine the jackknife estimate of the standard error of T using
Equation 7.14.

Example 7.6
We now repeat Example 7.4 using the jackknife pseudo-value approach and
compare estimates of the standard error of the correlation coefficient for these
data. The following MATLAB code implements the pseudo-value procedure.

% Loads up a matrix.
load law
lsat = law(:,1);
gpa = law(:,2);
% Get the statistic from the original sample
tmp = corrcoef(gpa,lsat);
T = tmp(1,2);
% Set up memory for jackknife replicates
n = length(gpa);
reps = zeros(1,n);
for i = 1:n

% store as temporary vector
gpat = gpa;
lsatt = lsat;
% leave i-th point out
gpat(i) = [];
lsatt(i) = [];
% get correlation coefficient
tmp = corrcoef(gpat,lsatt);
% In this example, is off-diagonal element.

 % Get the jackknife pseudo-value for the i-th point.
reps(i) = n*T-(n-1)*tmp(1,2);

end
JT = mean(reps);
sehatpv = sqrt(1/(n*(n-1))*sum((reps - JT).^2));

We obtain an estimated standard error of , which is the
same result we had before.
�

Efron and Tibshirani [1993] describe a situation where the jackknife proce-
dure does not work and suggest that the bootstrap be used instead. These are
applications where the statistic is not smooth. An example of this type of sta-
tistic is the median. Here smoothness refers to statistics where small changes

T i

)

T i
)

SÊJackP ρ̂() 0.14=

© 2002 by Chapman & Hall/CRC

246 Computational Statistics Handbook with MATLAB

in the data set produce small changes in the value of the statistic. We illustrate
this situation in the next example.

Example 7.7
Researchers collected data on the weight gain of rats that were fed four dif-
ferent diets based on the amount of protein (high and low) and the source of
the protein (beef and cereal) [Snedecor and Cochran, 1967; Hand, et al., 1994].
We will use the data collected on the rats who were fed a low protein diet of
cereal. The sorted data are

x = [58, 67, 74, 74, 80, 89, 95, 97, 98, 107];

The median of this data set is . To see how the median changes
with small changes of x, we increment the fourth observation by one.
The change in the median is zero, because it is still at . In fact, the
median does not change until we increment the fourth observation by 7, at
which time the median becomes . Let’s see what happens when we
use the jackknife approach to get an estimate of the standard error in the
median.

% Set up memory for jackknife replicates.
n = length(x);
reps = zeros(1,n);
for i = 1:n

% Store as temporary vector.
xt = x;
% Leave i-th point out.
xt(i) = [];
% Get the median.
reps(i) = median(xt);

end
mureps = mean(reps);
sehat = sqrt((n-1)/n*sum((reps-mureps).^2));

The jackknife replicates are:

 89 89 89 89 89 81 81 81 81 81.

These give an estimated standard error of the median of .
Because the median is not a smooth statistic, we have only a few distinct val-
ues of the statistic in the jackknife replicates. To understand this further, we
now estimate the standard error using the bootstrap.

% Now get the estimate of standard error using
% the bootstrap.
[bhat,seboot,bvals]=csboot(x','median',500);

q̂0.5 84.5=
x 74=

q̂0.5 84.5=

q̂0.5 85=

SÊJack q̂0.5() 12=

© 2002 by Chapman & Hall/CRC

Chapter 7: Data Partitioning 247

This y ie lds an est imate of the s tandard error of the median of
. In the exercises, the reader is asked to see what happens

when the statistic is the mean and should find that the jackknife and boot-
strap estimates of the standard error of the mean are similar.
�

It can be shown [Efron & Tibshirani, 1993] that the jackknife estimate of the
standard error of the median does not converge to the true standard error as

. For the data set of Example 7.7, we had only two distinct values of
the median in the jackknife replicates. This gives a poor estimate of the stan-
dard error of the median. On the other hand, the bootstrap produces data sets
that are not as similar to the original data, so it yields reasonable results. The
delete-d jackknife [Efron and Tibshirani, 1993; Shao and Tu, 1995] deletes d
observations at a time instead of only one. This method addresses the prob-
lem of inconsistency with non-smooth statistics.

7.4 Better Bootstrap Confidence Intervals

In Chapter 6, we discussed three types of confidence intervals based on the
bootstrap: the bootstrap standard interval, the bootstrap-t interval and the
bootstrap percentile interval. Each of them is applicable under more general
assumptions and is superior in some sense (e.g., coverage performance,
range-preserving, etc.) to the previous one. The bootstrap confidence interval
that we present in this section is an improvement on the bootstrap percentile
interval. This is called the interval, which stands for bias-corrected and
accelerated.

Recall that the upper and lower endpoints of the bootstrap
percentile confidence interval are given by

Percentile Interval: . (7.15)

Say we have bootstrap replications of our statistic, which we denote
as , . To find the percentile interval, we sort the bootstrap
replicates in ascending order. If we want a 90% confidence interval, then one
way to obtain is to use the bootstrap replicate in the 5th position of the
ordered list. Similarly, is the bootstrap replicate in the 95th position. As
discussed in Chapter 6, the endpoints could also be obtained using other
quantile estimates.

The interval adjusts the endpoints of the interval based on two param-
eters, and . The confidence interval using the
method is

SÊBoot q̂0.5() 7.1=

n ∞→

BCa

1 α–() 100%⋅

θ̂Lo θ̂Hi,() θ̂B
* α 2⁄() θ̂B

* 1 α– 2⁄(),()=

B 100=
θ̂

*b
b 1 … 100, ,=

θ̂Lo

θ̂Hi

BCa

â ẑ0 1 α–() 100%⋅ BCa

© 2002 by Chapman & Hall/CRC

248 Computational Statistics Handbook with MATLAB

 Interval: , (7.16)

where

(7.17)

Let’s look a little closer at and given in Equation 7.17. Since
denotes the standard normal cumulative distribution function, we know that

 and . So we see from Equation 7.16 and 7.17 that instead
of basing the endpoints of the interval on the confidence level of , they
are adjusted using information from the distribution of bootstrap replicates.

We discuss, shortly, how to obtain the acceleration and the bias . How-
ever, before we do, we want to remind the reader of the definition of .
This denotes the -th quantile of the standard normal distribution. It is the
value of z that has an area to the left of size . As an example, for

, we have , because .
We can see from Equation 7.17 that if and are both equal to zero, then

the is the same as the bootstrap percentile interval. For example,

,

with a similar result for . Thus, when we do not account for the bias and
the acceleration , then Equation 7.16 reduces to the bootstrap percentile
interval (Equation 7.15).

We now turn our attention to how we determine the parameters and .
The bias-correction is given by , and it is based on the proportion of boot-
strap replicates that are less than the statistic calculated from the orig-
inal sample. It is given by

, (7.18)

where denotes the inverse of the standard normal cumulative distribu-
tion function.

The acceleration parameter is obtained using the jackknife procedure as
follows,

BCa θ̂Lo θ̂Hi,() θ̂B
* α1()

θ̂B
* α2()

,()=

α1 Φ ẑ0
ẑ0 z α 2⁄()+

1 â ẑ0 z α 2⁄()+()–
--+

=

α2 Φ ẑ0
ẑ0 z 1 α 2⁄–()+

1 â ẑ0 z 1 α 2⁄–()+()–
--+

.=

α1 α2 Φ

0 α1 1≤ ≤ 0 α2 1≤ ≤
1 α–

â ẑ0

z α 2⁄()

α 2⁄
α 2⁄

α 2⁄ 0.05= z α 2⁄() z 0.05() 1.645–= = Φ 1.645–() 0.05=
â ẑ0

BCa

α1 Φ 0 0 z α 2⁄()+

1 0 0 z α 2⁄()+()–
---------------------------------------+

Φ z α 2⁄()() α 2⁄= = =

α2 ẑ0

â

â ẑ0

ẑ0

θ̂*b θ̂

ẑ0 Φ 1– # θ̂*b θ̂<()
B

 =

Φ 1–

â

© 2002 by Chapman & Hall/CRC

Chapter 7: Data Partitioning 249

 , (7.19)

where is the value of the statistic using the sample with the i-th data
point removed (the i-th jackknife sample) and

. (7.20)

According to Efron and Tibshirani [1993], is a measure of the difference
between the median of the bootstrap replicates and in normal units. If half
of the bootstrap replicates are less than or equal to , then there is no median
bias and is zero. The parameter measures the rate acceleration of the
standard error of . For more information on the theoretical justification for
these corrections, see Efron and Tibshirani [1993] and Efron [1987].

PROCEDURE - INTERVAL

1. Given a random sample, , calculate the statistic of
interest .

2. Sample with replacement from the original sample to get the boot-
strap sample

.

3. Calculate the same statistic as in step 1 using the sample found in
step 2. This yields a bootstrap replicate .

4. Repeat steps 2 through 3, B times, where .
5. Calculate the bias correction (Equation 7.18) and the acceleration

factor (Equation 7.19).

6. Determine the adjustments for the interval endpoints using Equa-
tion 7.17.

7. The lower endpoint of the confidence interval is the quantile
 of the bootstrap replicates, and the upper endpoint of the

confidence interval is the quantile of the bootstrap repli-
cates.

â

θ̂
J()

θ̂
i–()

–

3

i 1=

n

∑

6 θ̂
J()

θ̂
i–()

–

2

i 1=

n

∑

3 2⁄
---=

θ̂ i–()

θ̂
J() 1

n
--- θ̂

i–()

i 1=

n

∑=

ẑ0

θ̂
θ̂

ẑ0 â
θ̂

BCa

x x1 … xn, ,()=
θ̂

x*b x1
*b … xn

*b, ,()=

θ̂*b

B 1000≥

α1

q̂α1

α2 q̂α2

© 2002 by Chapman & Hall/CRC

250 Computational Statistics Handbook with MATLAB

Example 7.8
We use an example from Efron and Tibshirani [1993] to illustrate the
interval. Here we have a set of measurements of 26 neurologically impaired
children who took a test of spatial perception called test A. We are interested
in finding a 90% confidence interval for the variance of a random score on test
A. We use the following estimate for the variance

,

where represents one of the test scores. This is a biased estimator of the
variance, and when we calculate this statistic from the sample we get a value
of . We provide a function called csbootbca that will determine
the interval. Because it is somewhat lengthy, we do not include the
MATLAB code here, but the reader can view it in Appendix D. However,
before we can use the function csbootbca, we have to write an M-file func-
tion that will return the estimate of the second sample central moment using
only the sample as an input. It should be noted that MATLAB Statistics Tool-
box has a function (moment) that will return the sample central moments of
any order. We do not use this with the csbootbca function, because the
function specified as an input argument to csbootbca can only use the sam-
ple as an input. Note that the function mom is the same function used in Chap-
ter 6. We can get the bootstrap interval with the following command.

% First load the data.
load spatial
% Now find the BC-a bootstrap interval.
alpha = 0.10;
B = 2000;
% Use the function we wrote to get the
% 2nd sample central moment - 'mom'.
[blo,bhi,bvals,z0,ahat] = ...

csbootbca(spatial','mom',B,alpha);

From this function, we get a bias correction of and an acceleration
factor of The endpoints of the interval from csbootbca are

 In the exercises, the reader is asked to compare this to the
bootstrap-t interval and the bootstrap percentile interval.
�

BCa

θ̂ 1
n
--- xi x–()2

i 1=

n

∑=

xi

θ̂ 171.5=
BCa

BCa

ẑ0 0.16=
â 0.061.=

115.97 258.54,().

© 2002 by Chapman & Hall/CRC

Chapter 7: Data Partitioning 251

7.5 Jackknife-After-Bootstrap

In Chapter 6, we presented the bootstrap method for estimating the statistical
accuracy of estimates. However, the bootstrap estimates of standard error
and bias are also estimates, so they too have error associated with them. This
error arises from two sources, one of which is the usual sampling variability
because we are working with the sample instead of the population. The other
variability comes from the fact that we are working with a finite number B of
bootstrap samples.

We now turn our attention to estimating this variability using the jackknife-
after-bootstrap technique. The characteristics of the problem are the same as
in Chapter 6. We have a random sample , from which we cal-
culate our statistic . We estimate the distribution of by creating B boot-
strap replicates . Once we have the bootstrap replicates, we estimate some
feature of the distribution of by calculating the corresponding feature of
the distribution of bootstrap replicates. We will denote this feature or boot-
strap estimate as . As we saw before, could be the bootstrap estimate of
the standard error, the bootstrap estimate of a quantile, the bootstrap esti-
mate of bias or some other quantity.

To obtain the jackknife-after-bootstrap estimate of the variability of , we
leave out one data point at a time and calculate using the bootstrap
method on the remaining data points. We continue in this way until we
have the n values of . We estimate the variance of using the val-
ues, as follows

, (7.21)

where

.

Note that this is just the jackknife estimate for the variance of a statistic,
where the statistic that we have to calculate for each jackknife replicate is a
bootstrap estimate.

This can be computationally intensive, because we would need a new set
of bootstrap samples when we leave out each data point . There is a short-
cut method for obtaining where we use the original B bootstrap
samples. There will be some bootstrap samples where the i-th data point does

x x1 … xn, ,()=
θ̂ θ̂

θ̂*b

θ̂

γ̂B γ̂B

γ̂B

xi γ̂B
i–()

n 1–
γ̂B

i–() γ̂B γ̂B
1–()

varˆ
Jack γ̂B() n 1–

n
------------ γ̂B

i–()
γ̂B–()

2

i 1=

n

∑=

γ̂B
1
n
--- γ̂B

i–()

i 1=

n

∑=

xi

varˆ
Jack γ̂B()

© 2002 by Chapman & Hall/CRC

252 Computational Statistics Handbook with MATLAB

not appear. Efron and Tibshirani [1993] show that if and , then
the probability is low that every bootstrap sample contains a given point .
We estimate the value of by taking the bootstrap replicates for samples
that do not contain the data point . These steps are outlined below.

PROCEDURE - JACKKNIFE-AFTER-BOOTSTRAP

1. Given a random sample , calculate a statistic of
interest .

2. Sample with replacement from the original sample to get a boot-
strap sample .

3. Using the sample obtained in step 2, calculate the same statistic
that was determined in step one and denote by .

4. Repeat steps 2 through 3, B times to estimate the distribution of .
5. Estimate the desired feature of the distribution of (e.g., standard

error, bias, etc.) by calculating the corresponding feature of the
distribution of . Denote this bootstrap estimated feature as .

6. Now get the error in . For , find all samples
 that do not contain the point . These are the

bootstrap samples that can be used to calculate .
7. Calculate the estimate of the variance of using Equation 7.21.

Example 7.9
In this example, we show how to implement the jackknife-after-bootstrap
procedure. For simplicity, we will use the MATLAB Statistics Toolbox func-
tion called bootstrp, because it returns the indices for each bootstrap sam-
ple and the corresponding bootstrap replicate . We return now to the law
data where our statistic is the sample correlation coefficient. Recall that we
wanted to estimate the standard error of the correlation coefficient, so will
be the bootstrap estimate of the standard error.

% Use the law data.
load law
lsat = law(:,1);
gpa = law(:,2);

% Use the example in MATLAB documentation.
B = 1000;
[bootstat,bootsam] = bootstrp(B,'corrcoef',lsat,gpa);

The output argument bootstat contains the B bootstrap replicates of the
statistic we are interested in, and the columns of bootsam contains the indi-
ces to the data points that were in each bootstrap sample. We can loop

n 10≥ B 20≥
xi

γ̂B
i–()

xi

x x1 … xn, ,()=
θ̂

x*b x1
* … xn

*, ,()=

θ̂*b

θ̂
θ̂

θ̂*b γ̂B

γ̂B i 1 … n, ,=
x*b x1

* … xn
*, ,()= xi

γ̂B
i–()

γ̂B

θ̂*b

γ̂B

© 2002 by Chapman & Hall/CRC

Chapter 7: Data Partitioning 253

through all of the data points and find the columns of bootsam that do not
contain that point. We then find the corresponding bootstrap replicates.

% Find the jackknife-after-bootstrap.
n = length(gpa);
% Set up storage space.
jreps = zeros(1,n);
% Loop through all points,
% Find the columns in bootsam that
% do not have that point in it.
for i = 1:n

% Note that the columns of bootsam are
% the indices to the samples.
% Find all columns with the point.
[I,J] = find(bootsam==i);
% Find all columns without the point.
jacksam = setxor(J,1:B);
% Find the correlation coefficient for
% each of the bootstrap samples that
% do not have the point in them.
bootrep = bootstat(jacksam,2);
% In this case it is col 2 that we need.
% Calculate the feature (gamma_b) we want.
jreps(i) = std(bootrep);

end
% Estimate the error in gamma_b.
varjack = (n-1)/n*sum((jreps-mean(jreps)).^2);
% The original bootstrap estimate of error is:
gamma = std(bootstat(:,2));

We see that the estimate of the standard error of the correlation coefficient for
this simulation is , and our estimated standard error in
this bootstrap estimate is .
�

Efron and Tibshirani [1993] point out that the jackknife-after-bootstrap
works well when the number of bootstrap replicates B is large. Otherwise, it
overestimates the variance of .

7.6 MATLAB Code

To our knowledge, MATLAB does not have M-files for either cross-validation
or the jackknife. As described earlier, we provide a function (csjack) that

γ̂B SÊBoot ρ̂() 0.14= =
SÊJack γ̂B() 0.088=

γ̂B

© 2002 by Chapman & Hall/CRC

254 Computational Statistics Handbook with MATLAB

will implement the jackknife procedure for estimating the bias and standard
error in an estimate. We also provide a function called csjackboot that will
implement the jackknife-after-bootstrap. These functions are summarized in
Table 7.1.

The cross-validation method is application specific, so users must write
their own code for each situation. For example, we showed in this chapter
how to use cross-validation to help choose a model in regression by estimat-
ing the prediction error. In Chapter 9, we illustrate two examples of cross-val-
idation: 1) to choose the right size classification tree and 2) to assess the
misclassification error. We also describe a procedure in Chapter 10 for using
K-fold cross-validation to choose the right size regression tree.

7.7 Further Reading

There are very few books available where the cross-validation technique is
the main topic, although Hjorth [1994] comes the closest. In that book, he dis-
cusses the cross-validation technique and the bootstrap and describes their
use in model selection. Other sources on the theory and use of cross-valida-
tion are Efron [1982, 1983, 1986] and Efron and Tibshirani [1991, 1993]. Cross-
validation is usually presented along with the corresponding applications.
For example, to see how cross-validation can be used to select the smoothing
parameter in probability density estimation, see Scott [1992]. Breiman, et al.
[1984] and Webb [1999] describe how cross-validation is used to choose the
right size classification tree.

The initial jackknife method was proposed by Quenouille [1949, 1956] to
estimate the bias of an estimate. This was later extended by Tukey [1958] to
estimate the variance using the pseudo-value approach. Efron [1982] is an

TTTTAAAABBBBLLLLEEEE 7.17.17.17.1

List of Functions from Chapter 7 Included in the
Computational Statistics Toolbox.

Purpose MATLAB Function

Implements the jackknife and returns
the jackknife estimate of standard
error and bias.

csjack

Returns the bootstrap confidence
interval.

csbootbca

Implements the jackknife-after-
bootstrap and returns the jackknife
estimate of the error in the bootstrap.

csjackboot

BCa

© 2002 by Chapman & Hall/CRC

Chapter 7: Data Partitioning 255

excellent resource that discusses the underlying theory and the connection
between the jackknife, the bootstrap and cross-validation. A more recent text
by Shao and Tu [1995] provides a guide to using the jackknife and other res-
ampling plans. Many practical examples are included. They also present the
theoretical properties of the jackknife and the bootstrap, examining them in
an asymptotic framework. Efron and Tibshirani [1993] show the connection
between the bootstrap and the jackknife through a geometrical representa-
tion. For a reference on the jackknife that is accessible to readers at the under-
graduate level, we recommend Mooney and Duval [1993]. This text also gives
a description of the delete-d jackknife procedure.

The use of jackknife-after-bootstrap to evaluate the error in the bootstrap is
discussed in Efron and Tibshirani [1993] and Efron [1992]. Applying another
level of bootstrapping to estimate this error is given in Loh [1987], Tibshirani
[1988], and Hall and Martin [1988]. For other references on this topic, see
Chernick [1999].

© 2002 by Chapman & Hall/CRC

256 Computational Statistics Handbook with MATLAB

Exercises

7.1. The insulate data set [Hand, et al., 1994] contains observations
corresponding to the average outside temperature in degrees Celsius
and the amount of weekly gas consumption measured in 1000 cubic
feet. Do a scatterplot of the data corresponding to the measurements
taken before insulation was installed. What is a good model for this?
Use cross-validation with to estimate the prediction error for
your model. Use cross-validation with . Does your error change
significantly? Repeat the process for the data taken after insulation
was installed.

7.2. Using the same procedure as in Example 7.2, use a quadratic (degree
is 2) and a cubic (degree is 3) polynomial to build the model. What
is the estimated prediction error from these models? Which one seems
best: linear, quadratic or cubic?

7.3. The peanuts data set [Hand, et al., 1994; Draper and Smith, 1981]
contain measurements of the alfatoxin (X) and the corresponding
percentage of non-contaminated peanuts in the batch (Y). Do a scat-
terplot of these data. What is a good model for these data? Use cross-
validation to choose the best model.

7.4. Generate random variables from a standard normal distribu-
tion that will serve as the random sample. Determine the jackknife
estimate of the standard error for , and calculate the bootstrap esti-
mate of the standard error. Compare these to the theoretical value of
the standard error (see Chapter 3).

7.5. Using a sample size of , generate random variables from a
uniform (0,1) distribution. Determine the jackknife estimate of the
standard error for , and calculate the bootstrap estimate of the stan-
dard error for the same statistic. Let’s say we decide to use as
an estimate of the standard error for . How does this compare to
the other estimates?

7.6. Use Monte Carlo simulation to compare the performance of the boot-
strap and the jackknife methods for estimating the standard error and
bias of the sample second central moment. For every Monte Carlo
trial, generate 100 standard normal random variables and calculate
the bootstrap and jackknife estimates of the standard error and bias.
Show the distribution of the bootstrap estimates (of bias and standard
error) and the jackknife estimates (of bias and standard error) in a
histogram or a box plot. Make some comparisons of the two methods.

7.7. Repeat problem 7.4 and use Monte Carlo simulation to compare the
bootstrap and jackknife estimates of bias for the sample coefficient of

K 1=
K 4=

n 25=

x

n 15=

x
s n⁄

x

© 2002 by Chapman & Hall/CRC

Chapter 7: Data Partitioning 257

skewness statistic and the sample coefficient of kurtosis (see
Chapter 3).

7.8. Using the law data set in Example 7.4, find the jackknife replicates
of the median. How many different values are there? What is the
jackknife estimate of the standard error of the median? Use the boot-
strap method to get an estimate of the standard error of the median.
Compare the two estimates of the standard error of the median.

7.9. For the data in Example 7.7, use the bootstrap and the jackknife to
estimate the standard error of the mean. Compare the two estimates.

7.10. Using the data in Example 7.8, find the bootstrap-t interval and the
bootstrap percentile interval. Compare these to the interval
found in Example 7.8.

BCa

© 2002 by Chapman & Hall/CRC

Chapter 8
Probability Density Estimation

8.1 Introduction

We discussed several techniques for graphical exploratory data analysis in
Chapter 5. One purpose of these exploratory techniques is to obtain informa-
tion and insights about the distribution of the underlying population. For
instance, we would like to know if the distribution is multi-modal, skewed,
symmetric, etc. Another way to gain understanding about the distribution of
the data is to estimate the probability density function from the random sam-
ple, possibly using a nonparametric probability density estimation tech-
nique.

Estimating probability density functions is required in many areas of com-
putational statistics. One of these is in the modeling and simulation of phys-
ical phenomena. We often have measurements from our process, and we
would like to use those measurements to determine the probability distribu-
tion so we can generate random variables for a Monte Carlo simulation
(Chapter 6). Another application where probability density estimation is
used is in statistical pattern recognition (Chapter 9). In supervised learning,
which is one approach to pattern recognition, we have measurements where
each one is labeled with a class membership tag. We could use the measure-
ments for each class to estimate the class-conditional probability density
functions, which are then used in a Bayesian classifier. In other applications,
we might need to determine the probability that a random variable will fall
within some interval, so we would need to evaluate the cumulative distribu-
tion function. If we have an estimate of the probability density function, then
we can easily estimate the required probability by integrating under the esti-
mated curve. Finally, in Chapter 10, we show how to use density estimation
techniques for nonparametric regression.

In this chapter, we cover semi-parametric and nonparametric techniques
for probability density estimation. By these, we mean techniques where we
make few or no assumptions about what functional form the probability den-
sity takes. This is in contrast to a parametric method, where the density is
estimated by assuming a distribution and then estimating the parameters.

© 2002 by Chapman & Hall/CRC

260 Computational Statistics Handbook with MATLAB

We present three main methods of semi-parametric and nonparametric den-
sity estimation and their variants: histograms, kernel density estimates, and
finite mixtures.

In the remainder of this section, we cover some ways to measure the error
in functions as background to what follows. Then, in Section 8.2, we present
various histogram based methods for probability density estimation. There
we cover optimal bin widths for univariate and multivariate histograms, the
frequency polygons, and averaged shifted histograms. Section 8.3 contains a
discussion of kernel density estimation, both univariate and multivariate. In
Section 8.4, we describe methods that model the probability density as a finite
(less than n) sum of component densities. As usual, we conclude with
descriptions of available MATLAB code and references to the topics covered
in the chapter.

Before we can describe the various density estimation methods, we need to
provide a little background on measuring the error in functions. We briefly
present two ways to measure the error between the true function and the esti-
mate of the function. These are called the mean integrated squared error
(MISE) and the mean integrated absolute error (MIAE). Much of the under-
lying theory for choosing optimal parameters for probability density estima-
tion is based on these concepts.

We start off by describing the mean squared error at a given point in the
domain of the function. We can find the mean squared error (MSE) of the esti-
mate at a point x from the following

. (8.1)

Alternatively, we can determine the error over the domain for x by integrat-
ing. This gives us the integrated squared error (ISE):

. (8.2)

The ISE is a random variable that depends on the true function , the
estimator , and the particular random sample that was used to obtain the
estimate. Therefore, it makes sense to look at the expected value of the ISE or
mean integrated squared error, which is given by

. (8.3)

To obtain the mean integrated absolute error, we simply replace the inte-
grand with the absolute difference between the estimate and the true func-
tion. Thus, we have

f̂ x()

MSE f̂ x()[] E f̂ x() f x()–()2[]=

ISE = f̂ x() f x()–()
2

xd∫

f x()
f̂ x()

MISE =E f̂ x() f x()–()
2

xd∫

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 261

. (8.4)

These concepts are easily extended to the multivariate case.

8.2 Histograms

Histograms were introduced in Chapter 5 as a graphical way of summarizing
or describing a data set. A histogram visually conveys how a data set is dis-
tributed, reveals modes and bumps, and provides information about relative
frequencies of observations. Histograms are easy to create and are computa-
tionally feasible. Thus, they are well suited for summarizing large data sets.
We revisit histograms here and examine optimal bin widths and where to
start the bins. We also offer several extensions of the histogram, such as the
frequency polygon and the averaged shifted histogram.

1111----D HistogD HistogD HistogD Histogrrrraaaammmmssss

Most introductory statistics textbooks expose students to the frequency his-
togram and the relative frequency histogram. The problem with these is that
the total area represented by the bins does not sum to 1. Thus, these are not
valid probability density estimates. The reader is referred to Chapter 5 for
more information on this and an example illustrating the difference between
a frequency histogram and a density histogram. Since our goal is to estimate
a bona fide probability density, we want to have a function that is nonne-
gative and satisfies the constraint that

. (8.5)

The histogram is calculated using a random sample . The ana-
lyst must choose an origin for the bins and a bin width h. These two param-
eters define the mesh over which the histogram is constructed. In what
follows, we will see that it is the bin width that determines the smoothness of
the histogram. Small values of h produce histograms with a lot of variation,
while larger bin widths yield smoother histograms. This phenomenon is
illustrated in Figure 8.1, where we show histograms with different bin
widths. For this reason, the bin width h is sometimes referred to as the
smoothing parameter.

Let denote the k-th bin, where , for all k. We rep-
resent the number of observations that fall into the k-th bin by . The 1-D
histogram at a point x is defined as

MIAE =E f̂ x() f x()– xd∫

f̂ x()

f̂ x() xd∫ 1=

X1 X2 … Xn, , ,
t0

Bk [tk tk 1+),= tk 1+ tk– h=
νk

© 2002 by Chapman & Hall/CRC

262 Computational Statistics Handbook with MATLAB

, (8.6)

where is the indicator function

This means that if we need to estimate the value of the probability density for
a given x, then we obtain the value by taking the number of observa-
tions in the data set that fall into the same bin as x and multiplying by

.

FFFFIIIIGUGUGUGURE 8.RE 8.RE 8.RE 8.1111

These are histograms for normally distributed random variables. Notice that for the larger
bin widths, we have only one bump as expected. As the smoothing parameter gets smaller,
the histogram displays more variation and spurious bumps appear in the histogram esti-
mate.

−2 0 2
0

0.2

0.4

h = 1.1

−2 0 2
0

0.2

0.4

h = 0.53

−2 0 2
0

0.2

0.4

h = 0.36

−2 0 2
0

0.2

0.4

h = 0.27

f̂Hist x() vk

nh

1
nh
------ IBk

Xi();

i 1=

n

∑= = x in Bk

IBk
Xi()

IBk
Xi()

1 Xi in Bk,
0 Xi not in Bk.,

=

f̂Hist x()

1 nh()⁄

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 263

Example 8.1
In this example, we illustrate MATLAB code that calculates the estimated
value for a given x. We first generate random variables from a stan-
dard normal distribution.

n = 1000;
x = randn(n,1);

We then compute the histogram using MATLAB’s hist function, using the
default value of 10 bins. The issue of the bin width (or alternatively the num-
ber of bins) will be addressed shortly.

% Get the histogram-default is 10 bins.
[vk,bc] = hist(x);
% Get the bin width.
h = bc(2)- bc(1);

We can now obtain our histogram estimate at a point using the following
code. Note that we have to adjust the output from hist to ensure that our
estimate is a bona fide density. Let’s get the estimate of our function at a point

% Now return an estimate at a point xo.
xo = 0;
% Find all of the bin centers less than xo.
ind = find(bc < xo);
% xo should be between these two bin centers.
b1 = bc(ind(end));
b2 = bc(ind(end)+1);
% Put it in the closer bin.
if (xo-b1) < (b2-xo) % then put it in the 1st bin
 fhat = vk(ind(end))/(n*h);
else
 fhat = vk(ind(end)+1)/(n*h);
end

Our result is fhat = 0.3477. The true value for the standard normal eval-
uated at 0 is , so we see that our estimate is close, but not
equal to the true value.
�

We now look at how we can choose the bin width h. Using some assump-
tions, Scott [1992] provides the following upper bound for the MSE
(Equation 8.1) of :

, (8.7)

where

f̂Hist x()

x0 0.=

1 2π⁄ 0.3989=

f̂Hist x()

MSE f̂Hist x()() f ξk()
nh

----------- γk
2h2;+≤ x in Bk

© 2002 by Chapman & Hall/CRC

264 Computational Statistics Handbook with MATLAB

 . (8.8)

This is based on the assumption that the probability density function is
Lipschitz continuous over the bin interval . A function is Lipschitz contin-
uous if there is a positive constant such that

. (8.9)

The first term in Equation 8.7 is an upper bound for the variance of the den-
sity estimate, and the second term is an upper bound for the squared bias of
the density estimate. This upper bound shows what happens to the density
estimate when the bin width h is varied.

 We can try to minimize the MSE by varying the bin width h. We could set
h very small to reduce the bias, but this also increases the variance. The
increased variance in our density estimate is evident in Figure 8.1, where we
see more spikes as the bin width gets smaller. Equation 8.7 shows a common
problem in some density estimation methods: the trade-off between variance
and bias as h is changed. Most of the optimal bin widths presented here are
obtained by trying to minimize the squared error.

A rule for bin width selection that is often presented in introductory statis-
tics texts is called Sturges’ Rule. In reality, it is a rule that provides the number
of bins in the histogram, and is given by the following formula.

STURGES’ RULE (HISTOGRAM)

 .

Here k is the number of bins. The bin width h is obtained by taking the range
of the sample data and dividing it into the requisite number of bins, k.

Some improved values for the bin width h can be obtained by assuming the
existence of two derivatives of the probability density function . We
include the following results (without proof), because they are the basis for
many of the univariate bin width rules presented in this chapter. The inter-
ested reader is referred to Scott [1992] for more details. Most of what we
present here follows his treatment of the subject.

Equation 8.7 provides a measure of the squared error at a point x. If we
want to measure the error in our estimate for the entire function, then we can
integrate over all values of x. Let’s assume has an absolutely continuous
and a square-integrable first derivative. If we let n get very large ,
then the asymptotic MISE is

hf ξk() f t() td
Bk

∫ ;= for some ξk in Bk

f x()
Bk

γk

f x() f y()– γk x y– ;< for all x y, in Bk

k 1 log2+ n=

f x()

f x()
n ∞→()

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 265

, (8.10)

where is used as a measure of the roughness of the function,
and is the first derivative of . The first term of Equation 8.10 indicates
the asymptotic integrated variance, and the second term refers to the asymp-
totic integrated squared bias. These are obtained as approximations to the
integrated squared bias and integrated variance [Scott, 1992]. Note, however,
that the form of Equation 8.10 is similar to the upper bound for the MSE in
Equation 8.7 and indicates the same trade-off between bias and variance, as
the smoothing parameter h changes.

The optimal bin width for the histogram is obtained by minimizing
the AMISE (Equation 8.10), so it is the h that yields the smallest MISE as n gets
large. This is given by

. (8.11)

For the case of data that is normally distributed, we have a roughness of

.

Using this in Equation 8.11, we obtain the following expression for the opti-
mal bin width for normal data.

NORMAL REFERENCE RULE - 1-D HISTOGRAM

. (8.12)

Scott [1979, 1992] proposed the sample standard deviation as an estimate of
 in Equation 8.12 to get the following bin width rule.

SCOTT’S RULE

.

A robust rule was developed by Freedman and Diaconis [1981]. This uses the
interquartile range (IQR) instead of the sample standard deviation.

AMISEHist h() 1
nh

1
12
------h2R f ′()+=

R g() g2 x() xd∫≡
f ′ f x()

hHist
*

hHist
* 6

nR f ′()

1 3⁄

=

R f ′() 1

4σ3 π
----------------=

hHist
* 24σ3 π

n

1 3⁄

= 3.5σn 1 3⁄–≈

σ

ĥHist
*

3.5 s n 1 3⁄–××=

© 2002 by Chapman & Hall/CRC

266 Computational Statistics Handbook with MATLAB

FREEDMAN-DIACONIS RULE

.

It turns out that when the data are skewed or heavy-tailed, the bin widths
are too large using the Normal Reference Rule. Scott [1979, 1992] derived the
following correction factor for skewed data:

. (8.13)

The bin width obtained from Equation 8.12 should be multiplied by this fac-
tor when there is evidence that the data come from a skewed distribution. A
factor for heavy-tailed distributions can be found in Scott [1992]. If one sus-
pects the data come from a skewed or heavy-tailed distribution, as indicated
by calculating the corresponding sample statistics (Chapter 3) or by graphical
exploratory data analysis (Chapter 5), then the Normal Reference Rule bin
widths should be multiplied by these factors. Scott [1992] shows that the
modification to the bin widths is greater for skewness and is not so critical for
kurtosis.

Example 8.2
Data representing the waiting times (in minutes) between eruptions of the
Old Faithful geyser at Yellowstone National Park were collected [Hand, et al,
1994]. These data are contained in the file geyser. In this example, we use an
alternative MATLAB function (available in the standard MATLAB package)
for finding a histogram, called histc. This takes the bin edges as one of the
arguments. This is in contrast to the hist function that takes the bin centers
as an optional argument. The following MATLAB code will construct a his-
togram density estimate for the Old Faithful geyser data.

load geyser
n = length(geyser);
% Use Normal Reference Rule for bin width.
h = 3.5*std(geyser)*n^(-1/3);
% Get the bin mesh.
t0 = min(geyser)-1;
tm = max(geyser)+1;
rng = tm - t0;
nbin = ceil(rng/h);
bins = t0:h:(nbin*h + t0);
% Get the bin counts vk.
vk = histc(geyser,bins);
% Normalize to make it a bona fide density.

ĥHist
*

2 IQR n 1 3⁄–××=

skewness factor Hist
21 3⁄ σ

e5σ2
4⁄ σ2 2+()1 3⁄

eσ2

1–()
1 2⁄

--=

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 267

% We do not need the last count in fhat.
fhat(end) = [];
fhat = vk/(n*h);

We have to use the following to create a plot of our histogram density. The
MATLAB bar function takes the bin centers as the argument, so we convert
our mesh to bin centers before plotting. The plot is shown in Figure 8.2, and
the existence of two modes is apparent.

% To plot this, use bar with the bin centers.
tm = max(bins);
bc = (t0+h/2):h:(tm-h/2);
bar(bc,fhat,1,’w’)

�

MultMultMultMultiiiivvvvarararariiiiaaaatttteeee HHHHiiiissssttttooooggggrrrraaaammmmssss

Given a data set that contains d-dimensional observations , we would like
to estimate the probability density . We can extend the univariate histo-
gram to d dimensions in a straightforward way. We first partition the d-
dimensional space into hyper-rectangles of size . We denote

FFFFIIIIGUGUGUGURE 8.RE 8.RE 8.RE 8.2222

Histogram of Old Faithful geyser data. Here we are using Scott’s Rule for the bin widths.

40 50 60 70 80 90 100 110 120
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Waiting Times (minutes)

P
ro

ba
bi

lit
y

Old Faithful − Waiting Time Between Eruptions

Xi

f̂ x()

h1 h2 … hd×××

© 2002 by Chapman & Hall/CRC

268 Computational Statistics Handbook with MATLAB

the k-th bin by and the number of observations falling into that bin by ,
with . The multivariate histogram is then defined as

. (8.14)

If we need an estimate of the probability density at x, we first determine the
bin that the observation falls into. The estimate of the probability density
would be given by the number of observations falling into that same bin
divided by the sample size and the bin widths of the partitions. The MATLAB
code to create a bivariate histogram was given in Chapter 5. This could be
easily extended to the general multivariate case.

For a density function that is sufficiently smooth [Scott, 1992], we can write
the asymptotic MISE for a multivariate histogram as

, (8.15)

where As before, the first term indicates the asymptotic inte-
grated variance and the second term provides the asymptotic integrated
squared bias. This has the same general form as the 1-D histogram and shows
the same bias-variance trade-off. Minimizing Equation 8.15 with respect to
provides the following equation for optimal bin widths in the multivariate
case

, (8.16)

where

.

We can get a multivariate Normal Reference Rule by looking at the special
case where the data are distributed as multivariate normal with the covari-
ance equal to a diagonal matrix with along the diagonal. The Nor-
mal Reference Rule in the multivariate case is given below [Scott, 1992].

Bk νk

νk∑ n=

f̂Hist x()
νk

nh1h2…hd

--------------------------;= x in Bk

AMISEHist h() 1
nh1h2…hd

1
12
------ hj

2R fj()
j 1=

d

∑+=

h h1 … hd, ,().=

hi

hiHist

* R fi() 1 2⁄– 6 R fj()1 2⁄

j 1=

d

∏

1
2 d+

n
1–

2 d+

=

R fi()
xi∂
∂ f x()

2

xd

ℜd

∫=

σ1
2 … σd

2, ,

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 269

NORMAL REFERENCE RULE - MULTIVARIATE HISTOGRAMS

.

Notice that this reduces to the same univariate Normal Reference Rule when
d = 1. As before, we can use a suitable estimate for .

FFFFrrrreeeequenquenquenquenccccy Polygonsy Polygonsy Polygonsy Polygons

Another method for estimating probability density functions is to use a fre-
quency polygon. A univariate frequency polygon approximates the density
by linearly interpolating between the bin midpoints of a histogram with
equal bin widths. Because of this, the frequency polygon extends beyond the
histogram to empty bins at both ends.

The univariate probability density estimate using the frequency polygon is
obtained from the following,

, (8.17)

where and are adjacent univariate histogram values and is the cen-
ter of bin . An example of a section of a frequency polygon is shown in Fig-
ure 8.3.

As is the case with the univariate histogram, under certain assumptions,
we can write the asymptotic MISE as [Scott, 1992, 1985],

, (8.18)

where is the second derivative of . The optimal bin width that mini-
mizes the AMISE for the frequency polygon is given by

. (8.19)

If is the probability density function for the standard normal, then
. Substituting this in Equation 8.19, we obtain the follow-

ing Normal Reference Rule for a frequency polygon.

hiHist

* 3.5σ in
1–

2 d+

≈ ; i 1 … d, ,=

σi

f̂FP x() 1
2
--- x

h
---–

 f̂ k
1
2
--- x

h
---+

 f̂k 1++= ; Bk x Bk 1+≤ ≤

f̂k f̂k 1+ Bk

Bk

AMISEFP h() 2
3nh

49
2880
------------h4R f ″()+=

f ″ f x()

hFP
* 2

15
49nR f ″()

1 5⁄

=

f x()
R f ″() 3 8 πσ5()⁄=

© 2002 by Chapman & Hall/CRC

270 Computational Statistics Handbook with MATLAB

NORMAL REFERENCE RULE - FREQUENCY POLYGON

.

We can use the sample standard deviation in this rule as an estimate of σ or
choose a robust estimate based on the interquartile range. If we choose the
IQR and use , then we obtain a bin width of

.

As for the case of histograms, Scott [1992] provides a skewness factor for
frequency polygons, given by

. (8.20)

If there is evidence that the data come from a skewed distribution, then the
bin width should be multiplied by this factor. The kurtosis factor for fre-
quency polygons can be found in Scott [1992].

FFFFIIIIGUGUGUGURE 8.RE 8.RE 8.RE 8.3333

The frequency polygon is obtained by connecting the center of adjacent bins using straight
lines. This figure illustrates a section of the frequency polygon.

0

0.05

0.1

0.15

0.2

0.25

B
k

B
k+1

hFP
* 2.15σn 1 5⁄–=

σ̂ IQR 1.348⁄=

ĥFP
*

1.59 IQR× n 1 5⁄–×=

skewness factorFP
121 5⁄ σ

e7σ2
4⁄ eσ2

1–()
1 2⁄

9σ4 20σ2 12+ +()1 5⁄
---=

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 271

Example 8.3
Here we show how to create a frequency polygon using the Old Faithful
geyser data. We must first create the histogram from the data, where we use
the frequency polygon Normal Reference Rule to choose the smoothing
parameter.

load geyser
n = length(geyser);
% Use Normal Reference Rule for bin width
% of frequency polygon.
h = 2.15*sqrt(var(geyser))*n^(-1/5);
t0 = min(geyser)-1;
tm = max(geyser)+1;
bins = t0:h:tm;
vk = histc(geyser,bins);
vk(end) = [];
fhat = vk/(n*h);

We then use the MATLAB function called interp1 to interpolate between
the bin centers. This function takes three arguments (and an optional fourth
argument). The first two arguments to interp1 are the xdata and ydata
vectors that contain the observed data. In our case, these are the bin centers
and the bin heights from the density histogram. The third argument is a vec-
tor of xinterp values for which we would like to obtain interpolated
yinterp values. There is an optional fourth argument that allows the user
to select the type of interpolation (linear, cubic, nearest and spline).
The default is linear, which is what we need for the frequency polygon. The
following code constructs the frequency polygon for the geyser data.

% For frequency polygon, get the bin centers,
% with empty bin center on each end.
bc2 = (t0-h/2):h:(tm+h/2);
binh = [0 fhat 0];
% Use linear interpolation between bin centers
% Get the interpolated values at x.
xinterp = linspace(min(bc2),max(bc2));
fp = interp1(bc2, binh, xinterp);

To see how this looks, we can plot the frequency polygon and underlying his-
togram, which is shown in Figure 8.4.

% To plot this, use bar with the bin centers
tm = max(bins);
bc = (t0+h/2):h:(tm-h/2);
bar(bc,fhat,1,'w')
hold on
plot(xinterp,fp)
hold off

© 2002 by Chapman & Hall/CRC

272 Computational Statistics Handbook with MATLAB

axis([30 120 0 0.035])
xlabel('Waiting Time (minutes)')
ylabel('Probability Density Function')
title('Old Faithful-Waiting Times Between Eruptions')

To ensure that we have a valid probability density function, we can verify
that the area under the curve is approximately one by using the trapz func-
tion.

area = trapz(xinterp,fp);

We get an approximate area under the curve of 0.9998, indicating that the fre-
quency polygon is indeed a bona fide density estimate.
�

The frequency polygon can be extended to the multivariate case. The inter-
ested reader is referred to Scott [1985, 1992] for more details on the multivari-
ate frequency polygon. He proposes an approximate Normal Reference Rule
for the multivariate frequency polygon given by the following formula.

FFFFIIIIGUGUGUGURE 8.4RE 8.4RE 8.4RE 8.4

Frequency polygon for the Old Faithful data.

30 40 50 60 70 80 90 100 110 120
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Waiting Time (minutes)

P
ro

ba
bi

lit
y

Old Faithful − Waiting Times Between Eruptions

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 273

NORMAL REFERENCE RULE - FREQUENCY POLYGON (MULTIVARIATE)

,

where a suitable estimate for can be used. This is derived using the
assumption that the true probability density function is multivariate normal
with covariance equal to the identity matrix. The following example illus-
trates the procedure for obtaining a bivariate frequency polygon in MATLAB.

Example 8.4
We first generate some random variables that are bivariate standard normal
and then calculate the surface heights corresponding to the linear interpola-
tion between the histogram density bin heights.

% First get the constants.
bin0 = [-4 -4];
n = 1000;
% Normal Reference Rule with sigma = 1.
h = 3*n^(-1/4)*ones(1,2);
% Generate bivariate standard normal variables.
x = randn(n,2);
% Find the number of bins.
nb1 = ceil((max(x(:,1))-bin0(1))/h(1));
nb2 = ceil((max(x(:,2))-bin0(2))/h(2));
% Find the mesh or bin edges.
t1 = bin0(1):h(1):(nb1*h(1)+bin0(1));
t2 = bin0(2):h(2):(nb2*h(2)+bin0(2));
[X,Y] = meshgrid(t1,t2);

Now that we have the random variables and the bin edges, the next step is to
find the number of observations that fall into each bin. This is easily done
with the MATLAB function inpolygon. This function can be used with any
polygon (e.g., triangle or hexagon), and it returns the indices to the points
that fall into that polygon.

% Find bin frequencies.
[nr,nc] = size(X);
vu = zeros(nr-1,nc-1);
for i = 1:(nr-1)
for j = 1:(nc-1)

xv = [X(i,j) X(i,j+1) X(i+1,j+1) X(i+1,j)];
yv = [Y(i,j) Y(i,j+1) Y(i+1,j+1) Y(i+1,j)];
in = inpolygon(x(:,1),x(:,2),xv,yv);
vu(i,j) = sum(in(:));

end
end

hi
* 2σ in

1 4 d+()⁄–=

σ i

© 2002 by Chapman & Hall/CRC

274 Computational Statistics Handbook with MATLAB

fhat = vu/(n*h(1)*h(2));

Now that we have the histogram density, we can use the MATLAB function
interp2 to linearly interpolate at points between the bin centers.

% Now get the bin centers for the frequency polygon.
% We add bins at the edges with zero height.
t1 = (bin0(1)-h(1)/2):h(1):(max(t1)+h(1)/2);
t2 = (bin0(2)-h(2)/2):h(2):(max(t2)+h(2)/2);
[bcx,bcy] = meshgrid(t1,t2);
[nr,nc] = size(fhat);
binh = zeros(nr+2,nc+2); % add zero bin heights
binh(2:(1+nr),2:(1+nc))=fhat;
% Get points where we want to interpolate to get
% the frequency polygon.
[xint,yint]=meshgrid(linspace(min(t1),max(t1),30),...
 linspace(min(t2),max(t2),30));
fp = interp2(bcx,bcy,binh,xint,yint,'linear');

We can verify that this is a valid density by estimating the area under the
curve.

df1 = xint(1,2)-xint(1,1);
df2 = yint(2,1)-yint(1,1);
area = sum(sum(fp))*df1*df2;

This yields an area of 0.9976. A surface plot of the frequency polygon is
shown in Figure 8.5.
�

AvAvAvAveeeerrrraaaaged Shifted Histogramged Shifted Histogramged Shifted Histogramged Shifted Histogramssss

When we create a histogram or a frequency polygon, we need to specify a
complete mesh determined by the bin width h and the starting point . The
reader should have noticed that the parameter did not appear in any of the
asymptotic integrated squared bias or integrated variance expressions for the
histograms or frequency polygons. The MISE is affected more by the choice
of bin width than the choice of starting point . The averaged shifted histo-
gram (ASH) was developed to account for different choices of , with the
added benefit that it provides a ‘smoother’ estimate of the probability density
function.

The idea is to create many histograms with different bin origins (but
with the same h) and average the histograms together. The histogram is a
piecewise constant function, and the average of piecewise constant functions
will also be the same type of function. Therefore, the ASH is also in the form
of a histogram, and the following discussion treats it as such. The ASH is
often implemented in conjunction with the frequency polygon, where the lat-
ter is used to linearly interpolate between the smaller bin widths of the ASH.

t0

t0

t0

t0

t0

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 275

To construct an ASH, we have a set of m histograms, with constant
bin width h. The origins are given by the sequence

.

In the univariate case, the unweighted or naive ASH is given by

, (8.21)

which is just the average of the histogram estimates at each point x. It should
be clear that the is a piecewise function over smaller bins, whose width
is given by . This is shown in Figure 8.6 where we have a single his-
togram and the ASH estimate.

In what follows, we consider the ASH as a histogram over the narrower
intervals given by , with . As before we denote
the bin counts for these bins by . An alternative expression for the naive
ASH can be written as

FFFFIIIIGUGUGUGURE 8.5.RE 8.5.RE 8.5.RE 8.5.

Frequency polygon of bivariate standard normal data.

−4
−2

0
2

−4
−2

0
2

0

0.05

0.1

f1
ˆ … f̂m, ,

t′0 t0 0 t0
h
m
---- t0

2h
m
------+ … t0

m 1–()h
m

---------------------+, , ,+,+=

f̂ASH x() 1
m
---- f̂ i x()

i 1=

m

∑=

f̂ASH

δ h m⁄=
f̂i

B′k [kδ k 1+()δ),= δ h m⁄=
νk

© 2002 by Chapman & Hall/CRC

276 Computational Statistics Handbook with MATLAB

. (8.22)

To make this a little clearer, let’s look at a simple example of the naive ASH,
with . In this case, our estimate at a point x is

We can think of the factor in Equation 8.22 as weights on the bin
counts. We can use arbitrary weights instead, to obtain the general ASH.

GENERAL AVERAGED SHIFTED HISTOGRAM

 . (8.23)

FFFFIIIIGUGUGUGURE 8.6RE 8.6RE 8.6RE 8.6

On the left is a histogram density based on 100 standard normal random variables, where
we used the MATLAB default of 10 bins. On the right is an ASH estimate for the same data
set, with m = 5.

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Histogram Density

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
ASH − m=5

f̂ASH x() 1
nh
------ 1 i

m
----–

 νk i+ ;

i 1 m–=

m 1–

∑= x in B′k

m 3=

f̂ASH x() 1
nh
------ 1 2

3
---–

 νk 2– 1 1
3
---–

 νk 1– 1 0
3
---–

 νk 0–

1 1
3
---–

 νk 1+ 1 2
3
---–

 νk 2+

+ + +

+ ;

=

x in B′k.

1 i m⁄–()

f̂ASH
1

nh
------ wm i()νk i+ ;

i m<
∑= x in B′k

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 277

A general formula for the weights is given by

 , (8.24)

with K a continuous function over the interval . This function K is
sometimes chosen to be a probability density function. In Example 8.5, we
use the biweight function:

(8.25)

for our weights. Here is the indicator function over the interval .
The algorithm for the general univariate ASH [Scott, 1992] is given here

and is also illustrated in MATLAB in Example 8.5. This algorithm requires at
least empty bins on either end.

UNIVARIATE ASH - ALGORITHM:

1. Generate a mesh over the range with bin widths
of size and . The quantity nbin is the number of
bins - see the comments below for more information on this num-
ber. Include at least m - 1 empty bins on either end of the range.

2. Compute the bin counts .
3. Compute the weight vector given in Equation 8.24.

4. Set all .
5. Loop over to nbin

Loop over to

Calculate: .

6. Divide all by nh, these are the ASH heights.
7. Calculate the bin centers using .

In practice, one usually chooses the m and h by setting the number of narrow
(size) bins between 50 and 500 over the range of the sample. This is then
extended to put some empty bins on either end of the range.

wm i() m K i m⁄()

K j m⁄()
j 1 m–=

m 1–

∑
----------------------------------;×= i 1 m– … m 1–, ,=

1– 1,[]

K t() 15
16
------ 1 t2–()2

I 1– 1,[] t()=

I 1– 1,[] 1– 1,[]

m 1–

t0 nbin δ t0+×,()
δ δ<<h, h mδ=

νk

wm i()
f̂k 0=

k 1=

i max 1 k m– 1+,{ }= min nbin k m 1–+,{ }

fi
ˆ fi

ˆ νkwm i k–()+=

f̂k

Bk t0 k 0.5–()δ+=

δ

© 2002 by Chapman & Hall/CRC

278 Computational Statistics Handbook with MATLAB

Example 8.5
In this example, we construct an ASH probability density estimate of the Buf-
falo snowfall data [Scott, 1992]. These data represent the annual snowfall
in inches in Buffalo, New York over the years 1910-1972. First load the data
and get the appropriate parameters.

load snowfall
n = length(snowfall);
m = 30;
h = 14.6;
delta = h/m;

The next step is to construct a mesh using the smaller bin widths of size
over the desired range. Here we start the density estimate at zero.

% Get the mesh.
t0 = 0;
tf = max(snowfall)+20;
nbin = ceil((tf-t0)/delta);
binedge = t0:delta:(t0+delta*nbin);

We need to obtain the bin counts for these smaller bins, and we use the histc
function since we want to use the bin edges rather than the bin centers.

% Get the bin counts for the smaller binwidth delta.
vk = histc(snowfall,binedge);
% Put into a vector with m-1 zero bins on either end.
fhat = [zeros(1,m-1),vk,zeros(1,m-1)];

Next, we construct our weight vector according to Equation 8.24, where we
use the biweight kernel given in Equation 8.25. Instead of writing the kernel
as a separate function, we will use the MATLAB inline function to create a
function object. We can then call that inline function just as we would an
M-file function.

% Get the weight vector.
% Create an inline function for the kernel.
kern = inline('(15/16)*(1-x.^2).^2');
ind = (1-m):(m-1);
% Get the denominator.
den = sum(kern(ind/m));
% Create the weight vector.
wm = m*(kern(ind/m))/den;

The following section of code essentially implements steps 5 - 7 of the ASH
algorithm.

% Get the bin heights over smaller bins.
fhatk = zeros(1,nbin);
for k = 1:nbin

δ

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 279

 ind = k:(2*m+k-2);
 fhatk(k) = sum(wm.*fhat(ind));
end
fhatk = fhatk/(n*h);
bc = t0+((1:k)-0.5)*delta;

We use the following steps to obtain Figure 8.7, where we use a different type
of MATLAB plot to show the ASH estimate. We use the bin edges with the
stairs plot, so we must append an extra bin height at the end to ensure that
the last bin is drawn and to make it dimensionally correct for plotting.

% To use the stairs plot, we need to use the
% bin edges.
stairs(binedge,[fhatk fhatk(end)])
axis square
title('ASH - Buffalo Snowfall Data')
xlabel('Snowfall (inches)')

�

The multivariate ASH is obtained by averaging shifted multivariate histo-
grams. Each histogram has the same bin dimension , and each is

FFFFIIIIGUGUGUGURE 8.7RE 8.7RE 8.7RE 8.7

ASH estimate for the Buffalo snowfall data. The parameters used to obtain this were h =
14.6 inches and m = 30. Notice that the ASH estimate reveals evidence of three modes.

0 50 100 150
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02
ASH − Buffalo Snowfall Data

Snowfall (inches)

h1 … hd××

© 2002 by Chapman & Hall/CRC

280 Computational Statistics Handbook with MATLAB

constructed using shifts along the coordinates given by multiples of
 Scott [1992] provides a detailed algorithm for the bivari-

ate ASH.

8.3 Kernel Density Estimation

Scott [1992] shows that as the number of histograms m approaches infinity,
the ASH becomes a kernel estimate of the probability density function. The
first published paper describing nonparametric probability density estima-
tion was by Rosenblatt [1956], where he described the general kernel estima-
tor. Many papers that expanded the theory followed soon after. A partial list
includes Parzen [1962], Cencov [1962] and Cacoullos [1966]. Several refer-
ences providing surveys and summaries of nonparametric density estima-
tion are provided in Section 8.7. The following treatment of kernel density
estimation follows that of Silverman [1986] and Scott [1992].

UUUUnnnniiiivvvvarararariiiiaaaatttteeee KKKKeeeerrrrnnnneeeellll EEEEssssttttiiiimatormatormatormatorssss

The kernel estimator is given by

, (8.26)

where the function is called a kernel. This must satisfy the condition that
 to ensure that our estimate in Equation 8.26 is a bona fide density

estimate. If we define , then we can also write the kernel
estimate as

. (8.27)

Usually, the kernel is a symmetric probability density function, and often a
standard normal density is used. However, this does not have to be the case,
and we will present other choices later in this chapter. From the definition of
a kernel density estimate, we see that our estimate inherits all of the
properties of the kernel function, such as continuity and differentiability..

From Equation 8.26, the estimated probability density function is obtained
by placing a weighted kernel function, centered at each data point and then
taking the average of them. See Figure 8.8 for an illustration of this procedure.

δi mi⁄ i, 1 … d., ,=

f̂Ker x() 1
nh
------ K

x Xi–
h

i 1=

n

∑=

K t()
K t() td∫ 1=

Kh t() K t h⁄() h⁄=

f̂Ker x() 1
n
--- Kh x Xi–()

i 1=

n

∑=

f̂Ker x()

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 281

Notice that the places where there are more curves or kernels yield ‘bumps’ in
the final estimate. An alternative implementation is discussed in the exer-
cises.

PROCEDURE - UNIVARIATE KERNEL

1. Choose a kernel, a smoothing parameter h, and the domain (the set
of x values) over which to evaluate .

2. For each , evaluate the following kernel at all x in the domain:

.

The result from this is a set of n curves, one for each data point .
3. Weight each curve by .

4. For each x, take the average of the weighted curves.

FFFFIIIIGUGUGUGURE 8.8.RE 8.8.RE 8.8.RE 8.8.

We obtain the above kernel density estimate for n = 10 random variables. A weighted kernel
is centered at each data point, and the curves are averaged together to obtain the estimate.
Note that there are two ‘bumps’ where there is a higher concentration of smaller densities.

−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

f̂ x()
Xi

Ki K
x Xi–

h

 ;= i 1 … n, ,=

Xi

1 h⁄

© 2002 by Chapman & Hall/CRC

282 Computational Statistics Handbook with MATLAB

Example 8.6
In this example, we show how to obtain the kernel density estimate for a data
set, using the standard normal density as our kernel. We use the procedure
outlined above. The resulting probability density estimate is shown in
Figure 8.8.

% Generate standard normal random variables.
n = 10;
data = randn(1,n);
% We will get the density estimate at these x values.
x = linspace(-4,4,50);
fhat = zeros(size(x));
h = 1.06*n^(-1/5);
hold on
for i=1:n
 % get each kernel function evaluated at x

% centered at data
 f = exp(-(1/(2*h^2))*(x-data(i)).^2)/sqrt(2*pi)/h;
 plot(x,f/(n*h));
 fhat = fhat+f/(n);
end
plot(x,fhat);
hold off

�

As in the histogram, the parameter h determines the amount of smoothing
we have in the estimate . In kernel density estimation, the h is usually
called the window width. A small value of h yields a rough curve, while a
large value of h yields a smoother curve. This is illustrated in Figure 8.9,
where we show kernel density estimates at various window widths.
Notice that when the window width is small, we get a lot of noise or spurious
structure in the estimate. When the window width is larger we get a
smoother estimate, but there is the possibility that we might obscure bumps
or other interesting structure in the estimate. In practice, it is recommended
that the analyst examine kernel density estimates for different window
widths to explore the data and to search for structures such as modes or
bumps.

As with the other univariate probability density estimators, we are inter-
ested in determining appropriate values for the parameter h. These can be
obtained by choosing values for h that minimize the asymptotic MISE. Scott
[1992] shows that, under certain conditions, the AMISE for a nonnegative
univariate kernel density estimator is

, (8.28)

f̂Ker x()

f̂Ker x()

AMISEKer h() R K()
nh

1
4
---σk

4h4R f ″()+=

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 283

where the kernel K is a continuous probability density function with
and The window width that minimizes this is given by

. (8.29)

Parzen [1962] and Scott [1992] describe the conditions under which this
holds. Notice in Equation 8.28 that we have the same bias-variance trade-off
with h that we had in previous density estimates.

For a kernel that is equal to the normal density , we
have the following Normal Reference Rule for the window width h.

NORMAL REFERENCE RULE - KERNELS

.

We can use some suitable estimate for , such as the standard deviation, or
. The latter yields a window width of

FFFFIIIIGUGUGUGURE 8.9RE 8.9RE 8.9RE 8.9

Four kernel density estimates using standard normal random variables. Four
different window widths are used. Note that as h gets smaller, the estimate gets rougher.

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8
h = 0.11

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8
h = 0.21

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8
h = 0.42

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8
h = 0.84

n 100=

µK 0=
0 σK

2 ∞.< <

hK er
*

R K()
nσk

4R f ″()

1 5⁄

=

R f ″() 3 8 πσ5()⁄=

hK er
* 4

3

1 5⁄

σn 1 5⁄–= 1.06σn 1 5⁄–≈

σ
σ̂ IQR 1.348⁄=

© 2002 by Chapman & Hall/CRC

284 Computational Statistics Handbook with MATLAB

.

Silverman [1986] recommends that one use whichever is smaller, the sample
standard deviation or as an estimate for .

We now turn our attention to the problem of what kernel to use in our esti-
mate. It is known [Scott, 1992] that the choice of smoothing parameter h is
more important than choosing the kernel. This arises from the fact that the
effects from the choice of kernel (e.g., kernel tail behavior) are reduced by the
averaging process. We discuss the efficiency of the kernels below, but what
really drives the choice of a kernel are computational considerations or the
amount of differentiability required in the estimate.

In terms of efficiency, the optimal kernel was shown to be [Epanechnikov,
1969]

It is illustrated in Figure 8.10 along with some other kernels.

FFFFIIIIGUGUGUGURE 8.10RE 8.10RE 8.10RE 8.10

These illustrate four kernels that can be used in probability density estimation.

ĥK er
*

0.786 IQR n 1 5⁄–××=

IQR 1.348⁄ σ

K t()
3
4
--- 1 t2–(); 1– t 1≤ ≤

0; otherwise.

=

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Triangle Kernel

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Epanechnikov Kernel

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Biweight Kernel

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Triweight Kernel

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 285

Several choices for kernels are given in Table 8.1. Silverman [1986] and
Scott [1992] show that these kernels have efficiencies close to that of the
Epanechnikov kernel, the least efficient being the normal kernel. Thus, it
seems that efficiency should not be the major consideration in deciding what
kernel to use. It is recommended that one choose the kernel based on other
considerations as stated above.

MultMultMultMultiiiivvvvarararariiiiaaaatttteeee KKKKeeeerrrrnnnneeeellll EEEEststststiiiimatormatormatormatorssss

Here we assume that we have a sample of size n, where each observation is a
d-dimensional vector, . The simplest case for the multivariate
kernel estimator is the product kernel. Descriptions of the general kernel den-
sity estimate can be found in Scott [1992] and in Silverman [1986]. The prod-
uct kernel is

 , (8.30)

where is the j-th component of the i-th observation. Note that this is the
product of the same univariate kernel, with a (possibly) different window

TTTTAAAABBBBLLLLE 8.1E 8.1E 8.1E 8.1

Examples of Kernels for Density Estimation

Kernel Name Equation

Triangle

Epanechnikov

Biweight

Triweight

Normal

K t() 1 t–()= 1 t 1≤ ≤–

K t() 3
4
--- 1 t2–()= 1 t 1≤ ≤–

K t() 15
16
------ 1 t2–()2

= 1 t 1≤ ≤–

K t() 35
32
------ 1 t2–()3

= 1 t 1≤ ≤–

K t() 1

2π
---------- t2–

2

exp= ∞ t ∞< <–

X i i, 1 … n, ,=

f̂Ker x() 1
nh1…hd

-------------------- K
xj Xij–

hj

j 1=

d

∏

i 1=

n

∑=

Xij

© 2002 by Chapman & Hall/CRC

286 Computational Statistics Handbook with MATLAB

width in each dimension. Since the product kernel estimate is comprised of
univariate kernels, we can use any of the kernels that were discussed previ-
ously.

Scott [1992] gives expressions for the asymptotic integrated squared bias
and asymptotic integrated variance for the multivariate product kernel. If the
normal kernel is used, then minimizing these yields a normal reference rule
for the multivariate case, which is given below.

NORMAL REFERENCE RULE - KERNEL (MULTIVARIATE)

,

where a suitable estimate for can be used. If there is any skewness or kur-
tosis evident in the data, then the window widths should be narrower, as dis-
cussed previously. The skewness factor for the frequency polygon
(Equation 8.20) can be used here.

Example 8.7
In this example, we construct the product kernel estimator for the iris data.
To make it easier to visualize, we use only the first two variables (sepal length
and sepal width) for each species. So, we first create a data matrix comprised
of the first two columns for each species.

load iris
% Create bivariate data matrix with all three species.
data = [setosa(:,1:2)];
data(51:100,:) = versicolor(:,1:2);
data(101:150,:) = virginica(:,1:2);

Next we obtain the smoothing parameter using the Normal Reference Rule.

% Get the window width using the Normal Ref Rule.
[n,p] = size(data);
s = sqrt(var(data));
hx = s(1)*n^(-1/6);
hy = s(2)*n^(-1/6);

The next step is to create a grid over which we will construct the estimate.

% Get the ranges for x and y & construct grid.
num_pts = 30;
minx = min(data(:,1));
maxx = max(data(:,1));
miny = min(data(:,2));
maxy = max(data(:,2));

hjK er

*
4

n d 2+()

1
d 4+

σ j;= j 1 … d, ,=

σ j

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 287

gridx = ((maxx+2*hx)-(minx-2*hx))/num_pts
gridy = ((maxy+2*hy)-(miny-2*hy))/num_pts
[X,Y]=meshgrid((minx-2*hx):gridx:(maxx+2*hx),...

(miny-2*hy):gridy:(maxy+2*hy));
x = X(:); %put into col vectors
y = Y(:);

We are now ready to get the estimates. Note that in this example, we are
changing the form of the loop. Instead of evaluating each weighted curve and
then averaging, we will be looping over each point in the domain.

z = zeros(size(x));
for i=1:length(x)

xloc = x(i)*ones(n,1);
yloc = y(i)*ones(n,1);
argx = ((xloc-data(:,1))/hx).^2;
argy = ((yloc-data(:,2))/hy).^2;
z(i) = (sum(exp(-.5*(argx+argy))))/(n*hx*hy*2*pi);

end
[mm,nn] = size(X);
Z = reshape(z,mm,nn);

We show the surface plot for this estimate in Figure 8.11. As before, we can
verify that our estimate is a bona fide by estimating the area under the curve.
In this example, we get an area of 0.9994.

area = sum(sum(Z))*gridx*gridy;

�

Before leaving this section, we present a summary of univariate probability
density estimators and their corresponding Normal Reference Rule for the
smoothing parameter h. These are given in Table 8.2.

8.4 Finite Mixtures

So far, we have been discussing nonparametric density estimation methods
that require a choice of smoothing parameter h. In the previous section, we
showed that we can get different estimates of our probability density
depending on our choice for h. It would be helpful if we could avoid choosing
a smoothing parameter. In this section, we present a method called finite mix-
tures that does not require a smoothing parameter. However, as is often the
case, when we eliminate one parameter we end up replacing it with another.
In finite mixtures, we do not have to worry about the smoothing parameter.
Instead, we have to determine the number of terms in the mixture.

© 2002 by Chapman & Hall/CRC

288 Computational Statistics Handbook with MATLAB

FFFFIIIIGUGUGUGURE 8.RE 8.RE 8.RE 8.11111111

This is the product kernel density estimate for the sepal length and sepal width of the iris
data. These data contain all three species. The presence of peaks in the data indicate that
two of the species might be distinguishable based on these two variables.

TATATATABBBBLLLLE 8E 8E 8E 8....2222

Summary of Univariate Probability Density Estimators and the Normal
Reference Rule for the Smoothing Parameter

Method Estimator Normal Reference Rule

Histogram

Frequency
Polygon

Kernel

4
5

6
7

8

2

3

4

0.1

0.2

0.3

0.4

Sepal Length

Kernel Estimate for Iris Data

Sepal Width

f̂H ist x() vk

nh
------=

x in Bk

hHist
* 3.5σn 1 3⁄–=

f̂FP x() 1
2
--- x

h
---–

 f̂k
1
2
--- x

h
---+

 f̂k 1++=

BK x Bk 1+≤ ≤

hFP
* 2.15σn 1 5⁄–=

f̂Ker x() 1
nh
------ K

x Xi–
h

i 1=

n

∑=
hKer

* 1.06σn 1 5⁄– ;=

K is the normal kernel.

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 289

Finite mixtures offer advantages in the area of the computational load put
on the system. Two issues to consider with many probability density estima-
tion methods are the computational burden in terms of the amount of infor-
mation we have to store and the computational effort needed to obtain the
probability density estimate at a point. We can illustrate these ideas using the
kernel density estimation method. To evaluate the estimate at a point x (in the
univariate case) we have to retain all of the data points, because the estimate
is a weighted sum of n kernels centered at each sample point. In addition, we
must calculate the value of the kernel n times. The situation for histograms
and frequency polygons is a little better. The amount of information we must
store to provide an estimate of the probability density is essentially driven by
the number of bins. Of course, the situation becomes worse when we move
to multivariate kernel estimates, histograms, and frequency polygons. With
the massive, high-dimensional data sets we often work with, the computa-
tional effort and the amount of information that must be stored to use the
density estimates is an important consideration. Finite mixtures is a tech-
nique for estimating probability density functions that can require relatively
little computer storage space or computations to evaluate the density esti-
mates.

UUUUnnnniiiivvvvarararariiiiaaaatttteeee FiniFiniFiniFinitttteeee MixtuMixtuMixtuMixturrrreeeessss

The finite mixture method assumes the density can be modeled as the
sum of c weighted densities, with . The most general case for the
univariate finite mixture is

, (8.31)

where represents the weight or mixing coefficient for the i-th term, and
 denotes a probability density, with parameters represented by the

vector To make sure that this is a bona fide density, we must impose the
condition that and To evaluate , we take our
point x, find the value of the component densities at that point, and
take the weighted sum of these values.

Example 8.8
The following example shows how to evaluate a finite mixture model at a
given x. We construct the curve for a three term finite mixture model, where
the component densities are taken to be normal. The model is given by

,

f x()
c << n

f x() pig x θ i;()
i 1=

c

∑=

pi

g x θi;()
θi.

p1 … pc+ + 1= pi 0.> f x()
g x θi;()

f x() 0.3 φ x 3 1,–;() 0.3 φ x 0 1,;()× 0.4 φ x 2 0.5,;()×+ +×=

© 2002 by Chapman & Hall/CRC

290 Computational Statistics Handbook with MATLAB

where represents the normal probability density function at x. We
see from the model that we have three terms or component densities, cen-
tered at -3, 0, and 2. The mixing coefficient or weight for the first two terms
are 0.3 leaving a weight of 0.4 for the last term. The following MATLAB code
produces the curve for this model and is shown in Figure 8.12.

% Create a domain x for the mixture.
x = linspace(-6,5);
% Create the model - normal components used.
mix = [0.3 0.3 0.4]; % mixing coefficients
mus = [-3 0 2]; % term means
vars = [1 1 0.5];
nterm = 3;
% Use Statistics Toolbox function to evaluate
% normal pdf.
fhat = zeros(size(x));
for i = 1:nterm
 fhat = fhat+mix(i)*normpdf(x,mus(i),vars(i));
end
plot(x,fhat)
title('3 Term Finite Mixture')

�

Hopefully, the reader can see the connection between finite mixtures and
kernel density estimation. Recall that in the case of univariate kernel density
estimators, we obtain these by evaluating a weighted kernel centered at each
sample point, and adding these n terms. So, a kernel estimate can be consid-
ered a special case of a finite mixture where .

The component densities of the finite mixture can be any probability den-
sity function, continuous or discrete. In this book, we confine our attention to
the continuous case and use the normal density for the component function.
Therefore, the estimate of a finite mixture would be written as

, (8.32)

where denotes the normal probability density function with mean
 and variance . In this case, we have to estimate c-1 independent mixing

coefficients, as well as the c means and c variances using the data. Note that
to evaluate the density estimate at a point x, we only need to retain these

 parameters. Since , this can be a significant computational sav-
ings over evaluating density estimates using the kernel method. With finite
mixtures much of the computational burden is shifted to the estimation part
of the problem.

φ x µ σ2,;()

c n=

f̂FM x() p̂iφ x µ̂i σ̂ i
2,;()

i 1=

c

∑=

φ x µ̂i σ̂ i
2

,;()
µ̂ i σ̂i

2

3c 1– c << n

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 291

VVVVisuisuisuisuaaaalllliiiizzzziiiinnnng Finig Finig Finig Finitttteeee MixtuMixtuMixtuMixturrrreeeessss

The methodology used to estimate the parameters for finite mixture models
will be presented later on in this section (page 296). We first show a method
for visualizing the underlying structure of finite mixtures with normal com-
ponent densities [Priebe, et al. 1994], because it is used to help visualize and
explain another approach to density estimation (adaptive mixtures). Here,
structure refers to the number of terms in the mixture, along with the compo-
nent means and variances. In essence, we are trying to visualize the high-
dimensional parameter space (recall there are 3c-1 parameters for the univari-
ate mixture of normals) in a 2-D representation. This is called a dF plot, where
each component is represented by a circle. The circles are centered at the
mean and the mixing coefficient . The size of the radius of the circle indi-
cates the standard deviation. An example of a dF plot is given in Figure 8.13
and is discussed in the following example.

Example 8.9
We construct a dF plot for the finite mixture model discussed in the previous
example. Recall that the model is given by

FFFFIIIIGUGUGUGURE 8.12RE 8.12RE 8.12RE 8.12

This shows the probability density function corresponding to the three-term finite mixture
model from Example 8.8.

−6 −4 −2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
3 Term Finite Mixture

x

µi pi

© 2002 by Chapman & Hall/CRC

292 Computational Statistics Handbook with MATLAB

.

Our first step is to set up the model consisting of the number of terms, the
component parameters and the mixing coefficients.

% Recall the model - normal components used.
mix = [0.3 0.3 0.4]; % mixing coefficients
mus = [-3 0 2]; % term means
vars = [1 1 0.5];
nterm = 3;

Next we set up the figure for plotting. Note that we re-scale the mixing coef-
ficients for easier plotting on the vertical axis and then map the labels to the
corresponding value.

t = 0:.05:2*pi+eps; % values to create circle
% To get some scales right.
minx = -5;
maxx = 5;
scale = maxx-minx;
lim = [minx maxx minx maxx];
% Set up the axis limits.

FFFFIIIIGUGUGUGURE 8.13RE 8.13RE 8.13RE 8.13

This shows the dF plot for the three term finite mixture model of Figure 8.12.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Means

M
ix

in
g

C
oe

ffi
ci

en
ts

dF Plot for Univariate Finite Mixture

f x() 0.3 φ x 3 1,–;() 0.3 φ x 0 1,;()× 0.4 φ x 2 0.5,;()×+ +×=

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 293

figure
axis equal
axis(lim)
grid on
% Create and plot a circle for each term.
hold on
for i=1:nterm
 % rescale for plotting purposes
 ycord = scale*mix(i)+minx;
 xc = mus(i)+sqrt(vars(i))*cos(t);
 yc = ycord+sqrt(vars(i))*sin(t);
 plot(xc,yc,mus(i),ycord,'*')
end
hold off
% Relabel the axis to show the right coefficient.
tick = (maxx-minx)/10;
set(gca,'Ytick',minx:tick:maxx)
set(gca,'XTick',minx:tick:maxx)
set(gca,'YTickLabel',...

'0|0.1|0.2|0.3|0.4|0.5|0.6|0.7|0.8|0.9|1')
xlabel('Means'),ylabel('Mixing Coefficients')
title('dF Plot for Univariate Finite Mixture')

The first circle on the left corresponds to the component with and
 Similarly, the middle circle of Figure 8.13 represents the second

term of the model. Note that this representation of the mixture makes it easier
to see which terms carry more weight and where they are located in the
domain.
�

MultMultMultMultiiiivvvvarararariiiiaaaatttteeee FiniFiniFiniFinitttteeee MixtuMixtuMixtuMixturrrreeeessss

Finite mixtures is easily extended to the multivariate case. Here we define the
multivariate finite mixture model as the weighted sum of multivariate com-
ponent densities,

.

As before, the mixing coefficients or weights must be nonnegative and sum
to one, and the component density parameters are represented by . When
we are estimating the function, we often use the multivariate normal as the
component density. This gives the following equation for an estimate of a
multivariate finite mixture

pi 0.3=
µ i 3.–=

f x() pig x; θi()
i 1=

c

∑=

θi

© 2002 by Chapman & Hall/CRC

294 Computational Statistics Handbook with MATLAB

, (8.33)

where x is a d-dimensional vector, is a d-dimensional vector of means, and
 is a covariance matrix. There are still c-1 mixing coefficients to esti-

mate. However, there are now values that have to be estimated for the
means and values for the component covariance matrices.

The dF representation has been extended [Solka, Poston, Wegman, 1995] to
show the structure of a multivariate finite mixture, when the data are 2-D or
3-D. In the 2-D case, we represent each term by an ellipse centered at the
mean of the component density , with the eccentricity of the ellipse show-
ing the covariance structure of the term. For example, a term with a covari-
ance that is close to the identity matrix will be shown as a circle. We label the
center of each ellipse with text identifying the mixing coefficient. An example
is illustrated in Figure 8.14.

A dF plot for a trivariate finite mixture can be fashioned by using color to
represent the values of the mixing coefficients. In this case, we use the three
dimensions in our plot to represent the means for each term. Instead of
ellipses, we move to ellipsoids, with eccentricity determined by the covari-
ance as before. See Figure 8.15 for an example of a trivariate dF plot. The dF
plots are particularly useful when working with the adaptive mixtures den-
sity estimation method that will be discussed shortly. We provide a function
called csdfplot that will implement the dF plots for univariate, bivariate
and trivariate data.

Example 8.10
In this example, we show how to implement the function called csdfplot
and illustrate its use with bivariate and trivariate models. The bivariate case
is the following three component model:

,

,

.

% First create the model.
% The function expects a vector of weights;
% a matrix of means, where each column of the matrix

f̂FM x() p̂iφ x;µ̂i Σ̂ i,()
i 1=

c

∑=

µ̂i

Σ̂i d d×
c d×

cd c 1+()() 2⁄

µ̂ i

p1 0.5= p2 0.3= p3 0.2=

µ1
1–

1–
= µ2

1

1
= µ3

5

6
=

Σ1
1 0

0 1
= Σ2

0.5 0

0 0.5
= Σ3

1 0.5

0.5 1
=

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 295

% corresponds to a d-D mean; a 3-D array of
% covariances, where each page of the array is a
% covariance matrix.
pies = [0.5 0.3 0.2]; % mixing coefficients
mus = [-1 1 5; -1 1 6];
% Delete any previous variances in the workspace.
clear vars
vars(:,:,1) = eye(2);
vars(:,:,2) = eye(2)*.5
vars(:,:,3) = [1 0.5; 0.5 1];
figure
csdfplot(mus,vars,pies)

The resulting plot is shown in Figure 8.14. Note that the covariance of two of
the component densities are represented by circles, with one larger than the
other. These correspond to the first two terms of the model. The third compo-
nent density has an elliptical covariance structure indicating non-zero off-
diagonal elements in the covariance matrix. We now do the same thing for the
trivariate case, where the model is

,

.

The mixing coefficients are the same as before. We need only to adjust the
means and the covariance accordingly.

mus(3,:) = [-1 1 2];
% Delete previous vars array or you will get an error.
clear vars
vars(:,:,1) = eye(3);
vars(:,:,2) = eye(3)*.5;
vars(:,:,3)=[1 0.7 0.2;
 0.7 1 0.5;
 0.2 0.5 1];
figure
csdfplot(mus,vars,pies)
% get a different viewpoint
view([-34,9])

µ1

1–

1–

1–

= µ2

1

1

1

= µ3

5

6

2

=

Σ1

1 0 0

0 1 0

0 0 1

= Σ2

0.5 0 0

0 0.5 0

0 0 0.5

= Σ3

1 0.7 0.2

0.7 1 0.5

0.2 0.5 1

=

© 2002 by Chapman & Hall/CRC

296 Computational Statistics Handbook with MATLAB

The trivariate dF plot for this model is shown in Figure 8.15. Two terms (the
first two) are shown as spheres and one as an ellipsoid.
�

EEEEM AM AM AM Allllggggoooorrrrithm forithm forithm forithm for EEEEstistististimmmmaaaattttinininingggg ththththeeee PPPPaaaarrrraaaammmmeeeetttteeeerrrrssss

The problem of estimating the parameters in a finite mixture has been stud-
ied extensively in the literature. The book by Everitt and Hand [1981] pro-
vides an excellent overview of this topic and offers several methods for
parameter estimation. The technique we present here is called the Expecta-
tion-Maximization (EM) method. This is a general method for optimizing
likelihood functions and is useful in situations where data might be missing
or simpler optimization methods fail. The seminal paper on this topic is by
Dempster, Laird and Rubin [1977], where they formalize the EM algorithm
and establish its properties. Redner and Walker [1984] apply it to mixture
densities. The EM methodology is now a standard tool for statisticians and is
used in many applications.

In this section, we discuss the EM algorithm as it can be applied to estimat-
ing the parameters of a finite mixture of normal densities. To use the EM algo-

FFFFIIIIGUGUGUGURE 8.14RE 8.14RE 8.14RE 8.14

Bivariate dF plot for the three term mixture model of Example 8.10.

−3 −2 −1 0 1 2 3 4 5 6 7

−1

0

1

2

3

4

5

6

0.5

0.3

0.2

µ
x

µ y

dF Plot

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 297

rithm, we must have a value for the number of terms c in the mixture. This is
usually obtained using prior knowledge of the application (the analyst
expects a certain number of groups), using graphical exploratory data analy-
sis (looking for clusters or other group structure) or using some other method
of estimating the number of terms. The approach called adaptive mixtures
[Priebe, 1994] offers a way to address the problem of determining the number
of component densities to use in the finite mixture model. This approach is
discussed later.

Besides the number of terms, we must also have an initial guess for the
value of the component parameters. Once we have an initial estimate, we
update the parameter estimates using the data and the equations given
below. These are called the iterative EM update equations, and we provide
the multivariate case as the most general one. The univariate case follows eas-
ily.

The first step is to determine the posterior probabilities given by

. (8.34)

FFFFIIIIGUGUGUGURE 8.15RE 8.15RE 8.15RE 8.15

Trivariate dF plot for the three term mixture model of Example 8.10.

.5 1M
ix

 C
oe

fs

−2 0 2 4
−2

0
2

4
6

−2

−1

0

1

2

Mu
x

Mu
y

M
u z

τ̂ij
pi
ˆ φ xj µ̂ i Σˆ i,;()

f̂ xj()
-------------------------------;= i 1 … c ; j, , 1 … n, ,= =

© 2002 by Chapman & Hall/CRC

298 Computational Statistics Handbook with MATLAB

where represents the estimated posterior probability that point belongs
to the i-th term, is the multivariate normal density for the i-th
term evaluated at , and

(8.35)

is the finite mixture estimate at point .

The posterior probability tells us the likelihood that a point belongs to each
of the separate component densities. We can use this estimated posterior
probability to obtain a weighted update of the parameters for each compo-
nent. This yields the iterative EM update equations for the mixing coeffi-
cients, the means and the covariance matrices. These are

(8.36)

(8.37)

. (8.38)

Note that if then the update equation for the variance is

. (8.39)

The steps for the EM algorithm to estimate the parameters for a finite mixture
with multivariate normal components are given here and are illustrated in
Example 8.11.

FINITE MIXTURES - EM PROCEDURE

1. Determine the number of terms or component densities c in the
mixture.

τ̂ij xj

φ xj µ̂i Σ̂i,;()
xj

f̂ xj() pk
ˆ φ xj µ̂k Σ̂k,;()

k 1=

c

∑=

xj

p̂i
1
n
--- τ̂ij

j 1=

n

∑=

µ̂ i
1
n
--- τ̂ijxj

p̂i

j 1=

n

∑=

Σ
ˆ

i
1
n
--- τ̂i j x j µ̂ i–() x j µ̂i–()T

p̂i

--

j 1=

n

∑=

d 1,=

σ̂ i
2 1

n
--- τ̂ij xj µ̂ i–()

2

p̂i

j 1=

n

∑=

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 299

2. Determine an initial guess at the component parameters. These are
the mixing coefficients, means and covariance matrices for each
normal density.

3. For each data point , calculate the posterior probability using
Equation 8.34.

4. Update the mixing coefficients, the means and the covariance ma-
trices for the individual components using Equations 8.36 through
8.38.

5. Repeat steps 3 through 4 until the estimates converge.

Typically, step 5 is implemented by continuing the iteration until the changes
in the estimates at each iteration are less than some pre-set tolerance. Note
that with the iterative EM algorithm, we need to use the entire data set to
simultaneously update the parameter estimates. This imposes a high compu-
tational load when dealing with massive data sets.

Example 8.11
In this example, we provide the MATLAB code that implements the multi-
variate EM algorithm for estimating the parameters of a finite mixture prob-
ability density model. To illustrate this, we will generate a data set that is a
mixture of two terms with equal mixing coefficients. One term is centered at
the point and the other is centered at . The covariance of each
component density is given by the identity matrix. Our first step is to gener-
ate 200 data points from this distribution.

% Create some artificial two-term mixture data.
n = 200;
data = zeros(n,2);
% Now generate 200 random variables. First find
% the number that come from each component.
r = rand(1,n);
% Find the number generated from component 1.
ind = length(find(r <= 0.5));
% Create some mixture data. Note that the
% component densities are multivariate normals.
% Generate the first term.
data(1:ind,1) = randn(ind,1) - 2;
data(1:ind,2) = randn(ind,1) + 2;
% Generate the second term.
data(ind+1:n,1) = randn(n-ind,1) + 2;
data(ind+1:n,2) = randn(n-ind,1);

We must then specify various parameters for the EM algorithm, such as the
number of terms.

c = 2; % number of terms

x j

2– 2,() 2 0,()

© 2002 by Chapman & Hall/CRC

300 Computational Statistics Handbook with MATLAB

[n,d] = size(data); % n=# pts, d=# dims
tol = 0.00001; % set up criterion for stopping EM
max_it = 100;
totprob = zeros(n,1);

We also need an initial guess at the component density parameters.

% Get the initial parameters for the model to start EM
mu(:,1) = [-1 -1]'; % each column represents a mean
mu(:,2) = [1 1]';
mix_cof = [0.3 0.7];
var_mat(:,:,1) = eye(d);
var_mat(:,:,2) = eye(d);
varup = zeros(size(var_mat));
muup = zeros(size(mu));
% Just to get started.
num_it = 1;
deltol = tol+1;% to get started

The following steps implement the EM update formulas found in
Equations 8.34 through 8.38.

while num_it <= max_it & deltol > tol
 % get the posterior probabilities
 totprob = zeros(n,1);

for i=1:c
posterior(:,i) = mix_cof(i)*...

 csevalnorm(data,mu(:,i)',var_mat(:,:,i));
 totprob = totprob+posterior(:,i);
 end
 den = totprob*ones(1,c);
 posterior = posterior./den;
 % Update the mixing coefficients.
 mix_cofup = sum(posterior)/n;
 % Update the means.
 mut = data'*posterior;
 MIX = ones(d,1)*mix_cof;
 muup = mut./(MIX*n);
 % Update the means and the variances.
 for i=1:c
 cen_data = data-ones(n,1)*mu(:,i)';
 mat = cen_data'*...
 diag(posterior(:,i))*cen_data;
 varup(:,:,i)=mat./(mix_cof(i)*n);
 end
 % Get the tolerances.

delvar = max(max(max(abs(varup-var_mat))));
delmu = max(max(abs(muup-mu)));

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 301

delpi = max(abs(mix_cof-mix_cofup));
deltol = max([delvar,delmu,delpi]);
% Reset parameters.
num_it = num_it+1;
mix_cof = mix_cofup;
mu = muup;

 var_mat = varup;
end % while loop

For our data set, it took 37 iterations to converge to an answer. The conver-
gence of the EM algorithm to a solution and the number of iterations depends
on the tolerance, the initial parameters, the data set, etc. The estimated model
returned by the EM algorithm is

,

.

For brevity, we omit the estimated covariances, but we can see from these
results that the model does match the data that we generated.
�

AdaptivAdaptivAdaptivAdaptiveeee MixtuMixtuMixtuMixturrrreeeessss

The adaptive mixtures [Priebe, 1994] method for density estimation uses a
data-driven approach for estimating the number of component densities in a
mixture model. This technique uses the recursive EM update equations that
are provided below. The basic idea behind adaptive mixtures is to take one
point at a time and determine the distance from the observation to each com-
ponent density in the model. If the distance to each component is larger than
some threshold, then a new term is created. If the distance is less than the
threshold for all terms, then the parameter estimates are updated based on
the recursive EM equations.

We start our explanation of the adaptive mixtures approach with a descrip-
tion of the recursive EM algorithm for mixtures of multivariate normal den-
sities. This method recursively updates the parameter estimates based on a
new observation. As before, the first step is to determine the posterior prob-
ability that the new observation belongs to each term:

, (8.40)

p̂1 0.498= p̂2 0.502=

µ̂1
2.08–

2.03
= µ̂2

1.83

0.03–
=

τ̂i
n 1+() p̂i

n()φ x n 1+() µ̂i
n() Σ

ˆ
i

n()
,;()

f̂
n()

x n 1+()()
---;= i 1 … c, ,=

© 2002 by Chapman & Hall/CRC

302 Computational Statistics Handbook with MATLAB

where represents the estimated posterior probability that the new
observation belongs to the i-th term, and the superscript denotes
the estimated parameter values based on the previous n observations. The
denominator is the finite mixture density estimate

for the new observation using the mixture from the previous n points.
The remainder of the recursive EM update equations are given by Equa-

tions 8.41 through 8.43. Note that recursive equations are typically in the
form of the old value for an estimate plus an update term using the new
observation. The recursive update equations for mixtures of multivariate
normals are:

(8.41)

(8.42)

 . (8.43)

This reduces to the 1-D case in a straightforward manner, as was the case with
the iterative EM update equations.

The adaptive mixtures approach updates our probability density estimate
 and also provides the opportunity to expand the parameter space (i.e.,

the model) if the data indicate that should be done. To accomplish this, we
need a way to determine when a new component density should be added.
This could be done in several ways, but the one we present here is based on
the Mahalanobis distance. If this distance is too large for all of the terms (or
alternatively if the minimum distance is larger than some threshold), then we
can consider the new point too far away from the existing terms to update the
current model. Therefore, we create a new term.

The squared Mahalanobis distance between the new observation
and the i-th term is given by

 . (8.44)

We create a new term if

τ̂i
n 1+()

x n 1+() n()

f̂
n()

x n 1+()() p̂iφ x n 1+(); µ̂i
n() Σ̂ i

n(),()
i 1=

c

∑=

p̂i
n 1+() p̂i

n() 1
n
--- τ̂i

n 1+()
p̂i

n()–()+=

µ̂ i
n 1+() µ̂i

n() τ̂i
n 1+()

np̂i
n()

------------- x n 1+() µ̂i
n()

–()+=

Σ
ˆ

i

n 1+()
Σ
ˆ

i

n() τ̂i
n 1+()

np̂i
n()

------------- x n 1+() µ̂ i
n()

–() x n 1+() µ̂i
n()

–()
T

Σ̂ i
n()

–+=

f̂ x()

x n 1+()

MDi
2 x n 1+()() x n 1+() µ̂i

n()
–()

T
Σ̂i

n()

1–

x n 1+() µ̂i
n()

–()=

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 303

, (8.45)

where is a threshold to create a new term. The rule in Equation 8.45 states
that if the smallest squared Mahalanobis distance is greater than the thresh-
old, then we create a new term. In the univariate case, if is used, then
a new term is created if a new observation is more than one standard devia-
tion away from the mean of each term. For , a new term would be cre-
ated for an observation that is at least two standard deviations away from the
existing terms. For multivariate data, we would like to keep the same term
creation rate as in the 1-D case. Solka [1995] provides thresholds based on
the squared Mahalanobis distance for the univariate, bivariate, and trivariate
cases. These are shown in Table 8.3.

When we create a new term, we initialize the parameters using
Equations 8.46 through 8.48. We denote the current number of terms in the
model by N.

, (8.46)

, (8.47)

, (8.48)

where is a weighted average using the posterior probabilities. In prac-
tice, some other estimate or initial covariance can be used for the new term.
To ensure that the mixing coefficients sum to one when a new term is added,
the must be rescaled using

.

TTTTAAAABBBBLLLLEEEE 8888.3.3.3.3

Recommended Thresholds for Adaptive Mixtures

Dimensionality Create Threshold

1 1

2 2.34

3 3.54

min i MDi
2 x n 1+()(){ } tC>

tC

tC 1=

tC 4=

tC

µ̂N 1+
n 1+()

x n 1+()=

p̂N 1+
n 1+() 1

n 1+
------------=

Σ̂N 1+
n 1+() ℑ Σ̂i()=

ℑ Σ̂i()

p̂i
n 1+()

p̂i
n 1+() np̂i

n()

n 1+
------------ ;= i 1 … N, ,=

© 2002 by Chapman & Hall/CRC

304 Computational Statistics Handbook with MATLAB

We continue through the data set, one point at a time, adding new terms as
necessary. Our density estimate is then given by

. (8.49)

This allows for a variable number of terms N, where usually . The
adaptive mixtures technique is captured in the procedure given here, and a
function called csadpmix is provided with the Computational Statistics
Toolbox. Its use in the univariate case is illustrated in Example 8.12.

ADAPTIVE MIXTURES PROCEDURE:

1. Initialize the adaptive mixtures procedure using the first data point
:

, , and ,

where I denotes the identity matrix. In the univariate case, the
variance of the initial term is one.

2. For a new data point , calculate the squared Mahalanobis
distance as in Equation 8.44.

3. If the minimum squared distance is greater than , then create a
new term using Equations 8.46 through 8.48. Increase the number
of terms N by one.

4. If the minimum squared distance is less than the create threshold
, then update the existing terms using Equations 8.41

through 8.43.
5. Continue steps 2 through 4 using all data points.

In practice, the adaptive mixtures method is used to get initial values for
the parameters, as well as an estimate of the number of terms needed to
model the density. One would then use these as a starting point and apply the
iterative EM algorithm to refine the estimates.

Example 8.12
In this example, we illustrate the MATLAB code that implements the univari-
ate adaptive mixtures density estimation procedure. The source code for
these functions are given in Appendix D. We generate random variables
using the same three term mixture model that was discussed in Example
8.9.Recall that the model is given by

f̂AM x() p̂iφ x;µ̂ i Σ
ˆ

i,()
i 1=

N

∑=

N << n

x 1()

µ̂1
1() x 1()= p̂1

1() 1= Σ̂1
1()

I=

x n 1+()

tC

tC

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 305

.

% Get the true model to generate data.
pi_tru = [0.3 0.3 0.4];
n = 100;
x = zeros(n,1);
% Now generate 100 random variables. First find
% the number that fall in each one.
r = rand(1,100);
% Find the number generated from each component.
ind1 = length(find(r <= 0.3));
ind2 = length(find(r > 0.3 & r <= 0.6));
ind3 = length(find(r > 0.6));
% create some artificial 3 term mixture data
x(1:ind1) = randn(ind1,1) - 3;
x(ind1+1:ind2+ind1)=randn(ind2,1);
x(ind1+ind2+1:n) = randn(ind3,1)*sqrt(0.5)+2;

We now call the adaptive mixtures function csadpmix to estimate the
model.

% Now call the adaptive mixtures function.
maxterms = 25;
[pihat,muhat,varhat] = csadpmix(x,maxterms);

The following MATLAB commands provide the plots shown in Figure 8.16.

% Get the plots.
csdfplot(muhat,varhat,pihat,min(x),max(x));
axis equal
nterms = length(pihat);
figure
csplotuni(pihat,muhat,varhat,...
 nterms,min(x)-5,max(x)+5,100)

We reorder the observations and repeat the process to get the plots in
Figure 8.17.

% Now re-order the points and repeat
% the adaptive mixtures process.
ind = randperm(n);
x = x(ind);
[pihat,muhat,varhat] = csadpmix(x,maxterms);

�

Our example above demonstrates some interesting things to consider with
adaptive mixtures. First, the model complexity or the number of terms is
sometimes greater than is needed. For example, in Figure 8.16, we show a dF

f x() 0.3 φ x 3 1,–;() 0.3 φ x 0 1,;()× 0.4 φ x 2 0.5,;()×+ +×=

© 2002 by Chapman & Hall/CRC

306 Computational Statistics Handbook with MATLAB

plot for the three term mixture model in Example 8.12. Note that the adaptive
mixture approach yields more than three terms. This is a problem with mix-
ture models in general. Different models (i.e., number of terms and estimated
component parameters) can produce essentially the same function estimate
or curve for . This is illustrated in Figures 8.16 and 8.17, where we see
that similar curves are obtained from two different models for the same data
set. These results are straight from the adaptive mixtures density estimation
approach. In other words, we did not use this estimate as an initial starting
point for the EM approach. If we had applied the iterative EM to these esti-
mated models, then the curves should be the same.

The other issue that must be considered when using the adaptive mixtures
approach is that the resulting model or estimated probability density func-
tion depends on the order in which the data are presented to the algorithm.
This is also illustrated in Figures 8.16 and 8.17, where the second estimated
model is obtained after re-ordering the data. These issues were addressed by
Solka [1995].

8.5 Generating Random Variables

In the introduction, we discussed several uses of probability density esti-
mates, and it is our hope that the reader will discover many more. One of the
applications of density estimation is in the area of modeling and simulation.
Recall that a key aspect of modeling and simulation is the collection of data
generated according to some underlying random process and the desire to
generate more random variables from the same process for simulation pur-
poses. One option is to use one of the density estimation techniques dis-
cussed in this chapter and randomly sample from that distribution. In this
section, we provide the methodology for generating random variables from
finite or adaptive mixtures density estimates.

We have already seen an example of this procedure in Example 8.11 and
Example 8.12. The procedure is to first choose the class membership of gen-
erated observations based on uniform (0,1) random variables. The number of
random variables generated from each component density is given by the
corresponding proportion of these uniform variables that are in the required
range. The steps are outlined here.

PROCEDURE - GENERATING RANDOM VARIABLES (FINITE MIXTURE)

1. We are given a finite mixture model (,) with c compo-
nents, and we want to generate n random variables from that
distribution.

f̂ x()

pi gi x;θi()

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 307

FFFFIIIIGUGUGUGURE 8.1RE 8.1RE 8.1RE 8.16666

The upper plot shows the dF representation for Example 8.12. Compare this with Figure 8.17
for the same data. Note that the curves are essentially the same, but the number of terms
and associated parameters are different. Thus, we can get different models for the same data.

−5 −4 −3 −2 −1 0 1 2 3

 0

.1

.2

.3

.4

.5

.6

Mean

M
ix

in
g

C
oe

ffi
ci

en
t

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

© 2002 by Chapman & Hall/CRC

308 Computational Statistics Handbook with MATLAB

FFFFIIIIGUGUGUGURE 8.1RE 8.1RE 8.1RE 8.17777

This is the second estimated model using adaptive mixtures for the data generated in
Example 8.12. This second model was obtained by re-ordering the data set and then imple-
menting the adaptive mixtures technique. This shows the dependence of the technique on
the order in which the data are presented to the method.

−5 −4 −3 −2 −1 0 1 2 3

 0

.1

.2

.3

.4

.5

.6

Mean

M
ix

in
g

C
oe

ffi
ci

en
t

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 309

2. First determine the component membership of each of the n random
variables. We do this by generating n uniform (0,1) random vari-
ables (). Component membership is determined as follows

If , then is from component density 1.

If , then is from component density 2.

. . .

If , then is from component density c.

3. Generate the from the corresponding using the compo-
nent membership found in step 2.

Note that with this procedure, one could generate random variables from a
mixture of any component densities. For instance, the model could be a mix-
ture of exponentials, betas, etc.

Example 8.13
Generate a random sample of size n from a finite mixture estimate of the Old
Faithful Geyser data (geyser). First we have to load up the data and build a
finite mixture model.

load geyser
% Expects rows to be observations.
data = geyser';
% Get the finite mixture.
% Use a two term model.
% Set initial model to means at 50 and 80.
muin = [50, 80];
% Set mixing coefficients equal.
piesin = [0.5, 0.5];
% Set initial variances to 1.
varin = [1, 1];
max_it = 100;
tol = 0.001;
% Call the finite mixtures.
[pies,mus,vars]=...
 csfinmix(data,muin,varin,piesin,max_it,tol);

Now generate some random variables according to this estimated model.

% Now generate some random variables from this model.
% Get the true model to generate data from this.
n = 300;
x = zeros(n,1);

Ui

0 U≤ i p1< Xi

p1 U≤ i p1 p2+< Xi

pj U≤ i

j 1=

c 1–

∑ 1≤ Xi

Xi gi x;θ i()

© 2002 by Chapman & Hall/CRC

310 Computational Statistics Handbook with MATLAB

% Now generate 300 random variables. First find
% the number that fall in each one.
r = rand(1,n);
% Find the number generated from component 1.
ind = length(find(r <= pies(1)));
% Create some mixture data. Note that the
% component densities are normals.
x(1:ind) = randn(ind,1)*sqrt(vars(1)) + mus(1);
x(ind+1:n) = randn(n-ind,1)*sqrt(vars(2)) + mus(2);

We can plot density histograms to compare the two data sets. These are
shown in Figure 8.18. Not surprisingly, they look similar, but different. The
user is asked to explore this further in the exercises.
�

FFFFIIIIGUGUGUGURE 8.1RE 8.1RE 8.1RE 8.18888

Histogram density estimates of the Old Faithful geyser data. The one on the right shows
the estimate from the data that was sampled from the finite mixture density estimate of the
original data.

40 60 80 100 120
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
Original Geyser Data

40 60 80 100 120
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
Data Generated from the Estimate

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 311

8.6 MATLAB Code

The MATLAB Statistics Toolbox does not have any functions for nonparamet-
ric density estimation. The functions it has for estimating distribution param-
eters (e.g., mle , normfit , expfit , betafit, etc.) can be used for
parametric density estimation. The standard MATLAB package has func-
tions for frequency histograms, as explained in Chapter 5.

We provide several functions for nonparametric density estimation with
the Computational Statistics Toolbox. These are listed in Table 8.4.

8.7 Further Reading

The discussion of histograms, frequency polygons and averaged shifted his-
tograms presented in this book follows that of Scott [1992]. Scott’s book is an
excellent resource for univariate and multivariate density estimation, and it
describes many applications of the techniques. It includes a comprehensive
treatment of the underlying theory on selecting smoothing parameters, ana-

TTTTAAAABBBBLLLLEEEE 8.48.48.48.4

List of Functions from Chapter 8 Included in the Computational Statistics
Toolbox

Purpose MATLAB Function

These provide a bivariate histogram. cshist2d
cshistden

This returns a frequency polygon density
estimate.

csfreqpoly

This function returns the Averaged
Shifted Histogram.

csash

These functions perform kernel density
estimation.

cskernnd
cskern2d

Create plots csdfplot
csplotuni

Functions for finite and adaptive
mixtures

csfinmix
csadpmix

© 2002 by Chapman & Hall/CRC

312 Computational Statistics Handbook with MATLAB

lyzing the performance of density estimates in terms of the asymptotic mean
integrated squared error, and also addresses high dimensional data.

The summary book by Silverman [1986] provides a relatively non-theoret-
ical treatment of density estimation. He includes a discussion of histograms,
kernel methods and others. This book is readily accessible to most statisti-
cians, data analysts or engineers. It contains applications and computational
details, making the subject easier to understand.

Other books on density estimation include Tapia and Thompson [1978],
Devroye and Gyorfi [1985], Wand and Jones [1995], and Simonoff [1996]. The
Tapia and Thompson book offers a theoretical foundation for density estima-
tion and includes a discussion of Monte Carlo simulations. The Devroye and
Gyorfi text describes the underlying theory of density estimation using the

 (absolute error) viewpoint instead of (squared error). The books by
Wand and Jones and Simonoff look at using kernel methods for smoothing
and exploratory data analysis.

A paper by Izenman [1991] provides a comprehensive review of many
methods in univariate and multivariate density estimation and includes an
extensive bibliography. Besides histograms and kernel methods, he discusses
projection pursuit density estimation [Friedman, Stuetzle, and Schroeder,
1984], maximum penalized likelihood estimators, sieve estimators, and
orthogonal estimators.

For the reader who would like more information on finite mixtures, we rec-
ommend Everitt and Hand [1981] for a general discussion of this topic. The
book provides a summary of the techniques for obtaining mixture models
(estimating the parameters) and illustrates them using applications. That text
also discusses ways to handle the problem of determining the number of
terms in the mixture and other methods for estimating the parameters. It is
appropriate for someone with a general statistics or engineering background.
For readers who would like more information on the theoretical details of
finite mixtures, we refer them to McLachlan and Basford [1988] or Tittering-
ton, Smith and Makov [1985]. A recent book by McLachlan and Peel [2000]
provides many examples of finite mixtures, linking them to machine learn-
ing, data mining, and pattern recognition.

The EM algorithm is described in the text by McLachlan and Krishnan
[1997]. This offers a unified treatment of the subject, and provides numerous
applications of the EM algorithm to regression, factor analysis, medical imag-
ing, experimental design, finite mixtures, and others.

For a theoretical discussion of the adaptive mixtures approach, the reader
is referred to Priebe [1993, 1994]. These examine the error in the adaptive mix-
tures density estimates and its convergence properties. A recent paper by
Priebe and Marchette [2000] describes a data-driven method for obtaining
parsimonious mixture model estimates. This methodology addresses some
of the problems with the adaptive/finite mixtures approach: 1) that adaptive
mixtures is not designed to yield a parsimonious model and 2) how many
terms or component densities should be used in a finite mixture model.

L1 L2

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 313

Solka, Poston, and Wegman [1995] extend the static dF plot to a dynamic
one. References to MATLAB code are provided in this paper describing a
dynamic view of the adaptive mixtures and finite mixtures estimation pro-
cess in time (i.e., iterations of the EM algorithm).

© 2002 by Chapman & Hall/CRC

314 Computational Statistics Handbook with MATLAB

Exercises

8.1. Create a MATLAB function that will return the value of the histogram
estimate for the probability density function. Do this for the 1-D case.

8.2. Generate a random sample of data from a standard normal. Construct
a kernel density estimate of the probability density function and verify
that the area under the curve is approximately 1 using trapz.

8.3. Generate 100 univariate normals and construct a histogram. Calculate
the MSE at a point using Monte Carlo simulation. Do this for
varying bin widths. What is the better bin width? Does the sample
size make a difference? Does it matter whether is in the tails or
closer to the mean? Repeat this experiment using the absolute error.
Are your conclusions similar?

8.4. Generate univariate normal random variables. Using the Normal Ref-
erence Rules for h, construct a histogram, a frequency polygon and a
kernel estimate of the data. Estimate the MSE at a point using
Monte Carlo simulation.

8.5. Generate a random sample from the exponential distribution. Con-
struct a histogram using the Normal Reference Rule. Using Monte
Carlo simulation, estimate the MISE. Use the skewness factor to adjust
h and re-estimate the MISE. Which window width is better?

8.6. Use the snowfall data and create a MATLAB movie that shows
how 1-D histograms change with bin width. See help on movie for
information on how to do this. Also make a movie showing how
changing the bin origin affects the histogram.

8.7. Repeat Example 8.2 for bin widths given by the Freedman-Diaconis
Rule. Is there a difference in the results? What does the histogram
look like if you use Sturge’s Rule?

8.8. Write a MATLAB function that will return the value of a bivariate
histogram at a point, given the bin counts, the sample size, and the
window widths.

8.9. Write a MATLAB function that will evaluate the cumulative distribu-
tion function for a univariate frequency polygon. You can use the
trapz, quad, or quadl functions.

8.10. Load the iris data. Create a matrix by concatenating the
first two columns of each species. Construct and plot a frequency
polygon of these data. Do the same thing for all possible pairs of
columns. You might also look at a contour plot of the frequency
polygons. Is there evidence of groups in the plots?

x0

x0

x0

150 2×

© 2002 by Chapman & Hall/CRC

Chapter 8: Probability Density Estimation 315

8.11. In this chapter, we showed how you could construct a kernel density
estimate by placing a weighted kernel at each data point, evaluating
the kernels over the domain, and then averaging the n curves. In that
implementation, we are looping over all of the data points. An alter-
native implementation is to loop over all points in the domain where
you want to get the value of the estimate, evaluate a weighted kernel
at each point, and take the average. The following code shows you
how to do this. Implement this using the Buffalo snowfall data.
Verify that this is a valid density by estimating the area under the
curve.

load snowfall
x = 0:140;
n = length(snowfall);
h = 1.06*sqrt(var(snowfall))*n^(-1/5);
fhat = zeros(size(x));
% Loop over all values of x in the domain
% to get the kernel evaluated at that point.
for i = 1:length(x)
xloc = x(i)*ones(1,n);
% Take each value of x and evaluate it at
% n weighted kernels -
% each one centered at a data point, then add them up.
arg = ((xloc-snowfall)/h).^2;
fhat(i) = (sum(exp(-.5*(arg)))/(n*h*sqrt(2*pi)));

end

8.12. Write a MATLAB function that will construct a kernel density esti-
mate for the multivariate case.

8.13. Write a MATLAB function that will provide the finite mixture den-
sity estimate at a point in d dimensions.

8.14. Implement the univariate adaptive mixtures density estimation pro-
cedure on the Buffalo snowfall data. Once you have your initial
model, use the EM algorithm to refine the estimate.

8.15. In Example 8.13, we generate a random sample from the kernel
estimate of the Old Faithful geyser data. Repeat this example to
obtain a new random sample of geyser data from the estimated
model and construct a new density estimate from the second sample.
Find the integrated squared error between the two density estimates.
Does the error between the curves indicate that the second random
sample generates a similar density curve?

8.16. Say we have a kernel density estimate where the kernel used is a
normal density. If we put this in the context of finite mixtures, then
what are the values for the component parameters () in the
corresponding finite mixture?

pi, µi, σ i
2

© 2002 by Chapman & Hall/CRC

316 Computational Statistics Handbook with MATLAB

8.17. Repeat Example 8.12. Plot the curves from the estimated models.
What is the ISE between the two estimates? Use the iterative EM
algorithm on both models to refine the estimates. What is the ISE after
you do this? What can you say about the two different models? Are
your conclusions different if you use the IAE?

8.18. Write a MATLAB function that will generate random variables
(univariate or multivariate) from a finite mixture of normals.

8.19. Using the method for generating random variables from a finite
mixture that was discussed in this chapter, develop and implement
an algorithm for generating random variables based on a kernel den-
sity estimate.

8.20. Write a function that will estimate the MISE between two functions.
Convert it to also estimate the MIAE between two functions.

8.21. Apply some of the univariate density estimation techniques from
this chapter to the forearm data.

8.22. The elderly data set contains the height measurements (in centi-
meters) of 351 elderly females [Hand, et al., 1994]. Use some of the
univariate density estimation techniques from this chapter to explore
the data. Is there evidence of bumps and modes?

8.23. Apply the multivariate techniques of this chapter to the nfl data
[Csorgo and Welsh, 1989; Hand, et al., 1994]. These data contain bivari-
ate measurements of the game time to the first points scored by
kicking the ball between the end posts (), and the game time to
the first points scored by moving the ball into the end zone ().
The times are in minutes and seconds. Plot your results.

X1

X2

© 2002 by Chapman & Hall/CRC

Chapter 9
Statistical Pattern Recognition

9.1 Introduction

Statistical pattern recognition is an application in computational statistics
that uses many of the concepts we have covered so far, such as probability
density estimation and cross-validation. Examples where statistical pattern
recognition techniques can be used are numerous and arise in disciplines
such as medicine, computer vision, robotics, military systems, manufactur-
ing, finance and many others. Some of these include the following:

• A doctor diagnoses a patient’s illness based on the symptoms and
test results.

• A radiologist locates areas where there is non-healthy tissue in x-
rays.

• A military analyst classifies regions of an image as natural or man-
made for use in targeting systems.

• A geologist determines whether a seismic signal represents an
impending earthquake.

• A loan manager at a bank must decide whether a customer is a
good credit risk based on their income, past credit history and other
variables.

• A manufacturer must classify the quality of materials before using
them in their products.

In all of these applications, the human is often assisted by statistical pattern
recognition techniques.

Statistical methods for pattern recognition are covered in this chapter. In
this section, we first provide a brief introduction to the goals of pattern rec-
ognition and a broad overview of the main steps of building classifiers. In
Section 9.2 we present a discussion of Bayes classifiers and pattern recogni-
tion in an hypothesis testing framework. Section 9.3 contains techniques for

© 2002 by Chapman & Hall/CRC

318 Computational Statistics Handbook with MATLAB

evaluating the classifier. In Section 9.4, we illustrate how to construct classi-
fication trees. Section 9.5 contains methods for unsupervised classification or
clustering, including agglomerative methods and k-means clustering.

We first describe the process of statistical pattern recognition in a super-
vised learning setting. With supervised learning, we have cases or observa-
tions where we know which class each case belongs to. Figure 9.1 illustrates
the major steps of statistical pattern recognition.

The first step in pattern recognition is to select features that will be used to
distinguish between the classes. As the reader might suspect, the choice of
features is perhaps the most important part of the process. Building accurate
classifiers is much easier with features that allow one to readily distinguish
between classes.

Once features are selected, we obtain a sample of these features for the dif-
ferent classes. This means that we find objects that belong to the classes of
interest and then measure the features. Each observed set of feature measure-
ments (sometimes also called a case or pattern) has a class label attached to
it. Now that we have data that are known to belong to the different classes,
we can use this information to create the methodology that will take as input
a set of feature measurements and output the class that it belongs to. How
these classifiers are created will be the topic of this chapter.

One of the main examples we use to illustrate these ideas is one that we
encountered in Chapter 5. In the iris data set, we have three species of iris:
Iris setosa, Iris versicolor and Iris virginica. The data were used by Fisher [1936]
to develop a classifier that would take measurements from a new iris and
determine its species based on the features [Hand, et al., 1994]. The four fea-
tures that are used to distinguish the species of iris are sepal length, sepal
width, petal length and petal width. The next step in the pattern recognition
process is to find many flowers from each species and measure the corre-
sponding sepal length, sepal width, petal length, and petal width. For each
set of measured features, we attach a class label that indicates which species

FFFFIIIIGUGUGUGURE 9.RE 9.RE 9.RE 9.1111

This shows a schematic diagram of the major steps for statistical pattern recognition.

Object Sensor
Feature

Extractor Classification
Class

Membership

w 1

w J

w 2.

.

.

© 2002 by Chapman & Hall/CRC

Chapter 9: Statistical Pattern Recognition 319

it belongs to. We build a classifier using these data and (possibly) one of the
techniques that are described in this chapter. To use the classifier, we measure
the four features for an iris of unknown species and use the classifier to assign
the species membership.

Sometimes we are in a situation where we do not know the class member-
ship for our observations. Perhaps we are unable or unwilling to assume how
many groups are represented by the data. In this case, we are in the unsuper-
vised learning mode. To illustrate this, say we have data that comprise mea-
surements of a type of insect called Chaetocnema [Lindsey, Herzberg, and
Watts, 1987; Hand, et al., 1994]. These variables measure the width of the first
joint of the first tarsus, the width of the first joint of the second tarsus, and the
maximal width of the aedegus. All measurements are in microns. We suspect
that there are three species represented by these data. To explore this hypoth-
esis further, we could use one of the unsupervised learning or clustering tech-
niques that will be covered in Section 9.5.

9.2 Bayes Decision Theory

The Bayes approach to pattern classification is a fundamental technique, and
we recommend it as the starting point for most pattern recognition applica-
tions. If this method is not adequate, then more complicated techniques may
be used (e.g., neural networks, classification trees). Bayes decision theory
poses the classification problem in terms of probabilities; therefore, all of the
probabilities must be known or estimated from the data. We will see that this
is an excellent application of the probability density estimation methods from
Chapter 8.

We have already seen an application of Bayes decision theory in Chapter 2.
There we wanted to know the probability that a piston ring came from a par-
ticular manufacturer given that it failed. It makes sense to make the decision
that the part came from the manufacturer that has the highest posterior prob-
ability. To put this in the pattern recognition context, we could think of the
part failing as the feature. The resulting classification would be the manufac-
turer (or) that sold us the part. In the following, we will see that
Bayes decision theory is an application of Bayes’ Theorem, where we will
classify observations using the posterior probabilities.

We start off by fixing some notation. Let the class membership be repre-
sented by , for a total of J classes. For example, with the iris
data, we have classes:

MA MB

ωj j 1 … J, ,=
J 3=

ω1 Iris setosa=

ω2 Iris versicolor=

ω3 Iris virginica.=

© 2002 by Chapman & Hall/CRC

320 Computational Statistics Handbook with MATLAB

The features we are using for classification are denoted by the d-dimensional
vector x, . With the iris data, we have four measurements, so

 In the supervised learning situation, each of the observed feature vec-
tors will also have a class label attached to it.

Our goal is to use the data to create a decision rule or classifier that will take
a feature vector x whose class membership is unknown and return the class
it most likely belongs to. A logical way to achieve this is to assign the class
label to this feature vector using the class corresponding to the highest pos-
terior probability. This probability is given by

. (9.1)

Equation 9.1 represents the probability that the case belongs to the j-th class
given the observed feature vector x. To use this rule, we would evaluate all of
the J posterior probabilities, and the one with the highest probability would
be the class we choose. We can find the posterior probabilities using Bayes’
Theorem:

, (9.2)

where

. (9.3)

We see from Equation 9.2 that we must know the prior probability that it
would be in class j given by

, (9.4)

and the class-conditional probability (sometimes called the state-condi-
tional probability)

. (9.5)

The class-conditional probability in Equation 9.5 represents the probability
distribution of the features for each class. The prior probability in Equation
9.4 represents our initial degree of belief that an observed set of features is a
case from the j-th class. The process of estimating these probabilities is how
we build the classifier.

We start our explanation with the prior probabilities. These can either be
inferred from prior knowledge of the application, estimated from the data or

d 1 2 …, ,=
d 4.=

P ωj x(); j 1 … J, ,=

P ωj x() P ωj()P x ωj()
P x()

----------------------------------=

P x() P ωj()P x ωj()
j 1=

J

∑=

P ωj(); j 1 … J, ,=

P x ω j(); j 1 … J, ,=

© 2002 by Chapman & Hall/CRC

Chapter 9: Statistical Pattern Recognition 321

assumed to be equal. In the piston ring example, we know how many parts
we buy from each manufacturer. So, the prior probability that the part came
from a certain manufacturer would be based on the percentage of parts
obtained from that manufacturer. In other applications, we might know the
prevalence of some class in our population. This might be the case in medical
diagnosis, where we have some idea of the percentage of the population who
are likely to have a certain disease or medical condition. In the case of the
iris data, we could estimate the prior probabilities using the proportion of
each class in our sample. We had 150 observed feature vectors, with 50 com-
ing from each class. Therefore, our estimated prior probabilities would be

.

Finally, we might use equal priors when we believe each class is equally
likely.

Now that we have our prior probabilities, , we turn our attention to
the class-conditional probabilities . We can use the density estimation
techniques covered in Chapter 8 to obtain these probabilities. In essence, we
take all of the observed feature vectors that are known to come from class
and estimate the density using only those cases. We will cover two
approaches: parametric and nonparametric.

EEEEstistististimmmmaaaattttinininingggg ClasClasClasClasssss----CondCondCondCondiiiitiontiontiontionaaaallll ProbabiliProbabiliProbabiliProbabilittttieieieiessss:::: PPPPaaaarrrramamamameeeettttricricricric MMMMethodethodethodethod

In parametric density estimation, we assume a distribution for the class-con-
ditional probability densities and estimate them by estimating the corre-
sponding distribution parameters. For example, we might assume the
features come from a multivariate normal distribution. To estimate the den-
sity, we have to estimate and for each class. This procedure is illustrated
in Example 9.1 for the iris data.

Example 9.1
In this example, we estimate our class-conditional probabilities using the
iris data. We assume that the required probabilities are multivariate normal
for each class. The following MATLAB code shows how to get the class-con-
ditional probabilities for each species of iris.

load iris
% This loads up three matrices:
% setosa, virginica and versicolor
% We will assume each class is multivariate normal.
% To get the class-conditional probabilities, we
% get estimates for the parameters for each class.
muset = mean(setosa);

P̂ ωj() nj

N
---- 50

150
--------- 0.33;= = = j 1 2 3, ,=

P̂ ωj()
P x ωj()

ω j

µ j
ˆ Σ̂j

© 2002 by Chapman & Hall/CRC

322 Computational Statistics Handbook with MATLAB

covset = cov(setosa);
muvir = mean(virginica);
covvir = cov(virginica);
muver = mean(versicolor);
covver = cov(versicolor);

�

EEEEstistististimmmmaaaattttinininingggg ClasClasClasClasssss----CondCondCondCondiiiitiontiontiontionaaaallll ProbabiliProbabiliProbabiliProbabilittttieieieiessss:::: NonpNonpNonpNonpaaaarrrraaaammmmeeeettttriririricccc

If it is not appropriate to assume the features for a class follow a known dis-
tribution, then we can use the nonparametric density estimation techniques
from Chapter 8. These include the averaged shifted histogram, the frequency
polygon, kernel densities, finite mixtures and adaptive mixtures. To obtain
the class-conditional probabilities, we take the set of measured features from
each class and estimate the density using one of these methods. This is illus-
trated in Example 9.2, where we use the product kernel to estimate the prob-
ability densities for the iris data.

Example 9.2
We estimate the class-conditional probability densities for the iris data
using the product kernel, where the univariate normal kernel is used for each
dimension. We illustrate the use of two functions for estimating the product
kernel. One is called cskern2d that can only be used for bivariate data. The
output arguments from this function are matrices for use in the MATLAB
plotting functions surf and mesh. The cskern2d function should be used
when the analyst wants to plot the resulting probability density. We use it on
the first two dimensions of the iris data and plot the surface for Iris virginica
in Figure 9.2.

load iris
% This loads up three matrices:
% setosa, virginica and versicolor
% We will use the product kernel to estimate densities.
% To try this, get the kernel estimate for the first
% two features and plot.
% The arguments of 0.1 indicate the grid size in
% each dimension. This creates the domain over
% which we will estimate the density.
[xset,yset,pset]=cskern2d(setosa(:,1:2),0.1,0.1);
[xvir,yvir,pvir]=cskern2d(virginica(:,1:2),0.1,0.1);
[xver,yver,pver]=cskern2d(versicolor(:,1:2),0.1,0.1);
mesh(xvir,yvir,pvir)
colormap(gray(256))

© 2002 by Chapman & Hall/CRC

Chapter 9: Statistical Pattern Recognition 323

A more useful function for statistical pattern recognition is cskernmd, which
returns the value of the probability density for a given d-dimensional
vector x.

% If one needs the value of the probability curve,
% then use this.
ps = cskernmd(setosa(1,1:2),setosa(:,1:2));
pver = cskernmd(setosa(1,1:2),versicolor(:,1:2));
pvir = cskernmd(setosa(1,1:2),virginica(:,1:2));

�

BBBBaaaayeyeyeyessss DDDDeeeecisioncisioncisioncision RRRRuleuleuleule

Now that we know how to get the prior probabilities and the class-condi-
tional probabilities, we can use Bayes’ Theorem to obtain the posterior prob-
abilities. Bayes Decision Rule is based on these posterior probabilities.

FFFFIIIIGUGUGUGURE 9.RE 9.RE 9.RE 9.2222

Using only the first two features of the data for Iris virginica, we construct an estimate of
the corresponding class-conditional probability density using the product kernel. This is the
output from the function cskern2d.

5
6

7
8

2.5

3

3.5

0.2

0.4

0.6

0.8

1

1.2

Sepal Length

Iris Virginica

Sepal Width

f̂ x()

© 2002 by Chapman & Hall/CRC

324 Computational Statistics Handbook with MATLAB

BAYES DECISION RULE:
Given a feature vector x, assign it to class if

. (9.6)

This states that we will classify an observation x as belonging to the class that
has the highest posterior probability. It is known [Duda and Hart, 1973] that
the decision rule given by Equation 9.6 yields a classifier with the minimum
probability of error.

We can use an equivalent rule by recognizing that the denominator of the
posterior probability (see Equation 9.2) is simply a normalization factor and
is the same for all classes. So, we can use the following alternative decision
rule:

. (9.7)

Equation 9.7 is Bayes Decision Rule in terms of the class-conditional and
prior probabilities. If we have equal priors for each class, then our decision is
based only on the class-conditional probabilities. In this case, the decision
rule partitions the feature space into J decision regions . If x is
in region , then we will say it belongs to class .

We now turn our attention to the error we have in our classifier when we
use Bayes Decision Rule. An error is made when we classify an observation
as class when it is really in the j-th class. We denote the complement of
region as , which represents every region except . To get the proba-
bility of error, we calculate the following integral over all values of x [Duda
and Hart, 1973; Webb, 1999]

. (9.8)

Thus, to find the probability of making an error (i.e., assigning the wrong
class to an observation), we find the probability of error for each class and
add the probabilities together. In the following example, we make this clearer
by looking at a two class case and calculating the probability of error.

Example 9.3
We will look at a univariate classification problem with equal priors and two
classes. The class-conditionals are given by the normal distributions as fol-
lows:

ωj

P ωj x() P ωi x();> i 1 … J i j≠;, ,=

P x ωj()P ωj() P x ωi()P ωi();> i 1 … J i j≠;, ,=

Ω1 Ω2 … Ω J, , ,
Ω j ωj

ωi

Ωi Ω i
c Ω i

P error() P x ωi()P ωi() xd
Ω i

c∫
i 1=

J

∑=

© 2002 by Chapman & Hall/CRC

Chapter 9: Statistical Pattern Recognition 325

The priors are

The following MATLAB code creates the required curves for the decision rule
of Equation 9.7.

% This illustrates the 1-D case for two classes.
% We will shade in the area where there can be
% misclassified observations.
% Get the domain for the densities.
dom = -6:.1:8;
dom = dom';
% Note: could use csnormp or normpdf.
pxg1 = csevalnorm(dom,-1,1);
pxg2 = csevalnorm(dom,1,1);
plot(dom,pxg1,dom,pxg2)
% Find decision regions - multiply by priors
ppxg1 = pxg1*0.6;
ppxg2 = pxg2*0.4;
plot(dom,ppxg1,'k',dom,ppxg2,'k')
xlabel('x')

The resulting plot is given in Figure 9.3, where we see that the decision
regions given by Equation 9.7 are obtained by finding where the two curves
intersect. If we observe a value of a feature given by , then we would
classify that object as belonging to class . If we observe , then we
would classify that object as belonging to class . Let’s see what happens
when . We can find the probabilities using

x = -0.75;
% Evaluate each un-normalizd posterior.
po1 = csevalnorm(x,-1,1)*0.6;
po2 = csevalnorm(x,1,1)*0.4;

These are shown in Figure 9.4. Note that there is non-zero probability that the
case corresponding to could belong to class 2. We now turn our
attention to how we can estimate this error.

P x ω1() φ x; 1 1,–()=

P x ω2() φ x 1 1,;().=

P ω1() 0.6=

P ω2() 0.4.=

x 2–=
ω1 x 4=

ω2

x 0.75–=

P 0.75– ω1()P ω1() 0.23=

P 0.75– ω2()P ω2() 0.04.=

x 0.75–=

© 2002 by Chapman & Hall/CRC

326 Computational Statistics Handbook with MATLAB

% To get estimates of the error, we can
% estimate the integral as follows
% Note that 0.1 is the step size and we
% are approximating the integral using a sum.
% The decision boundary is where the two curves meet.
ind1 = find(ppxg1 >= ppxg2);
% Now find the other part.
ind2 = find(ppxg1<ppxg2);
pmis1 = sum(ppxg1(ind2))*.1;
pmis2 = sum(ppxg2(ind1))*.1;
errorhat = pmis1 + pmis2;

From this, we estimate the probability of error as 0.15. To get this probability,
we find the shaded area under the curves as shown in Figure 9.5.
�

We would like to note several points regarding Bayes Decision Rule and the
classification error. First, as we already saw in Example 9.3, the boundaries

FFFFIIIIGUGUGUGURE 9.RE 9.RE 9.RE 9.3333

Here we show the univariate, two class case from Example 9.3. Note that each curve
represents the probabilities in Equation 9.7. The point where the two curves intersect par-
titions the domain into one where we would classify observations as class 1 and another
where we would classify observations as class 2

−6 −4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

Feature − x

P(x | ω
2
) * P(ω

2
)

P(x | ω
1
) * P(ω

1
)

ω1()
ω2() .

© 2002 by Chapman & Hall/CRC

Chapter 9: Statistical Pattern Recognition 327

for the decision regions are found as the x such that the following equation is
satisfied:

.

Secondly, we can change this decision region as we will see shortly when we
discuss the likelihood ratio approach to classification. If we change the deci-
sion boundary, then the error will be greater, illustrating that Bayes Decision
Rule is one that minimizes the probability of misclassification [Duda and
Hart, 1973].

Example 9.4
We continue Example 9.3, where we show what happens when we change
the decision boundary to . This means that if a feature has a value
of , then we classify it as belonging to class 1. Otherwise, we say it
belongs to class 2. The areas under the curves that we need to calculate are
shown in Figure 9.6. As we see from the following MATLAB code, where we
estimate the error, that the probability of error increases.

% Change the decision boundary.

FFFFIIIIGUGUGUGURE 9.RE 9.RE 9.RE 9.4444

The vertical dotted line represents . The probabilities needed for the decision rule
of Equation 9.7 are represented by the horizontal dotted lines. We would classify this case
as belonging to class 1 (), but there is a possibility that it could belong to class 2 ().

−6 −4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

Feature − x

x 0.75–=

ω1 ω2

P x ωj()P ω j() P x ωi()P ω i();= i j≠

x 0.5–=
x 0.5–<

© 2002 by Chapman & Hall/CRC

328 Computational Statistics Handbook with MATLAB

bound = -0.5;
ind1 = find(dom <= bound);
ind2 = find(dom > bound);
pmis1 = sum(ppxg1(ind2))*.1;
pmis2 = sum(ppxg2(ind1))*.1;
errorhat = pmis1 + pmis2;

This yields an estimated error of 0.20.
�

Bayes decision theory can address more general situations where there
might be a variable cost or risk associated with classifying something incor-
rectly or allowing actions in addition to classifying the observation. For
example, we might want to penalize the error of classifying some section of
tissue in an image as cancerous when it is not, or we might want to include
the action of not making a classification if our uncertainty is too great. We will
provide references at the end of the chapter for those readers who require the
more general treatment of statistical pattern recognition.

FFFFIIIIGUGUGUGURE 9.RE 9.RE 9.RE 9.5555

The shaded regions show the probability of misclassifying an object. The lighter region
shows the probability of classifying as class 1 when it is really class 2. The darker region
shows the probability of classifying as class 2, when it belongs to class 1.

−6 −4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

Feature − x

Class ω
2
 Class ω

1

© 2002 by Chapman & Hall/CRC

Chapter 9: Statistical Pattern Recognition 329

LLLLikelihood Ratioikelihood Ratioikelihood Ratioikelihood Ratio ApproachApproachApproachApproach

The likelihood ratio technique addresses the issue of variable misclassifica-
tion costs in a hypothesis testing framework. This methodology does not
assign an explicit cost to making an error as in the Bayes approach, but it
enables us to set the amount of error we will tolerate for misclassifying one
of the classes.

Recall from Chapter 6 that in hypothesis testing we have two types of
errors. One type of error is when we wrongly reject the null hypothesis when
it is really true. This is the Type I error. The other way we can make a wrong
decision is to not reject the null hypothesis when we should. Typically, we try
to control the probability of Type I error by setting a desired significance level

, and we use this level to determine our decision boundary. We can fit our
pattern recognition process into the same framework.

In the rest of this section, we consider only two classes, and . First,
we have to determine what class corresponds to the null hypothesis and call
this the non-target class. The other class is denoted as the target class. In this
book, we use to represent the target class and to represent the non-tar-
get class. The following examples should clarify these concepts.

FFFFIIIIGUGUGUGURE 9.RE 9.RE 9.RE 9.6666

If we move the decision boundary to , then the probability of error is given by the
shaded areas. Not surprisingly, the error increases when we change from the boundary given
by Bayes Decision Rule.

−6 −4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

Feature − x

x 0.5–=

α

ω1 ω2

ω1 ω2

© 2002 by Chapman & Hall/CRC

330 Computational Statistics Handbook with MATLAB

• We are building a classifier for a military command and control
system that will take features from images of objects and classify
them as targets or non-targets. If an object is classified as a target,
then we will destroy it. Target objects might be tanks or military
trucks. Non-target objects are such things as school buses or auto-
mobiles. We would want to make sure that when we build a clas-
sifier we do not classify an object as a tank when it is really a school
bus. So, we will control the amount of acceptable error in wrongly
saying it (a school bus or automobile) is in the target class. This is
the same as our Type I error, if we write our hypotheses as

• Another example, where this situation arises is in medical diagno-
sis. Say that the doctor needs to determine whether a patient has
cancer by looking at radiographic images. The doctor does not want
to classify a region in the image as cancer when it is not. So, we
might want to control the probability of wrongly deciding that
there is cancer when there is none. However, failing to identify a
cancer when it is really there is more important to control. There-
fore, in this situation, the hypotheses are

The terminology that is sometimes used for the Type I error in pattern recog-
nition is false alarms or false positives. A false alarm is wrongly classifying
something as a target , when it should be classified as non-target .
The probability of making a false alarm (or the probability of making a Type I
error) is denoted as

.

This probability is represented as the shaded area in Figure 9.7.
Recall that Bayes Decision Rule gives a rule that yields the minimum prob-

ability of incorrectly classifying observed patterns. We can change this
boundary to obtain the desired probability of false alarm . Of course, if we
do this, then we must accept a higher probability of misclassification as
shown in Example 9.4.

In the two class case, we can put our Bayes Decision Rule in a different
form. Starting from Equation 9.7, we have our decision as

, (9.9)

H0 Object is a school bus, automobile, etc.

H1 Object is a tank, military vehicle, etc.

H0 X-ray shows cancerous tissue

H1 X-ray shows only healthy tissue

ω1() ω2()

P FA() α=

α

P x ω1()P ω1() P x ω2()P ω2()> x is in ω1⇒

© 2002 by Chapman & Hall/CRC

Chapter 9: Statistical Pattern Recognition 331

or else we classify x as belonging to . Rearranging this inequality yields the
following decision rule

. (9.10)

The ratio on the left of Equation 9.10 is called the likelihood ratio, and the
quantity on the right is the threshold. If , then we decide that the case
belongs to class . If , then we group the observation with class .

If we have equal priors, then the threshold is one (). Thus, when
, we assign the observation or pattern to , and if , then we

classify the observation as belonging to . We can also adjust this threshold
to obtain a desired probability of false alarm, as we show in Example 9.5.

Example 9.5
We use the class-conditional and prior probabilities of Example 9.3 to show
how we can adjust the decision boundary to achieve the desired probability
of false alarm. Looking at Figure 9.7, we see that

FFFFIIIIGUGUGUGURE 9.RE 9.RE 9.RE 9.7777

The shaded region shows the probability of false alarm or the probability of wrongly
classifying as target (class) when it really belongs to class

−6 −4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

P(x | ω
2
)*P(ω

2
) P(x | ω

1
)*P(ω

1
)

Non−Target Class Target Class

ω1 ω2 .

ω2

LR x()
P x ω1()
P x ω2()

P ω2()
P ω1()
---------------> τC x is in ω1⇒= =

LR τC>
ω1 LR τC< ω2

τC 1=
LR 1> ω1 LR 1<

ω2

© 2002 by Chapman & Hall/CRC

332 Computational Statistics Handbook with MATLAB

,

where C represents the value of x that corresponds to the decision boundary.
We can factor out the prior, so

.

We then have to find the value for C such that

.

From Chapter 3, we recognize that C is a quantile. Using the probabilities in
Example 9.3, we know that and is normal with mean 1
and variance of 1. If our desired , then

.

We can find the value for C using the inverse cumulative distribution func-
tion for the normal distribution. In MATLAB, this is

c = norminv(0.05/0.4,1,1);

This yields a decision boundary of .
�

9.3 Evaluating the Classifier

Once we have our classifier, we need to evaluate its usefulness by measuring
the percentage of observations that we correctly classify. This yields an esti-
mate of the probability of correctly classifying cases. It is also important to
report the probability of false alarms, when the application requires it (e.g.,
when there is a target class). We will discuss two methods for estimating the
probability of correctly classifying cases and the probability of false alarm:
the use of an independent test sample and cross-validation.

P FA() P x ω2()P ω2() xd

∞–

C

∫=

P FA() P ω2() P x ω2() xd

∞–

C

∫=

P x ω2() xd

∞–

C

∫ P FA()
P ω2()
----------------=

P ω2() 0.4= P x ω2()
P FA() 0.05=

P x ω2() xd
∞–

C

∫ 0.05
0.40
---------- 0.125= =

x 0.15–=

© 2002 by Chapman & Hall/CRC

Chapter 9: Statistical Pattern Recognition 333

IndIndIndIndeeeependpendpendpendeeeennnntttt TTTTest Sest Sest Sest Saaaammmmpleplepleple

If our sample is large, we can divide it into a training set and a testing set. We
use the training set to build our classifier and then we classify observations
in the test set using our classification rule. The proportion of correctly classi-
fied observations is the estimated classification rate. Note that the classifier
has not seen the patterns in the test set, so the classification rate estimated in
this way is not biased. Of course, we could collect more data to be used as the
independent test set, but that is often impossible or impractical.

By biased we mean that the estimated probability of correctly classifying a
pattern is not overly optimistic. A common mistake that some researchers
make is to build a classifier using their sample and then use the same sample
to determine the proportion of observations that are correctly classified. That
procedure typically yields much higher classification success rates, because
the classifier has already seen the patterns. It does not provide an accurate
idea of how the classifier recognizes patterns it has not seen before. However,
for a thorough discussion on these issues, see Ripley [1996]. The steps for
evaluating the classifier using an independent test set are outlined below.

PROBABILITY OF CORRECT CLASSIFICATION- INDEPENDENT TEST SAMPLE

1. Randomly separate the sample into two sets of size and
, where . One is for building the classifier

(the training set), and one is used for testing the classifier (the
testing set).

2. Build the classifier (e.g., Bayes Decision Rule, classification tree,
etc.) using the training set.

3. Present each pattern from the test set to the classifier and obtain a
class label for it. Since we know the correct class for these obser-
vations, we can count the number we have successfully classified.
Denote this quantity as .

4. The rate at which we correctly classified observations is

.

The higher this proportion, the better the classifier. We illustrate this proce-
dure in Example 9.6.

Example 9.6
We first load the data and then divide the data into two sets, one for building
the classifier and one for testing it. We use the two species of iris that are
hard to separate: Iris versicolor and Iris virginica.

nTEST

nTRAIN nTR AIN nTEST+ n=

NCC

P CC() NC C

nTEST

-------------=

© 2002 by Chapman & Hall/CRC

334 Computational Statistics Handbook with MATLAB

load iris
% This loads up three matrices:
% setosa, versicolor and virginica.
% We will use the versicolor and virginica.
% To make it interesting, we will use only the
% first two features.
% Get the data for the training and testing set. We
% will just pick every other one for the testing set.
indtrain = 1:2:50;
indtest = 2:2:50;
versitest = versicolor(indtest,1:2);
versitrain = versicolor(indtrain,1:2);
virgitest = virginica(indtest,1:2);
virgitrain = virginica(indtrain,1:2);

We now build the classifier by estimating the class-conditional probabilities.
We use the parametric approach, making the assumption that the class-con-
ditional densities are multivariate normal. In this case, the estimated priors
are equal.

% Get the classifier. We will assume a multivariate
% normal model for these data.
muver = mean(versitrain);
covver = cov(versitrain);
muvir = mean(virgitrain);
covvir = cov(virgitrain);

Note that the classifier is obtained using the training set only. We use the test-
ing set to estimate the probability of correctly classifying observations.

% Present each test case to the classifier. Note that
% we are using equal priors, so the decision is based
% only on the class-conditional probabilities.
% Put all of the test data into one matrix.
X = [versitest;virgitest];
% These are the probability of x given versicolor.
pxgver = csevalnorm(X,muver,covver);
% These are the probability of x given virginica.
pxgvir = csevalnorm(X,muvir,covvir);
% Check which are correctly classified.
% In the first 25, pxgver > pxgvir are correct.
ind = find(pxgver(1:25)>pxgvir(1:25));
ncc = length(ind);
% In the last 25, pxgvir > pxgver are correct.
ind = find(pxgvir(26:50) > pxgver(26:50));
ncc = ncc + length(ind);
pcc = ncc/50;

© 2002 by Chapman & Hall/CRC

Chapter 9: Statistical Pattern Recognition 335

Using this type of classifier and this partition of the learning sample, we esti-
mate the probability of correct classification to be 0.74.
�

Cross-Cross-Cross-Cross-VVVValidatioalidatioalidatioalidationnnn

The cross-validation procedure is discussed in detail in Chapter 7. Recall that
with cross-validation, we systematically partition the data into testing sets of
size k. The n - k observations are used to build the classifier, and the remaining
k patterns are used to test it. We continue in this way through the entire data
set. When the sample is too small to partition it into a single testing and train-
ing set, then cross-validation is the recommended approach. The following is
the procedure for calculating the probability of correct classification using
cross-validation with

PROBABILITY OF CORRECT CLASSIFICATION - CROSS-VALIDATION

1. Set the number of correctly classified patterns to 0, .

2. Keep out one observation, call it .
3. Build the classifier using the remaining observations.

4. Present the observation to the classifier and obtain a class label
using the classifier from the previous step.

5. If the class label is correct, then increment the number correctly
classified using

.

6. Repeat steps 2 through 5 for each pattern in the sample.
7. The probability of correctly classifying an observation is given by

.

Example 9.7
We return to the iris data of Example 9.6, and we estimate the probability
of correct classification using cross-validation with We first set up
some preliminary variables and load the data.

load iris
% This loads up three matrices:
% setosa, versicolor and virginica.
% We will use the versicolor and virginica.
% Note that the priors are equal, so the decision is

k 1.=

NCC 0=

x i

n 1–

x i

NCC NCC 1+=

P CC() NC C

n
----------=

k 1.=

© 2002 by Chapman & Hall/CRC

336 Computational Statistics Handbook with MATLAB

% based on the class-conditional probabilities.
ncc = 0;
% We will use only the first two features of
% the iris data for our classification.
% This should make it more difficult to
% separate the classes.
% Delete 3rd and 4th features.
virginica(:,3:4) = [];
versicolor(:,3:4) = [];
[nver,d] = size(versicolor);
[nvir,d] = size(virginica);
n = nvir + nver;

First, we will loop through all of the versicolor observations. We build a
classifier, leaving out one pattern at a time for testing purposes. Throughout
this loop, the class-conditional probability for virginica remains the same,
so we find that first.

% Loop first through all of the patterns corresponding
% to versicolor. Here correct classification
% is obtained if pxgver > pxgvir;
muvir = mean(virginica);
covvir = cov(virginica);
% These will be the same for this part.
for i = 1:nver

% Get the test point and the training set
versitrain = versicolor;
% This is the testing point.
x = versitrain(i,:);
% Delete from training set.
% The result is the training set.
versitrain(i,:)=[];
muver = mean(versitrain);
covver = cov(versitrain);
pxgver = csevalnorm(x,muver,covver);
pxgvir = csevalnorm(x,muvir,covvir);
if pxgver > pxgvir
% then we correctly classified it

ncc = ncc+1;
end

end

We repeat the same procedure leaving out each virginica observation as
the test pattern.

% Loop through all of the patterns of virginica notes.
% Here correct classification is obtained when
% pxgvir > pxxgver

© 2002 by Chapman & Hall/CRC

Chapter 9: Statistical Pattern Recognition 337

muver = mean(versicolor);
covver = cov(versicolor);
% Those remain the same for the following.
for i = 1:nvir

% Get the test point and training set.
virtrain = virginica;
x = virtrain(i,:);
virtrain(i,:)=[];
muvir = mean(virtrain);
covvir = cov(virtrain);
pxgver = csevalnorm(x,muver,covver);
pxgvir = csevalnorm(x,muvir,covvir);
if pxgvir > pxgver

% then we correctly classified it
ncc = ncc+1;

end
end

Finally, the probability of correct classification is estimated using

pcc = ncc/n;

The estimated probability of correct classification for the iris data using
cross-validation is 0.68.
�

RRRReeeeceivceivceivceiveeeerrrr OperatingOperatingOperatingOperating CCCChhhhaaaarrrraaaactercterctercteriiiissssttttic (Ric (Ric (Ric (ROOOOC)C)C)C) CCCCurvurvurvurveeee

We now turn our attention to how we can use cross-validation to evaluate a
classifier that uses the likelihood approach with varying decision thresholds

. It would be useful to understand how the classifier performs for various
thresholds (corresponding to the probability of false alarm) of the likelihood
ratio. This will tell us what performance degradation we have (in terms of
correctly classifying the target class) if we limit the probability of false alarm
to some level.

We start by dividing the sample into two sets: one with all of the target
observations and one with the non-target patterns. Denote the observations
as follows

Let represent the number of target observations (class) and denote
the number of non-target (class) patterns. We work first with the non-tar-
get observations to determine the threshold we need to get a desired proba-

τC

x i
1() Target pattern ω1()⇒

x i
2() Non-target pattern ω2().⇒

n1 ω1 n2

ω2

© 2002 by Chapman & Hall/CRC

338 Computational Statistics Handbook with MATLAB

bility of false alarm. Once we have the threshold, we can determine the
probability of correctly classifying the observations belonging to the target
class.

Before we go on to describe the receiver operating characteristic (ROC)
curve, we first describe some terminology. For any boundary we might set for
the decision regions, we are likely to make mistakes in classifying cases.
There will be some target patterns that we correctly classify as targets and
some we misclassify as non-targets. Similarly, there will be non-target pat-
terns that are correctly classified as non-targets and some that are misclassi-
fied as targets. This is summarized as follows:

• True Positives - TP: This is the fraction of patterns correctly classi-
fied as target cases.

• False Positives - FP: This is the fraction of non-target patterns
incorrectly classified as target cases.

• True Negatives - TN: This is the fraction of non-target cases cor-
rectly classified as non-target.

• False Negatives - FN: This is the fraction of target cases incorrectly
classified as non-target.

In our previous terminology, the false positives (FP) correspond to the false
alarms. Figure 9.8 shows these areas for a given decision boundary.

A ROC curve is a plot of the true positive rate against the false positive rate.
ROC curves are used primarily in signal detection and medical diagnosis
[Egan, 1975; Lusted, 1971; McNeil, et. al., 1975; Hanley and McNeil, 1983;
Hanley and Hajian-Tilaki, 1997]. In their terminology, the true positive rate is
also called the sensitivity. Sensitivity is the probability that a classifier will
classify a pattern as a target when it really is a target. Specificity is the prob-
ability that a classifier will correctly classify the true non-target cases. There-
fore, we see that a ROC curve is also a plot of sensitivity against 1 minus
specificity.

One of the purposes of a ROC curve is to measure the discriminating power
of the classifier. It is used in the medical community to evaluate the diagnos-
tic power of tests for diseases. By looking at a ROC curve, we can understand
the following about a classifier:

• It shows the trade-off between the probability of correctly classify-
ing the target class (sensitivity) and the false alarm rate (1 – spec-
ificity).

• The area under the ROC curve can be used to compare the perfor-
mance of classifiers.

We now show in more detail how to construct a ROC curve. Recall that the
likelihood ratio is given by

© 2002 by Chapman & Hall/CRC

Chapter 9: Statistical Pattern Recognition 339

.

We start off by forming the likelihood ratios using the non-target obser-
vations and cross-validation to get the distribution of the likelihood ratios
when the class membership is truly . We use these likelihood ratios to set
the threshold that will give us a specific probability of false alarm.

Once we have the thresholds, the next step is to determine the rate at which
we correctly classify the target cases. We first form the likelihood ratio for
each target observation using cross-validation, yielding a distribution of like-
lihood ratios for the target class. For each given threshold, we can determine
the number of target observations that would be correctly classified by count-
ing the number of that are greater than that threshold. These steps are
described in detail in the following procedure.

CROSS-VALIDATION FOR SPECIFIED FALSE ALARM RATE

1. Given observations with class labels (target) and (non-
target), set desired probabilities of false alarm and a value for k.

FFFFIIIIGUGUGUGURE 9.RE 9.RE 9.RE 9.8888

In this figure, we see the decision regions for deciding whether a feature corresponds to the
target class or the non-target class.

−6 −4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

Feature − x

Decision Region
Non−target Class

Decision Region
Target Class

TP TN

TN
+FP

TP
+FN

LR x() P x ω1()
P x ω2()
--------------------=

ω2()

ω2

LR

ω1 ω2

© 2002 by Chapman & Hall/CRC

340 Computational Statistics Handbook with MATLAB

2. Leave k points out of the non-target class to form a set of test cases
denoted by TEST. We denote cases belonging to class as .

3. Estimate the class-conditional probabilities using the remaining
 non-target cases and the target cases.

4. For each of those k observations, form the likelihood ratios

.

5. Repeat steps 2 through 4 using all of the non-target cases.

6. Order the likelihood ratios for the non-target class.
7. For each probability of false alarm, find the threshold that yields

that value. For example, if the P(FA) = 0.1, then the threshold is
given by the quantile of the likelihood ratios. Note that higher
values of the likelihood ratios indicate the target class. We now
have an array of thresholds corresponding to each probability of
false alarm.

8. Leave k points out of the target class to form a set of test cases
denoted by TEST. We denote cases belonging to by .

9. Estimate the class-conditional probabilities using the remaining
 target cases and the non-target cases.

10. For each of those k observations, form the likelihood ratios

.

11. Repeat steps 8 through 10 using all of the target cases.
12. Order the likelihood ratios for the target class.

13. For each threshold and probability of false alarm, find the propor-
tion of target cases that are correctly classified to obtain the

 If the likelihood ratios are sorted, then this
would be the number of cases that are greater than the threshold.

This procedure yields the rate at which the target class is correctly classified
for a given probability of false alarm. We show in Example 9. 8 how to imple-
ment this procedure in MATLAB and plot the results in a ROC curve.

Example 9.8
In this example, we illustrate the cross-validation procedure and ROC curve
using the univariate model of Example 9.3. We first use MATLAB to generate
some data.

ω2 xi
2()

n2 k– n1

LR xi
2()()

P xi
2() ω1()

P xi
2() ω2()

-------------------------;= xi
2() in TEST

q̂0.9

ω1 xi
1()

n1 k– n2

LR x i
1()()

P xi
1() ω1()

P xi
1() ω2()

-------------------------;= xi
1 in TEST

P CCTarget(). LR xi
1()()

© 2002 by Chapman & Hall/CRC

Chapter 9: Statistical Pattern Recognition 341

% Generate some data, use the model in Example 9.3.
% p(x|w1) ~ N(-1,1), p(w1) = 0.6
% p(x|w2) ~ N(1,1),p(w2) = 0.4;
% Generate the random variables.
n = 1000;
u = rand(1,n);% find out what class they are from
n1 = length(find(u <= 0.6));% # in target class
n2 = n-n1;
x1 = randn(1,n1) - 1;
x2 = randn(1,n2) + 1;

We set up some arrays to store the likelihood ratios and estimated probabili-
ties. We also specify the values for the . For each , we will be
estimating the probability of correctly classifying objects from the target
class.

% Set up some arrays to store things.
lr1 = zeros(1,n1);
lr2 = zeros(1,n2);
pfa = 0.01:.01:0.99;
pcc = zeros(size(pfa));

We now implement steps 2 through 7 of the cross-validation procedure. This
is the part where we find the thresholds that provide the desired probability
of false alarm.

% First find the threshold corresponding
% to each false alarm rate.
% Build classifier using target data.
mu1 = mean(x1);
var1 = cov(x1);
% Do cross-validation on non-target class.
for i = 1:n2

train = x2;
test = x2(i);
train(i) = [];
mu2 = mean(train);
var2 = cov(train);
lr2(i) = csevalnorm(test,mu1,var1)./...

csevalnorm(test,mu2,var2);
end
% sort the likelihood ratios for the non-target class
lr2 = sort(lr2);
% Get the thresholds.
thresh = zeros(size(pfa));
for i = 1:length(pfa)

thresh(i) = csquantiles(lr2,1-pfa(i));
end

P FA() P FA()

© 2002 by Chapman & Hall/CRC

342 Computational Statistics Handbook with MATLAB

For the given thresholds, we now find the probability of correctly classifying
the target cases. This corresponds to steps 8 through 13.

% Now find the probability of correctly
% classifying targets.
mu2 = mean(x2);
var2 = cov(x2);
% Do cross-validation on target class.
for i = 1:n1

train = x1;
test = x1(i);
train(i) = [];
mu1 = mean(train);
var1 = cov(train);
lr1(i) = csevalnorm(test,mu1,var1)./...

csevalnorm(test,mu2,var2);
end
% Find the actual pcc.
for i = 1:length(pfa)
 pcc(i) = length(find(lr1 >= thresh(i)));
end
pcc = pcc/n1;

The ROC curve is given in Figure 9.9. We estimate the area under the curve
as 0.91, using

area = sum(pcc)*.01;

�

9.4 Classification Trees

In this section, we present another technique for pattern recognition called
classification trees. Our treatment of classification trees follows that in the
book called Classification and Regression Trees by Breiman, Friedman, Olshen
and Stone [1984]. For ease of exposition, we do not include the MATLAB code
for the classification tree in the main body of the text, but we do include it in
Appendix D. There are several main functions that we provide to work with
trees, and these are summarized in Table 9.1. We will be using these functions
in the text when we discuss the classification tree methodology.

While Bayes decision theory yields a classification rule that is intuitively
appealing, it does not provide insights about the structure or the nature of the
classification rule or help us determine what features are important. Classifi-
cation trees can yield complex decision boundaries, and they are appropriate
for ordered data, categorical data or a mixture of the two types. In this book,
© 2002 by Chapman & Hall/CRC

Chapter 9: Statistical Pattern Recognition 343

we will be concerned only with the case where all features are continuous
random variables. The interested reader is referred to Breiman, et al. [1984],
Webb [1999], and Duda, Hart and Stork [2001] for more information on the
other cases.

FFFFIIIIGUGUGUGURE 9.RE 9.RE 9.RE 9.9999

This shows the ROC curve for Example 9.8.

TTTTAAAABBBBLLLLEEEE 9999....1111

MATLAB Functions for Working with Classification Trees

Purpose MATLAB Function

Grows the initial large tree csgrowc

Gets a sequence of minimal complexity trees csprunec

Returns the class for a set of features, using
the decision tree

cstreec

Plots a tree csplotreec

Given a sequence of subtrees and an index for
the best tree, extract the tree (also cleans out
the tree)

cspicktreec

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC Curve

P(FA)

P
(

C
C

ω
1)

© 2002 by Chapman & Hall/CRC

344 Computational Statistics Handbook with MATLAB

A decision or classification tree represents a multi-stage decision process,
where a binary decision is made at each stage. The tree is made up of nodes
and branches, with nodes being designated as an internal or a terminal node.
Internal nodes are ones that split into two children, while terminal nodes do
not have any children. A terminal node has a class label associated with it,
such that observations that fall into the particular terminal node are assigned
to that class.

To use a classification tree, a feature vector is presented to the tree. If the
value for a feature is less than some number, then the decision is to move to
the left child. If the answer to that question is no, then we move to the right
child. We continue in that manner until we reach one of the terminal nodes,
and the class label that corresponds to the terminal node is the one that is
assigned to the pattern. We illustrate this with a simple example.

FFFFIIIIGUGUGUGURE 9.1RE 9.1RE 9.1RE 9.10000

This simple classification tree for two classes is used in Example 9.9. Here we make decisions
based on two features, and

Node 1

Node 2 Node 3

Node 4 Node 5

Node 6 Node 7

x1 < 5

Class 1

x2 < 10

Class 2x1 < 8

Class 2 Class 1

x1 x2.

© 2002 by Chapman & Hall/CRC

Chapter 9: Statistical Pattern Recognition 345

Example 9.9
We show a simple classification tree in Figure 9.10, where we are concerned
with only two features. Note that all internal nodes have two children and a
splitting rule. The split can occur on either variable, with observations that
are less than that value being assigned to the left child and the rest going to
the right child. Thus, at node 1, any observation where the first feature is less
than 5 would go to the left child. When an observation stops at one of the ter-
minal nodes, it is assigned to the corresponding class for that node. We illus-
trate these concepts with several cases. Say that we have a feature vector
given by then passing this down the tree, we get

.

If our feature vector is then we travel the tree as follows:

.

For a feature vector given by we have

.

�

We give a brief overview of the steps needed to create a tree classifier and
then explain each one in detail. To start the process, we must grow an overly
large tree using a criterion that will give us optimal splits for the tree. It turns
out that these large trees fit the training data set very well. However, they do
not generalize, so the rate at which we correctly classify new patterns is low.
The proposed solution [Breiman, et al., 1984] to this problem is to continually
prune the large tree using a minimal cost complexity criterion to get a
sequence of sub-trees. The final step is to choose a tree that is the ‘right size’
using cross-validation or an independent test sample. These three main pro-
cedures are described in the remainder of this section. However, to make
things easier for the reader, we first provide the notation that will be used to
describe classification trees.

CLASSIFICATION TREES - NOTATION

 denotes a learning set made up of observed feature vectors and
their class label.

J denotes the number of classes.

T is a classification tree.

t represents a node in the tree.

x 4 6,() ,=

node 1 node 2 ω1⇒→

x 6 6,(),=

node 1 node 3 node 4 node 6 ω2⇒→ → →

x 10 12,(),=

node 1 node 3 node 5 ω2⇒→ →

L

© 2002 by Chapman & Hall/CRC

346 Computational Statistics Handbook with MATLAB

 and are the left and right child nodes.

 is the tree containing only the root node.

 is a branch of tree T starting at node t.

 is the set of terminal nodes in the tree.

 is the number of terminal nodes in tree T.

 is the node that is the weakest link in tree .

n is the total number of observations in the learning set.

 is the number of observations in the learning set that belong to the
j-th class , .

 is the number of observations that fall into node t.

 is the number of observations at node t that belong to class .

 is the prior probability that an observation belongs to class .
This can be estimated from the data as

. (9.11)

 represents the joint probability that an observation will be in
node t and it will belong to class . It is calculated using

. (9.12)

 is the probability that an observation falls into node t and is
given by

. (9.13)

 denotes the probability that an observation is in class given
it is in node t. This is calculated from

. (9.14)

 represents the resubstitution estimate of the probability of mis-
classification for node t and a given classification into class . This

tL tR

t1{ }

Tt

T

)

T

)

tk∗ Tk

nj

ωj j 1 … J, ,=

n t()

nj t() ωj

π j ωj

π̂j
nj

n
----=

p ωj t,()
ωj

p ωj t,() πjnj t()
nj

----------------=

p t()

p t() p ωj t,()
j 1=

J

∑=

p ωj t() ωj

p ω j t() p ω j t,()
p t()

------------------=

r t()
ω j

© 2002 by Chapman & Hall/CRC

Chapter 9: Statistical Pattern Recognition 347

is found by subtracting the maximum conditional probability
 for the node from 1:

. (9.15)

 is the resubstitution estimate of risk for node t. This is

. (9.16)

 denotes a resubstitution estimate of the overall misclassification
rate for a tree T. This can be calculated using every terminal node
in the tree as follows

. (9.17)

 is the complexity parameter.

 denotes a measure of impurity at node t.

 represents the decrease in impurity and indicates the good-
ness of the split s at node t. This is given by

. (9.18)

 and are the proportion of data that are sent to the left and right
child nodes by the split s.

Growing theGrowing theGrowing theGrowing the TTTTreereereeree

The idea behind binary classification trees is to split the d-dimensional space
into smaller and smaller partitions, such that the partitions become purer in
terms of the class membership. In other words, we are seeking partitions
where the majority of the members belong to one class. To illustrate these
ideas, we use a simple example where we have patterns from two classes,
each one containing two features, and . How we obtain these data are
discussed in the following example.

Example 9.10
We use synthetic data to illustrate the concepts of classification trees. There
are two classes, and we generate 50 points from each class. From Figure 9.11,
we see that each class is a two term mixture of bivariate uniform random
variables.

p ωj t()

r t() 1 max
j

p ωj t(){ }–=

R t()

R t() r t()p t()=

R T()

R T() r t()p t()
t T∈

∑ R t()
t T∈

∑= =

))

α

i t()

∆i s t,()

∆i s t,() i t() pRi tR() pLi tL()––=

pL pR

x1 x2

© 2002 by Chapman & Hall/CRC

348 Computational Statistics Handbook with MATLAB

% This shows how to generate the data that will be used
% to illustrate classification trees.
deln = 25;
data(1:deln,:) = rand(deln,2)+.5;
so=deln+1; sf = 2*deln;
data(so:sf,:) = rand(deln,2)-.5;
so=sf+1; sf = 3*deln;
data(so:sf,1) = rand(deln,1)-.5;
data(so:sf,2) = rand(deln,1)+.5;
so=sf+1; sf = 4*deln;
data(so:sf,1) = rand(deln,1)+.5;
data(so:sf,2) = rand(deln,1)-.5;

A scatterplot of these data is given in Figure 9.11. One class is depicted by the
‘*’ and the other is represented by the ‘o’. These data are available in the file
called cartdata, so the user can load them and reproduce the next several
examples.
�

FFFFIIIIGUGUGUGURE 9.RE 9.RE 9.RE 9.11111111

This shows a scatterplot of the data that will be used in our classification tree examples.
Data that belong to class 1 are shown by the ‘*’, and those that belong to class 2 are denoted
by an ‘o’.

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

Feature − x
1

F
ea

tu
re

 −
 x

2

Learning Sample

© 2002 by Chapman & Hall/CRC

Chapter 9: Statistical Pattern Recognition 349

To grow a tree, we need to have some criterion to help us decide how to
split the nodes. We also need a rule that will tell us when to stop splitting the
nodes, at which point we are finished growing the tree. The stopping rule can
be quite simple, since we first grow an overly large tree. One possible choice
is to continue splitting terminal nodes until each one contains observations
from the same class, in which case some nodes might have only one observa-
tion in the node. Another option is to continue splitting nodes until there is
some maximum number of observations left in a node or the terminal node
is pure (all observations belong to one class). Recommended values for the
maximum number of observations left in a terminal node are between 1
and 5.

We now discuss the splitting rule in more detail. When we split a node, our
goal is to find a split that reduces the impurity in some manner. So, we need
a measure of impurity i(t) for a node t. Breiman, et al. [1984] discuss several
possibilities, one of which is called the Gini diversity index. This is the one
we will use in our implementation of classification trees. The Gini index is
given by

, (9.19)

which can also be written as

. (9.20)

Equation 9.20 is the one we code in the MATLAB function csgrowc for
growing classification trees.

Before continuing with our description of the splitting process, we first
note that our use of the term ‘best’ does not necessarily mean that the split we
find is the optimal one out of all the infinite possible splits. To grow a tree at
a given node, we search for the best split (in terms of decreasing the node
impurity) by first searching through each variable or feature. We have d pos-
sible best splits for a node (one for each feature), and we choose the best one
out of these d splits. The problem now is to search through the infinite num-
ber of possible splits. We can limit our search by using the following conven-
tion. For all feature vectors in our learning sample, we search for the best split
at the k-th feature by proposing splits that are halfway between consecutive
values for that feature. For each proposed split, we evaluate the impurity cri-
terion and choose the split that yields the largest decrease in impurity.

Once we have finished growing our tree, we must assign class labels to the
terminal nodes and determine the corresponding misclassification rate. It
makes sense to assign the class label to a node according to the likelihood that
it is in class given that it fell into node t. This is the posterior probability

i t() p ωi t()p ωj t()
i j≠
∑=

i t() 1 p2 ωj t()
j 1=

J

∑–=

ωj

© 2002 by Chapman & Hall/CRC

350 Computational Statistics Handbook with MATLAB

 given by Equation 9.14. So, using Bayes decision theory, we would
classify an observation at node t with the class that has the highest poste-
rior probability. The error in our classification is then given by Equation 9.15.
We summarize the steps for growing a classification tree in the following pro-
cedure. In the learning set, each observation will be a row in the matrix X, so
this matrix has dimensionality , representing d features and a class
label. The measured value of the k-th feature for the i-th observation is
denoted by .

PROCEDURE - GROWING A TREE

1. Determine the maximum number of observations that will be
allowed in a terminal node.

2. Determine the prior probabilities of class membership . These
can be estimated from the data (Equation 9.11), or they can be based
on prior knowledge of the application.

3. If a terminal node in the current tree contains more than the max-
imum allowed observations and contains observations from sev-
eral classes, then search for the best split. For each feature k,

a. Put the in ascending order to give the ordered values .
b. Determine all splits in the k-th feature using

c. For each proposed split, evaluate the impurity function and
the goodness of the split using Equations 9.20 and 9.18.

d. Pick the best, which is the one that yields the largest decrease
in impurity.

4. Out of the k best splits in step 3, split the node on the variable that
yields the best overall split.

5. For that split found in step 4, determine the observations that go
to the left child and those that go to the right child.

6. Repeat steps 3 through 5 until each terminal node satisfies the
stopping rule (has observations from only one class or has the
maximum allowed cases in the node).

Example 9.11
In this example, we grow the initial large tree on the data set given in the pre-
vious example. We stop growing the tree when each terminal node has a
maximum of 5 observations or the node is pure. We first load the data that we
generated in the previous example. This file contains the data matrix, the
inputs to the function csgrowc, and the resulting tree.

p ωj t()
ωj

n d 1+()×

xik

nmax

πj

xik x i()k

s i()k

s i()k x i()k x i()k x i 1+()k–() 2⁄+=

i t()

© 2002 by Chapman & Hall/CRC

Chapter 9: Statistical Pattern Recognition 351

load cartdata
% Loads up data.
% Inputs to function - csgrowc.
maxn = 5; % maximum number in terminal nodes
clas = [1 2]; % class labels
pies = [0.5 0.5]; % optional prior probabilities
Nk = [50, 50]; % number in each class

The following MATLAB commands grow the initial tree and plot the results
in Figure 9.12.

tree = csgrowc(X,maxn,clas,Nk,pies);
csplotreec(tree)

We see from Figure 9.12, that the tree has partitioned the feature space into
eight decision regions or eight terminal nodes.
�

FFFFIIIIGUGUGUGURE 9.1RE 9.1RE 9.1RE 9.12222

This is the classification tree for the data shown in Figure 9.11. This tree partitions the feature
space into 8 decision regions.

x1 < 0.031

x2 < 0.51 x2 < 0.58

C− 1 C− 2
x1 < 0.49 x1 < 0.5

x2 < 0.48 x2 < 0.5
C− 2 C− 1

C− 1 C− 2C− 2 C− 1

© 2002 by Chapman & Hall/CRC

352 Computational Statistics Handbook with MATLAB

PPPPrrrruning theuning theuning theuning the TTTTrrrreeeeeeee

Recall that the classification error for a node is given by Equation 9.15. If we
grow a tree until each terminal node contains observations from only one
class, then the error rate will be zero. Therefore, if we use the classification
error as a stopping criterion or as a measure of when we have a good tree,
then we would grow the tree until there are pure nodes. However, as we men-
tioned before, this procedure over fits the data and the classification tree will
not generalize well to new patterns. The suggestion made in Breiman, et al.
[1984] is to grow an overly large tree, denoted by , and then to find a
nested sequence of subtrees by successively pruning branches of the tree. The
best tree from this sequence is chosen based on the misclassification rate esti-
mated by cross-validation or an independent test sample. We describe the
two approaches after we discuss how to prune the tree.

The pruning procedure uses the misclassification rates along with a cost for
the complexity of the tree. The complexity of the tree is based on the number
of terminal nodes in a subtree or branch. The cost complexity measure is
defined as

. (9.21)

We look for a tree that minimizes the cost complexity given by Equation 9.21.
The is a parameter that represents the complexity cost per terminal node.
If we have a large tree where every terminal node contains observations from
only one class, then will be zero. However, there will be a penalty paid
because of the complexity, and the cost complexity measure becomes

.

If is small, then the penalty for having a complex tree is small, and the
resulting tree is large. The tree that minimizes will tend to have few
nodes and large .

Before we go further with our explanation of the pruning procedure, we
need to define what we mean by the branches of a tree. A branch of a tree
T consists of the node and all its descendent nodes. When we prune or
delete this branch, then we remove all descendent nodes of , leaving the
branch root node . For example, using the tree in Figure 9.10, the branch cor-
responding to node 3 contains nodes 3, 4, 5, 6, and 7, as shown in Figure 9.13.
If we delete that branch, then the remaining nodes are 1, 2, and 3.

Minimal complexity pruning searches for the branches that have the weak-
est link, which we then delete from the tree. The pruning process produces a
sequence of subtrees with fewer terminal nodes and decreasing complexity.

We start with our overly large tree and denote this tree as . We are
searching for a finite sequence of subtrees such that

Tmax

Rα T() R T() α T ;+= α 0≥

)

α

R T()

Rα T() α T=

)

α
Rα T()

α

Tt

t
t

t

Tmax

© 2002 by Chapman & Hall/CRC

Chapter 9: Statistical Pattern Recognition 353

.

Note that the starting point for this sequence is the tree . Tree is found
in a way that is different from the other subtrees in the sequence. We start off
with , and we look at the misclassification rate for the terminal node
pairs (both sibling nodes are terminal nodes) in the tree. It is shown in
Breiman, et al. [1984] that

. (9.22)

Equation 9.22 indicates that the misclassification error in the parent node is
greater than or equal to the sum of the error in the children. We search
through the terminal node pairs in looking for nodes that satisfy

, (9.23)

and we prune off those nodes. These splits are ones that do not improve the
overall misclassification rate for the descendants of node t. Once we have
completed this step, the resulting tree is .

FFFFIIIIGUGUGUGURE 9.1RE 9.1RE 9.1RE 9.13333

These are the nodes that comprise the branch corresponding to node 3.

Node 3

Node 4 Node 5

Node 6 Node 7

Tmax T1 T2 … TK> > > > t1{ }=

T1 T1

Tmax

R t() R tL() R tR()+≥

Tmax

R t() R tL() R tR()+=

T1

© 2002 by Chapman & Hall/CRC

354 Computational Statistics Handbook with MATLAB

There is a continuum of values for the complexity parameter , but if a tree
 is a tree that minimizes for a given , then it will continue to

minimize it until a jump point for is reached. Thus, we will be looking for
a sequence of complexity values and the trees that minimize the cost com-
plexity measure for each level. Once we have our tree , we start pruning
off the branches that have the weakest link. To find the weakest link, we first
define a function on a tree as follows

(9.24)

where is the branch corresponding to the internal node t of subtree .
From Equation 9.24, for every internal node in tree , we determine the
value for . We define the weakest link in tree as the internal node
t that minimizes Equation 9.24,

. (9.25)

Once we have the weakest link, we prune the branch defined by that node.
The new tree in the sequence is obtained by

, (9.26)

where the subtraction in Equation 9.26 indicates the pruning process. We set
the value of the complexity parameter to

. (9.27)

The result of this pruning process will be a decreasing sequence of trees,

,

along with an increasing sequence of values for the complexity parameter

.

We need the following key fact when we describe the procedure for choosing
the best tree from the sequence of subtrees:

α
T α() Rα T() α

α
α

T1

gk t()
R t() R Tkt()–

T kt 1–
--------------------------------- t is an internal node,=)

Tkt Tt Tk

Tk

gk t() tk∗ Tk

gk tk∗() mint gk t(){ }=

Tk 1+ Tk Ttk
∗–=

αk 1+ gk tk∗()=

Tmax T1 T2 … TK> > > > t1{ }=

0 α1 … αk αk 1+ … αK< < < < <=

© 2002 by Chapman & Hall/CRC

Chapter 9: Statistical Pattern Recognition 355

For , the tree is the minimal cost complexity tree for the
interval , and

.

PROCEDURE - PRUNING THE TREE

1. Start with a large tree .
2. Find the first tree in the sequence by searching through all

te r m in a l n o de p a i r s . F o r e a ch o f t h e s e p a i r s , i f
, then delete nodes and .

3. For all internal nodes in the current tree, calculate as given
in Equation 9.24.

4. The weakest link is the node that has the smallest value for .

5. Prune off the branch that has the weakest link.
6. Repeat steps 3 through 5 until only the root node is left.

Example 9.12
We continue with the same data set from the previous examples. We apply
the pruning procedure to the large tree obtained in Example 9.11. The prun-
ing function for classification trees is called csprunec. The input argument
is a tree, and the output argument is a cell array of subtrees, where the first
tree corresponds to tree and the last tree corresponds to the root node.

treeseq = csprunec(tree);
K = length(treeseq);
alpha = zeros(1,K);
% Find the sequence of alphas.
% Note that the root node corresponds to K,
% the last one in the sequence.
for i = 1:K

alpha(i) = treeseq{i}.alpha;
end

The resulting sequence for is

alpha = 0, 0.01, 0.03, 0.07, 0.08, 0.10.

We see that as k increases (or, equivalently, the complexity of the tree
decreases), the complexity parameter increases. We plot two of the subtrees
in Figures 9.14 and 9.15. Note that tree with has fewer terminal
nodes than tree with .
�

k 1≥ Tk

αk α αk 1+<≤

T α() T αk() Tk= =

Tmax

T1

R t() R tL() R tR()+= tL tR

gk t()

gk t()

T1

α

T5 α 0.08=
T3 α 0.03=

© 2002 by Chapman & Hall/CRC

356 Computational Statistics Handbook with MATLAB

ChoosinChoosinChoosinChoosingggg ththththeeee BeBeBeBesssstttt TTTTrrrreeeeeeee

In the previous section, we discussed the importance of using independent
test data to evaluate the performance of our classifier. We now use the same
procedures to help us choose the right size tree. It makes sense to choose a
tree that yields the smallest true misclassification cost, but we need a way to
estimate this.

The values for misclassification rates that we get when constructing a tree
are really estimates using the learning sample. We would like to get less
biased estimates of the true misclassification costs, so we can use these values
to choose the tree that has the smallest estimated misclassification rate. We
can get these estimates using either an independent test sample or cross-val-
idation. In this text, we cover the situation where there is a unit cost for mis-
classification and the priors are estimated from the data. For a general
treatment of the procedure, the reader is referred to Breiman, et al. [1984].

FFFFIIIIGUGUGUGURE 9.1RE 9.1RE 9.1RE 9.14444

This is the subtree corresponding to from Example 9.12. For this tree,

x1 < 0.031

C− 1
x2 < 0.58

C− 2
x1 < 0.5

C− 2 C− 1

Subtree − T
5

k 5= α 0.08.=

© 2002 by Chapman & Hall/CRC

Chapter 9: Statistical Pattern Recognition 357

SSSSeleeleeleeleccccttttinininingggg ththththeeee BBBBeeeestststst TTTTrrrreeeee Using an Indepe Using an Indepe Using an Indepe Using an Indepeeeendentndentndentndent TTTTeeeestststst SSSSamplamplamplampleeee

We first describe the independent test sample case, because it is easier to
understand. The notation that we use is summarized below.

NOTATION - INDEPENDENT TEST SAMPLE METHOD

 is the subset of the learning sample L that will be used for building
the tree.

 is the subset of the learning sample L that will be used for testing
the tree and choosing the best subtree.

 is the number of cases in .

 is the number of observations in that belong to class .

FFFFIIIIGUGUGUGURE 9.1RE 9.1RE 9.1RE 9.15555

Here is the subtree corresponding to from Example 9.12. For this tree,

x1 < 0.031

x2 < 0.51 x2 < 0.58

C− 1 C− 2
x1 < 0.49 x1 < 0.5

C− 1 C− 2C− 2 C− 1

Subtree − T
3

k 3= α 0.03.=

L1

L2

n 2() L2

nj
2() L2 ωj

© 2002 by Chapman & Hall/CRC

358 Computational Statistics Handbook with MATLAB

 is the number of observations in that belong to class that
were classified as belonging to class .

 represents the estimate of the probability that a case be-
longing to class is classified as belonging to class , using the
independent test sample method.

 is an estimate of the expected cost of misclassifying patterns
in class , using the independent test sample.

 is the estimate of the expected misclassification cost for the
tree represented by using the independent test sample method.

If our learning sample is large enough, we can divide it into two sets, one
for building the tree and one for estimating the misclassification costs. We use
the set to build the tree and to obtain the sequence of pruned sub-
trees. This means that the trees have never seen any of the cases in the second
sample . So, we present all observations in to each of the trees to obtain
an honest estimate of the true misclassification rate of each tree.

Since we have unit cost and estimated priors given by Equation 9.11, we
can write as

. (9.28)

Note that if it happens that the number of cases belonging to class is zero
(i.e.,), then we set . We can see from Equation 9.28
that this estimate is given by the proportion of cases that belong to class
that are classified as belonging to class .

The total proportion of observations belonging to class that are misclas-
sified is given by

. (9.29)

This is our estimate of the expected misclassification cost for class . Finally,
we use the total proportion of test cases misclassified by tree T as our estimate
of the misclassification cost for the tree classifier. This can be calculated using

. (9.30)

Equation 9.30 is easily calculated by simply counting the number of misclas-
sified observations from and dividing by the total number of cases in the
test sample.

nij
2() L2 ω j

ωi

Q̂
TS ωi ωj()

ωj ωi

R̂
TS ωj()

ωj

R̂
TS

Tk()
Tk

L1 Tmax

L2 L2

Q̂
TS ωi ωj()

Q̂
TS ωi ωj() nij

2()

nj
2()

--------=

ωj

nj
2() 0= Q̂

TS ωi ωj() 0=
ω j

ωi

ωj

R̂
TS ωj() Q̂

TS ωi ωj()
i

∑=

ωj

R̂
TS

Tk() 1

n 2()
-------- nij

2()

i j,
∑=

L2

© 2002 by Chapman & Hall/CRC

Chapter 9: Statistical Pattern Recognition 359

The rule for picking the best subtree requires one more quantity. This is the
standard error of our estimate of the misclassification cost for the trees. In our
case, the prior probabilities are estimated from the data, and we have unit
cost for misclassification. Thus, the standard error is estimated by

, (9.31)

where is the number of cases in the independent test sample.
To choose the right size subtree, Breiman, et al. [1984] recommend the fol-

lowing. First find the tree that gives the smallest value for the estimated mis-
classification error. Then we add the standard error given by Equation 9.31 to
that misclassification error. Find the smallest tree (the tree with the largest
subscript k) such that its misclassification cost is less than the minimum mis-
classification plus its standard error. In essence, we are choosing the least
complex tree whose accuracy is comparable to the tree yielding the minimum
misclassification rate.

PROCEDURE - CHOOSING THE BEST SUBTREE - TEST SAMPLE METHOD

1. Randomly partition the learning set into two parts, and or
obtain an independent test set by randomly sampling from the
population.

2. Using , grow a large tree .
3. Prune to get the sequence of subtrees .

4. For each tree in the sequence, take the cases in and present them
to the tree.

5. Count the number of cases that are misclassified.

6. Calculate the estimate for using Equation 9.30.
7. Repeat steps 4 through 6 for each tree in the sequence.

8. Find the minimum error

.

9. Calculate the standard error in the estimate of using
Equation 9.31.

10. Add the standard error to to get

.

SÊ R̂
TS

Tk()() R̂
TS

Tk() 1 R̂
TS

Tk()–() n 2()⁄

1 2⁄

=

n 2()

L1 L2

L1 Tmax

Tmax Tk

L2

R̂
TS

Tk()

R̂min
TS

min
k

R̂
TS

Tk(){ }=

R̂min
TS

R̂min
TS

R̂min
TS

SÊ R̂min
TS()+

© 2002 by Chapman & Hall/CRC

360 Computational Statistics Handbook with MATLAB

11. Find the tree with the fewest number of nodes (or equivalently,
the largest k) such that its misclassification error is less than the
amount found in step 10.

Example 9.13
We implement this procedure using the sequence of trees found in
Example 9.12. Since our sample was small, only 100 points, we will not
divide this into a testing and training set. Instead, we will simply generate
another set of random variables from the same distribution. The testing set
we use in this example is contained in the file cartdata. First we generate
the data that belong to class 1.

% Priors are 0.5 for both classes.
% Generate 200 data points for testing.
% Find the number in each class.
n = 200;
u = rand(1,n);
% Find the number in class 1.
n1 = length(find(u<=0.5));
n2 = n - n1;
% Generate the ones for class 1
% Half are upper right corner, half are lower left
data1 = zeros(n1,2);
u = rand(1,n1);
n11 = length(find(u<=0.5));
n12 = n1 - n11;
data1(1:n11,:) = rand(n11,2)+.5;
data1(n11+1:n1,:) = rand(n12,2)-.5;

Next we generate the data points for class 2.

% Generate the ones for class 2.
% Half are in lower right corner, half are upper left.
data2 = rand(n2,2);
u = rand(1,n2);
n21 = length(find(u<=0.5));
n22 = n2 - n21;
data2(1:n21,1) = rand(n21,1)-.5;
data2(1:n21,2) = rand(n21,1)+.5;
data2(n21+1:n2,1) = rand(n22,1)+.5;
data2(n21+1:n2,2) = rand(n22,1)-.5;

Now we determine the misclassification rate for each tree in the sequence
using the independent test cases. The function cstreec returns the class
label for a given feature vector.

% Now check the trees using independent test
% cases in data1 and data2.

© 2002 by Chapman & Hall/CRC

Chapter 9: Statistical Pattern Recognition 361

% Keep track of the ones misclassified.
K = length(treeseq);
Rk = zeros(1,K-1); % we do not check the root
for k = 1:K-1
nmis = 0;
treek = treeseq{k};
% loop through the cases from class 1
for i = 1:n1

[clas,pclass,node]=cstreec(data1(i,:),treek);
if clas ~= 1

nmis = nmis+1; % misclassified
end

end
% Loop through class 2 cases
for i = 1:n2

[clas,pclass,node] = cstreec(data2(i,:),treek);
if clas ~= 2

nmis = nmis+1; % misclassified
end

end
Rk(k) = nmis/n;

end

The estimated misclassification errors are:

Rk = 0.01, 0.035, 0.050, 0.19, 0.32.

We see that the minimum estimated misclassification error is the tree . We
show below how to use Equation 9.31 to get the estimated standard error.

% Find the minimum Rk.
[mrk,ind] = min(Rk);
% The tree T_1 corresponds to the minimum Rk.
% Now find the se for that one.
semrk = sqrt(mrk*(1-mrk)/n);
% The SE is 0.0070. We add that to min(Rk).
Rk2 = mrk+semrk;

When we add the estimated standard error of 0.007 to the minimum esti-
mated misclassification error, we get 0.017. None of the other trees in the
sequence has an error less than this, so tree is the one we would select as
the best tree.
�

SSSSeleeleeleeleccccttttinininingggg ththththeeee BBBBeeeestststst TTTTrrrreeeee Usinge Usinge Usinge Using CCCCross-ross-ross-ross-VVVVaaaalllliiiiddddaaaattttiiiionononon

We now turn our attention to the case where we use cross-validation to esti-
mate our misclassification error for the trees. In cross-validation, we divide

T1

T1

© 2002 by Chapman & Hall/CRC

362 Computational Statistics Handbook with MATLAB

our learning sample into several training and testing sets. We use the training
sets to build sequences of trees and then use the test sets to estimate the mis-
classification error.

In previous examples of cross-validation, our testing sets contained only
one observation. In other words, the learning sample was sequentially parti-
tioned into n test sets. As we discuss shortly, it is recommended that far fewer
than n partitions be used when estimating the misclassification error for trees
using cross-validation. We first provide the notation that will be used in
describing the cross-validation method for choosing the right size tree.

NOTATION - CROSS-VALIDATION METHOD

 denotes a partition of the learning sample L, such that

.

 is a tree grown using the partition .

 denotes the complexity parameter for a tree grown using the
partition .

 represents the estimate of the expected misclassification cost
for the tree using cross-validation.

We start the procedure by dividing the learning sample L into V partitions
. Breiman, et al. [1984] recommend a value of and show that cross-

validation using finer partitions does not significantly improve the results.
For better results, it is also recommended that systematic random sampling
be used to ensure a fixed fraction of each class will be in and . These
partitions are set aside and used to test our classification tree and to esti-
mate the misclassification error. We use the remainder of the learning set
to get a sequence of trees

,

for each training partition. Keep in mind that we have our original sequence
of trees that were created using the entire learning sample L, and that we are
going to use these sequences of trees to evaluate the classification perfor-
mance of each tree in the original sequence . Each one of these sequences
will also have an associated sequence of complexity parameters

.

At this point, we have sequences of subtrees and complexity parame-
ters.

Lv

L v() L Lv;–= v 1 … V, ,=

Tk
v() L v()

αk
v()

L v()

R̂
CV

T()

Lv V 10=

Lv L v()

Lv

L v()

Tmax
v() T1

v() … Tk
v() Tk 1+

v() … TK
v()> > > > > > t1{ }=

Tk
v()

Tk

0 α1
v() … αk

v() αk 1+
v() … αK

v()< < < < <=

V 1+

© 2002 by Chapman & Hall/CRC

Chapter 9: Statistical Pattern Recognition 363

We use the test samples along with the trees to determine the clas-
sification error of the subtrees . To accomplish this, we have to find trees
that have equivalent complexity to in the sequence of trees .

Recall that a tree is the minimal cost complexity tree over the range
. We define a representative complexity parameter for that

interval using the geometric mean

. (9.32)

The complexity for a tree is given by this quantity. We then estimate the
misclassification error using

, (9.33)

where the right hand side of Equation 9.33 is the proportion of test cases that
are misclassified, using the trees that correspond to the complexity
parameter .

To choose the best subtree, we need an expression for the standard error of
the misclassification error . When we present our test cases from the
partition , we record a zero or a one, denoting a correct classification and
an incorrect classification, respectively. We see then that the estimate in Equa-
tion 9.33 is the mean of the ones and zeros. We estimate the standard error of
this from

, (9.34)

where is times the sample variance of the ones and zeros.
The cross-validation procedure for estimating the misclassification error

when we have unit cost and the priors are estimated from the data is outlined
below.

PROCEDURE - CHOOSING THE BEST SUBTREE (CROSS-VALIDATION)

1. Obtain a sequence of subtrees that are grown using the learning
sample L.

2. Determine the cost complexity parameter for each using
Equation 9.32.

3. Partition the learning sample into V partitions, . These will be
used to test the trees.

4. For each , build the sequence of subtrees using . We should
now have sequences of trees.

Lv Tk
v()

Tk

Tk Tk
v()

Tk

αk α αk 1+<≤

α'k αkαk 1+=

Tk

R̂
CV

Tk() R̂
CV

T α'k()()=

Tk
v()

α'k

R̂
CV

Tk()
Lv

SÊ R̂
CV

Tk()() s2

n
----=

s2 n 1–() n⁄

Tk

α'k Tk

Lv

Lv L v()

V 1+

© 2002 by Chapman & Hall/CRC

364 Computational Statistics Handbook with MATLAB

5. Now find the estimated misclassification error . For
corresponding to , find all equivalent trees , .
We do this by choosing the tree such that

.

6. Take the test cases in each and present them to the tree
found in step 5. Record a one if the test case is misclassified and a
zero if it is classified correctly. These are the classification costs.

7. Calculate as the proportion of test cases that are misclas-
sified (or the mean of the array of ones and zeros found in step 6).

8. Calculate the standard error as given by Equation 9.34.

9. Continue steps 5 through 8 to find the misclassification cost for
each subtree .

10. Find the minimum error

.

11. Add the estimated standard error to it to get

.

12. Find the tree with the largest k or fewest number of nodes such
that its misclassification error is less than the amount found in
step 11.

Example 9.14
For this example, we return to the iris data, described at the beginning of
this chapter. We implement the cross-validation approach using . We
start by loading the data and setting up the indices that correspond to each
partition. The fraction of cases belonging to each class is the same in all test-
ing sets.

load iris
% Attach class labels to each group.
setosa(:,5)=1;
versicolor(:,5)=2;
virginica(:,5)=3;
X = [setosa;versicolor;virginica];
n = 150;% total number of data points
% These indices indicate the five partitions
% for cross-validation.
ind1 = 1:5:50;

R̂
CV

Tk() α'k
Tk Tk

v() v 1 … V, ,=
Tk

v()

α'k αk
v() αk 1+

v()),[∈

Lv Tk
v()

R̂
CV

Tk()

Tk

R̂min
CV

min
k

R̂
CV

Tk(){ }=

R̂min
CV

SÊ R̂min
CV()+

V 5=

© 2002 by Chapman & Hall/CRC

Chapter 9: Statistical Pattern Recognition 365

ind2 = 2:5:50;
ind3 = 3:5:50;
ind4 = 4:5:50;
ind5 = 5:5:50;

Next we set up all of the testing and training sets. We use the MATLAB eval
function to do this in a loop.

% Get the testing sets: test1, test2, ...
for i = 1:5
eval(['test' int2str(i) '=[setosa(ind' int2str(i)
',:);versicolor(ind' int2str(i) ...
',:);virginica(ind' int2str(i) ',:)];'])

end
for i = 1:5
tmp1 = setosa;
tmp2 = versicolor;
tmp3 = virginica;
% Remove points that are in the test set.
eval(['tmp1(ind' int2str(i) ',:) = [];'])
eval(['tmp2(ind' int2str(i) ',:) = [];'])
eval(['tmp3(ind' int2str(i) ',:) = [];'])
eval(['train' int2str(i) '= [tmp1;tmp2;tmp3];'])

end

Now we grow the trees using all of the data and each training set.

% Grow all of the trees.
pies = ones(1,3)/3;
maxn = 2;% get large trees
clas = 1:3;
Nk = [50,50,50];
tree = csgrowc(X,maxn,clas,Nk,pies);
Nk1 = [40 40 40];
for i = 1:5
eval(['tree' int2str(i) '= ,...

csgrowc(train',...
int2str(i) ',maxn,clas,Nk1,pies);'])

end

The following MATLAB code gets all of the sequences of pruned subtrees:

% Now prune each sequence.
treeseq = csprunec(tree);
for i = 1:5
eval(['treeseq' int2str(i) '=,...

csprunec(tree' int2str(i) ');'])
end

© 2002 by Chapman & Hall/CRC

366 Computational Statistics Handbook with MATLAB

The complexity parameters must be extracted from each sequence of sub-
trees. We show how to get this for the main tree and for the sequences of sub-
trees grown on the first partition. This must be changed appropriately for
each of the remaining sequences of subtrees.

K = length(treeseq);
alpha = zeros(1,K);
% Find the sequence of alphas.
for i = 1:K
alpha(i) = treeseq{i}.alpha;

end
% For the other subtree sequences, change the
% 1 to 2, 3, 4, 5 and re-run.
K1 = length(treeseq1);
for i = 1:K1
alpha1(i) = treeseq1{i}.alpha;

end

We need to obtain the equivalent complexity parameters for the main
sequence of trees using Equation 9.32. We do this in MATLAB as follows:

% Get the akprime equivalent values for the main tree.
for i = 1:K-1

akprime(i) = sqrt(alpha(i)*alpha(i+1));
end

We must now loop through all of the subtrees in the main sequence, find the
equivalent subtrees in each partition and use those trees to classify the cases
in the corresponding test set. We show a portion of the MATLAB code here
to illustrate how we find the equivalent subtrees. The complete steps are con-
tained in the M-file called ex9_14.m (downloadable with the Computa-
tional Statistics Toolbox). In addition, there is an alternative way to
implement cross-validation using cell arrays (courtesy of Tom Lane, The
MathWorks). The complete procedure can be found in ex9_14alt.m.

n = 150;
k = length(akprime);
misclass = zeros(1,n);
% For the first tree, find the
% equivalent tree from the first partition
ind = find(alpha1 <= akprime(1));
% Should be the last one.
% Get the tree that corresponds to that one.
tk = treeseq1{ind(end)};
% Get the misclassified points in the test set.
for j = 1:30 % loop through the points in test 1
[c,pclass,node] = cstreec(test1(j,1:4),tk);
if c ~= test1(j,5)

© 2002 by Chapman & Hall/CRC

Chapter 9: Statistical Pattern Recognition 367

misclass(j) = 1;
end

end

We continue in this manner using all of the subtrees. The estimated misclas-
sification error using cross-validation is

Rk = 0.047, 0.047, 0.047, 0.067, 0.21, 0.41,

and the estimated standard error for is 0.017. When we add this to the
minimum of the estimated errors, we get 0.064. We see that the tree with the
minimum complexity that has error less than this is tree . All of the data
and variables that are generated in this example can be loaded from
irisexamp.mat.
�

9.5 Clustering

Clustering methodology is used to explore a data set where the goal is to sep-
arate the sample into groups or to provide understanding about the underly-
ing structure or nature of the data. The results from clustering methods can
be used to prototype supervised classifiers or to generate hypotheses. Clus-
tering is called unsupervised classification because we typically do not know
what groups there are in the data or the group membership of an individual
observation. In this section, we discuss two main methods for clustering. The
first is hierarchical clustering, and the second method is called k-means clus-
tering. First, however, we cover some preliminary concepts.

MeMeMeMeaaaasusususurrrreeees ofs ofs ofs of DistanDistanDistanDistancccceeee

The goal of clustering is to partition our data into groups such that the obser-
vations that are in one group are dissimilar to those in other groups. We need
to have some way of measuring that dissimilarity, and there are several mea-
sures that fit our purpose.

The first measure of dissimilarity is the Euclidean distance given by

, (9.35)

where is a column vector representing one observation. We could also use
the Mahalanobis distance defined as

, (9.36)

R̂min
CV

T3

drs xr xs–()T xr xs–()=

xr

drs xr xs–()TΣ 1– xr xs–()=

© 2002 by Chapman & Hall/CRC

368 Computational Statistics Handbook with MATLAB

where denotes the inverse covariance matrix. The city block distance is
found using absolute values rather than squared distances, and it is calcu-
lated using

. (9.37)

In Equation 9.37, we take the absolute value of the difference between the
observations and componentwise and then add up the values. The final
distance that we present covers the more general case of the Euclidean dis-
tance or the city block distance. This is called the Minkowski distance, and it
is found using

. (9.38)

If , then we have the city block distance, and if we have the
Euclidean distance.

The researcher should be aware that distances might be affected by differ-
ing scales or magnitude among the variables. For example, suppose our data
measured two variables: age and annual income in dollars. Because of its
magnitude, the income variable could influence the distances between obser-
vations, and we would end up clustering mostly on the incomes. In some sit-
uations, we might want to standardize the observations. The MATLAB
Statistics Toolbox contains a function called zscore that will perform this
standardization.

The MATLAB Statistics Toolbox also has a function that calculates dis-
tances. It is called pdist and takes as its argument a matrix X that is dimen-
sion . Each row represents an observation in our data set. The pdist
function returns a vector containing the distance information. The default
distance is Euclidean, but the user can specify other distances as discussed
above. We illustrate the use of this function in the following example.

Example 9.15
We use a small data set to illustrate the various distances available in the
MATLAB Statistics Toolbox. We have only five data points. The following
commands set up the matrix of values and plots the points in Figure 9.16.

% Let's make up a data set - 2-D.
x = [1 1; 1 2; 2 1; -1 -1; -1 -2];
plot(x(:,1),x(:,2),'kx') % plots the points.
axis([-3 3 -3 3])
text(x(:,1)+.1,x(:,2)+.1,'1|2|3|4|5');

Σ 1–

drs xrj xsj–

j 1=

d

∑=

xr xs

drs xrj xsj– p

j 1=

d

∑

1 p⁄

=

p 1= p 2=

n d×

© 2002 by Chapman & Hall/CRC

Chapter 9: Statistical Pattern Recognition 369

We first find the Euclidean distance between the points using the pdist
function. We also illustrate the use of the function squareform that puts the
distances in a more familiar matrix form, where the ij-th element corresponds
to the distance between the i-th and j-th observation.

% Find the Euclidean distance using pdist.
% Convert to matrix form for easier reading.
ye = pdist(x,'euclid');
ye_mat = squareform(ye);

The matrix we get from this is

ye_mat =

 0 1.0000 1.0000 2.8284 3.6056
 1.0000 0 1.4142 3.6056 4.4721
 1.0000 1.4142 0 3.6056 4.2426
 2.8284 3.6056 3.6056 0 1.0000
 3.6056 4.4721 4.2426 1.0000 0

We contrast this with the city block distance.

% Contrast with city block metric.
ycb = pdist(x,'cityblock');
ycb_mat = squareform(ycb);

The result we get from this is

ycb_mat =
0 1 1 4 5

 1 0 2 5 6
 1 2 0 5 6
 4 5 5 0 1
 5 6 6 1 0

�

HiHiHiHieeeerrrrarchiarchiarchiarchiccccal Clusteral Clusteral Clusteral Clusteriiiingngngng

There are two types of hierarchical clustering methods: agglomerative and
divisive. Divisive methods start with one large group and successively split
the groups until there are n groups with one observation per group. In gen-
eral, methods for this type of hierarchical clustering are computationally inef-
ficient [Webb, 1999], so we do not discuss them further. Agglomerative
methods are just the opposite; we start with n groups (one observation per
group) and successively merge the two most similar groups until we are left
with only one group.

There are five commonly used methods for merging clusters in agglomer-
ative clustering. These are single linkage, complete linkage, average linkage,

© 2002 by Chapman & Hall/CRC

370 Computational Statistics Handbook with MATLAB

centroid linkage and Ward’s method. The MATLAB Statistics Toolbox pro-
vides a function called linkage that will perform agglomerative clustering
using any of these methods. Its use is illustrated in the next example, but first
we briefly describe each of the methods [Hair, et al., 1995].

The single linkage method uses minimum distance, where the distance
between clusters is defined as the distance between the closest pair of obser-
vations. Pairs consisting of one case from each group are used in the calcula-
tion. The first cluster is formed by merging the two groups with the shortest
distance. Then the next smallest distance is found between all of the clusters
(keep in mind that an observation is also a cluster). The two clusters corre-
sponding to the smallest distance are then merged. The process continues in
this manner until there is one group. In some cases, single linkage can lead to
chaining of the observations, where those on the ends of the chain might be
very dissimilar.

The process for the complete linkage method is similar to single linkage,
but the clustering criterion is different. The distance between groups is
defined as the most distant pair of observations, with one coming from each
group. The logic behind using this type of similarity criterion is that the max-
imum distance between observations in each cluster represents the smallest
sphere that can enclose all of the objects in both clusters. Thus, the closest of
these cluster pairs should be grouped together. The complete linkage method
does not have the chaining problem that single linkage has.

FFFFIIIIGUGUGUGURE 9.1RE 9.1RE 9.1RE 9.16666

These are the observations used in Example 9.15. Two clusters are clearly seen.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

1

2

3

4

5

X
1

X
2

© 2002 by Chapman & Hall/CRC

Chapter 9: Statistical Pattern Recognition 371

The average linkage method for clustering starts out the same way as sin-
gle and complete linkage. In this case, the cluster criterion is the average dis-
tance between all pairs, where one member of the pair comes from each
cluster. Thus, we find all pairwise distances between observations in each
cluster and take the average. This linkage method tends to combine clusters
with small variances and to produce clusters with approximately equal vari-
ance.

Centroid linkage calculates the distance between two clusters as the dis-
tance between the centroids. The centroid of a cluster is defined as the d-
dimensional sample mean for those observations that belong to the cluster.
Whenever we merge clusters together or add an observation to a cluster, the
centroid is recalculated.

The distance between two clusters using Ward’s linkage method is defined
as the incremental sum of the squares between two clusters. To merge clus-
ters, the within-group sum-of-squares is minimized over all possible parti-
tions obtained by combining two clusters. The within-group sum-of-squares
is defined as the sum of the squared distances between all observations in a
cluster and its centroid. This method tends to produce clusters with approx-
imately the same number of observations in each one.

Example 9.16
We illustrate the linkage function using the data and distances from the
previous example. We look only at single linkage and complete linkage using
the Euclidean distances. We show the results of the clustering in dendro-
grams given in Figures 9.17 and 9.18.

% Get the cluster output from the linkage function.
zsingle = linkage(ye,'single');
zcomplete = linkage(ye,'complete');
% Get the dendrogram.
dendrogram(zsingle)
title('Clustering - Single Linkage')
dendrogram(zcomplete)
title('Clustering - Complete Linkage')

A dendrogram shows the links between objects as inverted U-shaped lines,
where the height of the U represents the distance between the objects. The
cases are listed along the horizontal axis. Cutting the tree at various y values
of the dendrogram yields different clusters. For example, cutting the com-
plete linkage tree at would yield 3 clusters. As expected, if we choose
to create two clusters, then the two linkage methods give the same cluster
definitions.
�

Now that we have our cases clustered, we would like to measure the valid-
ity of the clustering. One way to do this would be to compare the distances
between all observations with the links in the dendrogram. If the clustering

y 1.2=

© 2002 by Chapman & Hall/CRC

372 Computational Statistics Handbook with MATLAB

FFFFIIIIGUGUGUGURE 9.1RE 9.1RE 9.1RE 9.17777

This is the dendrogram using Euclidean distances and single linkage.

FFFFIIIIGUGUGUGURE 9.1RE 9.1RE 9.1RE 9.18888

This is the dendrogram using Euclidean distances and complete linkage.

1 2 3 4 5
0

0.5

1

1.5

2

2.5

Clustering − Single Linkage

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Clustering − Complete Linkage

© 2002 by Chapman & Hall/CRC

Chapter 9: Statistical Pattern Recognition 373

is a valid one, then there should be a strong correlation between them. We can
measure this using the cophenetic correlation coefficient. A cophenetic
matrix is defined using the results of the linkage procedure. The ij-th entry of
the cophenetic matrix is the fusion level at which the i-th and j-th objects
appear together in the same cluster for the first time. The correlation coeffi-
cient between the distances and the corresponding cophenetic entries is the
cophenetic correlation coefficient. Large values indicate that the linkage pro-
vides a reasonable clustering of the data. The MATLAB Statistics Toolbox
provides a function that will calculate the cophenetic correlation coefficient.
Its use is illustrated in the following example.

Example 9.17
In this example, we show how to obtain the cophenetic correlation coefficient
in MATLAB. We use the same small data set from before and calculate the
cophenetic correlation coefficient when we have clusters based on different
distances and linkages. First, we get the clusters using the following com-
mands.

x = [1 1; 1 2; 2 1; -1 -1; -1 -2];
ye = pdist(x,'euclid');
ycb = pdist(x,'cityblock');
zsineu = linkage(ye,'single');
zcompeu = linkage(ye,'complete');
zsincb = linkage(ycb,'single');
zcomcb = linkage(ycb,'complete');

We now have four different cluster hierarchies. Their cophenetic correlation
coefficients can be found from the following:

ccompeu = cophenet(zcompeu,ye);
csineu = cophenet(zsineu,ye);
csincb = cophenet(zsincb,ycb);
ccomcb = cophenet(zcomcb,ycb);

As expected, all of the resulting cophenetic correlation coefficients are large
(approximately 0.95), with the largest corresponding to the complete linkage
clustering based on the city block distance.
�

KKKK----MMMMeeeeansansansans CCCClustlustlustlusteeeerrrringinginging

The goal of k-means clustering is to partition the data into k groups such that
the within-group sum-of-squares is minimized. One way this technique dif-
fers from hierarchical clustering is that we must specify the number of groups
or clusters that we are looking for. We briefly describe two algorithms for
obtaining clusters via k-means.

© 2002 by Chapman & Hall/CRC

374 Computational Statistics Handbook with MATLAB

One of the basic algorithms for k-means clustering is a two step procedure.
First, we assign observations to its closest group, usually using the Euclidean
distance between the observation and the cluster centroid. The second step of
the procedure is to calculate the new cluster centroid using the assigned
objects. These steps are alternated until there are no changes in cluster mem-
bership or until the centroids do not change. This algorithm is sometimes
referred to as HMEANS [Spath, 1980] or the basic ISODATA method.

PROCEDURE - HMEANS ALGORITHM

1. Specify the number of clusters k.

2. Determine initial cluster centroids. These can be randomly chosen
or the user can specify them.

3. Calculate the distance between each observation and each cluster
centroid.

4. Assign every observation to the closest cluster.
5. Calculate the centroid (i.e., the d-dimensional mean) of every cluster

using the observations that were just grouped there.

6. Repeat steps 3 through 5 until no more changes are made.

There are two problems with the HMEANS algorithm. The first one is that
this method could lead to empty clusters, so users should be aware of this
possibility. As the centroid is recalculated and observations are reassigned to
groups, some clusters could become empty. The second issue concerns the
optimality of the partitions. With k-means, we are searching for partitions
where the within-group sum-of-squares is minimum. It can be shown [Webb,
1999] that in some cases, the final k-means cluster assignment is not optimal,
in the sense that moving a single point from one cluster to another may
reduce the sum of squared errors. The following procedure helps address the
second problem.

PROCEDURE - K-MEANS

1. Obtain a partition of k groups, possibly from the HMEANS algo-
rithm.

2. Take each data point and calculate the Euclidean distance be-
tween it and every cluster centroid.

3. Here is in the r-th cluster, is the number of points in the r-th
cluster, and is the Euclidean distance between and the cen-
troid of cluster r. If there is a group s such that

,

xi

x i nr

dir
2 xi

nr

nr 1–
--------------dir

2 ns

ns 1+
--------------dis

2>

© 2002 by Chapman & Hall/CRC

Chapter 9: Statistical Pattern Recognition 375

then move to cluster s.
4. If there are several clusters that satisfy the above inequality, then

move the to the group that has the smallest value for

.

5. Repeat steps 2 through 4 until no more changes are made.

We note that there are many algorithms for k-means clustering described in
the literature. We provide some references to these in the last section of this
chapter.

Example 9.18
We show how to implement HMEANS in MATLAB, using the iris data.
Normally, clustering methods would be used on data where we do not know
what groups are there, unlike the iris data. However, since we do know the
true groups represented by the data, these will give us a way to verify that
the clusters make sense. We first obtain the cluster centers by randomly pick-
ing observations from the data set. Note that initial cluster centers do not
have to be actual observations.

load iris
k = 3;
% Put all of the data together.
x = [setosa;versicolor;virginica];
[n,d] = size(x);

% Pick some observations to be the cluster centers.
ind = randperm(n);
ind = ind(1:k);
nc = x(ind,:);
% Set up storage.
% Integers 1,...,k indicating cluster membership
cid = zeros(1,n);
% Make this different to get the loop started.
oldcid = ones(1,n);
% The number in each cluster.
nr = zeros(1,k);
% Set up maximum number of iterations.
maxiter = 100;
iter = 1;

while ~isequal(cid,oldcid)& iter < maxiter
 oldcid = cid;

x i

xi

ns

ns 1+
--------------dis

2

© 2002 by Chapman & Hall/CRC

376 Computational Statistics Handbook with MATLAB

 % Implement the hmeans algorithm.
 % For each point, find the distance
 % to all cluster centers.
 for i = 1:n
 dist = sum((repmat(x(i,:),k,1)-nc).^2,2);

 % assign it to this cluster
 [m,ind] = min(dist);
 cid(i) = ind;
 end
 % Find the new cluster centers.
 for i = 1:k
 % Find all points in this cluster.
 ind = find(cid==i);
 % Find the centroid.
 nc(i,:) = mean(x(ind,:));
 % Find the number in each cluster;
 nr(i) = length(ind);
 end
 iter = iter + 1
end

To check these results, we show a scatterplot of the first two features of the
iris data in Figure 9.19, where the three classes are represented by different
plotting symbols. The clusters we obtain from this implementation of k-
means clustering (using the HMEANS procedure) are shown in Figure 9.20.
The algorithm finds the one group, corresponding to Iris setosa, but has trou-
ble separating the other two species. However, the results are certainly rea-
sonable.
�

9.6 MATLAB Code

We provide a function called cshmeans that implements the HMEANS algo-
rithm given above. We also have a function called cskmeans that checks to
see if moving individual observations changes the sum-square error. With
both of these functions, the user can specify the initial centers as an input
argument. However, if that argument is omitted, then the function will ran-
domly pick the initial cluster centers.

As we stated in the body of the text, there are many MATLAB functions
available that the analyst can use to develop classifiers using Bayes decision
theory. These are any of the functions in the Statistics Toolbox that estimates
a probability density function using the parametric approach: normfit,
expfit, gamfit, unifit, betafit, and weibfit. These functions return

© 2002 by Chapman & Hall/CRC

Chapter 9: Statistical Pattern Recognition 377

the appropriate distribution parameters estimated from the sample. For the
nonparametric approach, one can use any of the techniques from Chapter 8:
histograms, frequency polygons, kernel methods, finite mixtures or adaptive
mixtures. Also, there is a function in the Statistics Toolbox called classify.
This performs linear discriminant analysis [Duda, Hart, and Stork, 2001]
using Mahalanobis distances. Class labels are assigned based on the distance
between the observation and the cases in the training set.

A set of M-files implementing many of the methods described in Ripely
[1996] are available for download at

 ftp://ftp.mathworks.com/pub/contrib/v5/stats/discrim/.

 There are functions for k-means, Bayesian classifiers and logistic discriminant
 analysis.

 The MATLAB Statistics Toolbox has several functions for clustering. In
 Examples 9.15 through 9.17, we illustrated the use of pdist, squareform,
 linkage, and cophenet. There are other clustering functions that the data
 analyst might find useful. One is called cluster, which is used to divide the

FFFFIIIIGUGUGUGURE 9.1RE 9.1RE 9.1RE 9.19999

This is a scatterplot of the first two features of the iris data. The three classes are represented
by different plotting symbols. From this, we expect that the k-means algorithm should find
the cluster in the upper left corner, but have trouble separating the other two clusters. Note
that because this represents the first two features, some of the symbols (circles and asterisks)
are on top of each other.

4 4.5 5 5.5 6 6.5 7 7.5 8
2

2.5

3

3.5

4

4.5
Known Clusters in Iris Data

Sepal Length

S
ep

al
 W

id
th

© 2002 by Chapman & Hall/CRC

ftp://ftp.mathworks.com/pub/mathworks/

378 Computational Statistics Handbook with MATLAB

output of linkage into clusters. It does this in one of two ways: 1) by finding
the natural divisions, or 2) by the user specifying arbitrary clusters. The func-
tion inconsistent helps the user find natural divisions in the data set by
comparing the length of the links in a cluster tree with the lengths of neigh-
boring links. If the link is approximately the same as its neighbors, then it
exhibits a high level of consistency. If not, then they are considered to be
inconsistent. Inconsistent links might indicate a division of the data. The
reader is asked to explore this further in the exercises. Finally, the function
clusterdata combines the three functions, pdist, linkage, and clus-
ter into one. However, clusterdata uses Euclidean distance and single
linkage clustering. So, if another cluster methodology is needed, the three
separate functions must be used.

FFFFIIIIGUGUGUGURE 9.2RE 9.2RE 9.2RE 9.20000

This shows the first two features of the clusters found using k-means, where all four features
were used in the clustering algorithm. As expected, the cluster in the upper left corner is
found. The other two clusters do not show the same separation, but the results are reasonable
when compared to the true groups shown in Figure 9.19.

4 4.5 5 5.5 6 6.5 7 7.5 8
2

2.5

3

3.5

4

4.5
Clusters in Iris Data from K−Means

Sepal Length

S
ep

al
 W

id
th

© 2002 by Chapman & Hall/CRC

Chapter 9: Statistical Pattern Recognition 379

9.7 Further Reading

There are many excellent books on statistical pattern recognition that can be
used by students at the graduate level or researchers with a basic knowledge
of calculus and linear algebra. The text by Duda and Hart [1973] is a classic
book on pattern recognition and includes the foundational theory behind
Bayes decision theory, classification and discriminant analysis. It has recently
been revised and updated [Duda, Hart, and Stork, 2001]. This second edition
contains many new topics, examples, and pseudo-code. Fukunaga [1990] is
at the same level and includes similar subjects; however, it goes into more
detail on the feature extraction aspects of pattern recognition. Devroye,
Gyorfi, and Lugosi [1996] CONTAINS an extensive treatment of the probabi-
listic theory behind pattern recognition. Ripley [1996] covers pattern recogni-
tion from a neural network perspective. This book is recommended for both
students and researchers as a standard reference. An excellent book that dis-
cusses all aspects of statistical pattern recognition is the text by Webb [1999].
This is suitable for advanced undergraduate students and professionals. The
author explains the techniques in a way that is understandable, and he pro-
vides enough theory to explain the methodology, but does not overwhelm
the reader with it.

TTTTAAAABBBBLLLLEEEE 9999.2.2.2.2

MATLAB Functions for Statistical Pattern Recognition

Purpose MATLAB Function

Creating, pruning and displaying classification
trees

csgrowc
csprunec
cstreec

csplotreec
cspicktreec

Creating, analyzing and displaying clusters clusterdata
pdist/squareform

linkage
cluster
cophenet

dendrogram
cshmeans
cskmeans

Statistical pattern recognition using Bayes
decision theory

csrocgen
cskernmd
cskern2d

© 2002 by Chapman & Hall/CRC

380 Computational Statistics Handbook with MATLAB

The definitive book on classification trees is the one by Breiman, et al.
[1984]. This text provides algorithms for building classification trees using
ordered or categorical data, mixtures of data types, and splitting nodes using
more than one variable. They also provide the methodology for using trees in
regression. A paper by Safavian and Landgrebe [1991] provides a review of
methodologies for building and using classification trees. A description of
classification trees can also be found in Webb [1999] and Duda, Hart, and
Stork [2001].

Many books are available that describe clustering techniques, and we men-
tion a few of them here. The books by Hartigan [1975], Spath [1980], Ander-
berg [1973], Kaufman and Rousseeuw [1990], and Jain and Dubes [1988]
provide treatments of the subject at the graduate level. Most of the texts men-
tioned above on statistical pattern recognition discuss clustering also. For
example, see Duda and Hart [1973], Duda, Hart and Stork [2001], Ripley
[1996], or Webb [1999]. For two books that are appropriate at the undergrad-
uate level, we refer the reader to Everitt [1993] and Gordon [1999].

We conclude this chapter with a brief discussion of a technique that com-
bines agglomerative clustering and finite mixtures. This method is called
model-based clustering [Fraley, 1998; Fraley and Raftery, 1998]. First,
agglomerative clustering is performed, where clusters are merged based on
the finite mixture model, rather than the distances. The partitions obtained
from the model-based agglomerative clustering provide an initialization
(number of components, means, variances and weights) to the finite mixtures
EM algorithm (with normal components). An approximation to Bayes factors
is used to pick the best model.

© 2002 by Chapman & Hall/CRC

Chapter 9: Statistical Pattern Recognition 381

Exercises

9.1. Load the insect data [Hand, et al., 1994; Lindsey, et al., 1987]. These
are three variables measured on each of ten insects from three species.
Using the parametric approach and assuming that these data are
multivariate normal with different covariances, construct a Bayes clas-
sifier. Use the classifier to classify the following vectors as species I,
II, or III:

9.2. The household [Hand, et al., 1994; Aitchison, 1986] data set contains
the expenditures for housing, food, other goods, and services (four
expenditures) for households comprised of single people. Apply the
clustering methods of Section 9.5 to see if there are two groups in the
data, one for single women and one for single men. To check your
results, the first 20 cases correspond to single men, and the last 20
cases are for single women.

9.3. Grow a classification tree for the household data, using the class
labels as given in problem 9.2. Is the tree consistent with the results
from the clustering?

9.4. The measure [Hand, et. al., 1994] data contain 20 measurements of
chest, waist and hip data. Half of the measured individuals are women
and half are men. Use cluster analysis to see if there is evidence of
two groups.

9.5. Use the online help to find out more about the MATLAB Statistics
Toolbox functions cluster and inconsistent. Use these with the
data and clusters of Examples 9.15 through 9.17 to extract the clusters.

9.6. Apply the cross-validation procedure and ROC curve analysis of
Example 9.8 to the tibetan data. Designate Type A skulls as the
target class and Type B skulls as the non-target class.

9.7. Use the bank data along with the independent test sample approach
to estimate the probability of correctly classifying patterns (see Exam-
ple 9.7). The file contains two matrices, one corresponding to features

190 143 52
174 131 50
218 126 49
130 131 51
138 127 52
211 129 49

X1 X2 X3

© 2002 by Chapman & Hall/CRC

382 Computational Statistics Handbook with MATLAB

taken from 100 forged Swiss bank notes and the other comprising
features from 100 genuine Swiss bank notes [Flury and Riedwyl,
1988]. There are six features: length of the bill, left width of the bill,
right width of the bill, width of the bottom margin, width of the top
margin and length of the image diagonal. Compare classifiers
obtained from: 1) the parametric approach, assuming the class-con-
ditionals are multivariate normal with different covariances, and 2)
the nonparametric approach, estimating the class-conditional proba-
bilities using the product kernel. Which classifier performs better
based on the estimated probability of correct classification?

9.8. Apply the cross-validation procedure and ROC curve analysis of
Example 9.8 to the bank data. The target class corresponds to the
forged bills. Obtain ROC curves for a classifier built using: 1) the
parametric approach, assuming the class-conditionals are multivari-
ate normal with different covariances, and 2) the nonparametric
approach, estimating the class-conditional probabilities using the
product kernel. Which classifier performs better, based on the ROC
curve analysis?

9.9. For the bank data, obtain a classification tree. Use the independent
test sample approach to pick a final pruned tree.

9.10. Apply k-means clustering to the complete bank data, without class
labels. Apply the hierarchical clustering methods to the data. Is there
significant evidence of two groups?

9.11. Do a Monte Carlo study of the probability of misclassification. Gen-
erate n random variables using the class-conditional probabilities and
the priors from Example 9.3. Estimate the probability of misclassifi-
cation based on the data. Note that you will have to do some proba-
bility density estimation here. Record the probability of error for this
trial. Repeat for M Monte Carlo trials. Plot a histogram of the errors.
What can you say about the probability of error based on this Monte
Carlo experiment?

9.12. The flea data set [Hand, et al., 1994; Lubischew, 1962] contains
measurements on three species of flea beetle: Chaetocnema concinna,
Chaetocnema heikertingeri, and Chaetocnema heptapotamica. The features
for classification are the maximal width of aedeagus in the forepart
(microns) and the front angle of the aedeagus (units are 7.5 degrees).
Build a classifier for these data using a Bayes classifier. For the Bayes
classifier, experiment with different methods of estimating the class-
conditional probability densities. Construct ROC curves and use them
to compare the classifiers.

9.13. Build a classification tree using the flea data. Based on a three-term
multivariate normal finite mixture model for these data, obtain an
estimate of the model. Using the estimated model, generate an inde-
pendent test sample to pick the best tree in the sequence of subtrees.

© 2002 by Chapman & Hall/CRC

Chapter 9: Statistical Pattern Recognition 383

9.14. The k-nearest neighbor rule assigns patterns x to the class that is the
most common amongst its k nearest neighbors. To fix the notation, let

 represent the number of cases belonging to class out of the k
nearest neighbors to x. We classify x as belonging to class , if

, for . Write a MATLAB function that implements
this classifier.

9.15. Repeat Example 9.7 using all of the features for versicolor and
virginica. What is your estimated probability of correct classifica-
tion?

9.16. Apply the method of Example 9.7 to the virginica and setosa
classes.

km ωm

ωm

km ki≥ i 1 … J, ,=

© 2002 by Chapman & Hall/CRC

Chapter 10
Nonparametric Regression

10.1 Introduction

In Chapter 7, we briefly introduced the concepts of linear regression and
showed how cross-validation can be used to determine a model that provides
a good fit to the data. We return to linear regression in this section to intro-
duce nonparametric regression and smoothing. We first revisit classical lin-
ear regression and provide more information on how to analyze and
visualize the results of the model. We also examine more of the capabilities
available in MATLAB for this type of analysis. In Section 10.2, we present a
method for scatterplot smoothing called loess. Kernel methods for nonpara-
metric regression are discussed in Section 10.3, and regression trees are pre-
sented in Section 10.4.

Recall from Chapter 7 that one model for linear regression is

. (10.1)

We follow the terminology of Draper and Smith [1981], where the ‘linear ’
refers to the fact that the model is linear with respect to the coefficients, . It
is not that we are restricted to fitting only straight lines to the data. In fact, the
model given in Equation 10.1 can be expanded to include multiple predictors

. An example of this type of model is

. (10.2)

In parametric linear regression, we can model the relationship using any
combination of predictor variables, order (or degree) of the variables, etc. and
use the least squares approach to estimate the parameters. Note that it is
called ‘parametric’ because we are assuming an explicit model for the relation-
ship between the predictors and the response.

To make our notation consistent, we present the matrix formulation of lin-
ear regression for the model in Equation 10.1. Let Y be an vector of

Y β0 β1X β2X2 … βdXd ε+ + + + +=

β j

Xj j, 1 …k,=

Y β0 β1X1 … βkXk ε+ + + +=

n 1×

© 2002 by Chapman & Hall/CRC

386 Computational Statistics Handook with MATLAB

observed values for the response variable and let X represent a matrix of
observed values for the predictor variables, where each row of X corresponds
to one observation and powers of that observation. Specifically, X is of dimen-
sion . We have columns to accommodate a constant term in
the model. Thus, the first column of X is a column of ones. The number of col-
umns in X depends on the chosen parametric model (the number of predictor
variables, cross terms and degree) that is used. Then we can write the model
in matrix form as

, (10.3)

where is a vector of parameters to be estimated and is an
 vector of errors, such that

The least squares solution for the parameters can be found by solving the so-
called ‘normal equations’ given by

. (10.4)

The solutions formed by the parameter estimate obtained using
Equation 10.4 is valid in that it is the solution that minimizes the error sum-
of-squares regardless of the distribution of the errors. However, normal-
ity assumptions (for the errors) must be satisfied if one is conducting hypoth-
esis testing or constructing confidence intervals that depend on these
estimates.

Example 10.1
In this example, we explore two ways to perform least squares regression in
MATLAB. The first way is to use Equation 10.4 to explicitly calculate the
inverse. The data in this example were used by Longley [1967] to verify the
computer calculations from a least squares fit to data. They can be down-
loaded from http://www.itl.nist.gov/div898. The data set contains
6 predictor variables so the model follows that in Equation 10.2:

.

We added a column of ones to the original data to allow for a constant term
in the model. The following sequence of MATLAB code obtains the parame-
ter estimates using Equation 10.4

n d 1+()× d 1+

Y Xββββ εεεε+=

ββββ d 1+() 1× εεεε
n 1×

E εεεε[] 0=

V εεεε() σ2I.=

ββββ̂ XTX() 1–
XTY=

ββββ̂

εεεεT εεεε,

y β0 β1x1 β2x2 β3x3 β4x4 β5x5 β6x6 ε+ + + + + + +=

© 2002 by Chapman & Hall/CRC

http://www.itl.nist.gov/div898.

Chapter 10: Nonparametric Regression 387

load longley
bhat1 = inv(X'*X)*X'*Y;

The results are

-3482258.65, 15.06, -0.04, -2.02, -1.03, -0.05,
1829.15

A more efficient way to get the estimates is using MATLAB’s backslash oper-
ator ‘\’. Not only is the backslash more efficient, it is better conditioned, so it
is less prone to numerical problems. When we try it on the longley data, we
see that the parameter estimates match. The command

bhat = X\Y;

yields the same parameter estimates. In some more difficult situations, the
backslash operator can be more accurate numerically.
�

Recall that the purpose of regression is to estimate the relationship between
the independent or predictor variable and the dependent or response
variable Y. Once we have such a model, we can use it to predict a value of y
for a given x. We obtain the model by finding the values of the parameters
that minimize the sum of the squared errors.

Once we have our model, it is important to look at the resultant predictions
to see if any of the assumptions are violated, and how the model is a good fit
to the data for all values of X. For example, the least squares method assumes
that the errors are normally distributed with the same variance. To determine
whether or not these assumptions are reasonable, we can look at the differ-
ence between the observed and the predicted value that we obtain from
the fitted model. These differences are called the residuals and are defined as

, (10.5)

where is the observed response at and is the corresponding predic-
tion at using the model. The residuals can be thought of as the observed
errors.

We can use the visualization techniques of Chapter 5 to make plots of the
residuals to see if the assumptions are violated. For example, we can check
the assumption of normality by plotting the residuals against the quantiles of
a normal distribution in a q-q plot. If the points fall (roughly) on a straight
line, then the normality assumption seems reasonable. Other possibilities
include a histogram (if n is large), box plots, etc., to see if the distribution of
the residuals looks approximately normal.

Another and more common method of examining the residuals using
graphics is to construct a scatterplot of the residuals against the fitted values.
Here the vertical axis units are given by the residuals , and the fitted values

 are shown on the horizontal axis. If the assumptions are correct for the

Xj

Yi Ŷi

ε̂i Yi Ŷi;–= i 1 … n, ,=

Yi X i Ŷ i

Xi

ε̂i

Yi
ˆ

© 2002 by Chapman & Hall/CRC

388 Computational Statistics Handook with MATLAB

model, then we would expect a horizontal band of points with no patterns or
trends. We do not plot the residuals versus the observed values , because
they are correlated [Draper and Smith, 1981], while the and are not. We
can also plot the residuals against the , called a residual dependence plot
[Clevelend, 1993]. If this scatterplot still shows a continued relationship
between the residuals (the remaining variation not explained by the model)
and the predictor variable, then the model is inadequate and adding addi-
tional columns in the X matrix is indicated. These ideas are explored further
in the exercises.

Example 10.2
The purpose of this example is to illustrate another method in MATLAB for
fitting polynomials to data, as well as to show what happens when the model
is not adequate. We use the function polyfit to fit polynomials of various
degrees to data where we have one predictor and one response. Recall that
the function polyfit takes three arguments: a vector of measured values of
the predictor, a vector of response measurements and the degree of the poly-
nomial. One of the outputs from the function is a vector of estimated param-
eters. Note that MATLAB reports the coefficients in descending powers:

. We use the filip data in this example, which can be downloaded
from http://www.itl.nist.gov/div898. Like the longley data, this
data set is used as a standard to verify the results of least squares regression.
The model for these data are

.

We first load up the data and then naively fit a straight line. We suspect that
this model will not be a good representation of the relationship between x
and y.

load filip
% This loads up two vectors: x and y.
[p1,s] = polyfit(x,y,1);
% Get the curve from this fit.
yhat1 = polyval(p1,x);
plot(x,y,'k.',x,yhat1,'k')

By looking at p1 we see that the estimates for the parameters are a y-intercept
of 1.06 and a slope of 0.03. A scatterplot of the data points, along with the esti-
mated line are shown in Figure 10.1. Not surprisingly, we see that the model
is not adequate. Next, we try a polynomial of degree .

[p10,s] = polyfit(x,y,10);
% Get the curve from this fit.
yhat10 = polyval(p10,x);

Yi

ε̂i Yi
ˆ

X i

β̂d … β̂0, ,

y β0 β1x β2x2 … β10x10 ε+ + + + +=

d 10=

© 2002 by Chapman & Hall/CRC

http://www.itl.nist.gov/div898.

Chapter 10: Nonparametric Regression 389

FFFFIIIIGUGUGUGURE 10.RE 10.RE 10.RE 10.1111

This shows a scatterplot of the filip data, along with the resulting line obtained using a
polynomial of degree one as the model. It is obvious that this model does not result in an
adequate fit.

FFFFIIIIGUGUGUGURE 10.RE 10.RE 10.RE 10.2222

In this figure, we show the scatterplot for the filip data along with a curve using a
polynomial of degree ten as the model.

−9 −8 −7 −6 −5 −4 −3

0.75

0.8

0.85

0.9

0.95

Polynomial with d = 1

X

Y

−9 −8 −7 −6 −5 −4 −3

0.75

0.8

0.85

0.9

0.95

Polynomial with d = 10

X

Y

© 2002 by Chapman & Hall/CRC

390 Computational Statistics Handook with MATLAB

plot(x,y,'k.',x,yhat10,'k')

The curve obtained from this model is shown in Figure 10.2, and we see that
it is a much better fit. The reader will be asked to explore these data further
in the exercises.
�

The standard MATLAB program (Version 6) has added an interface that
can be used to fit curves. It is only available for 2-D data (i.e., fitting Y as a
function of one predictor variable X). It enables the user to perform many of
the tasks of curve fitting (e.g., choosing the degree of the polynomial, plotting
the residuals, annotating the graph, etc.) through one graphical interface. The
Basic Fitting interface is enabled through the Figure window Tools
menu. To activate this graphical interface, plot a 2-D curve using the plot
command (or something equivalent) and click on Basic Fitting from the
Figure window Tools menu. The MATLAB Statistics Toolbox has an inter-
active graphical tool called polytool that allows the user to see what hap-
pens when the degree of the polynomial that is used to fit the data is changed.

10.2 Smoothing

The previous discussion on classical regression illustrates the situation where
the analyst assumes a parametric form for a model and then uses least
squares to estimate the required parameters. We now describe a nonparamet-
ric approach, where the model is more general and is given by

. (10.6)

Here, each will be a smooth function and allows for non-linear func-
tions of the dependent variables. In this section, we restrict our attention to
the case where we have only two variables: one predictor and one response.
In Equation 10.6, we are using a random design where the values of the pre-
dictor are randomly chosen. An alternative formulation is the fixed design, in
which case the design points are fixed, and they would be denoted by . In
this book, we will be treating the random design case for the most part.

The function is often called the regression or smoothing function. We
are searching for a function that minimizes

. (10.7)

Y f Xj()
j 1=

d

∑ ε+=

f Xj()

xi

f Xj()

E Y f X()–()2[]

© 2002 by Chapman & Hall/CRC

Chapter 10: Nonparametric Regression 391

It is known from introductory statistics texts that the function which mini-
mizes Equation 10.7 is

.

Note that if we are in the parametric regression setting, then we are assuming
a parametric form for the smoothing function such as

.

If we do not make any assumptions about the form for , then we should
use nonparametric regression techniques.

The nonparametric regression method covered in this section is called a
scatterplot smooth because it helps to visually convey the relationship
between X and Y by graphically summarizing the middle of the data using a
smooth function of the points. Besides helping to visualize the relationship,
it also provides an estimate or prediction for given values of x. The smooth-
ing method we present here is called loess, and we discuss the basic version
for one predictor variable. This is followed by a version of loess that is made
robust by using the bisquare function to re-weight points based upon the
magnitude of their residuals. Finally, we show how to use loess to get upper
and lower smooths to visualize the spread of the data.

LLLLoessoessoessoess

Before deciding on what model to use, it is a good idea to look at a scatterplot
of the data for insight on how to model the relationship between the vari-
ables, as was discussed in Chapter 7. Sometimes, it is difficult to construct a
simple parametric formula for the relationship, so smoothing a scatterplot
can help the analyst understand how the variables depend on each other.
Loess is a method that employs locally weighted regression to smooth a scat-
terplot and also provides a nonparametric model of the relationship between
two variables. It was originally described in Cleveland [1979], and further
extensions can be found in Cleveland and McGill [1984] and Cleveland
[1993].

The curve obtained from a loess model is governed by two parameters,
and . The parameter is a smoothing parameter. We restrict our attention
to values of between zero and one, where high values for yield smoother
curves. Cleveland [1993] addresses the case where is greater than one. The
second parameter determines the degree of the local regression. Usually, a
first or second degree polynomial is used, so or How to set
these parameters will be explored in the exercises.

The general idea behind loess is the following. To get a value of the curve
 at a given point x, we first determine a local neighborhood of x based on .

E Y X x=[]

f X() β0 β1X+=

f Xj()

α
λ α

α α
α

λ
λ 1= λ 2.=

ŷ α

© 2002 by Chapman & Hall/CRC

392 Computational Statistics Handook with MATLAB

All points in this neighborhood are weighted according to their distance from
x, with points closer to x receiving larger weight. The estimate at x is
obtained by fitting a linear or quadratic polynomial using the weighted
points in the neighborhood. This is repeated for a uniform grid of points x in
the domain to get the desired curve.

We describe below the steps for obtaining a loess curve [Hastie and Tibshi-
rani, 1990]. The steps of the loess procedure are illustrated in Figures 10.3
through 10.6.

PROCEDURE - LOESS CURVE CONSTRUCTION

1. Let denote a set of n values for a predictor variable and let
represent the corresponding response.

2. Choose a value for such that . Let , where k
is the greatest integer less than or equal to .

3. For each , find the k points that are closest to . These
comprise a neighborhood of , and this set is denoted by .

4. Compute the distance of the in that is furthest away from
 using

.

5. Assign a weight to each point , in , using the tri-
cube weight function

,

with

6. Obtain the value of the curve at the point using a weighted
least squares fit of the points in the neighborhood . (See
Equations 10.8 through 10.11.)

7. Repeat steps 3 through 6 for all of interest.

In step 6, one can fit either a straight line to the weighted points ,
in , or a quadratic polynomial can be used. If a line is used as the local
model, then . The values of and are found such that the follow-
ing is minimized

ŷ

xi yi

α 0 α 1< < k αn=
αn

x0 xi x0 xi

x0 N x0()
xi N x0()

x0

∆ x0() maxxi N0∈ x0 xi–=

xi yi,() xi N x0()

wi x0() W
x0 xi–
∆ x0()

 =

W u() 1 u3–()3
; 0 u 1<≤

0; otherwise.

=

ŷ x0

xi N x0()

x0

xi yi,() xi

N x0()
λ 1= β0 β1

© 2002 by Chapman & Hall/CRC

Chapter 10: Nonparametric Regression 393

, (10.8)

for , in . Letting and be the values that minimize Equa-
tion 10.8, the loess fit at is given by

. (10.9)

When , then we fit a quadratic polynomial using weighted least-
squares using only those points in . In this case, we find the values for
the that minimize

. (10.10)

As before, if , , and minimize Equation 10.10, then the loess fit at is

. (10.11)

For more information on weighted least squares see Draper and Smith,
[1981].

Example 10.3
In this example, we use a data set that was analyzed in Cleveland and McGill
[1984]. These data represent two variables comprising daily measurements of
ozone and wind speed in New York City. These quantities were measured on
111 days between May and September 1973. We are interested in understand-
ing the relationship between ozone (the response variable) and wind speed
(the predictor variable). The next lines of MATLAB code load the data set and
display the scatterplot shown in Figure 10.3.

load environ
% Do a scatterplot of the data to see the relationship.
plot(wind,ozone,'k.')
xlabel('Wind Speed (MPH)'),ylabel('Ozone (PPB)')

It is difficult to determine the parametric relationship between the variables
from the scatterplot, so the loess approach is used. We illustrate how to use
the loess procedure to find the estimate of the ozone for a given wind speed
of 10 MPH.

n = length(wind); % Find the number of data points.
x0 = 10; % Find the estimate at this point.

wi x0() yi β0– β1xi–()2

i 1=

k

∑

xi yi,() xi N x0() β̂0 β̂1

x0

ŷ x0() β̂0 β̂1x0+=

λ 2=
N x0()

β i

wi x0() yi β0– β1xi– β2xi
2–()2

i 1=

k

∑

β̂0 β̂1 β̂2 x0

ŷ x0() β̂0 β̂1x0 β̂2x0
2+ +=

© 2002 by Chapman & Hall/CRC

394 Computational Statistics Handook with MATLAB

FFFFIIIIGUGUGUGURE 10.RE 10.RE 10.RE 10.3333

This shows a scatterplot of ozone and wind speed. It is difficult to tell from this plot what
type of relationship exists between these two variables. Instead of using a parametric model,
we will try the nonparametric approach.

FFFFIIIIGUGUGUGURE 10.RE 10.RE 10.RE 10.4444

This shows the neighborhood (solid line) of the point (dashed line).

2 4 6 8 10 12 14 16 18 20 22
0

20

40

60

80

100

120

140

160

180

Wind Speed (MPH)

O
zo

ne
 (

P
P

B
)

2 4 6 8 10 12 14 16 18 20 22
0

20

40

60

80

100

120

140

160

180

Wind Speed (MPH)

O
zo

ne
 (

P
P

B
)

x0 10=

© 2002 by Chapman & Hall/CRC

Chapter 10: Nonparametric Regression 395

alpha = 2/3;
lambda = 1;
k = floor(alpha*n);

Now that we have the parameters for loess, the next step is to find the neigh-
borhood at .

% First step is to get the neighborhood.
dist = abs(x0 - wind);
[sdist,ind] = sort(dist);
% Get the points in the neighborhood.
Nx = wind(ind(1:k));
Ny = ozone(ind(1:k));
delxo = sdist(k); % Maximum distance of neighborhood

The neighborhood of is shown in Figure 10.4, where the dashed line indi-
cates the point of interest and the solid line indicates the limit of the local
region. All points within this neighborhood receive weights based on their
distance from as shown below.

% Delete the ones outside the neighborhood.
sdist((k+1):n) = [];
% These are the arguments to the weight function.
u = sdist/delxo;
% Get the weights for all points in the neighborhood.
w = (1 - u.^3).^3;

Using only those points in the neighborhood, we use weighted least squares
to get the estimate at .

% Now using only those points in the neighborhood,
% do a weighted least squares fit of degree 1.
% We will follow the procedure in 'polyfit'.
x = Nx(:); y = Ny(:); w = w(:);
W = diag(w);% get weight matrix
A = vander(x);% get right matrix for X
A(:,1:length(x)-lambda-1) = [];
V = A'*W*A;
Y = A'*W*y;
[Q,R] = qr(V,0);
p = R\(Q'*Y);
p = p';% to fit MATLAB convention
% This is the polynomial model for the local fit.
% To get the value at that point, use polyval.
yhat0 = polyval(p,x0);

In Figure 10.5, we show the local fit in the neighborhood of . We include a
function called csloess that will determine the smooth for all points in a
given vector. We illustrate its use below.

x0 10=

x0

x0

x0 10=

x0

x0

© 2002 by Chapman & Hall/CRC

396 Computational Statistics Handook with MATLAB

% Now call the loess procedure and plot the result.
% Get a domain over which to evaluate the curve.
x0 = linspace(min(wind),max(wind),50);
yhat = csloess(wind,ozone,x0,alpha,lambda);
% Plot the results.
plot(wind,ozone,'k.',x0,yhat,'k')
xlabel('Wind Speed (MPH)'),ylabel('Ozone (PPB)')

The resulting scatterplot with loess smooth is shown in Figure 10.6. The final
curve is obtained by linearly interpolating between the estimates from loess.
�

As we will see in the exercises, fitting curves is an iterative process. Differ-
ent values for the parameters and should be used to obtain various loess
curves. Then the scatterplot with superimposed loess curve and residuals
plots can be examined to determine whether or not the model adequately
describes the relationship.

RobuRobuRobuRobusssstttt LLLLoess Smoothinoess Smoothinoess Smoothinoess Smoothingggg

Loess is not robust, because it relies on the method of least squares. A method
is called robust if it performs well when the associated underlying assump-
tions (e.g., normality) are not satisfied [Kotz and Johnson, Vol. 8, 1988]. There
are many ways in which assumptions can be violated. A common one is the
presence of outliers or extreme values in the response data. These are points
in the sample that deviate from the pattern of the other observations. Least
squares regression is vulnerable to outliers, and it takes only one extreme
value to unduly influence the result. This is easily seen in Figure 10.7, where
there is an outlier in the upper left corner. The dashed line is obtained using
least squares with the outlier present, and the solid line is obtained with the
outlier removed. It is obvious that the outlier affects the slope of the line and
would change the predictions one gets from the model.

Cleveland [1993, 1979] and Cleveland and McGill [1984] present a method
for smoothing a scatterplot using a robust version of loess. This technique
uses the bisquare method [Hoaglin, Mosteller, and Tukey, 1983; Mosteller and
Tukey, 1977; Huber, 1973; Andrews, 1974] to add robustness to the weighted
least squares step in loess. The idea behind the bisquare is to re-weight points
based on their residuals. If the residual for a given point in the neighborhood
is large (i.e., it has a large deviation from the model), then the weight for that
point should be decreased, since large residuals tend to indicate outlying
observations. On the other hand, if the point has a small residual, then it
should be weighted more heavily.

α λ

© 2002 by Chapman & Hall/CRC

Chapter 10: Nonparametric Regression 397

FFFFIIIIGUGUGUGURE 10.RE 10.RE 10.RE 10.5555

This shows the local fit at using weighted least squares. Here and .

FFFFIIIIGUGUGUGURE 10.6RE 10.6RE 10.6RE 10.6

This shows the scatterplot of ozone and wind speed along with the accompanying loess
smooth.

2 4 6 8 10 12 14 16 18 20 22
0

20

40

60

80

100

120

140

160

180

Wind Speed (MPH)

O
zo

ne
 (

P
P

B
)

x0 10= λ 1= α 2 3⁄=

2 4 6 8 10 12 14 16 18 20 22
0

20

40

60

80

100

120

140

160

180

Wind Speed (MPH)

O
zo

ne
 (

P
P

B
)

© 2002 by Chapman & Hall/CRC

398 Computational Statistics Handook with MATLAB

Before showing how the bisquare method can be incorporated into loess,
we first describe the general bisquare least squares procedure. First a linear
regression is used to fit the data, and the residuals are calculated from

. (10.12)

The residuals are used to determine the weights from the bisquare function
given by

(10.13)

The robustness weights are obtained from

 , (10.14)

FFFFIIIIGUGUGUGURE 10.RE 10.RE 10.RE 10.7777

This is an example of what can happen with the least squares method when an outlier is
present. The dashed line is the fit with the outlier present, and the solid line is the fit with
the outlier removed. The slope of the line is changed when the outlier is used to fit the model.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12

14

16

18

20

Outlier

ε̂i

ε̂i Yi Ŷi–=

B u() 1 u2–()2
; u 1<

0; otherwise.

=

ri B
ε̂i

6q̂0.5

=

© 2002 by Chapman & Hall/CRC

Chapter 10: Nonparametric Regression 399

where is the median of . A weighted least squares regression is per-
formed using as the weights.

To add bisquare to loess, we first fit the loess smooth, using the same pro-
cedure as before. We then calculate the residuals using Equation 10.12 and
determine the robust weights from Equation 10.14. The loess procedure is
repeated using weighted least squares, but the weights are now .
Note that the points used in the fit are the ones in the neighborhood of .
This is an iterative process and is repeated until the loess curve converges or
stops changing. Cleveland and McGill [1984] suggest that two or three itera-
tions are sufficient to get a reasonable model.

PROCEDURE - ROBUST LOESS

1. Fit the data using the loess procedure with weights ,

2. Calculate the residuals, for each observation.
3. Determine the median of the absolute value of the residuals, .

4. Find the robustness weight from

 ,

using the bisquare function in Equation 10.13.

5. Repeat the loess procedure using weights of .

6. Repeat steps 2 through 5 until the loess curve converges.

In essence, the robust loess iteratively adjusts the weights based on the resid-
uals. We illustrate the robust loess procedure in the next example.

Example 10.4
We return to the filip data in this example. We create some outliers in the
data by adding noise to five of the points.

load filip
% Make several of the points outliers by adding noise.
n = length(x);
ind = unidrnd(n,1,5);% pick 5 points to make outliers
y(ind) = y(ind) + 0.1*randn(size(y(ind)));

A function that implements the robust version of loess is included with the
text. It is called csloessr and takes the following input arguments: the
observed values of the predictor variable, the observed values of the response
variable, the values of , and . We now use this function to get the loess
curve.

q̂0.5 ε̂i

ri

riwi x0()
x0

wi

ε̂i yi ŷi–=

q̂0.5

ri B
ε̂i

6q̂0.5

=

riwi

x0 α λ

© 2002 by Chapman & Hall/CRC

400 Computational Statistics Handook with MATLAB

% Get the x values where we want to evaluate the curve.
xo = linspace(min(x),max(x),25);
% Use robust loess to get the smooth.
alpha = 0.5;
deg = 1;
yhat = csloessr(x,y,xo,alpha,deg);

The resulting smooth is shown in Figure 10.8. Note that the loess curve is not
affected by the presence of the outliers.
�

UUUUpppppepepeperrrr aaaandndndnd LLLLowerowerowerower SSSSmmmmoothsoothsoothsooths

The loess smoothing method provides a model of the middle of the distribu-
tion of Y given X. This can be extended to give us upper and lower smooths
[Cleveland and McGill, 1984], where the distance between the upper and
lower smooths indicates the spread. The procedure for obtaining the upper
and lower smooths follows.

FFFFIIIIGUGUGUGURE 10.RE 10.RE 10.RE 10.8888

This shows a scatterplot of the filip data, where five of the responses deviate from the
rest of the data. The curve is obtained using the robust version of loess, and we see that the
curve is not affected by the presence of the outliers.

−9 −8 −7 −6 −5 −4 −3
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

X

Y

© 2002 by Chapman & Hall/CRC

Chapter 10: Nonparametric Regression 401

PROCEDURE - UPPER AND LOWER SMOOTHS (LOESS)

1. Compute the fitted values using loess or robust loess.

2. Calculate the residuals .

3. Find the positive residuals and the corresponding and
values. Denote these pairs as .

4. Find the negative residuals and the corresponding and
values. Denote these pairs as .

5. Smooth the and add the fitted values from that smooth to
. This is the upper smoothing.

6. Smooth the and add the fitted values from this smooth to
. This is the lower smoothing.

Example 10.5
In this example, we generate some data to show how to get the upper and
lower loess smooths. These data are obtained by adding noise to a sine wave.
We then use the function called csloessenv that comes with the Computa-
tional Statistics Toolbox. The inputs to this function are the same as the other
loess functions.

% Generate some x and y values.
x = linspace(0, 4 * pi,100);
y = sin(x) + 0.75*randn(size(x));
% Use loess to get the upper and lower smooths.
[yhat,ylo,xlo,yup,xup]=csloessenv(x,y,x,0.5,1,0);
% Plot the smooths and the data.
plot(x,y,'k.',x,yhat,'k',xlo,ylo,'k',xup,yup,'k')

The resulting middle, upper and lower smooths are shown in Figure 10.9,
and we see that the smooths do somewhat follow a sine wave. It is also inter-
esting to note that the upper and lower smooths indicate the symmetry of the
noise and the constancy of the spread.
�

10.3 Kernel Methods

This section follows the treatment of kernel smoothing methods given in
Wand and Jones [1995]. We first discussed kernel methods in Chapter 8,
where we applied them to the problem of estimating a probability density
function in a nonparametric setting. We now present a class of smoothing

ŷi

ε̂i yi ŷi–=

ε̂i
+

xi ŷi

xi
+ ŷi

+,()

ε̂i
—

xi ŷi

xi
— ŷi

—,()

xi
+ ε̂i

+
,()

ŷi
+

xi
— ε̂i

—,()
ŷi

—

© 2002 by Chapman & Hall/CRC

402 Computational Statistics Handook with MATLAB

methods based on kernel estimators that are similar in spirit to loess, in that
they fit the data in a local manner. These are called local polynomial kernel
estimators. We first define these estimators in general and then present two
special cases: the Nadaraya-Watson estimator and the local linear kernel
estimator.

With local polynomial kernel estimators, we obtain an estimate at a
point by fitting a d-th degree polynomial using weighted least squares. As
with loess, we want to weight the points based on their distance to . Those
points that are closer should have greater weight, while points further away
have less weight. To accomplish this, we use weights that are given by the
height of a kernel function that is centered at .

As with probability density estimation, the kernel has a bandwidth or
smoothing parameter represented by h. This controls the degree of influence
points will have on the local fit. If h is small, then the curve will be wiggly,
because the estimate will depend heavily on points closest to . In this case,
the model is trying to fit to local values (i.e., our ‘neighborhood’ is small), and
we have over fitting. Larger values for h means that points further away will
have similar influence as points that are close to (i.e., the ‘neighborhood’
is large). With a large enough h, we would be fitting the line to the whole data
set. These ideas are investigated in the exercises.

FFFFIIIIGUGUGUGURE 10.RE 10.RE 10.RE 10.9999

The data for this example are generated by adding noise to a sine wave. The middle curve
is the usual loess smooth, while the other curves are obtained using the upper and lower
loess smooths.

0 2 4 6 8 10 12 14
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

ŷ0

x0

x0

x0

x0

x0

© 2002 by Chapman & Hall/CRC

Chapter 10: Nonparametric Regression 403

We now give the expression for the local polynomial kernel estimator. Let
d represent the degree of the polynomial that we fit at a point We obtain
the estimate by fitting the polynomial

(10.15)

using the points and utilizing the weighted least squares procedure.
The weights are given by the kernel function

. (10.16)

The value of the estimate at a point x is , where the minimize

. (10.17)

Because the points that are used to estimate the model are all centered at x
(see Equation 10.15), the estimate at x is obtained by setting the argument in
the model equal to zero. Thus, the only parameter left is the constant term .

The attentive reader will note that the argument of the is backwards
from what we had in probability density estimation using kernels. There, the
kernels were centered at the random variables . We follow the notation of
Wand and Jones [1995] that shows explicitly that we are centering the kernels
at the points x where we want to obtain the estimated value of the function.

We can write this weighted least squares procedure using matrix notation.
According to standard weighted least squares theory [Draper and Smith,
1981], the solution can be written as

, (10.18)

where Y is the vector of responses,

, (10.19)

and is an matrix with the weights along the diagonal. These
weights are given by

x.
ŷ f̂ x()=

β0 β1 Xi x–() … βd Xi x–()d+ + +

Xi Yi,()

Kh Xi x–() 1
h
---K

Xi x–
h

 =

β̂0 β̂i

Kh Xi x–() Yi β0– β1 Xi x–()– … βd Xi x–()d––()2

i 1=

n

∑

β̂0

Kh

Xi

ββββ̂ Xx
TWxXx() 1–

Xx
TWxY=

n 1×

Xx

1 X1 x– … X1 x–()d

: : … :

1 Xn x– … Xn x–()d

=

Wx n n×

© 2002 by Chapman & Hall/CRC

404 Computational Statistics Handook with MATLAB

. (10.20)

Some of these weights might be zero depending on the kernel that is used.
The estimator is the intercept coefficient of the local fit, so we can
obtain the value from

(10.21)

where is a vector of dimension with a one in the first place and
zeroes everywhere else.

NNNNaaaadaraydaraydaraydarayaaaa----WWWWaaaatson Estitson Estitson Estitson Estimmmmaaaatotototorrrr

Some explicit expressions exist when and When d is zero, we
fit a constant function locally at a given point . This estimator was devel-
oped separately by Nadaraya [1964] and Watson [1964]. The Nadaraya-Wat-
son estimator is given below.

NADARAYA-WATSON KERNEL ESTIMATOR:

. (10.22)

Note that this is for the case of a random design. When the design points are
fixed, then the is replaced by , but otherwise the expression is the same
[Wand and Jones, 1995].

There is an alternative estimator that can be used in the fixed design case.
This is called the Priestley-Chao kernel estimator [Simonoff, 1996].

PRIESTLEY-CHAO KERNEL ESTIMATOR:

, (10.23)

where the , , represent a fixed set of ordered nonrandom num-
bers. The Nadarya-Watson estimator is illustrated in Example 10.6, while the
Priestley-Chao estimator is saved for the exercises.

wii x() Kh Xi x–()=

ŷ f̂ x()= β̂0

f̂ x() e1
T Xx

TWxXx()
1–
Xx

TWxY=

e1
T d 1+() 1×

d 0= d 1.=
x

f̂NW x()

Kh Xi x–()Yi

i 1=

n

∑

Kh Xi x–()
i 1=

n

∑
---------------------------------------=

Xi xi

f̂PC x() 1
h
--- xi xi 1––()K

x xi–
h

 yi

i 1=

n

∑=

xi i 1 … n, ,=

© 2002 by Chapman & Hall/CRC

Chapter 10: Nonparametric Regression 405

Example 10.6
We show how to implement the Nadarya-Watson estimator in MATLAB. As
in the previous example, we generate data that follows a sine wave with
added noise.

% Generate some noisy data.
x = linspace(0, 4 * pi,100);
y = sin(x) + 0.75*randn(size(x));

The next step is to create a MATLAB inline function so we can evaluate the
weights. Note that we are using the normal kernel.

% Create an inline function to evaluate the weights.
mystrg='(2*pi*h^2)^(-1/2)*exp(-0.5*((x - mu)/h).^2)';
wfun = inline(mystrg);

We now get the estimates at each value of x.

% Set up the space to store the estimated values.
% We will get the estimate at all values of x.
yhatnw = zeros(size(x));
n = length(x);
% Set the window width.
h = 1;
% find smooth at each value in x
for i = 1:n
w = wfun(h,x(i),x);
yhatnw(i) = sum(w.*y)/sum(w);

end

The smooth from the Nadarya-Watson estimator is shown in Figure 10.10.
�

LLLLococococaaaallll LinLinLinLineeeear Kernelar Kernelar Kernelar Kernel EstimatoEstimatoEstimatoEstimatorrrr

When we fit a straight line at a point x, then we are using a local linear esti-
mator. This corresponds to the case where , so our estimate is obtained
as the solutions and that minimize the following,

.

We give an explicit formula for the estimator below.

d 1=
β̂0 β̂1

Kh Xi x–() Yi β0– β1 Xi x–()–()2

i 1=

n

∑

© 2002 by Chapman & Hall/CRC

406 Computational Statistics Handook with MATLAB

LOCAL LINEAR KERNEL ESTIMATOR:

, (10.24)

where

.

As before, the fixed design case is obtained by replacing the random variable
 with the fixed point .

When using the kernel smoothing methods, problems can arise near the
boundary or extreme edges of the sample. This happens because the kernel
window at the boundaries has missing data. In other words, we have weights
from the kernel, but no data to associate with them. Wand and Jones [1995]
show that the local linear estimator behaves well in most cases, even at the

FFFFIIIIGUGUGUGURE 10.1RE 10.1RE 10.1RE 10.10000

This figure shows the smooth obtained from the Nadarya-Watson estimator with .

0 2 4 6 8 10 12 14
−3

−2

−1

0

1

2

3
Smooth from the Nadarya−Watson Estimator

X

Y

h 1=

f̂LL x() 1
n
--- ŝ2 x() ŝ1 x() Xi x–()–{ }Kh Xi x–()Yi

ŝ2 x()ŝ0 x() ŝ1 x()2–

i 1=

n

∑=

ŝr x() 1
n
--- Xi x–()rKh Xi x–()

i 1=

n

∑=

Xi xi

© 2002 by Chapman & Hall/CRC

Chapter 10: Nonparametric Regression 407

boundaries. If the Nadaraya-Watson estimator is used, then modified kernels
are needed [Scott, 1992; Wand and Jones, 1995].

Example 10.7
The local linear estimator is applied to the same generated sine wave data.
The entire procedure is implemented below and the resulting smooth is
shown in Figure 10.11. Note that the curve seems to behave well at the bound-
ary.

% Generate some data.
x = linspace(0, 4 * pi,100);
y = sin(x) + 0.75*randn(size(x));
h = 1;
deg = 1;
% Set up inline function to get the weights.
mystrg = ...

'(2*pi*h^2)^(-1/2)*exp(-0.5*((x - mu)/h).^2)';
wfun = inline(mystrg);
% Set up space to store the estimates.
yhatlin = zeros(size(x));
n = length(x);
% Find smooth at each value in x.
for i = 1:n
w = wfun(h,x(i),x);
xc = x-x(i);
s2 = sum(xc.^2.*w)/n;
s1 = sum(xc.*w)/n;
s0 = sum(w)/n;
yhatlin(i) = sum(((s2-s1*xc).*w.*y)/(s2*s0-s1^2))/n;

end

�

10.4 Regression Trees

The tree-based approach to nonparametric regression is useful when one is
trying to understand the structure or interaction among the predictor vari-
ables. As we stated earlier, one of the main uses of modeling the relationship
between variables is to be able to make predictions given future measure-
ments of the predictor variables. Regression trees accomplish this purpose,
but they also provide insight into the structural relationships and the possible
importance of the variables. Much of the information about classification

© 2002 by Chapman & Hall/CRC

408 Computational Statistics Handook with MATLAB

trees applies in the regression case, so the reader is encouraged to read Chap-
ter 9 first, where the procedure is covered in more detail.

In this section, we move to the multivariate situation where we have a
response variable Y along with a set of predictors . Using a
procedure similar to classification trees, we will examine all predictor vari-
ables for a best split, such that the two groups are homogeneous with respect
to the response variable Y. The procedure examines all possible splits and
chooses the split that yields the smallest within-group variance in the two
groups. The result is a binary tree, where the predicted responses are given
by the average value of the response in the corresponding terminal node. To
predict the value of a response given an observed set of predictors

, we drop down the tree, and assign to the value of the
terminal node that it falls into. Thus, we are estimating the function using a
piecewise constant surface.

Before we go into the details of how to construct regression trees, we pro-
vide the notation that will be used.

NOTATION: REGRESSION TREES

 represents the prediction rule that takes on real values. Here d
will be our regression tree.

FFFFIIIIGUGUGUGURE 10.RE 10.RE 10.RE 10.11111111

This figure shows the smooth obtained from the local linear estimator.

0 2 4 6 8 10 12 14
−3

−2

−1

0

1

2

3
Local Linear

X

Y

X X1 … Xd, ,()=

x x1 … xd, ,()= x ŷ

d x()

© 2002 by Chapman & Hall/CRC

Chapter 10: Nonparametric Regression 409

 is the learning sample of size n. Each case in the learning sample
comprises a set of measured predictors and the associated re-
sponse.

 is the v-th partition of the learning sample in cross-
validation. This set of cases is used to calculate the prediction error
in .

 is the set of cases used to grow a sequence of subtrees.

 denotes one case, where and .

 is the true mean squared error of predictor .

 is the estimate of the mean squared error of d using the
independent test sample method.

 denotes the estimate of the mean squared error of d using
cross-validation.

T is the regression tree.

 is an overly large tree that is grown.

 is an overly large tree grown using the set .

 is one of the nested subtrees from the pruning procedure.

t is a node in the tree T.

 and are the left and right child nodes.

 is the set of terminal nodes in tree T.

 is the number of terminal nodes in tree T.

 represents the number of cases that are in node t.

 is the average response of the cases that fall into node t.

 represents the weighted within-node sum-of-squares at node t.

 is the average within-node sum-of-squares for the tree T.

 denotes the change in the within-node sum-of-squares at
node t using split s.

To construct a regression tree, we proceed in a manner similar to classifica-
tion trees. We seek to partition the space for the predictor values using a
sequence of binary splits so that the resulting nodes are better in some sense
than the parent node. Once we grow the tree, we use the minimum error com-
plexity pruning procedure to obtain a sequence of nested trees with decreas-

L

Lv v, 1 … V, ,= L

d v() x()

L v() L Lv–=

xi yi,() xi x1i
… xdi

, ,()= i 1 … n, ,=

R* d() d x()

R̂
TS

d()

R̂
CV

d()

Tmax

Tmax
v() L v()

Tk

tL tR

T

)

T

)

n t()

y t()

R t()

R T()

∆R s t,()

© 2002 by Chapman & Hall/CRC

410 Computational Statistics Handook with MATLAB

ing complexity. Once we have the sequence of subtrees, independent test
samples or cross-validation can be used to select the best tree.

Growing a ReGrowing a ReGrowing a ReGrowing a Reggggrrrreeeesssssionsionsionsion TTTTrererereeeee

We need a criterion that measures node impurity in order to grow a regres-
sion tree. We measure this impurity using the squared difference between the
predicted response from the tree and the observed response. First, note that
the predicted response when a case falls into node t is given by the average
of the responses that are contained in that node,

. (10.25)

The squared error in node t is given by

. (10.26)

Note that Equation 10.26 is the average error with respect to the entire learn-
ing sample. If we add up all of the squared errors in all of the terminal nodes,
then we obtain the mean squared error for the tree. This is also referred to as
the total within-node sum-of-squares, and is given by

. (10.27)

The regression tree is obtained by iteratively splitting nodes so that the
decrease in is maximized. Thus, for a split s and node t, we calculate the
change in the mean squared error as

, (10.28)

and we look for the split s that yields the largest .
We could grow the tree until each node is pure in the sense that all

responses in a node are the same, but that is an unrealistic condition. Breiman
et al. [1984] recommend growing the tree until the number of cases in a ter-
minal node is five.

Example 10.8
We show how to grow a regression tree using a simple example with gener-
ated data. As with classification trees, we do not provide all of the details of

y t() 1
n t()
---------- yi

xi t∈
∑=

R t() 1
n
--- yi y t()–()2

xi t∈
∑=

R T() R t()
t T∈

∑ 1
n
--- yi y t()–()2

xi t∈
∑

t T∈

∑= =

))

R T()

∆R s t,() R t() R tL()– R tR()–=

∆R s t,()

© 2002 by Chapman & Hall/CRC

Chapter 10: Nonparametric Regression 411

how this is implemented in MATLAB. The interested reader is referred to
Appendix D for the source code. We use bivariate data such that the response
in each region is constant (with no added noise). We are using this simple toy
example to illustrate the concept of a regression tree. In the next example, we
will add noise to make the problem a little more realistic.

% Generate bivariate data.
X(1:50,1) = unifrnd(0,1,50,1);
X(1:50,2) = unifrnd(0.5,1,50,1);
y(1:50) = 2;
X(51:100,1) = unifrnd(-1,0,50,1);
X(51:100,2) = unifrnd(-0.5,1,50,1);
y(51:100) = 3;
X(101:150,1) = unifrnd(-1,0,50,1);
X(101:150,2) = unifrnd(-1,-0.5,50,1);
y(101:150) = 10;
X(151:200,1) = unifrnd(0,1,50,1);
X(151:200,2) = unifrnd(-1,0.5,50,1);
y(151:200) = -10;

These data are shown in Figure 10.12. The next step is to use the function
csgrowr to get a tree. Since there is no noise in the responses, the tree should
be small.

% This will be the maximum number in nodes.
% This is high to ensure a small tree for simplicity.
maxn = 75;
% Now grow the tree.
tree = csgrowr(X,y,maxn);
csplotreer(tree); % plots the tree

The tree is shown in Figure 10.13 and the partition view is given in
Figure 10.14. Notice that the response at each node is exactly right because
there is no noise. We see that the first split is at , where values of less
than 0.034 go to the left branch, as expected. Each resulting node from this
split is partitioned based on . The response of each terminal node is given
in Figure 10.13, and we see that the tree does yield the correct response.
�.

PPPPrrrruning a Reuning a Reuning a Reuning a Reggggrrrreeeessionssionssionssion TTTTreereereeree

Once we grow a large tree, we can prune it back using the same procedure
that was presented in Chapter 9. Here, however, we define an error-complex-
ity measure as follows

(10.29)

x1 x1

x2

Rα T() R t() α T+=

)

© 2002 by Chapman & Hall/CRC

412 Computational Statistics Handook with MATLAB

From this we obtain a sequence of nested trees

,

where denotes the root of the tree. Along with the sequence of pruned
trees, we have a corresponding sequence of values for , such that

.

Recall that for , the tree is the smallest subtree that mini-
mizes .

SSSSeleeleeleeleccccttttininining ag ag ag a TTTTrererereeeee

Once we have the sequence of pruned subtrees, we wish to choose the best
tree such that the complexity of the tree and the estimation error are
both minimized. We could obtain minimum estimation error by making the

FFFFIIIIGUGUGUGURE 10.1RE 10.1RE 10.1RE 10.12222

This shows the bivariate data used in Example 10.8. The observations in the upper right
corner have response (‘o’); the points in the upper left corner have response
(‘.’); the points in the lower left corner have response (‘*’); and the observations in
the lower right corner have response (‘+’). No noise has been added to the re-
sponses, so the tree should partition this space perfectly.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

X
1

X
2

y 2= y 3=
y 10=

y 10–=

Tmax T1 … TK> > > t1{ }=

t1{ }
α

0 α1 α2 … αk αk 1+ … αK< < < < < <=

αk α αk 1+<≤ Tk

Rα T()

R T()

© 2002 by Chapman & Hall/CRC

Chapter 10: Nonparametric Regression 413

FFFFIIIIGUGUGUGURE 10.1RE 10.1RE 10.1RE 10.13333

This is the regression tree for Example 10.8.

FFFFIIIIGUGUGUGURE 10.1RE 10.1RE 10.1RE 10.14444

This shows the partition view of the regression tree from Example 10.8. It is easier to see
how the space is partitioned. The method first splits the region based on variable . The
left side of the space is then partitioned at , and the right side of the space is
partitioned at .

x1 < 0.034

x2 < −0.49 x2 < 0.48

y= 10 y= 3 y= −10 y= 2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

X
1

X
2

x1

x2 0.49–=
x2 0.48=

© 2002 by Chapman & Hall/CRC

414 Computational Statistics Handook with MATLAB

tree very large, but this increases the complexity. Thus, we must make a
trade-off between these two criteria.

To select the right sized tree, we must have honest estimates of the true
error . This means that we should use cases that were not used to create
the tree to estimate the error. As before, there are two possible ways to accom-
plish this. One is through the use of independent test samples and the other
is cross-validation. We briefly discuss both methods, and the reader is
referred to Chapter 9 for more details on the procedures. The independent
test sample method is illustrated in Example 10.9.

To obtain an estimate of the error using the independent test sample
method, we randomly divide the learning sample into two sets and .
The set is used to grow the large tree and to obtain the sequence of pruned
subtrees. We use the set of cases in to evaluate the performance of each
subtree, by presenting the cases to the trees and calculating the error between
the actual response and the predicted response. If we let represent the
predictor corresponding to tree , then the estimated error is

, (10.30)

where the number of cases in is .
We first calculate the error given in Equation 10.30 for all subtrees and then

find the tree that corresponds to the smallest estimated error. The error is an
estimate, so it has some variation associated with it. If we pick the tree with
the smallest error, then it is likely that the complexity will be larger than it
should be. Therefore, we desire to pick a subtree that has the fewest number
of nodes, but is still in keeping with the prediction accuracy of the tree with
the smallest error [Breiman, et al. 1984].

First we find the tree that has the smallest error and call the tree . We
denote its error by . Then we find the standard error for this esti-
mate, which is given by [Breiman, et al., 1984, p. 226]

. (10.31)

We then select the smallest tree , such that

. (10.32)

Equation 10.32 says that we should pick the tree with minimal complexity
that has accuracy equivalent to the tree with the minimum error.

If we are using cross-validation to estimate the prediction error for each
tree in the sequence, then we divide the learning sample into sets

R* T()

R* T()
L L1 L2

L1

L2

dk x()
Tk

R̂
TS

Tk() 1
n2

----- yi dk xi()–()2

xi yi,() L2∈
∑=

L2 n2

T0

R̂min
TS

T0()

SÊ R̂min
TS

T0()() 1

n2

--------- 1
n2

----- yi d xi()–()4

i 1=

n2

∑ R̂min
TS

T0()()
2

–

1
2

=

Tk
*

R̂
TS

Tk
*() R̂m in

TS
T0() SÊ R̂min

TS
T0()()+≤

L

© 2002 by Chapman & Hall/CRC

Chapter 10: Nonparametric Regression 415

. It is best to make sure that the V learning samples are all the same
size or nearly so. Another important point mentioned in Breiman, et al. [1984]
is that the samples should be kept balanced with respect to the response vari-
able Y. They suggest that the cases be put into levels based on the value of
their response variable and that stratified random sampling (see Chapter 3)
be used to get a balanced sample from each stratum.

We let the v-th learning sample be represented by , so that we
reserve the set for estimating the prediction error. We use each learning
sample to grow a large tree and to get the corresponding sequence of pruned
subtrees. Thus, we have a sequence of trees that represent the mini-
mum error-complexity trees for given values of .

At the same time, we use the entire learning sample to grow the large
tree and to get the sequence of subtrees and the corresponding sequence
of . We would like to use cross-validation to choose the best subtree from
this sequence. To that end, we define

 , (10.33)

and use to denote the predictor corresponding to the tree .
The cross-validation estimate for the prediction error is given by

 . (10.34)

We use each case from the test sample with to get a predicted
response, and we then calculate the squared difference between the predicted
response and the true response. We do this for every test sample and all n
cases. From Equation 10.34, we take the average value of these errors to esti-
mate the prediction error for a tree.

We use the same rule as before to choose the best subtree. We first find the
tree that has the smallest estimated prediction error. We then choose the tree
with the smallest complexity such that its error is within one standard error
of the tree with minimum error.

We obtain an estimate of the standard error of the cross-validation estimate
of the prediction error using

 , (10.35)

where

L1 … LV, ,

L v() L Lv–=
Lv

T v() α()
α

L
Tk

αk

α'k αkαk 1+=

dk
v() x() T v() α'k()

R̂
CV

Tk α'k()() 1
n
--- yi dk

v() xi()–()2

xi yi,() Lv∈
∑

v 1=

V

∑=

Lv dk
v() x()

SÊ R̂
CV

Tk()() s2

n
----=

© 2002 by Chapman & Hall/CRC

416 Computational Statistics Handook with MATLAB

. (10.36)

Once we have the estimated errors from cross-validation, we find the sub-
tree that has the smallest error and denote it by . Finally, we select the
smallest tree , such that

(10.37)

Since the procedure is somewhat complicated for cross-validation, we list
the procedure below. In Example 10.9, we implement the independent test
sample process for growing and selecting a regression tree. The cross-valida-
tion case is left as an exercise for the reader.

PROCEDURE - CROSS-VALIDATION METHOD

1. Given a learning sample , obtain a sequence of trees with
associated parameters .

2. Determine the parameter for each subtree .
3. Partition the learning sample into V partitions, . These will

be used to estimate the prediction error for trees grown using the
remaining cases.

4. Build the sequence of subtrees using the observations in all
.

5. Now find the prediction error for the subtrees obtained from the
entire learning sample . For tree and , find all equivalent
trees by choosing trees such that

.

6. Take all cases in and present them to the trees
found in step 5. Calculate the error as the squared difference be-
tween the predicted response and the true response.

7. Determine the estimated error for the tree by taking the
average of the errors from step 6.

8. Repeat steps 5 through 7 for all subtrees to find the prediction
error for each one.

9. Find the tree that has the minimum error,

.

s2 1
n
--- yi dk

v() xi()–()2
R̂C V Tk()–[]

2

xi yi,()
∑=

T0

Tk
*

R̂
CV

Tk
*() R̂min

CV
T0() SÊ R̂min

CV
T0()()+≤

L Tk

αk

α'k αkαk 1+= Tk

L Lv

Tk
v()

L v() L Lv–=

L Tk α'k
Tk

v() v, 1 … V, ,= Tk
v()

α'k αk
v() αk 1+

v()),[∈

Lv v, 1 … V, ,=

R̂
CV

Tk()

Tk

T0

R̂min
CV

T0() min
k

R̂
CV

Tk(){ }=

© 2002 by Chapman & Hall/CRC

Chapter 10: Nonparametric Regression 417

10. Determine the standard error for tree using Equation 10.35.
11. For the final model, select the tree that has the fewest number of

nodes and whose estimated prediction error is within one standard
error (Equation 10.36) of .

Example 10.9
We return to the same data that was used in the previous example, where we
now add random noise to the responses. We generate the data as follows.

X(1:50,1) = unifrnd(0,1,50,1);
X(1:50,2) = unifrnd(0.5,1,50,1);
y(1:50) = 2+sqrt(2)*randn(1,50);
X(51:100,1) = unifrnd(-1,0,50,1);
X(51:100,2) = unifrnd(-0.5,1,50,1);
y(51:100) = 3+sqrt(2)*randn(1,50);
X(101:150,1) = unifrnd(-1,0,50,1);
X(101:150,2) = unifrnd(-1,-0.5,50,1);
y(101:150) = 10+sqrt(2)*randn(1,50);
X(151:200,1) = unifrnd(0,1,50,1);
X(151:200,2) = unifrnd(-1,0.5,50,1);
y(151:200) = -10+sqrt(2)*randn(1,50);

The next step is to grow the tree. The that we get from this tree should
be larger than the one in Example 10.8.

% Set the maximum number in the nodes.
maxn = 5;
tree = csgrowr(X,y,maxn);

The tree we get has a total of 129 nodes, with 65 terminal nodes. We now get
the sequence of nested subtrees using the pruning procedure. We include a
function called cspruner that implements the process.

% Now prune the tree.
treeseq = cspruner(tree);

The variable treeseq contains a sequence of 41 subtrees. The following code
shows how we can get estimates of the error as in Equation 10.30.

% Generate an independent test sample.
nprime = 1000;
X(1:250,1) = unifrnd(0,1,250,1);
X(1:250,2) = unifrnd(0.5,1,250,1);
y(1:250) = 2+sqrt(2)*randn(1,250);
X(251:500,1) = unifrnd(-1,0,250,1);
X(251:500,2) = unifrnd(-0.5,1,250,1);
y(251:500) = 3+sqrt(2)*randn(1,250);

T0

R̂min
CV

T0()

Tmax

© 2002 by Chapman & Hall/CRC

418 Computational Statistics Handook with MATLAB

X(501:750,1) = unifrnd(-1,0,250,1);
X(501:750,2) = unifrnd(-1,-0.5,250,1);
y(501:750) = 10+sqrt(2)*randn(1,250);
X(751:1000,1) = unifrnd(0,1,250,1);
X(751:1000,2) = unifrnd(-1,0.5,250,1);
y(751:1000) = -10+sqrt(2)*randn(1,250);
% For each tree in the sequence,
% find the mean squared error
k = length(treeseq);
msek = zeros(1,k);
numnodes = zeros(1,k);
for i=1:(k-1)
 err = zeros(1,nprime);
 t = treeseq{i};
 for j=1:nprime
 [yhat,node] = cstreer(X(j,:),t);
 err(j) = (y(j)-yhat).^2;
 end
 [term,nt,imp] = getdata(t);
 % find the # of terminal nodes
 numnodes(i) = length(find(term==1));
 % find the mean
 msek(i) = mean(err);
end
t = treeseq{k};
msek(k) = mean((y-t.node(1).yhat).^2);

In Figure 10.15, we show a plot of the estimated error against the number of
terminal nodes (or the complexity). We can find the tree that corresponds to
the minimum error as follows.

% Find the subtree corresponding to the minimum MSE.
[msemin,ind] = min(msek);
minnode = numnodes(ind);

We see that the tree with the minimum error corresponds to the one with 4
terminal nodes, and it is the 38th tree in the sequence. The minimum error is
5.77. The final step is to estimate the standard error using Equation 10.31.

% Find the standard error for that subtree.
t0 = treeseq{ind};
for j = 1:nprime
 [yhat,node] = cstreer(X(j,:),t0);
 err(j) = (y(j)-yhat).^4-msemin^2;
end
se = sqrt(sum(err)/nprime)/sqrt(nprime);

© 2002 by Chapman & Hall/CRC

Chapter 10: Nonparametric Regression 419

This yields a standard error of 0.97. It turns out that there is no subtree that
has smaller complexity (i.e., fewer terminal nodes) and has an error less than

. In fact, the next tree in the sequence has an error of 13.09.
So, our choice for the best tree is the one with 4 terminal nodes. This is not
surprising given our results from the previous example.
�

10.5 MATLAB Code

MATLAB does not have any functions for the nonparametric regression tech-
niques presented in this text. The MathWorks, Inc. has a Spline Toolbox that
has some of the desired functionality for smoothing using splines. The basic
MATLAB package also has some tools for estimating functions using splines
(e.g., spline, interp1, etc.). We did not discuss spline-based smoothing,
but references are provided in the next section.

The regression function in the MATLAB Statistics Toolbox is called
regress. This has more output options than the polyfit function. For
example, regress returns the parameter estimates and residuals, along with
corresponding confidence intervals. The polytool is an interactive demo

FFFFIIIIGUGUGUGURE 10.1RE 10.1RE 10.1RE 10.15555

This shows a plot of the estimated error using the independent test sample approach. Note
that there is a sharp minimum for .

0 10 20 30 40 50 60 70

5

10

15

20

25

30

35

40

45

50

55
R

T
S
(T

k)

Number of Terminal Nodes

T k 4=

)

5.77 0.97+ 6.74=

© 2002 by Chapman & Hall/CRC

420 Computational Statistics Handook with MATLAB

available in the MATLAB Statistics Toolbox. It allows the user to explore the
effects of changing the degree of the fit.

As mentioned in Chapter 5, the smoothing techniques described in Visual-
izing Data [Cleveland, 1993] have been implemented in MATLAB and are
available at http://www.datatool.com/Dataviz_home.htm for free
download. We provide several functions in the Computational Statistics
Toolbox for local polynomial smoothing, loess, regression trees and others.
These are listed in Table 10.1.

10.6 Further Reading

For more information on loess, Cleveland’s book Visualizing Data [1993] is an
excellent resource. It contains many examples and is easy to read and under-
stand. In this book, Cleveland describes many other ways to visualize data,
including extensions of loess to multivariate data. The paper by Cleveland
and McGill [1984] discusses other smoothing methods such as polar smooth-
ing, sum-difference smooths, and scale-ratio smoothing.

For a more theoretical treatment of smoothing methods, the reader is
referred to Simonoff [1996], Wand and Jones [1995], Bowman and Azzalini
[1997], Green and Silverman [1994], and Scott [1992]. The text by Loader
[1999] describes other methods for local regression and likelihood that are not
covered in our book. Nonparametric regression and smoothing are also
examined in Generalized Additive Models by Hastie and Tibshirani [1990]. This

TTTTAAAABBBBLLLLEEEE 11110.10.10.10.1

List of Functions from Chapter 10 Included in the Computational
Statistics Toolbox

Purpose MATLAB Function

These functions are used for loess
smoothing.

csloess
csloessenv
csloessr

This function does local polynomial
smoothing.

cslocpoly

These functions are used to work with
regression trees.

csgrowr
cspruner
cstreer

csplotreer
cspicktreer

This function performs nonparametric
regression using kernels.

csloclin

© 2002 by Chapman & Hall/CRC

http://www.datatool.com/Dataviz_home.htm

Chapter 10: Nonparametric Regression 421

text contains explanations of some other nonparametric regression methods
such as splines and multivariate adaptive regression splines.

Other smoothing techniques that we did not discuss in this book, which are
commonly used in engineering and operations research, include moving
averages and exponential smoothing. These are typically used in applica-
tions where the independent variable represents time (or something analo-
gous), and measurements are taken over equally spaced intervals. These
smoothing applications are covered in many introductory texts. One possible
resource for the interested reader is Wadsworth [1990].

For a discussion of boundary problems with kernel estimators, see Wand
and Jones [1995] and Scott [1992]. Both of these references also compare the
performance of various kernel estimators for nonparametric regression.
When we discussed probability density estimation in Chapter 8, we pre-
sented some results from Scott [1992] regarding the integrated squared error
that can be expected with various kernel estimators. Since the local kernel
estimators are based on density estimation techniques, expressions for the
squared error can be derived. Several references provide these, such as Scott
[1995], Wand and Jones [1995], and Simonoff [1996].

© 2002 by Chapman & Hall/CRC

422 Computational Statistics Handook with MATLAB

Exercises

10.1. Generate data according to , where represents
some noise. Instead of adding noise with constant variance, add noise
that is variable and depends on the value of the predictor. So, increas-
ing values of the predictor show increasing variance. Do a polynomial
fit and plot the residuals versus the fitted values. Do they show that
the constant variance assumption is violated? Use MATLAB’s Basic
Fitting tool to explore your options for fitting a model to these data.

10.2. Generate data as in problem 10.1, but use noise with constant vari-
ance. Fit a first-degree model to it and plot the residuals versus the
observed predictor values (residual dependence plot). Do they
show that the model is not adequate? Repeat for

10.3. Repeat Example 10.1. Construct box plots and histograms of the
residuals. Do they indicate normality?

10.4. In some applications, one might need to explore how the spread or
scale of Y changes with X. One technique that could be used is the
following:

a) determine the fitted values ;
b) calculate the residuals ;

c) plot against ; and
d) smooth using loess [Cleveland and McGill, 1984].

Apply this technique to the environ data.

10.5. Use the filip data and fit a sequence of polynomials of degree
 For each fit, construct a residual dependence plot.

What do these show about the adequacy of the models?
10.6. Use the MATLAB Statistics Toolbox graphical user interface

polytool with the longley data. Use the tool to find an adequate
model.

10.7. Fit a loess curve to the environ data using and various
values for . Compare the curves. What values of the parameters
seem to be the best? In making your comparison, look at residual
plots and smoothed scatterplots. One thing to look for is excessive
structure (wiggliness) in the loess curve that is not supported by the
data.

10.8. Write a MATLAB function that implements the Priestley-Chao esti-
mator in Equation 10.23.

y 4x3 6x2 1– ε+ += ε

Xi

d 2 3.,=

Yi
ˆ

εi Yi Yi
ˆ–=

εi Xi

d 2 4 6 10., , ,=

λ 1 2,=
α

© 2002 by Chapman & Hall/CRC

Chapter 10: Nonparametric Regression 423

10.9. Repeat Example 10.6 for various values of the smoothing parameter
h. What happens to your curve as h goes from very small values to
very large ones?

10.10. The human data set [Hand, et al., 1994; Mazess, et al., 1984] contains
measurements of percent fat and age for 18 normal adults (males and
females). Use loess or one of the other smoothing methods to deter-
mine how percent fat is related to age.

10.11. The data set called anaerob has two variables: oxygen uptake and
the expired ventilation [Hand, et al., 1994; Bennett, 1988]. Use loess
to describe the relationship between these variables.

10.12. The brownlee data contains observations from 21 days of a plant
operation for the oxidation of ammonia [Hand, et al., 1994; Brownlee,
1965]. The predictor variables are: is the air flow, is the cooling
water inlet temperature (degrees C), and is the percent acid con-
centration. The response variable Y is the stack loss (the percentage
of the ingoing ammonia that escapes). Use a regression tree to deter-
mine the relationship between these variables. Pick the best tree using
cross-validation.

10.13. The abrasion data set has 30 observations, where the two predic-
tor variables are hardness and tensile strength. The response variable
is abrasion loss [Hand, et al., 1994; Davies and Goldsmith, 1972].
Construct a regression tree using cross-validation to pick a best tree.

10.14. The data in helmets contains measurements of head acceleration
(in g) and times after impact (milliseconds) from a simulated motor-
cycle accident [Hand, et al., 1994; Silverman, 1985]. Do a loess smooth
on these data. Include the upper and lower envelopes. Is it necessary
to use the robust version?

10.15. Try the kernel methods for nonparametric regression on the
helmets data.

10.16. Use regression trees on the boston data set. Choose the best tree
using an independent test sample (taken from the original set) and
cross-validation.

X1 X2

X3

© 2002 by Chapman & Hall/CRC

Chapter 11
Markov Chain Monte Carlo Methods

11.1 Introduction

In many applications of statistical modeling, the data analyst would like to
use a more complex model for a data set, but is forced to resort to an over-
simplified model in order to use available techniques. Markov chain Monte
Carlo (MCMC) methods are simulation-based and enable the statistician or
engineer to examine data using realistic statistical models.

We start off with the following example taken from Raftery and Akman
[1986] and Roberts [2000] that looks at the possibility that a change-point has
occurred in a Poisson process. Raftery and Akman [1986] show that there is
evidence for a change-point by determining Bayes factors for the change-
point model versus other competing models. These data are a time series that
indicate the number of coal mining disasters per year from 1851 to 1962. A
plot of the data is shown in Figure 11.8, and it does appear that there has been
a reduction in the rate of disasters during that time period. Some questions
we might want to answer using the data are:

• What is the most likely year in which the change occurred?

• Did the rate of disasters increase or decrease after the change-point?

Example 11.8, presented later on, answers these questions using Bayesian
data analysis and Gibbs sampling.

The main application of the MCMC methods that we present in this chap-
ter is to generate a sample from a distribution. This sample can then be used
to estimate various characteristics of the distribution such as moments, quan-
tiles, modes, the density, or other statistics of interest.

In Section 11.2, we provide some background information to help the
reader understand the concepts underlying MCMC. Because much of the
recent developments and applications of MCMC arise in the area of Bayesian
inference, we provide a brief introduction to this topic. This is followed by a
discussion of Monte Carlo integration, since one of the applications of

© 2002 by Chapman & Hall/CRC

426 Computational Statistics Handbook with MATLAB

MCMC methods is to obtain estimates of integrals. In Section 11.3, we present
several Metropolis-Hastings algorithms, including the random-walk
Metropolis sampler and the independence sampler. A widely used special
case of the general Metropolis-Hastings method called the Gibbs sampler is
covered in Section 11.4. An important consideration with MCMC is whether
or not the chain has converged to the desired distribution. So, some conver-
gence diagnostic techniques are discussed in Section 11.5. Sections 11.6 and
11.7 contain references to MATLAB code and references for the theoretical
underpinnings of MCMC methods.

11.2 Background

BBBBaaaayeyeyeyessssiiiiaaaan Inferenn Inferenn Inferenn Inferencccceeee

Bayesians represent uncertainty about unknown parameter values by proba-
bility distributions and proceed as if parameters were random quantities
[Gilks, et al., 1996a]. If we let D represent the data that are observed and
represent the model parameters, then to perform any inference, we must
know the joint probability distribution over all random quantities.
Note that we allow to be multi-dimensional. From Chapter 2, we know that
the joint distribution can be written as

,

where is called the prior and is called the likelihood. Once we
observe the data D, we can use Bayes’ Theorem to get the posterior distribu-
tion as follows

. (11.1)

Equation 11.1 is the distribution of conditional on the observed data D.
Since the denominator of Equation 11.1 is not a function of (since we are
integrating over), we can write the posterior as being proportional to the
prior times the likelihood,

.

We can see from Equation 11.1 that the posterior is a conditional distribu-
tion for the model parameters given the observed data. Understanding and

θ

P D θ,()
θ

P D θ,() P θ()P D θ()=

P θ() P D θ()

P θ D() P θ()P D θ()

P θ()P D θ() θd∫
---=

θ
θ

θ

P θ D() P θ()P D θ()∝ P θ()L θ D;()=

© 2002 by Chapman & Hall/CRC

Chapter 11: Markov Chain Monte Carlo Methods 427

using the posterior distribution is at the heart of Bayesian inference, where
one is interested in making inferences using various features of the posterior
distribution (e.g., moments, quantiles, etc.). These quantities can be written
as posterior expectations of functions of the model parameters as follows

. (11.2)

Note that the denominator in Equations 11.1 and 11.2 is a constant of pro-
portionality to make the posterior integrate to one. If the posterior is non-
standard, then this can be very difficult, if not impossible, to obtain. This is
especially true when the problem is high dimensional, because there are a lot
of parameters to integrate over. Analytically performing the integration in
these expressions has been a source of difficulty in applications of Bayesian
inference, and often simpler models would have to be used to make the anal-
ysis feasible. Monte Carlo integration using MCMC is one answer to this
problem.

Because the same problem also arises in frequentist applications, we will
change the notation to make it more general. We let X represent a vector of d
random variables, with distribution denoted by To a frequentist, X
would contain data, and is called a likelihood. For a Bayesian, X would
be comprised of model parameters, and would be called a posterior dis-
tribution. For both, the goal is to obtain the expectation

. (11.3)

As we will see, with MCMC methods we only have to know the distribution
of X up to the constant of normalization. This means that the denominator in
Equation 11.3 can be unknown. It should be noted that in what follows we
assume that X can take on values in a d-dimensional Euclidean space. The
methods can be applied to discrete random variables with appropriate
changes.

MonteMonteMonteMonte CCCCaaaarrrrlo Inlo Inlo Inlo Intttteeeegratiogratiogratiogrationnnn

As stated before, most methods in statistical inference that use simulation can
be reduced to the problem of finding integrals. This is a fundamental part of
the MCMC methodology, so we provide a short explanation of classical
Monte Carlo integration. References that provide more detailed information
on this subject are given in the last section of the chapter.

E f θ() D[]
f θ()P θ()P D θ() θd∫

P θ()P D θ() θd∫
---=

π x().
π x()

π x()

E f X()[]
f x()π x() xd∫

π x() xd∫
-------------------------------=

© 2002 by Chapman & Hall/CRC

428 Computational Statistics Handbook with MATLAB

Monte Carlo integration estimates the integral of Equation 11.3 by
obtaining samples , from the distribution and calculat-
ing

. (11.4)

The notation t is used here because there is an ordering or sequence to the
random variables in MCMC methods. We know that when the are inde-
pendent, then the approximation can be made as accurate as needed by
increasing n. We will see in the following sections that with MCMC methods,
the samples are not independent in most cases. That does not limit their use
in finding integrals using approximations such as Equation 11.4. However,
care must be taken when determining the variance of the estimate in Equa-
tion 11.4 because of dependence [Gentle, 1998; Robert and Casella, 1999]. We
illustrate the method of Monte Carlo integration in the next example.

Example 11.1
For a distribution that is exponential with we find using
Equation 11.4. We generate random variables from the required distribution,
take the square root of each one and then find the average of these values.
This is implemented below in MATLAB.

% Generate 500 exponential random
% variables with lambda = 1.
% This is a Statistics Toolbox function.
x = exprnd(1,1,1000);
% Take square root of each one.
xroot = sqrt(x);
% Take the mean - Equation 11.4
exroothat = mean(xroot);

From this, we get an estimate of 0.889. We can use MATLAB to find the value
using numerical integration.

% Now get it using numerical integration
strg = 'sqrt(x).*exp(-x)';
myfun = inline(strg);
% quadl is a MATLAB 6 function.
exroottru = quadl(myfun,0,50);

The value we get using numerical integration is 0.886, which closely matches
what we got from the Monte Carlo method.
�

E f X()[]
Xt t 1 … n, ,= π x()

E f X()[] 1
n
--- f Xt()

t 1=

n

∑≈

Xt

λ 1,= E X[]

© 2002 by Chapman & Hall/CRC

Chapter 11: Markov Chain Monte Carlo Methods 429

The samples do not have to be independent as long as they are gener-
ated using a process that obtains samples from the ‘entire’ domain of
and in the correct proportions [Gilks, et al., 1996a]. This can be done by con-
structing a Markov chain that has as its stationary distribution. We now
give a brief description of Markov chains.

Markov ChainMarkov ChainMarkov ChainMarkov Chainssss

A Markov chain is a sequence of random variables such that the next value
or state of the sequence depends only on the previous one. Thus, we are gen-
erating a sequence of random variables, such that the next state

 with is distributed according to , which is called the
transition kernel. A realization of this sequence is also called a Markov chain.
We assume that the transition kernel does not depend on t, making the chain
time-homogeneous.

One issue that must be addressed is how sensitive the chain is to the start-
ing state . Given certain conditions [Robert and Casella, 1999], the chain
will forget its initial state and will converge to a stationary distribution,
which is denoted by As the sequence grows larger, the sample points
become dependent samples from The reader interested in knowing the
conditions under which this happens and for associated proofs of conver-
gence to the stationary distribution is urged to read the references given in
Section 11.7.

Say the chain has been run for m iterations, and we can assume that the
sample points , are distributed according to the stationary
distribution We can discard the first m iterations and use the remaining

 samples along with Equation 11.4 to get an estimate of the expectation
as follows

. (11.5)

The number of samples m that are discarded is called the burn-in. The size of
the burn-in period is the subject of current research in MCMC methods. Diag-
nostic methods to help determine m and n are described in Section 11.5. Geyer
[1992] suggests that the burn-in can be between 1% and 2% of n, where n is
large enough to obtain adequate precision in the estimate given by
Equation 11.5.

So now we must answer the question: how large should n be to get the
required precision in the estimate? As stated previously, estimating the vari-
ance of the estimate given by Equation 11.5 is difficult because the samples
are not independent. One way to determine n via simulation is to run several
Markov chains in parallel, each with a different starting value. The estimates
from Equation 11.5 are compared, and if the variation between them is too

X t

π x()

π x()

X0 X1 …, ,
Xt 1+ t 0≥ P Xt 1+ Xt()

X0

ψ. Xt

ψ.

X t t m 1 … n, ,+=
ψ.

n m–

E f X()[] 1
n m–
-------------- f X t()

t m 1+=

n

∑≈

© 2002 by Chapman & Hall/CRC

430 Computational Statistics Handbook with MATLAB

great, then the length of the chains should be increased [Gilks, et al., 1996b].
Other methods are given in Roberts [1996], Raftery and Lewis [1996], and in
the general references mentioned in Section 11.7.

AnalAnalAnalAnalyyyyzing thezing thezing thezing the OOOOuuuuttttpupupuputttt

We now discuss how the output from the Markov chains can be used in sta-
tistical analysis. An analyst might be interested in calculating means, stan-
dard deviations, correlations and marginal distributions for components of

. If we let represent the j-th component of at the t-th step in the
chain, then using Equation 11.5, we can obtain the marginal means and vari-
ances from

,

and

.

These estimates are simply the componentwise sample mean and sample
variance of the sample points , Sample correlations are
obtained similarly. Estimates of the marginal distributions can be obtained
using the techniques of Chapter 8.

One last problem we must deal with to make Markov chains useful is the
stationary distribution We need the ability to construct chains such that
the stationary distribution of the chain is the one we are interested in:
In the MCMC literature, is often referred to as the target distribution. It
turns out that this is not difficult and is the subject of the next two sections.

11.3 Metropolis-Hastings Algorithms

The Metropolis-Hastings method is a generalization of the Metropolis tech-
nique of Metropolis, et al. [1953], which had been used for many years in the
physics community. The paper by Hastings [1970] further generalized the
technique in the context of statistics. The Metropolis sampler, the indepen-
dence sampler and the random-walk are all special cases of the Metropolis-

X Xt , j Xt

X , j
1

n m–
-------------- Xt , j

t m 1+=

n

∑=

S , j
2 1

n m– 1–
----------------------- Xt , j X , j–()2

t m 1+=

n

∑=

Xt t m 1 … n., ,+=

ψ.
π x().

π x()

© 2002 by Chapman & Hall/CRC

Chapter 11: Markov Chain Monte Carlo Methods 431

Hastings method. Thus, we cover the general method first, followed by the
special cases.

These methods share several properties, but one of the more useful proper-
ties is that they can be used in applications where is known up to the
constant of proportionality. Another property that makes them useful in a lot
of applications is that the analyst does not have to know the conditional dis-
tributions, which is the case with the Gibbs sampler. While it can be shown
that the Gibbs sampler is a special case of the Metropolis-Hastings algorithm
[Robert and Casella, 1999], we include it in the next section because of this
difference.

MetropoMetropoMetropoMetropolllliiiissss----HaHaHaHassssttttininininggggs Samples Samples Samples Samplerrrr

The Metropolis-Hastings sampler obtains the state of the chain at by
sampling a candidate point Y from a proposal distribution . Note that
this depends only on the previous state and can have any form, subject to
regularity conditions [Roberts, 1996]. An example for is the multivari-
ate normal with mean and fixed covariance matrix. One thing to keep in
mind when selecting is that the proposal distribution should be easy
to sample from.

The required regularity conditions for are irreducibility and aperi-
odicity [Chib and Greenberg, 1995]. Irreducibility means that there is a posi-
tive probability that the Markov chain can reach any non-empty set from all
starting points. Aperiodicity ensures that the chain will not oscillate between
different sets of states. These conditions are usually satisfied if the proposal
distribution has a positive density on the same support as the target distribu-
tion. They can also be satisfied when the target distribution has a restricted
support. For example, one could use a uniform distribution around the cur-
rent point in the chain.

The candidate point is accepted as the next state of the chain with probabil-
ity given by

. (11.6)

If the point Y is not accepted, then the chain does not move and .
The steps of the algorithm are outlined below. It is important to note that the
distribution of interest appears as a ratio, so the constant of proportion-
ality cancels out. This is one of the appealing characteristics of the Metropo-
lis-Hastings sampler, making it appropriate for a wide variety of
applications.

π x()

t 1+
q . Xt()

X t

q . X t()
Xt

q . Xt()

q . Xt()

α Xt Y,() min 1
π Y()q X t Y()
π Xt()q Y Xt()
---------------------------------,

=

Xt 1+ X t=

π x()

© 2002 by Chapman & Hall/CRC

432 Computational Statistics Handbook with MATLAB

PROCEDURE - METROPOLIS-HASTINGS SAMPLER

1. Initialize the chain to and set .
2. Generate a candidate point Y from .

3. Generate U from a uniform distribution.
4. If (Equation 11.6) then set , else set

.

5. Set and repeat steps 2 through 5.

The Metropolis-Hastings procedure is implemented in Example 11.2, where
we use it to generate random variables from a standard Cauchy distribution.
As we will see, this implementation is one of the special cases of the Metrop-
olis-Hastings sampler described later.

Example 11.2
We show how the Metropolis-Hastings sampler can be used to generate ran-
dom variables from a standard Cauchy distribution given by

.

From this, we see that

.

We will use the normal as our proposal distribution, with a mean given by
the previous value in the chain and a standard deviation given by . We start
by setting up inline MATLAB functions to evaluate the densities for Equa-
tion 11.6.

% Set up an inline function to evaluate the Cauchy.
% Note that in both of the functions,
% the constants are canceled.
strg = '1./(1+x.^2)';
cauchy = inline(strg,'x');
% set up an inline function to evaluate the Normal pdf
strg = '1/sig*exp(-0.5*((x-mu)/sig).^2)';
norm = inline(strg,'x','mu','sig');

We now generate samples in the chain.

% Generate 10000 samples in the chain.
% Set up the constants.
n = 10000;

X0 t 0=

q . Xt()
0 1,()

U α Xt Y,()≤ Xt 1+ Y=
X t 1+ Xt=

t t 1+=

f x() 1

π 1 x2+()
----------------------;= ∞ x ∞< <–

f x() 1

1 x2+
--------------∝

σ

n 10000=

© 2002 by Chapman & Hall/CRC

Chapter 11: Markov Chain Monte Carlo Methods 433

sig = 2;
x = zeros(1,n);
x(1) = randn(1);% generate the starting point
for i = 2:n
% generate a candidate from the proposal distribution
% which is the normal in this case. This will be a
% normal with mean given by the previous value in the
% chain and standard deviation of 'sig'
y = x(i-1) + sig*randn(1);
% generate a uniform for comparison
u = rand(1);
alpha = min([1, cauchy(y)*norm(x(i-1),y,sig)/...

 (cauchy(x(i-1))*norm(y,x(i-1),sig))]);
if u <= alpha

x(i) = y;
else

x(i) = x(i-1);
end

end

We can plot a density histogram along with the curve corresponding to the
true probability density function. We discard the first 500 points for the burn-
in period. The plot is shown in Figure 11.1.
�

MetropoMetropoMetropoMetropolllliiiis Ss Ss Ss Sampampampamplllleeeerrrr

The Metropolis sampler refers to the original method of Metropolis, et al.
[1953], where only symmetric distributions are considered for the proposal
distribution. Thus, we have that

.

for all X and Y. As before, a common example of a distribution like this is the
normal distribution with mean X and fixed covariance. Because the proposal
distribution is symmetric, those terms cancel out in the acceptance probabil-
ity yielding

q Y X() q X Y()=

© 2002 by Chapman & Hall/CRC

434 Computational Statistics Handbook with MATLAB

. (11.7)

PROCEDURE - METROPOLIS SAMPLER

1. Initialize the chain to and set .
2. Generate a candidate point Y from .

3. Generate U from a uniform distribution.
4. If (Equation 11.7) then set , else set

.

5. Set and repeat steps 2 through 5.

When the proposal distribution is such that , then it is
called the random-walk Metropolis. This amounts to generating a candidate

FFFFIIIIGUGUGUGURERERERE 11111.11.11.11.1

We generated 10,000 variates from the Cauchy distribution using the Metropolis-Hastings
sampler. This shows a density histogram of the random variables after discarding the first
500 points. The curve corresponding to the true probability density function is superimposed
over the histogram. We see that the random variables do follow the standard Cauchy
distribution.

−30 −20 −10 0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

α Xt Y,() min 1
π Y()
π Xt()
-------------,

=

X0 t 0=

q . Xt()
0 1,()

U α Xt Y,()≤ Xt 1+ Y=
X t 1+ Xt=

t t 1+=

q Y X() q X Y–()=

© 2002 by Chapman & Hall/CRC

Chapter 11: Markov Chain Monte Carlo Methods 435

point , where Z is an increment random variable from the distri-
bution q.

We can gain some insight into how this algorithm works by looking at the
conditions for accepting a candidate point as the next sample in the chain. In
the symmetric case , the probabil i ty of movin g is . I f

, then the chain moves to Y because will be equal to 1.
This means that a move that climbs up the curve given by the target distribu-
tion is always accepted. A move that is worse (i.e., one that goes downhill) is
accepted with probability given by . These concepts are illus-
trated in Figure 11.2. This is the basic algorithm proposed by Metropolis, et
al. [1953], and it is the foundation for other optimization algorithms such as
simulated annealing [Kirkpatrick, Gelatt, and Vechi, 1983; Aarts and Korst,
1989].

When implementing any of the Metropolis-Hastings algorithms, it is
important to understand how the scale of the proposal distribution affects the
efficiency of the algorithm. This is especially apparent with the random-walk
version and is illustrated in the next example. If a proposal distribution takes
small steps, then the acceptance probability given by Equation 11.7 will be

FFFFIIIIGUGUGUGURERERERE 11111.21.21.21.2

This shows what happens when a candidate point is selected and the proposal distribution
is symmetric [Chib and Greenberg, 1995]. In this case, the probability of moving to another
point is based on the ratio . If , then the chain moves to the candidate
point y. If , then the chain moves to y with probability . So we see
that a move from x to would be automatically accepted, but a move to would be
accepted with probability .

Y Xt Z+=

π Y() π Xt()⁄
π Y() π Xt()≥ α Xt Y,()

π Y() π Xt()⁄

y
1

x y
2

π(y
1
)

π(y
2
)

π(x)

π y() π x()⁄ π y() π x()≥
π y() π x()< π y() π x()⁄

y1 y2

π y2() π x()⁄

© 2002 by Chapman & Hall/CRC

436 Computational Statistics Handbook with MATLAB

high, yielding a higher rate at which we accept candidate points. The prob-
lem here is that the chain will mix slowly, meaning that the chain will take
longer to get to the stationary distribution. On the other hand, if the proposal
distribution generates large steps, then the chain could move to the tails,
resulting in low acceptance probabilities. Again, the chain fails to mix
quickly.

Example 11.3
In this example, we show how to implement the random-walk version of the
Metropolis-Hastings sampler [Gilks, et al., 1996a] and use it to generate vari-
ates from the standard normal distribution (the target distribution). Of
course, we do not have to resort to MCMC methods to generate random vari-
ables from this target distribution, but it serves to illustrate the importance of
picking the right scale for the proposal distribution. We use the normal as a
proposal distribution to generate the candidates for the next value in the
chain. The mean of the proposal distribution is given by the current value in
the chain . We generate three chains with different values for the standard
deviation, given by: . These provide chains that exhibit good
mixing, poor mixing due to small step size and poor mixing due to a large
step size, respectively. We show below how to generate the three sequences
with variates in each chain.

% Get the variances for the proposal distributions.
sig1 = 0.5;
sig2 = 0.1;
sig3 = 10;
% We will generate 500 iterations of the chain.
n = 500;
% Set up the vectors to store the samples.
X1 = zeros(1,n);
X2 = X1;
X3 = X1;
% Get the starting values for the chains.
X1(1) = -10;
X2(1) = 0;
X3(1) = 0;

Now that we have everything initialized, we can obtain the chains.

% Run the first chain.
for i = 2:n
% Generate variate from proposal distribution.
y = randn(1)*sig1 + X1(i-1);
% Generate variate from uniform.
u = rand(1);
% Calculate alpha.

xt

σ 0.5 0.1 10, ,=

n 500=

© 2002 by Chapman & Hall/CRC

Chapter 11: Markov Chain Monte Carlo Methods 437

alpha = normpdf(y,0,1)/normpdf(X1(i-1),0,1);
if u <= alpha

% Then set the chain to the y.
X1(i) = y;

else
X1(i) = X1(i-1);

end
end
% Run second chain.
for i = 2:n
% Generate variate from proposal distribution.
y = randn(1)*sig2 + X2(i-1);
% Generate variate from uniform.
u = rand(1);
% Calculate alpha.
alpha = normpdf(y,0,1)/normpdf(X2(i-1),0,1);
if u <= alpha

% Then set the chain to the y.
X2(i) = y;

else
X2(i) = X2(i-1);

end
end
% Run the third chain.
for i = 2:n
% Generate variate from proposal distribution.
y = randn(1)*sig3 + X3(i-1);
% Generate variate from uniform.
u = rand(1);
% Calculate alpha.
alpha = normpdf(y,0,1)/normpdf(X3(i-1),0,1);
if u <= alpha

% Then set the chain to the y.
X3(i) = y;

else
X3(i) = X3(i-1);

end
end

Plots of these sequences are illustrated in Figure 11.3, where we also show
horizontal lines at These lines are provided as a way to determine if most
values in the chain are mixing well (taking on many different values) within
two standard deviations of zero, since we are generating standard normal
variates. Note that the first one converges quite rapidly and exhibits good
mixing in spite of an extreme starting point. The second one with
(small steps) is mixing very slowly and does not seem to have converged to

2.±

σ 0.1=

© 2002 by Chapman & Hall/CRC

438 Computational Statistics Handbook with MATLAB

the target distribution in these 500 steps of the chain. The third sequence,
where large steps are taken, also seems to be mixing slowly, and it is easy to
see that the chain sometimes does not move. This is due to the large steps
taken by the proposal distribution.
�

IndIndIndIndeeeependpendpendpendeeeence Snce Snce Snce Saaaammmmpppplllleeeerrrr

The independence sampler was proposed by Tierney [1994]. This method
uses a proposal distribution that does not depend on X; i.e., it is generated
independently of the previous value in the chain. The proposal distribution
is of the form , so Equation 11.6 becomes

FFFFIIIIGUGUGUGURERERERE 11111.31.31.31.3

These are the three sequences from Example 11.3. The target distribution is the standard
normal. For all three sequences, the proposal distribution is normal with the mean given
by the previous element in the sequence. The standard deviations of the proposal distribution
are: Note that the first sequence approaches the target distribution after
the first 50 - 100 iterations. The other two sequences are slow to converge to the target
distribution because of slow mixing due to the poor choice of .

σ 0.5 0.1 10., ,=

σ

q Y X() q Y()=

© 2002 by Chapman & Hall/CRC

Chapter 11: Markov Chain Monte Carlo Methods 439

. (11.8)

This is sometimes written in the literature as

where .
Caution should be used when implementing the independence sampler. In

general, this method will not work well unless the proposal distribution q is
very similar to the target distribution . Gilks, et al. [1996a] show that it is
best if q is heavier-tailed than . Note also that the resulting sample is still
not independent, even though we generate the candidate points indepen-
dently of the previous value in the chain. This is because the acceptance prob-
ability for the next value depends on the previous one. For more
information on the independence sampler and the recommended usage, see
Roberts [1996] or Robert and Casella [1999].

AutoAutoAutoAutorrrreeeegressigressigressigressivvvve Generating Dene Generating Dene Generating Dene Generating Denssssiiiitytytyty

Another choice for a candidate generating density is proposed by Tierney
[1994] and described by Chib and Greenberg [1995]. This is represented by an
autoregressive process of order 1 and is obtained by generating candidates as
follows

, (11.9)

where a is a vector and is a matrix, both of which are conformable in terms
of size with . The vector Z has a density given by q. If , then the
chains are produced by reflecting about the point a, yielding negative corre-
lation between successive values in the sequence. The autoregressive gener-
ating density is described in the next example.

Example 11.4
We show how to use the Metropolis-Hastings sampler with the autoregres-
sive generating density to generate random variables from a target distribu-
tion given by a bivariate normal with the following parameters:

.

α X t Y,() min 1
π Y()q Xt()
π Xt()q Y()
--------------------------,

=

α Xt Y,() min 1
w Y()
w Xt()
---------------,

=

w X() π X() q X()⁄=

π
π

Xt 1+

Y a B Xt a–() Z+ +=

B
Xt B I–=

µµµµ 1

2
= ΣΣΣΣ 1 0.9

0.9 1
=

© 2002 by Chapman & Hall/CRC

440 Computational Statistics Handbook with MATLAB

Variates from this distribution can be easily generated using the techniques
of Chapter 4, but it serves to illustrate the concepts. In the exercises, the
reader is asked to generate a set of random variables using those techniques
and compare them to the results obtained in this example. We generate a
sequence of points and use a burn-in of 4000.

% Set up some constants and arrays to store things.
n = 6000;
xar = zeros(n,2); % to store samples
mu = [1;2]; % Parameters - target distribution.
covm = [1 0.9; 0.9 1];

We now set up a MATLAB inline function to evaluate the required proba-
bilities.

% Set up the function to evaluate alpha
% for this problem. Note that the constant
% has been canceled.
strg = 'exp(-0.5*(x-mu)''*inv(covm)*(x-mu))';
norm = inline(strg,'x','mu','covm');

The following MATLAB code sets up a random starting point and obtains the
elements of the chain.

% Generate starting point.
xar(1,:) = randn(1,2);
for i = 2:n
% Get the next variate in the chain.
% y is a column vector.
y = mu - (xar(i-1,:)'-mu) + (-1+2*rand(2,1));
u = rand(1);
% Uses inline function ‘norm’ from above.
alpha=min([1,norm(y,mu,covm)/...

norm(xar(i-1,:)',mu,covm)]);
if u <= alpha

xar(i,:) = y';
else

xar(i,:) = xar(i-1,:);
end

end

A scatterplot of the last 2000 variates is given in Figure 11.4, and it shows that
they do follow the target distribution. To check this further, we can get the
sample covariance matrix and the sample mean using these points. The result
is

,

n 6000=

µµµµ̂ 1.04

2.03
= ΣΣΣΣ

ˆ 1 0.899

0.899 1
=

© 2002 by Chapman & Hall/CRC

Chapter 11: Markov Chain Monte Carlo Methods 441

from which we see that the sample does reflect the target distribution.
�

Example 11.5
This example shows how the Metropolis-Hastings method can be used with
an example in Bayesian inference [Roberts, 2000]. This is a genetic linkage
example, looking at the genetic linkage of 197 animals. The animals are
divided into four categories with frequencies given by

,

with corresponding cell probabilities of

.

From this, we get a posterior distribution of given the data Z, of

.

FFFFIIIIGUGUGUGURERERERE 11111.41.41.41.4

This is a scatterplot of the last 2000 elements of a chain generated using the autoregressive
generating density of Example 11.4.

−2 −1 0 1 2 3 4
−1

0

1

2

3

4

5
Random Walk Version

Z z1 z2 z3 z4, , ,() 125 18 20 34, , ,()= =

1
2

θ
4
--- 1

4
--- 1 θ–() 1

4
--- 1 θ–() θ

4
---,,,+

θ ,

P θ Z() π θ() 2 θ+()
z1 1 θ–()

z2 z3+
θ

z4∝=

© 2002 by Chapman & Hall/CRC

442 Computational Statistics Handbook with MATLAB

We would like to use this to observe the behavior of the parameter (i.e.,
what are likely values for) given the data. Note that any constants in the
denominator in have been eliminated because they cancel in the
Metropolis-Hastings sampler. We use the random-walk version where the
step is generated by the uniform distribution over the interval . Note
that we set up a MATLAB inline function to get the probability of accepting
the candidate point.

% Set up the preliminaries.
z1 = 125;
z2 = 18;
z3 = 20;
z4 = 34;
n = 1100;
% Step size for the proposal distribution.
a = 0.1;
% Set up the space to store values.
theta = zeros(1,n);
% Get an inline function to evaluate probability.
strg = '((2+th).^z1).*((1-th).^(z2+z3)).*(th.^z4)';
ptheta = inline(strg,'th','z1','z2','z3','z4');

We can now generate the chain as shown below.

% Use Metropolis-Hastings random-walk
% where y = theta(i-1) + z
% and z is uniform(-a,a).
% Get initial value for theta.
theta(1) = rand(1);
for i = 2:n
% Generate from proposal distribution.
y = theta(i-1) - a + 2*a*rand(1);
% Generate from uniform.
u = rand(1);
alpha = min([ptheta(y,z1,z2,z3,z4)/...

ptheta(theta(i-1),z1,z2,z3,z4),1]);
if u <= alpha

theta(i) = y;
else

theta(i) = theta(i-1);
end

end

We set the burn-in period to 100, so only the last 1000 elements are used to
produce the density histogram estimate of the posterior density of given in
Figure 11.5.
�

θ
θ

π θ()

a– a,()

θ

© 2002 by Chapman & Hall/CRC

Chapter 11: Markov Chain Monte Carlo Methods 443

11.4 The Gibbs Sampler

Although the Gibbs sampler can be shown to be a special case of the Metrop-
olis-Hastings algorithm [Gilks, et al., 1996b; Robert and Casella, 1999], we
include it in its own section, because it is different in some fundamental
ways. The two main differences between the Gibbs sampler and Metropolis-
Hastings are:

1) We always accept a candidate point.

2) We must know the full conditional distributions.

In general, the fact that we must know the full conditional distributions
makes the algorithm less applicable.

The Gibbs sampler was originally developed by Geman and Geman [1984],
where it was applied to image processing and the analysis of Gibbs distribu-
tions on a lattice. It was brought into mainstream statistics through the arti-
cles of Gelfand and Smith [1990] and Gelfand, et al. [1990].

FFFFIIIIGUGUGUGURERERERE 11111.51.51.51.5

This shows the density histogram estimate of the posterior density of given the observed
data.

0.5 0.55 0.6 0.65 0.7 0.75
0

1

2

3

4

5

6

7

8

9
Posterior Density for θ

θ

θ

© 2002 by Chapman & Hall/CRC

444 Computational Statistics Handbook with MATLAB

In describing the Gibbs sampler, we follow the treatment in Casella and
George [1992]. Let’s assume that we have a joint density that is given by

, and we would like to understand more about the marginal
density. For example, we might want to know the shape, the mean, the vari-
ance or some other characteristic of interest.

The marginal density is given by

. (11.10)

Equation 11.10 says that to get the marginal distribution, we must integrate
over all of the other variables. In many applications, this integration is very
difficult (and sometimes impossible) to perform. The Gibbs sampler is a way
to get by simulation. As with the other MCMC methods, we use the
Gibbs sampler to generate a sample from and then use the
sample to estimate the desired characteristic of Casella and George
[1992] note that if m is large enough, then any population characteristic can
be calculated with the required degree of accuracy.

To illustrate the Gibbs sampler, we start off by looking at the simpler case
where the joint distribution is . Using the notation from the previous
sections, is a two element vector with elements given by

We start the chain with an initial starting point of . We
then generate a sample from by sampling from the conditional dis-
tributions given by and At each iteration, the elements of
the random vector are obtained one at a time by alternately generating values
from the conditional distributions. We illustrate this in the procedure given
below.

PROCEDURE - GIBBS SAMPLER (BIVARIATE CASE)

1. Generate a starting point . Set .

2. Generate a point from

.

3. Generate a point from

.

4. Set and repeat steps 2 through 4.

f x y1 … yd, , ,()

f x() … f x y1 … yd, , ,() y1…d ydd∫∫=

f x()
X1 … Xm, , f x()

f x().

f x1 x2,()
Xt

Xt Xt , 1 Xt , 2,()=

X0 X0 , 1 X0 , 2,()=
f x1 x2,()

f x1 x2() f x2 x1().

X0 X0 , 1 X0 , 2,()= t 0=

Xt , 1

f Xt , 1 Xt , 2 xt , 2=()

Xt , 2

f Xt , 2 Xt 1 , 1+ xt 1 , 1+=()

t t 1+=

© 2002 by Chapman & Hall/CRC

Chapter 11: Markov Chain Monte Carlo Methods 445

Note that the conditional distributions are conditioned on the current or
most recent values of the other components of . Example 11.6 shows how
this is done in a simple case taken from Casella and George [1992].

Example 11.6
To illustrate the Gibbs sampler, we consider the following joint distribution

,

where and . Let’s say our goal is to estimate some
characteristic of the marginal distribution of . By ignoring the overall
dependence on n, and , we find that the conditional distribution
is binomial with parameters n and , and the conditional distribution
is a beta distribution with parameters and [Casella and
George, 1992]. The MATLAB commands given below use the Gibbs sampler
to generate variates from the joint distribution.

% Set up preliminaries.
% Here we use k for the chain length, because n
% is used for the number of trials in a binomial.
k = 1000; % generate a chain of size 1000
m = 500; % burn-in will be 500
a = 2; % chosen
b = 4;
x = zeros(1,k);
y = zeros(1,k);
n = 16;

We are now ready to generate the elements in the chain. We start off by gen-
erating a starting point.

% Pick a starting point.
x(1) = binornd(n,0.5,1,1);
y(1) = betarnd(x(1) + a, n - x(1) + b,1,1);
for i = 2:k
x(i) = binornd(n,y(i-1),1,1);
y(i) = betarnd(x(i)+a, n-x(i)+b, 1, 1);

end

Note that we do not have to worry about whether or not we will accept the
next value in the chain. With Gibbs sampling every candidate is accepted. We
can estimate the marginal using the following

Xt

f x y,()
n

x
 yx α 1–+ 1 y–()n x– β 1–+∝

x 0 1 … n, , ,= 0 y 1≤ ≤
f x() X

α β f x y()
y f y x()

x α+ n x– β+

© 2002 by Chapman & Hall/CRC

446 Computational Statistics Handbook with MATLAB

.

This says that we evaluate the probability conditional on the values of that
were generated after the burn-in period. This is implemented in MATLAB as
follows:

% Get the marginal by evaluating the conditional.
% Use MATLAB's Statistics Toolbox.
% Find the P(X=x|Y's)
fhat = zeros(1,17);
for i = 1:17
fhat(i) = mean(binopdf(i-1,n,y(500:k)));

end

The true marginal probability mass function is [Casella and George, 1992]

,

for . We plot the estimated probability mass function along
with the true marginal in Figure 11.6. This shows that the estimate is very
close to the true function.
�

Casella and George [1992] and Gelfand and Smith [1990] recommend that
K different sequences be generated, each one with length n. Then the last ele-
ment of each sequence is used to obtain a sample of size K that is approxi-
mately independent for large enough K. We do note that there is some
disagreement in the literature regarding the utility of running one really long
chain to get better convergence to the target distribution or many shorter
chains to get independent samples [Gilks, et al., 1996b]. Most researchers in
this field observe that one long run would often be used for exploratory anal-
ysis and a few moderate size runs is preferred for inferences.

The procedure given below for the general Gibbs sampler is for one chain
only. It is easier to understand the basic concepts by looking at one chain, and
it is simple to expand the algorithm to multiple chains.

PROCEDURE - GIBBS SAMPLER

1. Generate a starting point . Set .
2. Generate a point from

f̂ x() 1
k m–
------------- f x yi()

i m 1+=

k

∑=

yi

f x()
n

x
 Γ α β+()

Γ α()Γ β()
-------------------------Γ x α+()Γ n x– β+()

Γ α β n+ +()
---=

x 0 1 … n, , ,=

X0 X0 , 1 … X0 , d, ,()= t 0=

Xt , 1

© 2002 by Chapman & Hall/CRC

Chapter 11: Markov Chain Monte Carlo Methods 447

.

Generate a point from

.

. . .

Generate a point from

.

3. Set and repeat steps 2 through 3.

Example 11.7
We show another example of Gibbs sampling as applied to bivariate normal
data. Say we have the same model as we had in Example 11.4, where we

FFFFIIIIGUGUGUGURERERERE 11111.61.61.61.6

On the left, we have the estimated probability mass function for the marginal distribution
 The mass function on the right is from the true probability mass function. We see that

there is close agreement between the two.

0 5 10 15
0

0.02

0.04

0.06

0.08

0.1

0.12
Estimated Marginal f(x)

0 5 10 15
0

0.02

0.04

0.06

0.08

0.1

0.12
True Marginal f(x)

f x() .

f Xt , 1 Xt , 2 xt , 2= … Xt , d xt , d=, ,()

Xt , 2

f Xt , 2 Xt 1 , 1+ xt 1 , 1+= X, t , 3 xt , 3= … X, t , d xt , d=,()

Xt , d

f Xt , d Xt 1 , 1+ xt 1 , 1+= … X, t 1 , d 1–+ xt 1 , d 1–+=,()

t t 1+=

© 2002 by Chapman & Hall/CRC

448 Computational Statistics Handbook with MATLAB

wanted to generate samples from a bivariate normal with the following
parameters

.

From Gelman, et al. [1995] we know that is univariate normal with
mean and standard deviation . Similarly, is
univariate normal with mean and standard deviation .
With this information, we can implement the Gibbs sampler to generate the
random variables.

% Set up constants and arrays.
n = 6000;
xgibbs = zeros(n,2);
rho = 0.9;
y = [1;2];% This is the mean.
sig = sqrt(1-rho^2);
% Initial point.
xgibbs(1,:) = [10 10];
% Start the chain.
for i = 2:n
 mu = y(1) + rho*(xgibbs(i-1,2)-y(2));
 xgibbs(i,1) = mu + sig*randn(1);
 mu = y(2) + rho*(xgibbs(i,1) - y(1));
 xgibbs(i,2) = mu + sig*randn(1);
end

Notice that the next element in the chain is generated based on the current
values for and . A scatterplot of the last 2000 variates generated with
this method is shown in Figure 11.7.
�

We return now to our example described at the beginning of the chapter,
where we are investigating the hypothesis that there has been a reduction in
coal mining disasters over the years 1851 to 1962. To understand this further,
we follow the model given in Roberts [2000]. This model assumes that the
number of disasters per year follows a Poisson distribution with a mean rate
of until the k-th year. After the k-th year, the number of disasters is distrib-
uted according to the Poisson distribution with a mean rate of This is rep-
resented as

µµµµ µ1

µ2

1

2
= = ΣΣΣΣ 1 ρ

ρ 1

1 0.9

0.9 1
= =

f x1 x2()
µ1 ρ x2 µ2–()+ 1 ρ2– f x2 x1()

µ2 ρ x1 µ1–()+ 1 ρ2–

x1 x2

θ
λ .

Yi Poisson θ()∼ i 1 … k, ,=

Yi Poisson λ()∼ i k 1+ … n ,, ,=

© 2002 by Chapman & Hall/CRC

Chapter 11: Markov Chain Monte Carlo Methods 449

where the notation ‘~’ means ‘is distributed as.’
A Bayesian model is given by the following

and the k is discrete uniform over (since there are 112 years).
Note that , and k are all independent of each other.

This model leads to the following conditional distributions:

FFFFIIIIGUGUGUGURERERERE 11111.71.71.71.7

This is a scatterplot of the bivariate normal variates generated using Gibbs sampling. Note
that the results are similar to Figure 11.4.

−3 −2 −1 0 1 2 3 4 5
−2

−1

0

1

2

3

4

5

6

θ Gamma a1 b1,()∼

λ Gamma a2 b2,()∼
b1 Gamma c1 d1,()∼

b2 Gamma c2 d2,()∼

1 … 112, ,{ }
θ λ

θ Y λ b1 b2 k, , , , Gamma a1 Yi

i 1=

k

∑+ k b1+,

∼

λ Y θ b1 b2 k, , , , Gamma a2 Yi

i k 1+=

n

∑+ n k– b2+,

∼

© 2002 by Chapman & Hall/CRC

450 Computational Statistics Handbook with MATLAB

The likelihood is given by

.

We use Gibbs sampling to simulate the required distributions and examine
the results to explore the change-point model. For example, we could look at
the posterior densities of , and k to help us answer the questions posed
at the beginning of the chapter.

Example 11.8
A plot of the time series for the coal data is shown in Figure 11.8, where we
see graphical evidence supporting the hypothesis that a change-point does
occur [Raftery and Akman, 1986] and that there has been a reduction in the
rate of coal mine disasters over this time period.

We set up the preliminary data needed to implement Gibbs sampling as fol-
lows:

% Set up preliminaries.
load coal
% y contains number of disasters.
% year contains the year.
n = length(y);
m = 1100; % number in chain
% The values for the parameters are the same
% as in Roberts[2000].
a1 = 0.5;
a2 = 0.5;
c1 = 0;
c2 = 0;
d1 = 1;
d2 = 1;
theta = zeros(1,m);
lambda = zeros(1,m);
k = zeros(1,n);

b1 Y θ λ b2 k, , , , Gamma a1 c1+ θ d1+,()∼

b2 Y θ λ b, 1 k, , , Gamma a2 c2+ λ d2+,()∼

f k Y θ λ b, 1 b2, , ,() L Y k θ λ, ,;()

L Y j θ λ, ,;()
j 1=

n

∑
------------------------------------=

L Y k θ λ, ,;() k λ θ–(){ } θ λ⁄()

Yi

i 1=

k

∑
exp=

θ λ

© 2002 by Chapman & Hall/CRC

Chapter 11: Markov Chain Monte Carlo Methods 451

% Holds probabilities for k.
like = zeros(1,n);

We are now ready to implement the Gibbs sampling. We will run the chain
for 1100 iterations and use a burn-in period of 100.

% Get starting points.
k(1) = unidrnd(n,1,1);
% Note that k will indicate an index to the year
% that corresponds to a hypothesized change-point.
theta(1) = 1;
lambda(1) = 1;
b1 = 1;
b2 = 1;
% Start the Gibbs Sampler.
for i = 2:m
 kk = k(i-1);
 % Get parameters for generating theta.
 t = a1 + sum(y(1:kk));
 lam = kk + b1;
 % Generate the variate for theta.

FFFFIIIIGUGUGUGURERERERE 11111.81.81.81.8

Time series of the coal data. It does appear that there was a reduction in the rate of disasters
per year, after a certain year. Estimating that year is the focus of this example.

1840 1860 1880 1900 1920 1940 1960 1980

0

1

2

3

4

5

6

7
Number of Coal Mine Disasters per Year

Year

N
um

be
r

of
 D

is
as

te
rs

© 2002 by Chapman & Hall/CRC

452 Computational Statistics Handbook with MATLAB

 theta(i) = gamrnd(t,1/lam,1,1);
 % Get parameters for generating lambda.
 t = a2 + sum(y) - sum(y(1:kk));
 lam = n-kk+b2;
 % Generate the variate for lambda.
 lambda(i) = gamrnd(t,1/lam,1,1);
 % Generate the parameters b1 and b2.
 b1 = gamrnd(a1+c1,1/(theta(i)+d1),1,1);
 b2 = gamrnd(a2+c2,1/(lambda(i)+d2),1,1);
 % Now get the probabilities for k.
 for j = 1:n
 like(j) = exp((lambda(i)-theta(i))*j)*...
 (theta(i)/lambda(i))^sum(y(1:j));
 end
 like = like/sum(like);
 % Now sample the variate for k.

k(i) = cssample(1:n,like,1);
end

The sequences for , and k are shown in Figure 11.9, where we can see that
a burn-in period of 100 is reasonable. In Figure 11.10. we plot the frequencies
for the estimated posterior distribution using the generated k variates. We see
evidence of a posterior mode at which corresponds to the year 1891.
So, we suspect that the change-point most likely occurred around 1891. We
can also look at density histograms for the posterior densities for and
These are given in Figure 11.11, and they indicate that the mean rate of disas-
ters did decrease after the change-point.
�

11.5 Convergence Monitoring

The problem of deciding when to stop the chain is an important one and is
the topic of current research in MCMC methods. After all, the main purpose
of using MCMC is to get a sample from the target distribution and explore its
characteristics. If the resulting sequence has not converged to the target dis-
tribution, then the estimates and inferences we get from it are suspect.

Most of the methods that have been proposed in the literature are really
diagnostic in nature and have the goal of monitoring convergence. Some are
appropriate only for Metropolis-Hastings algorithms and some can be
applied only to Gibbs samplers. We will discuss in detail one method due to
Gelman and Rubin [1992] and Gelman [1996], because it is one of the simplest
to understand and to implement. Additionally, it can be used in any of the
MCMC algorithms. We also very briefly describe another widely used

θ λ

k 41,=

θ λ.

© 2002 by Chapman & Hall/CRC

Chapter 11: Markov Chain Monte Carlo Methods 453

method due to Raftery and Lewis [1992, 1996] that can be employed within
the MCMC method. Other papers that review and compare the various con-
vergence diagnostics are Cowles and Carlin [1996], Robert [1995] and Brooks
[1998]. Some recent research in this area can be found in Canty [1999] and
Brooks and Giudici [2000].

GGGGeeeellllmmmmaaaannnn aaaandndndnd RRRRuuuubbbbiiiin Methon Methon Methon Methodddd

We will use to represent the characteristic of the target distribution (mean,
moments, quantiles, etc.) in which we are interested. One obvious way to
monitor convergence to the target distribution is to run multiple sequences
of the chain and plot versus the iteration number. If they do not converge
to approximately the same value, then there is a problem. Gelman [1996]
points out that lack of convergence can be detected by comparing multiple
sequences, but cannot be detected by looking at a single sequence.

The Gelman-Rubin convergence diagnostic is based on running multiple
chains. Cowles and Carlin [1996] recommend ten or more chains if the target

FFFFIIIIGUGUGUGURERERERE 11111.91.91.91.9

This shows the sequences that were generated using the Gibbs sampler.

0 100 200 300 400 500 600 700 800 900 1000 1100
0

2

4

T
h
e
ta

0 100 200 300 400 500 600 700 800 900 1000 1100
0

0.5

1

1.5

L
a
m

b
d
a

0 100 200 300 400 500 600 700 800 900 1000 1100
30

40

50

60

C
h

a
n

g
e

 P
o

in
t

−
 k

ν

ν

© 2002 by Chapman & Hall/CRC

454 Computational Statistics Handbook with MATLAB

FFFFIIIIGUGUGUGURERERERE 11111.11.11.11.10000

This is the frequency histogram for the random variables k generated by the Gibbs sampler
of Example 11.8. Note the mode at corresponding to the year 1891.

FFFFIIIIGUGUGUGURERERERE 11111.1.1.1.11111111

This figure shows density histograms for the posterior distributions for and , and there
seems to be evidence showing that there was a reduction in the mean rate of disasters per
year.

30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

k

f(
k)

k 41=

2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

θ

f (
 θ

)

0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5

λ

f (
 λ

)

θ λ

© 2002 by Chapman & Hall/CRC

Chapter 11: Markov Chain Monte Carlo Methods 455

distribution is unimodal. The starting points for these chains are chosen to be
widely dispersed in the target distribution. This is important for two reasons.
First, it will increase the likelihood that most regions of the target distribution
are visited in the simulation. Additionally, any convergence problems are
more likely to appear with over-dispersed starting points.

The method is based on the idea that the variance within a single chain will
be less than the variance in the combined sequences, if convergence has not
taken place. The Gelman-Rubin approach monitors the scalar quantities of
interest in the analysis (i.e.,).

We start off with k parallel sequences of length n starting from over-dis-
persed points in the target distribution. The between-sequence variance B
and the within-sequence W are calculated for each scalar summary . We
denote the j-th scalar summary in the i-th chain by

 .

Thus, the subscript j represents the position in the chain or sequence and i
denotes which sequence it was calculated from.

The between-sequence variance is given as

, (11.11)

where

, (11.12)

and

. (11.13)

Equation 11.12 is the mean of the n values of the scalar summary in the i-th
sequence, and Equation 11.13 is the average across sequences.

The within-sequence variance is determined by

, (11.14)

ν

ν

νij; i 1 … k j, , , 1 … n, ,= =

B n
k 1–
----------- νi . ν ..–()2

i 1=

k

∑=

ν i .
1
n
--- νij

j 1=

n

∑=

ν..
1
k
--- ν i .

i 1=

k

∑=

W 1
k
--- si

2

i 1=

k

∑=

© 2002 by Chapman & Hall/CRC

456 Computational Statistics Handbook with MATLAB

with

. (11.15)

Note that Equation 11.15 is the sample variance of the scalar summary for the
i-th sequence, and Equation 11.14 is the average variance for the k sequences.

Finally, W and B are combined to get an overall estimate of the variance of
 in the target distribution:

. (11.16)

Equation 11.16 is a conservative estimate of the variance of if the starting
points are over-dispersed [Gelman, 1996]. In other words, it tends to over
estimate the variance.

Alternatively, the within-sequence variance given by W is an underesti-
mate of the variance of . This should make sense considering the fact that
finite sequences have not had a chance to travel all of the target distribution
resulting in less variability for As n gets large, both and W
approach the true variance of one from above and one from below.

The Gelman-Rubin approach diagnoses convergence by calculating

. (11.17)

This is the ratio between the upper bound on the standard deviation of and
the lower bound. It estimates the factor by which might be reduced by
further iterations. The factor given by Equation 11.17 is called the estimated
potential scale reduction. If the potential scale reduction is high, then the
analyst is advised to run the chains for more iterations. Gelman [1996] recom-
mends that the sequences be run until for all scalar summaries are less
than 1.1 or 1.2.

Example 11.9
We return to Example 11.3 to illustrate the Gelman-Rubin method for moni-
toring convergence. Recall that our target distribution is the univariate stan-
dard normal. This time our proposal distribution is univariate normal with

 and . Our scalar summary is the mean of the elements of the
chain. We implement the Gelman-Rubin method using four chains.

% Set up preliminaries.
sig = 5;

si
2 1

n 1–
------------ νij ν i .–()2

j 1=

n

∑=

ν

varˆ ν() n 1–
n

------------W 1
n
---B+=

ν,

ν

ν. varˆ ν()
ν,

R̂ varˆ ν()
W

----------------=

ν
varˆ ν()

R̂

µ Xt= σ 5= ν

© 2002 by Chapman & Hall/CRC

Chapter 11: Markov Chain Monte Carlo Methods 457

% We will generate 500 iterations of the chain.
n = 5000;
numchain = 4;
% Set up the vectors to store the samples.
% This is 4 chains, 5000 samples.
X = zeros(numchain,n);
% This is 4 sequences (rows) of summaries.
nu = zeros(numchain,n);
% Track the rhat for each iteration:
rhat = zeros(1,n);
% Get the starting values for the chain.
% Use over-dispersed starting points.
X(1,1) = -10;
X(2,1) = 10;
X(3,1) = -5;
X(4,1) = 5;

The following implements the chains. Note that each column of our matrices
X and nu is one iteration of the chains, and each row contains one of the
chains. The X matrix keeps the chains, and the matrix nu is the sequence of
scalar summaries for each chain.

% Run the chain.
for j = 2:n

for i = 1:numchain
 % Generate variate from proposal distribution.
 y = randn(1)*sig + X(i,j-1);
 % Generate variate from uniform.
 u = rand(1);
 % Calculate alpha.
 alpha = normpdf(y,0,1)/normpdf(X(i,j-1),0,1);
 if u <= alpha
 % Then set the chain to the y.
 X(i,j) = y;
 else
 X(i,j) = X(i,j-1);
 end
 end
 % Get the scalar summary - means of each row.
 nu(:,j) = mean(X(:,1:j)')';
 rhat(j) = csgelrub(nu(:,1:j));
end

The function csgelrub will return the estimated for a given set of
sequences of scalar summaries. We plot the four sequences for the summary
statistics of the chains in Figure 11.12. From these plots, we see that it might
be reasonable to assume that the sequences have converged, since they are

R̂

© 2002 by Chapman & Hall/CRC

458 Computational Statistics Handbook with MATLAB

getting close to the same value in each plot. In Figure 11.13, we show a plot
of for each iteration of the sequence. This seems to confirm that the chains
are getting close to convergence. Our final value of at the last iteration of
the chain is 1.05.
�

One of the advantages of the Gelman-Rubin method is that the sequential
output of the chains does not have to be examined by the analyst. This can be
difficult, especially when there are a lot of summary quantities that must be
monitored. The Gelman-Rubin method is based on means and variances, so
it is especially useful for statistics that approximately follow the normal dis-
tribution. Gelman, et al. [1995] recommend that in other cases, extreme quan-
tiles of the between and within sequences should be monitored.

RRRRaaaafffftttteeeerrrryyyy aaaandndndnd LLLLewisewisewisewis MMMMeeeetttthodhodhodhod

We briefly describe this method for two reasons. First, it is widely used in
applications. Secondly, it is available in MATLAB code through the Econo-
metrics Toolbox (see Section 11.6 for more information) and in Fortran from
StatLib. So, the researcher who needs another method besides the one of Gel-
man and Rubin is encouraged to download these and try them. The article by
Raftery and Lewis [1996] is another excellent resource for information on the
theoretical basis for the method and for advice on how to use it in practice.

This technique is used to detect convergence of the chain to the target dis-
tribution and also provides a way to bound the variance of the estimates
obtained from the samples. To use this method, the analyst first runs one
chain of the Gibbs sampler for . This is the minimum number of itera-
tions needed for the required precision, given that the samples are indepen-
dent. Using this chain and other quantities as inputs (the quantile to be
estimated, the desired accuracy, the probability of getting that accuracy, and
a convergence tolerance), the Raftery-Lewis method yields several useful val-
ues. Among them are the total number of iterations needed to get the desired
level of accuracy and the number of points in the chain that should be dis-
carded (i.e., the burn-in).

11.6 MATLAB Code

The Statistics Toolbox for MATLAB does not provide functions that imple-
ment MCMC methods, but the pieces (i.e., evaluating probability density
functions and generating random variables) are there for the analyst to easily
code up the required simulations. Also, the examples given in this text can be
adapted to fit most applications by simply changing the proposal and target

R̂
R̂

Nmin

© 2002 by Chapman & Hall/CRC

Chapter 11: Markov Chain Monte Carlo Methods 459

FFFFIIIIGUGUGUGURERERERE 11111.11.11.11.12222

Here are the sequences of summary statistics in Example 11.9. We are tracking the mean of
sequences of variables generated by the Metropolis-Hastings sampler. The target distribution
is a univariate standard normal. It appears that the sequences are close to converging, since
they are all approaching the same value.

FFFFIIIIGUGUGUGURERERERE 11111.131.131.131.13

This sequence of values for indicates that it is very close to one, showing near convergence.

1000 2000 3000 4000 5000

−0.1

−0.05

0

0.05

0.1

1000 2000 3000 4000 5000

−0.1

−0.05

0

0.05

0.1

1000 2000 3000 4000 5000

−0.1

−0.05

0

0.05

0.1

1000 2000 3000 4000 5000

−0.1

−0.05

0

0.05

0.1

1000 1500 2000 2500 3000 3500 4000 4500 5000
1.07

1.08

1.09

1.1

1.11

1.12

1.13

1.14

Iteration of Chain

R
 −

ha
t

R̂

© 2002 by Chapman & Hall/CRC

460 Computational Statistics Handbook with MATLAB

distributions. There is an Econometrics Toolbox that contains M-files for the
Gibbs sampler and the Raftery-Lewis convergence diagnostic. The software
can be freely downloaded at www.spatial-econometrics.com. Exten-
sive documentation for the procedures in the Econometrics Toolbox is also
available at the website. The Raftery-Lewis method for S-plus and Fortran
can be downloaded at:

• S-plus: http://lib.stat.cmu.edu/S/gibbsit
• Fortran: http://lib.stat.cmu.edu/general/gibbsit

There are several user-contributed M-files for MCMC available for download
at The MathWorks website:

ftp.mathworks.com/pub/contrib/v5/stats/mcmc/

For those who do not use MATLAB, another resource for software that will
do Gibbs sampling and Bayesian analysis is the BUGS (Bayesian Inference
Using Gibbs Sampling) software. The software and manuals can be down-
loaded at www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml.

In the Computational Statistics Toolbox, we provide an M-file function
called csgelrub that implements the Gelman-Rubin diagnostic. It returns

 for given sequences of scalar summaries. We also include a function that
implements a demo of the Metropolis-Hastings sampler where the target dis-
tribution is standard bivariate normal. This runs four chains, and the points
are plotted as they are generated so the user can see what happens as the
chain grows. The M-file functions pertaining to MCMC that we provide are
summarized in Table 11.1.

TTTTAAAABBBBLLLLEEEE 11111.11.11.11.1

List of Functions from Chapter 11 Included in the Computational
Statistics Toolbox

Purpose MATLAB Function

Gelman-Rubin convergence diagnostic given
sequences of scalar summaries

csgelrub

Graphical demonstration of what happens in
the Metropolis-Hastings sampler

csmcmcdemo

R̂

© 2002 by Chapman & Hall/CRC

http://www.spatial-econometrics.com/
http://lib.stat.cmu.edu/S/gibbsit
http://lib.stat.cmu.edu/general/gibbsit
www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml
ftp://ftp.mathworks.com/pub/contrib/v5/stats/mcmc/

Chapter 11: Markov Chain Monte Carlo Methods 461

11.7 Further Reading

For an excellent introduction to Markov chain Monte Carlo methods, we rec-
ommend the book Markov Chain Monte Carlo in Practice [Gilks, et al., 1996b].
This contains a series of articles written by leading researchers in the area and
describes most aspects of MCMC from the theoretical to the practical. For a
complete theoretical treatment of MCMC methods and many examples, the
reader is referred to Robert and Casella [1999]. This book also contains a
description of many of the hybrid MCMC methods that have been devel-
oped. The text by Tanner [1996] provides an introduction to computational
algorithms for Bayesian and likelihood inference.

Most recent books on random number generation discuss the Metropolis-
Hastings sampler and the Gibbs sampler. Gentle [1998] has a good discussion
of MCMC methods and includes some examples in MATLAB. Ross [1997]
has a chapter on MCMC and also discusses the connection between Metrop-
olis-Hastings and simulated annealing. Ross [2000] also covers the topic of
MCMC.

The monograph by Lindley [1995] gives an introduction and review of
Bayesian statistics. For an overview of general Markov chain theory, see Tier-
ney [1996], Meyn and Tweedie [1993] or Norris [1997]. If the reader would
like more information on Bayesian data analysis, then the book Bayesian Data
Analysis [Gelman, et al., 1995] is a good place to start. This text also contains
some information and examples about the MCMC methods discussed in this
chapter. Most of these books also include information on Monte Carlo inte-
gration methods, including importance sampling and variance reduction.

Besides simulated annealing, a connection between MCMC methods and
the finite mixtures EM algorithm has been discussed in the literature. For
more information on this, see Robert and Casella [1999]. There is also another
method that, while not strictly an MCMC method, seems to be grouped with
them. This is called Sampling Importance Resampling [Rubin, 1987, 1988]. A
good introduction to this can be found in Ross [1997], Gentle [1998] and
Albert [1993].

© 2002 by Chapman & Hall/CRC

462 Computational Statistics Handbook with MATLAB

Exercises

11.1. The von Mises distribution is given by

,

where is the modified Bessel function of the first kind and order
zero. Letting and a starting point of 1, use the Metropolis
random-walk algorithm to generate 1000 random iterations of the
chain. Use the uniform distribution over the interval to gen-
erate steps in the walk. Plot the output from the chain versus the
iteration number. Does it look like you need to discard the initial
values in the chain for this example? Plot a histogram of the sample
[Gentle, 1998].

11.2. Use the Metropolis-Hastings algorithm to generate samples from the
beta distribution. Try using the uniform distribution as a candidate
distribution. Note that you can simplify by canceling constants.

11.3. Use the Metropolis-Hastings algorithm to generate samples from the
gamma distribution. What is a possible candidate distribution? Sim-
plify the ratio by canceling constants.

11.4. Repeat Example 11.3 to generate a sample of standard normal ran-
dom variables using different starting values and burn-in periods.

11.5. Let’s say that and have conditional distributions that are
exponential over the interval where B is a known positive
constant. Thus,

Use Gibbs sampling to generate samples from the marginal distribu-
tion Choose your own starting values and burn-in period.
Estimate the marginal distribution. What is the estimated mean, vari-
ance, and skewness coefficient for ? Plot a histogram of the
samples obtained after the burn-in period and the sequential output.
Start multiple chains from over-dispersed starting points and use the
Gelman-Rubin convergence diagnostics for the mean, variance and
skewness coefficient [Casella and George, 1992].

11.6. Explore the use of the Metroplis-Hastings algorithm in higher dimen-
sions. Generate 1000 samples for a trivariate normal distribution cen-

f x() 1
2πI0 b()
-------------------eb x()cos= π x π≤ ≤–

I0

b 3=

1 1,–()

X , 1 X , 2

0 B,(),

f x , 1 x , 2() x , 2e
x , 2x , 1–

∝ 0 x , 1 B ∞< < <

f x , 2 x , 1() x , 1e
x , 1x , 2–

∝ 0 x , 2 B ∞< < <

f x , 1() .

f x , 1()

© 2002 by Chapman & Hall/CRC

Chapter 11: Markov Chain Monte Carlo Methods 463

tered at the origin and covariance equal to the identity matrix. Thus,
each coordinate direction should be a univariate standard normal
distribution. Use a trivariate normal distribution with covariance
matrix , (i.e., 9’s are along the diagonal and 0’s everywhere
else) and mean given by the current value of the chain . Use

, as the starting point of the chain. Plot the
sequential output for each coordinate. Construct a histogram for the
first coordinate direction. Does it look like a standard normal? What
value did you use for the burn-in period? [Gentle, 1998.]

11.7. A joint density is given by

,

where . Use one of the techniques from this chapter to simulate
samples from this distribution and use them to estimate .
Start multiple chains and track the estimate to monitor the conver-
gence [Ross, 1997].

11.8. Use Gibbs sampling to generate samples that have the following
density

where and . Let represent a beta dis-
tribution with parameters a and b. We can write the conditional dis-
tributions as

where the notation means is from a beta distribution.
Plot the sequential output for each [Arnold, 1993].

11.9. Let’s say that we have random samples that are indepen-
dent and identically distributed from the normal distribution with
mean and variance 1. In the notation of Equation 11.1, these con-
stitute the set of observations D. We also have a prior distribution on

 such that

,

We can write the posterior as follows

ΣΣΣΣ 9 I⋅=
xt

x0 , i 10= i 1 … 3, ,=

f x,1 x ,2 x,3, ,() C x,1 x,2 x,3 x ,1x ,2 x ,1x,3 x,2x,3+ + + + +()–{ }exp=

x, i 0>
E X,1X ,2X ,3[]

f x,1 x ,2 x,3, ,() kx,1
4 x,2

3 x,3
2 1 x,1– x,2– x ,3–()=

x , i 0> x ,1 x ,2 x ,3+ + 1< B a b,()

X ,1 X ,2 X ,3, 1 X ,2– X,3–()Q∼ Q B 5 2,()∼

X ,2 X,1 X.3, 1 X,1– X ,3–()R∼ R B 4 2,()∼

X,3 X ,1 X ,2, 1 X ,1– X,2–()S∼ S B 3 2,()∼

Q B a b,()∼ Q
x , i

Z1 … Zn, ,

θ

θ

P θ() 1

1 θ2+
--------------∝

© 2002 by Chapman & Hall/CRC

464 Computational Statistics Handbook with MATLAB

.

Let the true mean be and generate a random sample of size
 from the normal distribution to obtain the . Use Metropolis-

Hastings to generate random samples from the posterior distribution
and use them to estimate the mean and the variance of the posterior
distribution. Start multiple chains and use the Gelman-Rubin diag-
nostic method to determine when to stop the chains.

11.10. Generate a set of random variables for the bivariate
distribution given in Example 11.4 using the technique from
Chapter 4. Create a scatterplot of these data and compare to the set
generated in Example 11.4.

11.11. For the bivariate distribution of Example 11.4, use a random-walk
generating density where the increment random vari-
able Z is distributed as bivariate uniform. Generate a sequence of 6000
elements and construct a scatterplot of the last 2000 values. Compare
to the results of Example 11.4.

11.12. For the bivariate distribution of Example 11.4, use a random-walk
generating density where the increment random vari-
ables Z are bivariate normal with mean zero and covariance

.

Generate a sequence of 6000 elements and construct a scatterplot of
the last 2000 values. Compare to the results of Example 11.4.

11.13. Use the Metropolis-Hastings sampler to generate random samples
from the lognormal distribution

Use the independence sampler and the gamma as a proposal distri-
bution, being careful about the tails. Plot the sample using the density
histogram and superimpose the true probability density function to
ensure that your random variables are from the desired distribution.

P θ D() P θ()L θ D;()∝ 1

1 θ2+
-------------- n θ z–()2–

2

exp×=

θ 0.06=
n 20= zi

n 2000=

Y Xt Z+=()

Y Xt Z+=()

ΣΣΣΣ 0.6 0

0 0.4
=

f x() 1

x 2π
-------------- xln()2

2
---------------–

exp=

f x() 1
x
--- xln()2

2
---------------–

.exp∝

© 2002 by Chapman & Hall/CRC

Chapter 12
Spatial Statistics

12.1 Introduction

We include this final chapter to illustrate an area of data analysis where the
methods of computational statistics can be applied. We do not cover this
topic in great detail, but we do present some of the areas in spatial statistics
that utilize the techniques discussed in the book. These methods include
exploratory data analysis and visualization (see Chapter 5), kernel density
estimation (see Chapter 8), and Monte Carlo simulation (see Chapter 6).

WhWhWhWhaaaat Ist Ist Ist Is SpSpSpSpaaaattttiiiiaaaallll SSSSttttaaaattttiiiissssttttiiiiccccssss????

Spatial statistics is concerned with statistical methods that explicitly con-
sider the spatial arrangement of the data. Most statisticians and engineers are
familiar with time-series data, where the observations are measured at dis-
crete time intervals. We know there is the possibility that the observations
that come later in the series are dependent on earlier values. When analyzing
such data, we might be interested in investigating the temporal data process
that generated the data. This can be thought of as an unobservable curve (that
we would like to estimate) that is generated in relation to its own previous
values.

Similarly, we can view spatial data as measurements that are observed at
discrete locations in a two-dimensional region. As with time series data, the
observations might be spatially correlated (in two dimensions), which should
be accounted for in the analysis.

Bailey and Gatrell [1995] sum up the definition and purpose of spatial sta-
tistics in this way:

observational data are available on some process operating in space and
methods are sought to describe or explain the behaviour of this process and
its possible relationship to other spatial phenomena. The object of the anal-
ysis is to increase our basic understanding of the process, assess the evidence
in favour of various hypotheses concerning it, or possibly to predict values

© 2002 by Chapman & Hall/CRC

466 Computational Statistics Handbook with MATLAB

in areas where observations have not been made. The data with which we
are concerned constitute a sample of observations on the process from which
we attempt to infer its overall behaviour. [Bailey and Gatrell, 1995, p. 7]

TTTTypypypypeeees ofs ofs ofs of SSSSpatial Datpatial Datpatial Datpatial Dataaaa

Typically, methods in spatial statistics fall into one of three categories that are
based on the type of spatial data that is being analyzed. These types of data
are called: point patterns, geostatistical data, and lattice data. The locations of
the observations might be referenced as points or as areal units. For example,
point locations might be designated by latitude and longitude or by their x
and y coordinates. Areal locations could be census tracts, counties, states, etc.

Spatial point patterns are data made up of the location of point events. We
are interested in whether or not their relative locations represent a significant
pattern. For example, we might look for patterns such as clustering or regu-
larity. While in some point-pattern data we might have an attribute attached
to an event, we are mainly interested in the locations of the events. Some
examples where spatial statistics methods can be applied to point patterns
are given below.

• We have a data set representing the location of volcanic craters in
Uganda. It shows a trend in a north-easterly direction, possibly
representing a major fault. We want to explore and model the
distribution of the craters using methods for analyzing spatial point
patterns.

• In another situation, we have two data sets showing thefts in the
Oklahoma City area in the 1970’s. One data set corresponds to those
committed by Caucasian offenders, and one data set contains infor-
mation on offences by African-Americans. An analyst might be
interested in whether there is a difference in the pattern of offences
committed by each group of offenders.

• Seismologists have data showing the distribution of earthquakes
in a region. They would like to know if there is any pattern that
might help them make predictions about future earthquakes.

• Epidemiologists collect data on where diseases occur. They would
like to determine any patterns that might indicate how the disease
is passed to other individuals.

With geostatistical data (or spatially continuous data), we have a mea-
surement attached to the location of the observed event. The locations can
vary continuously throughout the spatial region, although in practice, mea-
surements (or attributes) are taken at only a finite number of locations. We are
not necessarily interested in the locations themselves. Instead, we want to
understand and model the patterns in the attributes, with the goal of using

© 2002 by Chapman & Hall/CRC

Chapter 12: Spatial Statistics 467

the model to predict values of the variable at locations where measurements
were not taken. Some examples of geostatistical data analysis include the fol-
lowing:

• Rainfall is recorded at various points in a region. These data could
be used to model the rainfall over the entire region.

• Geologists take ore samples at locations in a region. They would
like to use these data to estimate the extent of the mineral deposit
over the entire region.

• Environmentalists measure the level of a pollutant at locations in
a region with the goal of using these data to model and estimate
the level of pollutant at other locations in the region.

The third type of spatial data is called lattice data. These data are often
associated with areas that can be regularly or irregularly spaced. The objec-
tive of the analysis of lattice data is to model the spatial pattern in the
attributes associated with the fixed areas. Some examples of lattice data are:

• A sociologist has data that comprises socio-economic measures for
regions in China. The goal of the analysis might be to describe and
to understand any patterns of inequality between the areas.

• Market analysts use socio-economic data from the census to target
a promising new area to market their products.

• A political party uses data representing the geographical voting
patterns in a previous election to determine a campaign schedule
for their candidate.

SSSSpatial Poinpatial Poinpatial Poinpatial Pointttt PPPPaaaatttttttteeeerrrrnsnsnsns

In this text, we look at techniques for analyzing spatial point patterns only. A
spatial point pattern is a set of point locations in a study region R.
Each point location is a vector containing the coordinates of the i-th event,

.

The term event can refer to any spatial phenomenon that occurs at a point
location. For example, events can be locations of trees growing in a forest,
positions of cells in tissue or the incidence of disease at locations in a commu-
nity. Note that the scale of our study affects the reasonableness of the assump-
tion that the events occur at point locations.

In our analysis of spatial point patterns, we might have to refer to other
locations in the study region R, where the phenomenon was not observed.

s1 … sn, ,
si

si
si1

si2

=

© 2002 by Chapman & Hall/CRC

468 Computational Statistics Handbook with MATLAB

We need a way to distinguish them from the locations where observations
were taken, so we refer to these other locations as points in the region.

At the simplest level, the data we are analyzing consist only of the coordi-
nate locations of the events. As mentioned before, they could also have an
attribute or variable associated with them. For example, this attribute might
be the date of onset of the disease, the species of tree that is growing, or the
type of crime.

This type of spatial data is sometimes referred to as a marked point pattern.
In our treatment of spatial point patterns, we assume that the data represent
a mapped point pattern. This is one where all relevant events in the study
region R have been measured. The study region R can be any shape. How-
ever, edge effects can be a problem with many methods in spatial statistics.
We describe the ramifications of edge effects as they arise with the various
techniques. In some cases, edge effects are handled by leaving a specified
guard area around the edge of the study region, but still within R. The anal-
ysis of point patterns is sensitive to the definition of R, so one might want to
perform the analysis for different guard areas and/or different study regions.

One way we can think of spatial point patterns is in terms of the number of
events occurring in an arbitrary sub-region of R. We denote the number of
events in a sub-region A as . The spatial process is then represented by
the random variables , . Since we have a random process, we can
look at the behavior in terms of the first-order and second-order properties.
These are related to the expected value (i.e., the mean) and the covariance
[Bailey and Gatrell, 1995]. The mean and the covariance of depend on
the number of events in arbitrary sub-regions A, and they depend on the size
of the areas and the study region R. Thus, it is more useful to look at the first-
and second-order properties in terms of the limiting behavior per unit area.

The first-order property is described by the intensity . The intensity is
defined as the mean number of events per unit area at the point s. Mathemat-
ically, the intensity is given by

, (12.1)

where is a small region around the point s, and is its area. If it is a sta-
tionary point process, then Equation 12.1 is a constant over the study region.
We can then write the intensity as

, (12.2)

where A is the area of the sub-region, and is the value of the intensity.
To understand the second-order properties of a spatial point process, we

need to look at the number of events in pairs of sub-regions of R. The second-
order property reflects the spatial dependence in the process. We describe

Y A()
Y A() A R⊂

Y A()

λ s()

λ s() E Y ds()[]
ds

ds 0→
lim=

ds ds

E Y A()[] λA=

λ

© 2002 by Chapman & Hall/CRC

Chapter 12: Spatial Statistics 469

this using the second-order intensity . As with the intensity, this is
defined using the events per unit area, as follows,

. (12.3)

If the process is stationary, then . This means that the sec-
ond-order intensity depends only on the vector difference of the two points.
The process is said to be second-order and isotropic if the second-order inten-
sity depends only on the distance between and . In other words, it does
not depend on the direction.

Complete SpComplete SpComplete SpComplete Spaaaattttiiiiaaaallll RandomneRandomneRandomneRandomnessssssss

The benchmark model for spatial point patterns is called complete spatial
randomness or CSR. In this model, events follow a homogeneous Poisson
process over the study region. The definition of CSR is given by the following
[Diggle, 1983]:

1. The intensity does not vary over the region. Thus, follows a
Poisson distribution with mean , where A is the area of A and

 is constant.

2. There are no interactions between the events. This means that, for
a given n, representing the total number of events in R, the events
are uniformly and independently distributed over the study region.

In a CSR process, an event has the same probability of occurring at any loca-
tion in R, and events neither inhibit nor attract each other. The methods cov-
ered in this chapter are mostly concerned with discovering and modeling
departures from the CSR model, such as regularity and clustering. Realiza-
tions of these three types of spatial point processes are shown in Figures 12.1
through 12.3, so the reader can understand the differences between these
point patterns.

In Figure 12.1, we have an example of a spatial point process that follows
the CSR model. Note that there does not appear to be systematic regularity
or clustering in the process. The point pattern displayed in Figure 12.2 is a
realization of a cluster process, where the clusters are obviously present.
Finally, in Figure 12.3, we have an example of a spatial point process that
exhibits regularity.

In this chapter, we look at methods for exploring and for analyzing spatial
point patterns only. We follow the treatment of this subject that is given in
Bailey and Gatrell [1995]. In keeping with the focus of this text, we emphasize
the simulation and computational approach, rather than the theoretical. In
the next section, we look at ways to visualize spatial point patterns using the

γ si sj,()

γ si sj,()
E Y dsi()Y dsj()[]

dsi dsj,

dsi dsj, 0→
lim=

γ si sj,() γ si sj–()=

si sj

Y A()
λA

λ

© 2002 by Chapman & Hall/CRC

470 Computational Statistics Handbook with MATLAB

FFFFIIIIGUGUGUGURE 12.RE 12.RE 12.RE 12.1111

In this figure, we show a realization from a CSR point process.

FFFFIIIIGUGUGUGURE 12.RE 12.RE 12.RE 12.2222

Here we have an example of a spatial point process that exhibits clustering.

FFFFIIIIGUGUGUGURE 12.RE 12.RE 12.RE 12.3333

This spatial point process exhibits regularity.

CSR Point Pattern

Cluster Point Pattern

Point Pattern Exhibiting Regularity

© 2002 by Chapman & Hall/CRC

Chapter 12: Spatial Statistics 471

graphical capabilities that come with the basic MATLAB package.
Section 12.3 contains information about exploring spatial point patterns and
includes methods for estimating first-order and second-order properties of
the underlying point process. In Section 12.4, we discuss how to model the
observed spatial pattern, with an emphasis on comparing the observed pat-
tern to one that is completely spatially random. Finally, in Section 12.5, we
offer some other models for spatial point patterns and discuss how to simu-
late data from them.

12.2 Visualizing Spatial Point Processes

The most intuitive way to visualize a spatial point pattern is to plot the data
as a dot map. A dot map shows the region over which the events are
observed, with the events shown using plotting symbols (usually points).
When the boundary region is not part of the data set, then the dot map is the
same as a scatterplot.

We mentioned briefly in Section 12.1 that some point patterns could have
an attribute attached to each event. One way to visualize these attributes is to
use different colors or plotting symbols that represent the values of the
attribute. Another option is to plot text that specifies the attribute value at the
event locations. For example, if the data represent earthquakes, then one
could plot the level of the quake at each event location. However, this can be
hard to interpret and gets cluttered if there are a lot of observations. Plotting
this type of scatterplot is easily done in MATLAB using the text function. Its
use will be illustrated in the exercises.

In some cases, the demographics of the population (e.g., number of people,
age, income, etc.) over the study region is important. For example, if the data
represent incidence of disease, then we might expect events to be clustered in
regions of high population density. One way to visualize this is to combine
the dot map with a surface representing the attribute, similar to what we
show in Example 12.4.

We will be using various data sets in this chapter to illustrate spatial statis-
tics for point patterns. We describe them in the next several examples and
show how to construct dot maps and boundaries in MATLAB. All of these
data sets are analyzed in Bailey and Gatrell [1995].

Example 12.1
In this first example, we look at data comprised of the crater centers of 120
volcanoes in west Uganda [Tinkler, 1971]. We see from the dot map in
Figure 12.4 that there is an indication of a regional trend in the north-easterly
direction. The data are contained in the file uganda, which contains the

© 2002 by Chapman & Hall/CRC

472 Computational Statistics Handbook with MATLAB

boundary as well as the event locations. The following MATLAB code shows
how to obtain a dot map.

load uganda
% This loads up x and y vectors corresponding
% to point locations.
% It also loads up a two column matrix
% containing the vertices to the region.
% Plot locations as points.
plot(x,y,'.k')
hold on
% Plot boundary as line.
plot(ugpoly(:,1),ugpoly(:,2),'k')
hold off
title('Volcanic Craters in Uganda')

�

Example 12.2
Here we have data for the locations of homes of juvenile offenders living in a
housing area in Cardiff, Wales [Herbert, 1980] in 1971. We will use these data
in later examples to determine whether they show evidence of clustering or
spatial randomness. These data are in the file called cardiff. When this is

FFFFIIIIGUGUGUGURE 12.RE 12.RE 12.RE 12.4444

This dot map shows the boundary region for volcanic craters in Uganda.

0 500 1000 1500 2000 2500 3000
500

1000

1500

2000

2500

3000

3500

4000

4500
Volcanic Craters in Uganda

© 2002 by Chapman & Hall/CRC

Chapter 12: Spatial Statistics 473

loaded using MATLAB, one also obtains a polygon representing the bound-
ary. The following MATLAB commands construct the dot map using a single
call to the plot function. The result is shown in Figure 12.5.

load cardiff
% This loads up x and y vectors corresponding
% to point locations.It also loads up a two
% column matrix containing the vertices
% to the region.
% Plot locations as points and boundary as line.
% Note: can do as one command:
plot(x,y,'.k',cardpoly(:,1),cardpoly(:,2),'k')
title('Juvenile Offenders in Cardiff')

�

Example 12.3
These data are the locations where thefts occurred in Oklahoma City in the
late 1970’s [Bailey and Gatrell, 1995]. There are two data sets: 1) okwhite
contains the data for Caucasian offenders and 2) okblack contains the event
locations for thefts committed by African-American offenders. Unlike the
previous data sets, these do not have a specific boundary associated with
them. We show in this example how to get a boundary for the okwhite data

FFFFIIIIGUGUGUGURE 12.RE 12.RE 12.RE 12.5555

This is the dot map showing the locations of homes of juvenile offenders in Cardiff.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Juvenile Offenders in Cardiff

© 2002 by Chapman & Hall/CRC

474 Computational Statistics Handbook with MATLAB

using the MATLAB function convhull. This function returns a set of indices
to events in the data set that lie on the convex hull of the locations.

load okwhite
% Loads up two vectors: okwhx, okwhy
% These are event locations for the pattern.
% Get the convex hull.
K = convhull(okwhx, okwhy);
% K contains the indices to points on the convex hull.
% Get the events.
cvh = [okwhx(K), okwhy(K)];
plot(okwhx,okwhy,'k.',cvh(:,1),cvh(:,2),'k')
title('Location of Thefts by Caucasian Offenders')

A plot of these data and the resulting boundary are shown in Figure 12.6. We
show in one of the exercises how to use a function called csgetregion
(included with the Computational Statistics Toolbox) that allows the user to
interactively set the boundary.
�

FFFFIIIIGUGUGUGURE 12.RE 12.RE 12.RE 12.6666

This shows the event locations for locations of thefts in Oklahoma City that were committed
by Caucasians. The boundary is the convex hull.

100 150 200 250 300 350
50

100

150

200

250

300

350
Location of Thefts by Caucasian Offenders

© 2002 by Chapman & Hall/CRC

Chapter 12: Spatial Statistics 475

12.3 Exploring First-order and Second-order Properties

In this section, we look at ways to explore spatial point patterns. We see how
to apply the density estimation techniques covered in Chapter 8 to estimate
the intensity or first-order property of the spatial process. The second-order
property can be investigated by using the methods of Chapter 5 to explore
the distributions of nearest neighbor distances.

EEEEstistististimmmmaaaattttinininingggg ththththeeee IntenIntenIntenIntenssssiiiitytytyty

One way to summarize the events in a spatial point pattern is to divide the
study region into sub-regions of equal area. These are called quadrats, which
is a name arising from the historical use of square sampling areas used in
field sampling. By counting the number of events falling in each of the quad-
rats, we end up with a histogram or frequency distribution that summarizes
the spatial pattern. If the quadrats are non-overlapping and completely cover
the spatial region of interest, then the quadrat counts convert the point pat-
tern into area or lattice data. Thus, the methods appropriate for lattice data
can be used.

To get an estimate of intensity, we divide the study region using a regular
grid, count the number of events that fall into each square and divide each
count by the area of the square. We can look at various plots, as shown in
Example 12.4, to understand how the intensity of the process changes over
the study region.

Note that if edge effects are ignored, then the other methods in Chapter 8,
such as frequency polygons or average shifted histograms can also be
employed to estimate the first-order effects of a spatial point process.

Not surprisingly, we can apply kernel estimation to get an estimate of the
intensity that is smoother than the quadrat method. As before, we let s denote
a point in the study region R and represent the event locations.
Then an estimate of the intensity using the kernel method is given by

, (12.4)

where k is the kernel and h is the bandwidth. The kernel is a bivariate proba-
bility density function as described in Chapter 8. In Equation 12.4, the edge-
correction factor is

. (12.5)

s1 … sn, ,

λ̂h s() 1
δh s()
------------ 1

h2
-----k

s si–
h

i 1=

n

∑=

δh s() 1

h2
-----k s u–

h

 ud
R
∫=

© 2002 by Chapman & Hall/CRC

476 Computational Statistics Handbook with MATLAB

Equation 12.5 represents the volume under the scaled kernel centered on s
which is inside the study region R. As with the quadrat method, we can look
at how changes to gain insight about the intensity of the point process.

The same considerations, as discussed in Chapter 8, regarding the choice of
the kernel and the bandwidth apply here. An overly large h provides an esti-
mate that is very smooth, possibly hiding variation in the intensity. A small
bandwidth might indicate more variation than is warranted, making it
harder to see the overall pattern in the intensity. A recommended choice for
the bandwidth is , when R is the unit square [Diggle, 1981]. This
value could be appropriately scaled for the size of the actual study region.

Bailey and Gatrell [1995] recommend the following quartic kernel

. (12.6)

When this is substituted into Equation 12.4, we have the following estimate
for the intensity

, (12.7)

where is the distance between point s and event location and the correc-
tion for edge effects has, for simplicity, not been included.

Example 12.4
In this example, we apply the kernel method as outlined above to estimate
the intensity of the uganda data. We include a function called csintenkern
that estimates the intensity of a point pattern using the quartic kernel. For
simplicity, this function ignores edge effects. The following MATLAB code
shows how to apply this function and how to plot the results. Note that we
set the window width to Other window widths are explored in the
exercises. First, we load the data and call the function. The output variable
lamhat contains the values of the estimated intensity.

load uganda
X = [x,y];
h = 220;
[xl,yl,lamhat] = csintenkern(X,ugpoly,h);

We use the pcolor function to view the estimated intensity. To get a useful
color map, we use an inverted gray scale. The estimated intensity is shown in
Figure 12.7, where the ridge of higher intensity is visible.

pcolor(xl,yl,lamhat)
map = gray(256);

λ̂ s()

h 0.68n 0.2–=

k u() 3
π
--- 1 uTu–()2

= uTu 1≤

λ̂h s() 3

πh2
-------- 1

di
2

h2
-----–

2

di h≤
∑=

di si

δh s()

h 220.=

© 2002 by Chapman & Hall/CRC

Chapter 12: Spatial Statistics 477

% Flip the colormap so zero is white and max is black.
map = flipud(map);
colormap(map)
shading flat
hold on
plot(ugpoly(:,1),ugpoly(:,2),'k')
hold off

Of course, one could also plot this as a surface. The MATLAB code we pro-
vide below shows how to combine a surface plot of the intensity with a dot
map below. The axes can be rotated using the toolbar button or the
rotate3d command to look for an interesting viewpoint.

% First plot the surface.
surf(xl,yl,lamhat)
map = gray(256);
map = flipud(map);
colormap(map)
shading flat
% Now plot the dot map underneath the surface.
X(:,3) = -max(lamhat(:))*ones(length(x),1);
ugpoly(:,3) = -max(lamhat(:))*...

FFFFIIIIGUGUGUGURE 12.RE 12.RE 12.RE 12.7777

In this figure, we have the estimate of the intensity for the uganda crater data. This is
obtained using the function csintkern with .

500 1000 1500 2000 2500

1000

1500

2000

2500

3000

3500

4000

h 220=

© 2002 by Chapman & Hall/CRC

478 Computational Statistics Handbook with MATLAB

ones(length(ugpoly(:,1)),1);
hold on
plot3(X(:,1),X(:,2),X(:,3),'.')
plot3(ugpoly(:,1),ugpoly(:,2),ugpoly(:,3),'k')
hold off
axis off
grid off

The combination plot of the intensity surface with the dot map is shown in
Figure 12.8.
�

EEEEstistististimmmmaaaattttinininingggg ththththe Se Se Se Spatial Dependpatial Dependpatial Dependpatial Dependeeeencencencence

We now turn our attention to the problem of exploring the second-order
properties of a spatial point pattern. These exploratory methods investigate
the second-order properties by studying the distances between events in the
study region R. We first look at methods based on the nearest neighbor dis-
tances between events or between points and events. We then discuss an
alternative approach that summarizes the second-order effects over a range
of distances.

NNNNeeeearest Neighbor Darest Neighbor Darest Neighbor Darest Neighbor Diiiissssttttaaaancncncnceeees -s -s -s - GGGG aaaand F Distnd F Distnd F Distnd F Distrrrributionibutionibutionibutionssss

The nearest neighbor event-event distance is represented by W. This is
defined as the distance between a randomly chosen event and the nearest
neighboring event. The nearest neighbor point-event distance, denoted by X,
is the distance between a randomly selected point in the study region and the

FFFFIIIIGUGUGUGURE 12.RE 12.RE 12.RE 12.8888

This shows the kernel estimate of the intensity along with a dot map.

© 2002 by Chapman & Hall/CRC

Chapter 12: Spatial Statistics 479

nearest event. Note that nearest neighbor distances provide information at
small physical scales, which is a reasonable approach if there is variation in
the intensity over the region R.

It can be shown [Bailey and Gatrell, 1995; Cressie 1993] that, if the CSR
model holds for a spatial point process, then the cumulative distribution
function for the nearest neighbor event-event distance W is given by

, (12.8)

for . The cumulative distribution function for the nearest neighbor
point-event distance X is

, (12.9)

with .
We can explore the second-order properties of a spatial point pattern by

looking at the observed cumulative distribution function of X or W. The
empirical cumulative distribution function for the event-event distances W is
given by

. (12.10)

Similarly, the empirical cumulative distribution function for the point-event
distances X is

, (12.11)

where m is the number of points randomly sampled from the study region.
A plot of and provides possible evidence of inter-event interac-

tions. If there is clustering in the point pattern, then we would expect a lot of
short distance neighbors. This means that would climb steeply for
smaller values of w and flatten out as the distances get larger. On the other
hand, if there is regularity, then there should be more long distance neighbors
and would be flat at small distances and climb steeply at larger w or x.
When we examine a plot of , the opposite interpretation holds. For
example, if there is an excess of long distances values in , then that is evi-
dence for clustering.

We could also plot against . If the relationship follows a straight
line, then this is evidence that there is no spatial interaction. If there is clus-
tering, then we expect to exceed , with the opposite situation
occurring if the point pattern exhibits regularity.

G w() P W w≤() 1 e λπw
2

––= =

w 0≥

F x() P X x≤() 1 e λπx2
––= =

x 0≥

Ĝ w() # wi w≤()
n

------------------------=

F̂ x() # xi x≤()
m

---------------------=

Ĝ w() F̂ x()

Ĝ w()

Ĝ w()
F̂ x()

F̂ x()

Ĝ w() F̂ x()

Ĝ w() F̂ x()

© 2002 by Chapman & Hall/CRC

480 Computational Statistics Handbook with MATLAB

From Equation 12.8, we can construct a simpler display for detecting
departures from CSR. Under CSR, we would expect a plot of

(12.12)

versus w to be a straight line. In Equation 12.12, we need a suitable estimate
for the intensity . One possibility is to use , where r is the area of
the study region R.

So far, we have not addressed the problem of edge effects. Events near the
boundary of the region R might have a nearest neighbor that is outside the
boundary. Thus, the nearest neighbor distances near the boundary might be
biased. One possible solution is to have a guard area inside the perimeter of
R. We do not compute nearest neighbor distances for points or events in the
guard area, but we can use events in the guard area in computing nearest
neighbors for points or events inside the rest of R. Other solutions for making
corrections are discussed in Bailey and Gatrell [1995] and Cressie [1993].

Example 12.5
The data in bodmin represent the locations of granite tors on Bodmin Moor
[Pinder and Witherick, 1977; Upton and Fingleton, 1985]. There are 35 loca-
tions, along with the boundary. The x and y coordinates for the locations are
stored in the x and y vectors, and the vertices for the region are given in bod-
poly. The reader is asked in the exercises to plot a dot map of these data. In
this example, we use the event locations to illustrate the nearest neighbor dis-
tribution functions and . First, we show how to get the empirical
distribution function for the event-event nearest neighbor distances.

load bodmin
% Loads data in x and y and boundary in bodpoly.
% Get the Ghat function first and plot.
X = [x,y];
w = 0:.1:10;
n = length(x);
nw = length(w);
ghat = zeros(1,nw);
% The G function is the nearest neighbor
% distances for each event.
% Find the distances for all points.
dist = pdist(X);
% Convert to a matrix and put large
% numbers on the diagonal.
D = diag(realmax*ones(1,n)) + squareform(dist);
% Find the smallest distances in each row or col.

1 Ĝ w()–()log–

λ̂π()

1 2⁄

λ̂ λ̂ n r⁄=

Ĝ w() F̂ x()

© 2002 by Chapman & Hall/CRC

Chapter 12: Spatial Statistics 481

mind = min(D);
% Now get the values for ghat.
for i = 1:nw

ind = find(mind<=w(i));
ghat(i) = length(ind);

end
ghat = ghat/n;

To see whether there is evidence for clustering or regularity, we plot
using the following commands.

% Plot the Ghat as a function of w. Shows evidence
% of clustering.
figure,plot(w,ghat,'k')
axis([0 10 0 1.1])
xlabel('Event-Event Distances - w'),ylabel('Ghat')

We see from Figure 12.9, that the curve climbs steeply at small values of w,
providing possible evidence for clustering. This indicates that there are many
small event-event distances, which is what we would expect for clustering.
The reader is asked to explore this further in the exercises by plotting the
expression in Equation 12.12 versus w. Next, we determine the . First we
find the nearest neighbor distances for randomly selected points in
the study region.

FFFFIIIIGUGUGUGURE 12.RE 12.RE 12.RE 12.9999

This is the empirical distribution function for the event-event nearest neighbor distances for
the bodmin data. This provides possible evidence for clustering.

Ĝ w()

F̂ x()
m 75=

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Event−Event Distances − w

G
ha

t

© 2002 by Chapman & Hall/CRC

482 Computational Statistics Handbook with MATLAB

xx = w;
m = 75;
nx = length(xx);
fhat = zeros(1,nx);
mind = zeros(1,m);% one for each point m
xt = [0 0; X];
% The F function is the nearest neighbor distances for
% randomly selected points. Generate a point, find its
% closest event.
for i = 1:m

% Generate a point in the region.
[xt(1,1), xt(1,2)] = csbinproc(bodpoly(:,1),...

bodpoly(:,2), 1);
% Find the distances to all events.
dist = pdist(xt);
% The first n in dist are the distance
% between the point(first row) and all the events.
% Find the smallest here.
mind(i) = min(dist(1:n));

end

Now that we have the nearest neighbor distances, we can find the empirical
distribution function, as follows.

% Now get the values for fhat.
for i = 1:nx

ind = find(mind<=xx(i));
fhat(i) = length(ind);

end
fhat = fhat/m;

We plot the empirical distribution function in Figure 12.10, where it also
seems to provide evidence for the cluster model.
�

K-FunK-FunK-FunK-Funccccttttioioioionnnn

The empirical cumulative distribution functions and use dis-
tances to the nearest neighbor, so they consider the spatial point pattern over
the smallest scales. It would be useful to have some insight about the pattern
at several scales. We use an estimate of the K-function, which is related to the
second-order properties of an isotropic process [Ripley, 1976, 1981]. If the K-
function is used when there are first-order effects over large scales, then spa-
tial dependence indicated by the K-function could be due to first-order effects
instead [Bailey and Gatrell, 1995]. If this is the case, the analyst might want to
study sub-regions of R where first-order homogeneity is valid.

The K-function is defined as

F̂ x()

Ĝ w() F̂ x()

© 2002 by Chapman & Hall/CRC

Chapter 12: Spatial Statistics 483

,

where is a constant representing the intensity over the region and
denotes the expected value.

An edge corrected estimate for the K-function is given by the following

. (12.13)

In Equation 12.13, r represents the area of the study region R, n is the number
of events, is the distance between the i-th and j-th events, and is an indi-
cator function that takes on the value of one if and zero otherwise. The

 in Equation 12.13 is a correction factor for edge effects. If a circle is cen-
tered at event i and passes through event j, then is the proportion of the
circumference of the circle that is in region R.

The estimated K-function can be compared to what we would expect if the
process that generated the data is completely spatially random. For a CSR
spatial point process, the theoretical K-function is

. (12.14)

FFFFIIIIGUGUGUGURE 12.1RE 12.1RE 12.1RE 12.10000

This is the empirical distribution function for the point-event distances of the bodmin data.

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Point−Event Distances − x

F
ha

t

K d() λ 1– E # extra events within distance d of an arbitrary event[]=

λ E .[]

K̂ d() r
n2
----- Id dij()

wij

--------------∑
i j≠

∑=

dij Id

dij d≤
wij

wij

K d() πd2=

© 2002 by Chapman & Hall/CRC

484 Computational Statistics Handbook with MATLAB

If our observed process exhibits regularity for a given value of d, then we
expect that the estimated K-function will be less than . Alternatively, if the
spatial pattern has clustering, then . Plots of the and
under CSR (Equation 12.14) enable us to explore the second-order properties
of the spatial process.

Another approach, based on the K-function, is to transform using

. (12.15)

Peaks of positive values in a plot of would correspond to clustering,
with troughs of negative values indicating regularity, for the corresponding
scale d. Note that with and , we can explore spatial dependence at
a range of scales d. The quantity

 (12.16)

is called the L-function, and Equation 12.15 is an estimate of it.

Example 12.6
In this example, we find and for the cardiff data set. We pro-
vide a function in the Computational Statistics Toolbox called cskhat for
estimating the K-function and illustrate its use below.

load cardiff
% Loads data in x and y and region in cardpoly.
% Get the scales or distances for K_hat.
d = 1:30;
X = [x,y];
% Get the estimate of K_hat.
khat = cskhat(X, cardpoly, 1:30);

The next commands show how to plot and the theoretical K-function
for a random process.

% Plot the khat function along with the K-function
% under CSR. Shows clustering because
% khat is above the curve.
plot(d,pi*d.^2,'k',d,khat,'k.')
xlabel('Distances - d')
ylabel('K Function')

This plot is given in Figure 12.11, where we see possible evidence for cluster-
ing, because the observed K-function is above the curve corresponding to a

πd2

K̂ d() πd2> K̂ d() K d()

K̂ d()

L̂ d() K̂ d()
π

------------ d–=

L̂ d()

K̂ d() L̂ d()

L d() K d()
π

------------ d–≡

K̂ d() L̂ d()

K̂ d()

© 2002 by Chapman & Hall/CRC

Chapter 12: Spatial Statistics 485

random process. As mentioned previously, we can also plot the function
 This is shown in Figure 12.12, where we see clustering at all scales.

% Get the Lhat function.
% Positive peaks - clustering at all of these scales.
% Clustering shown at d = 10, showing possible
% clustering at that scale.
lhat = sqrt(khat/pi) - d;
plot(d,lhat,'k')
xlabel('Distances - d')
ylabel('Lhat')

�

12.4 Modeling Spatial Point Processes

When analyzing spatial point patterns, we are mainly interested in discover-
ing patterns such as clustering or regularity versus complete spatial random-
ness. The exploratory methods of the previous section are meant to provide

FFFFIIIIGUGUGUGURE 12.RE 12.RE 12.RE 12.11111111

This shows the function for the cardiff data. Note that it is above the curve for a
random process, indicating possible clustering.

L̂ d() .

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

Distances − d

K
 F

un
ct

io
n

K̂ d()

© 2002 by Chapman & Hall/CRC

486 Computational Statistics Handbook with MATLAB

evidence for a model that might explain the process that generated the spatial
point pattern.We now look at ways to use Monte Carlo hypothesis testing to
understand the statistical significance of our evidence for departures from
CSR. These tests are based on nearest neighbor distances and the K-function.

NNNNeeeearest Neighbor Darest Neighbor Darest Neighbor Darest Neighbor Diiiissssttttaaaancncncnceeeessss

Recall that the theoretical cumulative distribution function (under the CSR
model) for the nearest neighbor event-event distance W is given by

, (12.17)

and the cumulative distribution function for the nearest neighbor point-
event distance X is

. (12.18)

These distributions can be used to implement statistical hypothesis tests
that use summary statistics of the observed nearest neighbor distances. The
estimated distributions, or , can be plotted against the corre-

FFFFIIIIGUGUGUGURE 12.1RE 12.1RE 12.1RE 12.12222

In this plot of , we see possible evidence of clustering at all scales.

0 5 10 15 20 25 30
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Distances − d

Lh
at

L̂ d()

G w() P W w≤() 1 e λπw
2

– ;–= = w 0≥

F x() P X x≤() 1 e λπx
2

– ;–= = x 0≥

Ĝ w() F̂ x()

© 2002 by Chapman & Hall/CRC

Chapter 12: Spatial Statistics 487

sponding theoretical distributions under CSR. If the CSR model is valid for
the observed spatial point process, then we would expect these plots to fol-
low a straight line. Equations 12.17 and 12.18 assume that no edge effects are
present, so it is important to correct for the edge effects when calculating

 and . The reader is referred to Cressie [1993, p. 614] for a descrip-
tion of the edge corrections for and . As with the exploratory
methods described in the previous section, it is difficult to assess the signifi-
cance of any departure from CSR that is seen in the plots, even though we
might suspect such a departure.

In the plots discussed in the previous section, we have to judge the general
shape of the curve for or , which is subjective and not very exact.
We now offer another useful way to display these functions. When we plot
the empirical distributions for the observed nearest neighbor distances
against the theoretical distributions, we expect a straight line, if the point pat-
tern follows a CSR process. In a clustered process, the curve for would
lie below the 45 degree line as shown in Figure 12.13 for the bodmin data. If
the process exhibits regularity, then the empirical distribution function
lies above the line. As before, the opposite interpretation holds for the distri-
bution function .

FFFFIIIIGUGUGUGURE 12.1RE 12.1RE 12.1RE 12.13333

This is the empirical point-event nearest neighbor distribution function for the Bodmin
Tors data. Since the curve lies below the 45 degree line, this indicates clustering. Note that
edge effects have been ignored.

Ĝ w() F̂ x()
Ĝ w() F̂ x()

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Theoretical CDF Under CSR

F
ha

t

F̂ x()

Ĝ w() F̂ x()

F̂ x()

F̂ x()

Ĝ w()

© 2002 by Chapman & Hall/CRC

488 Computational Statistics Handbook with MATLAB

We now describe simulation techniques that compare the estimated distri-
bution functions with the distribution under CSR, allowing the analyst to
assess the significance of any departure from CSR. These methods are partic-
ularly useful, because the edge effects are taken care of by the simulation pro-
cedure, so explicit corrections do not need to be made. However, we note that
edge-corrected statistics may lead to more powerful tests than those that do
not incorporate the edge corrections.

In the procedure explained below, we see that edge effects are accounted
for because of the following:

1. The estimated distributions and are obtained for R
without edge correction.

2. The estimate of the distribution under CSR is obtained via simula-
tion for the particular study region R. In other words, we use a
procedure that, for a given n, yields events that are uniformly and
independently distributed over the region. See Section 12.5 for
more information.

We describe the method as it applies to the point-event distances X, with
an analogous approach holding for the event-event distances W. In
Example 12.7, we illustrate the procedure as it applies to W and leave the
other as an exercise for the reader. The simulation estimate for under
CSR is obtained by first generating B spatial point patterns of size n that are
independently and uniformly distributed over R. The empirical cumulative
distribution function is determined for each simulated point pattern, without
correcting for edge effects. We denote these by , . Taking
the mean of these functions yields an estimate of the distribution of the point-
event nearest neighbor distances for a process under CSR,

. (12.19)

Letting denote the empirical cumulative distribution function for the
observed spatial point pattern, we can plot against . If the
data follow the CSR model, then the plot should be a straight line. If the data
exhibit clustering, then the plot will be above the line. If regularity is present,
then the plot will be below the line.

We can assess the significance of the departure from CSR by constructing
upper and lower simulation envelopes. These are given by

, (12.20)

and

Ĝ w() F̂ x()

F x()

Fb
ˆ x() b 1 … B, ,=

F̂CSR x() 1
B
--- Fb

ˆ x()
b 1=

B

∑=

F̂Obs x()
F̂Obs x() F̂CSR x()

U x() maxb Fb
ˆ x(){ }=

© 2002 by Chapman & Hall/CRC

Chapter 12: Spatial Statistics 489

. (12.21)

The significance of the departure from CSR is found using

. (12.22)

For example, if we want to detect clustering that is significant at ,
then (from Equation 12.22) we need 19 simulations. Adding the upper and
lower simulation envelopes to the plot of against enables us
to determine the significance of the clustering. If is below the upper
envelope, then the result showing clustering is significant. Note that Equa-
tion 12.22 is for a fixed x, so the analyst must look at each point in the curve
of . In the exercises, we describe an alternative, more powerful test.

PROCEDURE - MONTE CARLO TEST USING NEAREST NEIGHBOR DISTANCES

1. Obtain the empirical cumulative distribution function using the
observed spatial point pattern, (or). Do not correct
for edge effects.

2. Simulate a spatial point pattern over the study region of size n from
a CSR process.

3. Get the empirical cumulative distribution function (or
.) Do not correct for edge effects.

4. Repeat steps 2 and 3, B times, where B is determined from
Equation 12.22.

5. Take the average of the B distributions using Equation 12.19 to get
the estimated distribution of the nearest neighbor distances under
CSR, (or).

6. Find the lower and upper simulation envelopes.

7. Plot (or) against (or).
8. Add plots of the lower and upper simulation envelopes to assess

the significance of the test.

Example 12.7
In this example, we show how to implement the procedure for comparing

 with an estimate of the empirical distribution function under CSR.
We use the bodmin data set, so we can compare this with previous results.
First we get .

load bodmin
X = [x,y];
% Note that we are using a smaller range

L x() minb Fb
ˆ x(){ }=

P F̂Obs x() U x()>() P F̂Obs x() L x()<() 1
B 1+
-------------= =

α 0.05=

F̂Obs x() F̂CSR x()
F̂Obs x()

F̂Obs x()

F̂Obs x() ĜObs w()

F̂b x()
Ĝb w()

F̂CSR x() ĜCSR w()

F̂Obs x() ĜObs w() F̂CSR x() ĜCSR w()

ĜObs w()

ĜObs w()

© 2002 by Chapman & Hall/CRC

490 Computational Statistics Handbook with MATLAB

% for w than before.
w = 0:.1:6;
nw = length(w);
nx = length(x);
ghatobs = csghat(X,w);

The next step is to simulate from a CSR process over the same region and
determine the empirical event-event distribution function for each simula-
tion.

% Get the simulations.
B = 99;
% Each row is a Ghat from a simulated CSR process.
simul = zeros(B,nw);
for b = 1:B
[xt,yt] = csbinproc(bodpoly(:,1), bodpoly(:,2), nx);
simul(b,:) = csghat([xt,yt],w);

end

We need to take the average of all of the simulations so we can plot these val-
ues along the horizontal axis. The average and the envelopes are easily found
in MATLAB. The resulting plot is given in Figure 12.14. Note that there does
not seem to be significant evidence for departure from the CSR model using
the event-event nearest neighbor distribution function .

% Get the average.
ghatmu = mean(simul);
% Get the envelopes.
ghatup = max(simul);
ghatlo = min(simul);
plot(ghatmu,ghatobs,'k',ghatmu,ghatup,...

'k--',ghatmu,ghatlo,'k--')

�

KKKK-Fun-Fun-Fun-Funccccttttioioioionnnn

We can use a similar approach to formally compare the observed K-function
with an estimate of the K-function under CSR. We determine the upper and
lower envelopes as follows

, (12.23)

and

. (12.24)

ĜObs w()

U d() maxb K̂b d(){ }=

L d() minb K̂b d(){ }=

© 2002 by Chapman & Hall/CRC

Chapter 12: Spatial Statistics 491

The are obtained by simulating spatial point patterns of size n events
in R under CSR.

Alternatively, we can use the L-function to assess departures from CSR. The
upper and lower simulation envelopes for the L-function are obtained in the
same manner. With the L-function, the significance of the peaks or troughs
(for fixed d) can be assessed using

. (12.25)

We outline the steps in the following procedure and show how to implement
them in Examples 12.8 and 12.9.

PROCEDURE - MONTE CARLO TEST USING THE K-FUNCTION

1. Estimate the K-function using the observed spatial point pattern to
get .

2. Simulate a spatial point pattern of size n over the region R from a
CSR process.

FFFFIIIIGUGUGUGURE 12.1RE 12.1RE 12.1RE 12.14444

In this figure, we have the upper and lower envelopes for from a CSR process over the
bodmin region. It does not appear that there is strong evidence for clustering or regularity
in the point pattern.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ghat Under CSR

G
ha

t O
bs

er
ve

d

Ĝ

K̂b d()

P L̂Obs d() U d()>() P L̂Obs d() L d()<() 1
B 1+
-------------= =

K̂Obs d()

© 2002 by Chapman & Hall/CRC

492 Computational Statistics Handbook with MATLAB

3. Estimate the K-function using the simulated pattern to get .
4. Repeat steps 2 and 3, B times.

5. Find the upper and lower simulation envelopes using Equations
12.23 and 12.24.

6. Plot and the simulation envelopes.

Example 12.8
We apply the Monte Carlo test for departure from CSR to the bodmin data.
We obtain the required simulations using the following steps. First we load
up the data and obtain .

load bodmin
X = [x,y];
d = 0:.5:10;
nd = length(d);
nx = length(x);
% Now get the Khat for the observed pattern.
khatobs = cskhat(X, bodpoly, d);

We are now ready to obtain the K-functions for a CSR process through simu-
lation. We use simulations to obtain the envelopes.

% Get the simulations.
B = 20;
% Each row is a Khat from a simulated CSR process.
simul = zeros(B,nd);
for b = 1:B
[xt,yt] = csbinproc(bodpoly(:,1), bodpoly(:,2), nx);
simul(b,:) = cskhat([xt,yt],bodpoly, d);

end

The envelopes are easily obtained using the MATLAB commands max and
min.

% Get the envelopes.
khatup = max(simul);
khatlo = min(simul);
% And plot the results.
plot(d,khatobs,'k',d,khatup,'k--',d,khatlo,'k--')

In Figure 12.15, we show the upper and lower envelopes along with the esti-
mated K-function . We see from this plot that at the very small scales,
there is no evidence for departure from CSR. At some scales there is evidence
for clustering and at other scales there is evidence of regularity.
�

K̂b d()

K̂Obs d()

K̂Obs d()

B 20=

K̂Obs d()

© 2002 by Chapman & Hall/CRC

Chapter 12: Spatial Statistics 493

Example 12.9
In Example 12.6, we estimated the K-function for the cardiff data. A plot
of the associated L-function (see Figure 12.12) showed clustering at those
scales. We use the simulation approach to determine whether these results
are significant. First we get the estimate of the L-function as before.

load cardiff
X = [x,y];
d = 0:30;
nd = length(d);
nx = length(x);
khatobs = cskhat(X, cardpoly, d);
% Get the lhat function.
lhatobs = sqrt(khatobs/pi) - d;

Now we do the same simulations as in the previous example, estimating the
K-function for each CSR sample. Once we get the K-function for the sample,
it is easily converted to the L-function as shown.

FFFFIIIIGUGUGUGURE 12.1RE 12.1RE 12.1RE 12.15555

In this figure, we have the results of testing for departures from CSR based on using
simulation. We show the upper and lower simulation envelopes for the Bodmin Tor data.
At small scales (approximately), the process does not show departure from CSR. This
is in agreement with the nearest neighbor results of Figure 12.14. At other scales (approxi-
mately), we have evidence for clustering. At higher scales (approximately),
we see evidence for regularity.

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

Distances − d

K
ha

t

K̂

d 2<

2 d 6< < 7.5 d<

© 2002 by Chapman & Hall/CRC

494 Computational Statistics Handbook with MATLAB

% Get the simulations.
B = 20;
% Each row is a Khat from a simulated CSR process.
simul = zeros(B,nd);
for b = 1:B
[xt,yt] = csbinproc(cardpoly(:,1),...

cardpoly(:,2), nx);
temp = cskhat([xt,yt],cardpoly, d);
simul(b,:) = sqrt(temp/pi) -d;

end

We then get the upper and lower simulation envelopes as before. The plot is
shown in Figure 12.16. From this, we see that there seems to be compelling
evidence that this is a clustered process.

% Get the envelopes.
lhatup = max(simul);
lhatlo = min(simul);
plot(d,lhatobs,'k',d,lhatup,'k--',d,lhatlo,'k--')

�

FFFFIIIIGUGUGUGURE 12.1RE 12.1RE 12.1RE 12.16666

The upper and lower envelopes were obtained using 20 simulations from a CSR process.
Since the -function lies above the upper envelope, the clustering is significant.

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1

1.5

Distances − d

Lh
at

L̂

© 2002 by Chapman & Hall/CRC

Chapter 12: Spatial Statistics 495

12.5 Simulating Spatial Point Processes

Once one determines that the model for CSR is not correct, then the analyst
should check to see what other model is reasonable. This can be done by sim-
ulation as shown in the previous section. Instead of simulating from a CSR
process, we can simulate from one that exhibits clustering or regularity. We
now discuss other models for spatial point processes and how to simulate
them. We include methods for simulating a homogeneous Poisson process
with specified intensity, a binomial process, a Poisson cluster process, an inhi-
bition process, and a Strauss process. Before continuing, we note that simula-
tion requires specification of all relevant parameters. To check the adequacy
of a model by simulation one has to “calibrate” the simulation to the data by
estimating the parameters that go into the simulation.

HHHHoooommmmooooggggeneoueneoueneoueneoussss PPPPooooiiiissssson Pson Pson Pson Prrrrooooccccessessessess

We first provide a method for simulating a homogeneous Poisson process
with no conditions imposed on the number of events n. Unconditionally, a
homogeneous Poisson process depends on the intensity . So, in this case,
the number of events n changes in each simulated pattern.

We follow the fanning out procedure given in Ross [1997] to generate such
a process for a circular region. This technique can be thought of as fanning
out from the origin to a radius r. The successive radii where events are
encountered are simulated by using the fact that the additional area one
needs to travel to encounter another event is exponentially distributed with
rate . The steps are outlined below.

PROCEDURE - SIMULATING A POISSON PROCESS

1. Generate independent exponential variates , with rate ,
stopping when

.

2. If , then stop, because there are no events in the circular
region.

3. If , then for , find

.

λ

λ

X1 X2 …,, λ

N min n: X1 … Xn πr2>+ +{ }=

N 1=

N 1> i 1 … N 1–, ,=

Ri
X1 … Xi+ +

π
------------------------------=

© 2002 by Chapman & Hall/CRC

496 Computational Statistics Handbook with MATLAB

4. Generate uniform (0,1) variates, .
5. In polar coordinates, the events are given by .

Ross [1997] describes a procedure where the region can be somewhat arbi-
trary. For example, in Cartesian coordinates, the region would be defined
between the x axis and a nonnegative function , starting at . A rect-
angular region with the lower left corner at the origin is an example where
this can be applied. For details on the algorithm for an arbitrary region, we
refer the reader to Ross [1997]. We show in Example 12.10 how to implement
the procedure for a circular region.

Example 12.10
In this example, we show how to generate a homogeneous Poisson process
for a given . This is accomplished using the given MATLAB commands.

% Set the lambda.
lambda = 2;
r = 5;
tol = 0;
i=1;
% Generate the exponential random variables.
while tol < pi*r^2

x(i) = exprnd(1/lambda,1,1);
tol = sum(x);
i=i+1;

end
x(end)=[];
N = length(x);
% Get the coordinates for the angles.
th = 2*pi*rand(1,N);
R = zeros(1,N);
% Find the R_i.
for i = 1:N

R(i) = sqrt(sum(x(1:i))/pi);
end
[Xc,Yc]=pol2cart(th,R);

The x and y coordinates for the generated locations are contained in Xc and
Yc. The radius of our circular region is 5, and the intensity is . The
result of our sampling scheme is shown in Figure 12.17. We see that the loca-
tions are all within the required radius. To verify the intensity, we can esti-
mate it by dividing the number of points in the sample by the area.

% estimate the overall intensity
lamhat = length(Xc)/(pi*r^2);

N 1– U1 … UN 1–, ,
Ri 2πUi,()

f x() x 0=

λ

λ 2=

© 2002 by Chapman & Hall/CRC

Chapter 12: Spatial Statistics 497

Our estimated intensity is .
�

Binomial PBinomial PBinomial PBinomial Prrrrooooccccesesesesssss

We saw in previous examples that we needed a way to simulate realizations
from a CSR process. If we condition on the number of events n, then the loca-
tions are uniformly and independently distributed over the study region.
This type of process is typically called a binomial process in the literature
[Ripley, 1981]. To distinguish this process from the homogeneous Poisson
process, we offer the following:

1. When generating variates from the homogeneous Poisson process,
the intensity is specified. Therefore, the number of events in a
realization of the process is likely to change for each one generated.

2. When generating variates from a binomial process, the number of
events in the region is specified.

To simulate from a binomial process, we first enclose the study region R
with a rectangle given by

FFFFIIIIGUGUGUGURE 12.1RE 12.1RE 12.1RE 12.17777

This spatial point pattern was simulated using the procedure for simulating a homogeneous
Poisson process with specified intensity.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5
Homogeneous Poisson Process, λ = 2

λ̂ 2.05=

© 2002 by Chapman & Hall/CRC

498 Computational Statistics Handbook with MATLAB

. (12.26)

We can generate the x coordinates for an event location from a uniform dis-
tribution over the interval . Similarly, we generate the y coordi-
nates from a uniform distribution over the interval If the event
is within the study region R, then we keep the location. These steps are out-
lined in the following procedure and are illustrated in Example 12.11.

PROCEDURE - SIMULATING A BINOMIAL PROCESS

1. Enclose the study region R in a rectangle, given by Equation 12.26.
2. Obtain a candidate location by generating an x coordinate that

is uniformly distributed over and a y coordinate that
is uniformly distributed over .

3. If is within the study region R, then retain the event.
4. Repeat steps 2 through 3 until there are n events in the sample.

Example 12.11
In this example, we show how to simulate a CSR point pattern using the
region given with the uganda data set. First we load up the data set and find
a rectangular region that bounds R.

load uganda
% loads up x, y, ugpoly
xp = ugpoly(:,1);
yp = ugpoly(:,2);
n = length(x);
xg = zeros(n,1);
yg = zeros(n,1);
% Find the maximum and the minimum for a 'box' around
% the region. Will generate uniform on this, and throw
% out those points that are not inside the region.
% Find the bounding box.
minx = min(xp);
maxx = max(xp);
miny = min(yp);
maxy = max(yp);

Now we are ready to generate the locations, as follows.

% Now get the points.
i = 1;
cx = maxx - minx;
cy = maxy - miny;
while i <= n

x y,() : xmin x xmax , ymin y ymax≤ ≤≤ ≤{ }

xmin , xmax()
ymin , ymax() .

si

xmin , xmax()
ymin , ymax()

si

© 2002 by Chapman & Hall/CRC

Chapter 12: Spatial Statistics 499

xt = rand(1)*cx + minx;
yt = rand(1)*cy + miny;
k = inpolygon(xt, yt, xp, yp);
if k == 1

% it is in the region
xg(i) = xt;
yg(i) = yt;
i = i+1;

end
end

In Figure 12.18, we show a realization of this process. Note that this does look
like a CSR process generated these data, unlike the point pattern for the
actual crater locations.
�

PPPPooooiiiisssssonsonsonson CCCCluster Pluster Pluster Pluster Prrrrooooccccessessessess

We can generate a Poisson cluster process by including a spatial clustering
mechanism into the model. First, parent events form a homogeneous Poisson
process. Each parent gives rise to a random number of offspring according to
some probability distribution f. The positions of the children relative to their

FFFFIIIIGUGUGUGURE 12.1RE 12.1RE 12.1RE 12.18888

This shows a point pattern generated according to a binomial process.

0 500 1000 1500 2000 2500 3000
500

1000

1500

2000

2500

3000

3500

4000

4500
Generated Data Using Binomial Process

© 2002 by Chapman & Hall/CRC

500 Computational Statistics Handbook with MATLAB

parents are independently distributed according to a bivariate distribution g.
The events retained in the final pattern are the child events only. The resulting
process is isotropic if g is radially symmetric.

To simulate this type of pattern, we first simulate the parents from a homo-
geneous Poisson process. Note that the parents should be simulated over a
region that is larger than the study region. This is to ensure that edge effects
are avoided. Parents outside the study region can have offspring that are in
R, so we want to account for those events. For each parent event, we deter-
mine the number of offspring by randomly sampling from f. The next step is
to locate the number of children around each parent event according to g. The
steps for this procedure are outlined here.

PROCEDURE - SIMULATING A POISSON CLUSTER PROCESS

1. Simulate the desired number of parents over a region that is slightly
larger than the study region R. The parents are generated according
to a CSR process.

2. Generate the number of children for each parent according to a
probability distribution f. One reasonable choice is to have a Pois-
son number of children.

3. Generate the locations for each child around the parent according
to a bivariate probability distribution g. For example, g could be
multivariate normal, with the mean given by the parent location.

4. Save only the child events that are within the study region.

In the following example, we apply this procedure to generate a Poisson clus-
ter process over the unit square.

Example 12.12
We now show how to generate a Poisson cluster process using MATLAB. We
first generate 15 parents from a binomial process over a region that is slightly
larger.

npar = 15;
% Get the vertices for the regions.
rx = [0 1 1 0 0];
ry = [0 0 1 1 0];
rxp = [-.05 1.05 1.05 -.05 -.05];
ryp = [-.05 -.05 1.05 1.05 -.05];
% Get all of the parents.
[xp,yp] = csbinproc(rxp, ryp, npar);

We use a Poisson distribution with mean to generate the number of
children for the parents.

λ 15=

© 2002 by Chapman & Hall/CRC

Chapter 12: Spatial Statistics 501

lam = 15;
% Get the number of children per parent.
nchild = poissrnd(lam,1,npar);

Now we find the locations of the children around the parent using a bivariate
normal distribution that is centered at each parent. The covariance of the dis-
tribution is given by , where is a identity matrix. The value given
to the variance would govern the spread of the cluster of children around
the parent.

X = [];
sig = r*eye(2);
r = 0.05;
% Locate the children.
for i = 1:npar

xc = randn(nchild(i),2)*sig + ...
repmat([xp(i) yp(i)],nchild(i),1);

X = [X; xc];
end

To get the final events for our sample, we need to determine which ones are
inside the study region R. We do this using the MATLAB function inpoly-
gon. In Figure 12.19, we show the resulting spatial sample. We provide a
function called csclustproc that will generate patterns that follow a Pois-
son cluster process.

% Find the ones that are in the region of interest.
ind = find(inpolygon(X(:,1), X(:,2), rx, ry));
% Those are the children for the sample.
x = X(ind,1);
y = X(ind,2);

�

InhibitionInhibitionInhibitionInhibition PPPPrrrrococococeeeessssssss

An inhibition process is one that often shows regularity. To simulate this type
of process, we include a mechanism in the model that stipulates a minimum
distance between two events. We call this distance the inhibition distance .

One way to obtain such a process is to first generate a homogeneous Pois-
son process over the region. The events are then thinned by deleting all pairs
of events that are closer than . Implementing this procedure in MATLAB is
left as an exercise.

Another method is to generate a homogeneous Poisson process one event
at a time and discard candidate events if they are within distance of any
previously retained event. This type of process is sometimes referred to as
Sequential Spatial Inhibition or SSI [Ripley, 1981]. It is important to keep in
mind that if the inhibition distance is too large for the region R, then it might

σ2I I 2 2×
σ2

δ

δ

δ

© 2002 by Chapman & Hall/CRC

502 Computational Statistics Handbook with MATLAB

be difficult (if not impossible) to generate the required number of points. In
Example 12.13, we provide the MATLAB code to generate an inhibition spa-
tial point pattern using this procedure.

Example 12.13
To start the procedure, we set the boundary for the region and the inhibition
distance.

delta = 0.1;
% Get the vertices for the regions.
rx = [0 2 2 0 0];
ry = [0 0 2 2 0];
n = 100;

We generate the initial event from a CSR process. Subsequent events are gen-
erated and kept if they are not closer than to any existing events.

X = zeros(n,2);
% Generate the first event.
X(1,:) = csbinproc(rx,ry,1);
i = 1;
% Generate the other events.
while i<n

FFFFIIIIGUGUGUGURE 12.1RE 12.1RE 12.1RE 12.19999

This sample was generated according to a Poisson cluster process.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ

© 2002 by Chapman & Hall/CRC

Chapter 12: Spatial Statistics 503

[sx,sy] = csbinproc(rx, ry, 1);
xt = [sx sy ; X(1:i,:)];
% Find the distance between the events
dist = pdist(xt);
% Find the distance between the candidate event
% and the others that have been generated already.
ind = find(dist(1:i) <= delta);
if isempty(ind)

% Then we keep the event.
i = i+1;
X(i,:) = [sx, sy];

end
end

To verify that no two events are closer than , we find the smallest distance
as follows.

% Verify that all are no closer than the
% inhibition distance.
dist = pdist(X);
delhat = min(dist);

For this spatial point pattern, we get a minimum distance of 0.1008. A point
pattern generated according to this procedure is shown in Figure 12.20.
�

FFFFIIIIGUGUGUGURE 12.2RE 12.2RE 12.2RE 12.20000

This spatial point pattern was generated under the SSI inhibition process.

δ

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

© 2002 by Chapman & Hall/CRC

504 Computational Statistics Handbook with MATLAB

SSSSttttrrrraaaauuuuss Pss Pss Pss Prrrrooooccccessessessess

The Strauss process [Ripley, 1981] is a point pattern where a specified fraction
of events is allowed within a distance of any given event. To generate such
a pattern, the first event is located uniformly in R. Other event locations are
generated sequentially, similar to the SSI process. If there are existing events
within radius of the candidate location, then it is accepted with probability

, with m representing the number of events closer than . The inhibition
parameter is given by c, which can take on values in the interval .

The inhibition parameter specifies the fraction of events allowed within the
inhibition distance. If , then the resulting process is the same as SSI. As
with the SSI process, care should be taken when specifying the parameters for
the process to ensure that the required number of events can be generated.
We outline below the steps to generate a spatial point pattern that follows a
Strauss process.

PROCEDURE - SIMULATING A STRAUSS PROCESS

1. Choose the parameters n, c, and .

2. Generate the first event location uniformly on R (from a CSR
process).

3. Generate a candidate location uniformly on R.

4. If
accept the candidate event

Else if
accept the candidate event

5. Repeat steps 3 and 4 until there are n locations in the sample.

It should be noted that we are conditioning on the number of points n in the
region. So, in this case, we should consider this a conditional Strauss process.

Example 12.14
We now implement the above procedure in MATLAB. We generate a spatial
point pattern of size 100 from a Strauss process over a rectangular region. The
inhibition distance is , and the inhibition parameter is . We
start by setting these parameters and the boundary of the study region.

delta = 0.1;
% Get the vertices for the regions.
rx = [0 1 1 0 0];
ry = [0 0 2 2 0];
% Set number of data points.
n = 100;
% Set the inhibition parameter.

δ

δ
cm δ

0 1,[]

c 0=

δ
s1

si

m 0=

s i

U cm≤
s i

δ 0.1= c 0.5=

© 2002 by Chapman & Hall/CRC

Chapter 12: Spatial Statistics 505

c = 0.5;
X = zeros(n,2);
% Generate the first point.
X(1,:) = csbinproc(rx,ry,1);

The following code is similar to the SSI process, except that we now have a
mechanism for accepting points that are closer than the inhibition distance.

i = 1;
while i<n
[sx,sy] = csbinproc(rx, ry, 1);
xt = [sx sy ; X(1:i,:)];
% Find the distance between the events.
dist = pdist(xt);
% Find the distance between the candidate event
% and the others that have been generated already.
ind = find(dist(1:i) <= delta);
m = length(ind);
if m == 0

% Then ok to keep the point - nothing is close.
i = i+1;
X(i,:) = [sx, sy];

elseif rand(1) <= c^m
% The ok to keep the point.
i = i+1;
X(i,:) = [sx, sy];

end
end

A spatial point pattern generated from these commands is shown in
Figure 12.21.
�

12.6 MATLAB Code

The MathWorks has a Mapping Toolbox for MATLAB, which has some func-
tions for spatial statistics. However, the techniques are mostly applicable to
geostatistical data. There is also a user-written Spatial Statistics Toolbox that
can be downloaded from the internet at

http://www.spatial-statistics.com/

As with the Mapping Toolbox, this has functions mostly for continuous spa-
tial data.

© 2002 by Chapman & Hall/CRC

http://www.spatial-statistics.com/

506 Computational Statistics Handbook with MATLAB

We provide functions with the Computational Statistics Toolbox that
implement most of the techniques that are described in this chapter. These
functions are listed in Table 12.1

FFFFIIIIGUGUGUGURE 12.2RE 12.2RE 12.2RE 12.21111

This spatial point pattern was generated from a Strauss process with and .

TTTTAAAABBBBLLLLEEEE 11112.12.12.12.1

List of functions from Chapter 12 Included in the Computational Statistics
Toolbox

Purpose MATLAB Function

These functions are used to generate samples from
various spatial point processes.

csbinproc
csclustproc
csinhibproc
cspoissproc

csstraussproc

This function enables the user to interactively find
a study region.

csgetregion

This is used to estimate the intensity using the
quartic kernel. It ignores edge effects.

csintkern

These functions pertain to the second-order effects
of a spatial point pattern.

csfhat
csghat
cskhat

−0.5 0 0.5 1 1.5

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

δ 0.1= c 0.5=

© 2002 by Chapman & Hall/CRC

Chapter 12: Spatial Statistics 507

12.7 Further Reading

For information on the theory for all types of spatial data analysis, we highly
recommend Cressie [1993] for a comprehensive treatment of the subject. This
text is suitable for scientists and engineers at the graduate level. Those areas
that require a higher level of mathematics background are clearly marked.
The book has many excellent features, among which are lots of examples that
illustrate the concepts and the inclusion of spatial data sets.

We already mentioned the text by Bailey and Gatrell [1995]. This book is
another excellent resource for spatial statistics. It includes a discussion of the
three types of spatial data (point patterns, geostatistical and lattice data), as
well as a fourth type dealing with spatial interaction data. The text has many
examples and is easy to understand. For a collection of papers on spatial sta-
tistics, we refer the reader to Arlinghaus [1996]. This handbook contains
many examples of the application of spatial statistics.

For books that focus mainly on spatial point patterns, we refer the reader
to Ripley [1981] and Diggle [1983]. Isaaks and Srivastava [1989] and Journel
and Huijbregts [1978] are two texts that discuss geostatistical data. For infor-
mation on the analysis of lattice data, we recommend Cliff and Ord [1981]
and Haining [1993].

© 2002 by Chapman & Hall/CRC

508 Computational Statistics Handbook with MATLAB

Exercises

12.1. We mention in the text that there might be an attribute associated
with the spatial point pattern. One way to view this attribute would
be to plot the value at each event location rather than the plotting
symbol. Load the okblack data set. Randomly generate some num-
bers that would correspond to the dollar amount of the theft at each
location. Plot these numbers (attributes) at the locations using the
text command. Keep in mind that you have to convert the numbers
to strings before plotting.

12.2. Repeat the procedure in Example 12.4 using bandwidths of
. Plot the estimated intensities. How do they differ from

the results in Example 12.4? Which bandwidth is better?
12.3. Using the bodmin data, plot a dot map. Does it look like a cluster

process is a good model for these events?

12.4. Load the okwhite data set. Use the csgetregion function to
interactively select a boundary. Simply click with the left mouse but-
ton at the locations of the vertices for the region. There is no need to
close the region. When you are done selecting vertices, right click
anywhere in the figure window. The output from this function is a
set of vertices for the study region. Plot the event locations and the
region.

12.5. Explore the Oklahoma City data sets. Estimate the first-order prop-
erties and the second-order properties for both patterns. Do the two
sets follow different models?

12.6. Write a MATLAB function that will generate an inhibition process
using the thinning approach.

12.7. Repeat Example 12.7 for the point-event nearest neighbor distance
distribution. Do you arrive at similar conclusions?

12.8. Repeat Example 12.5. Plot the expression given in Equation 12.12
versus w. Does this indicate evidence for departure from CSR?

12.9. The test given in Equation 12.22 suffers from two problems: 1) it is
for a fixed x, and 2) it is not a powerful test. An alternative would be
to use the following test statistic

.

Use the Monte Carlo techniques of Chapter 6 to determine whether
or not there is significant evidence to reject the null hypothesis (that
the point process is CSR). What type of departure from CSR would

h 100 500,=

T maxx FObs
ˆ x() F̂C SR x()–=

© 2002 by Chapman & Hall/CRC

Chapter 12: Spatial Statistics 509

a large value of T indicate? What type of departure from CSR would
a small value of T indicate [Cressie, 1993, p. 636]?

12.10. Generate a realization of a Poisson cluster process. Use your test
from problem 12.9 to see if there is significant evidence of clustering.

12.11. Generate a realization of an inhibition process. Apply the nearest-
neighbor exploratory graphical techniques (F and G distributions, K-
and L-functions) to see if there is evidence of regularity. Apply the
simulation envelope methods to verify that it exhibits regularity.

© 2002 by Chapman & Hall/CRC

Appendix A
Introduction to MATLAB

A.1 What Is MATLAB?

MATLAB is a technical computing environment developed by The Math-
Works, Inc. for computation and data visualization. It is both an interactive
system and a programming language, whose basic data element is an array:
scalar, vector, matrix or multi-dimensional array. Besides basic array opera-
tions, it offers programming features similar to those of other computing lan-
guages (e.g., functions, control flow, etc.).

In this appendix, we provide a brief summary of MATLAB to help the
reader understand the algorithms in the text. We do not claim that this intro-
duction is complete, and we urge the reader to learn more about MATLAB
from other sources. The documentation that comes with MATLAB is excel-
lent, and the reader should find the tutorials helpful. For a comprehensive
overview of MATLAB, we also recommend Hanselman and Littlefield [1998,
2001]. If the reader needs to understand more about the graphics and GUI
capabilities in MATLAB, Marchand [1999] is the one to use.

MATLAB will execute on Windows, UNIX, and Linux systems. Here we
focus on the Windows version, but most of the information applies to all sys-
tems. The main MATLAB software package contains many functions for ana-
lyzing data. There are also specialty toolboxes extending the capabilities of
MATLAB that are available from The MathWorks and third party vendors.
Some toolboxes are also on the internet for free downloading. For more infor-
mation on these toolboxes, see http://www.mathworks.com.

In this text, we use the latest releases of MATLAB (Version 6) and the Sta-
tistics Toolbox (Version 3). However, most of the following discussion applies
to all versions of MATLAB. We alert the reader to places where they differ.

We assume that readers know how to start MATLAB for their particular
platform. When MATLAB is started, you will have a command window with
a prompt where you can enter commands. In MATLAB 6, other windows
come up (help window, history window, etc.), but we do not cover those here.

© 2002 by Chapman & Hall/CRC

http://www.mathworks.com.

512 Computational Statistics Handbook with MATLAB

A.2 Getting Help in MATLAB

One useful and important aspect of MATLAB is the Help feature. There are
many ways to get information about a MATLAB function. Not only does the
Help provide information about the function, but it also gives references for
other related functions. We discuss below the various ways to get help in
MATLAB.

• Command Line: Typing help and then the function name at the
command line will, in most cases, tell you everything you need to
know about the function. In this text, we do not write about all the
capabilities or uses of a function. The reader is strongly encouraged
to use command line help to find out more. As an example, typing
help plot at the command line provides lots of useful information
about the basic plot function. Note that the command line help
works with the Computational Statistics Toolbox as well.

• Help Menu: The help files can also be accessed via the usual Help
menu. This opens up a separate help window. Information can be
obtained by clicking on links or searching the index (Version 6). In
MATLAB 5, you can get a similar window by accessing the Help
Desk via the Help menu.

A.3 File and Workspace Management

We can enter commands interactively at the command line or save them in an
M-file. So, it is important to know some commands for file management. The
commands shown in Table A.1 can be used to list, view and delete files.

MATLAB remembers the commands that you enter and all of the values of
any variable you create for that session. These variables live in the MATLAB
workspace. You can recall the variable at any time by typing in the variable
name with no punctuation at the end. Note that MATLAB is case sensitive, so
Temp, temp, and TEMP represent different variables.

In MATLAB 6, there is a separate command history window. The arrow
keys can be used in all versions of MATLAB to recall and edit commands. The
up-arrow and down-arrow keys scroll through the commands. The left and
right arrows move through the present command. By using these keys, the
user can recall commands and edit them using common editing keystrokes.

We can view the contents of the current workspace using the Workspace
Browser. This is accessed through the File menu or the toolbar. All vari-
ables in the workspace are listed in the window. The variables can be viewed

© 2002 by Chapman & Hall/CRC

Appendix A: Introduction to MATLAB 513

TTTTAAAABBBBLLLLEEEE AAAA.1.1.1.1

File Management Commands

Command Usage

dir, ls Shows the files in the present directory.

delete filename Deletes filename.

cd, pwd Show the present directory.

cd dir, chdir Changes the directory. In MATLAB 6, there is a
pop-up menu on the toolbar that allows the user
to change directory.

type filename Lists the contents of filename.

edit filename Brings up filename in the editor.

which filename Displays the path to filename. This can help
determine whether a file is part of the standard
MATLAB package.

what Lists the .m files and .mat files that are in the
current directory.

TTTTAAAABBBBLLLLEEEE AAAA.2.2.2.2

MATLAB Commands for Workspace Management

Command Usage

who Lists all variables in the workspace.

whos Lists all variables in the workspace along with the
size in bytes, array dimensions, and object type.

clear Removes all variables from the workspace.

clear x y Removes variables x and y from the workspace.

© 2002 by Chapman & Hall/CRC

514 Computational Statistics Handbook with MATLAB

and edited in a spreadsheet-like window format by double-clicking on the
variable name.

The commands contained in Table A.2 help manage the workspace. It is
important to be able to get data into MATLAB and to save it. We outline
below some of the ways to get data in and out of MATLAB. These are not the
only options for file I/O. For example, see help on fprintf, fscanf, and
textread for more possibilities.

• Command Line: The save and load commands are the main way
to perform file I/O in MATLAB. We give some examples of how
to use the save command. The load command works similarly.

• File Menu: There are commands in the File menu for saving and
loading the workspace.

• Import Wizard: In MATLAB 6, there is a spreadsheet-like window
for inputting data. To execute the wizard, type uiimport at the
command line.

A.4 Punctuation in MATLAB

Table A.3 contains some of the common punctuation characters in MATLAB,
and how they are used.

A.5 Arithmetic Operators

Arithmetic operators (*, /, +, -, ̂) in MATLAB follow the convention in linear
algebra. If we are multiplying two matrices, A and B, they must be dimen-
sionally correct. In other words, the number of columns of A must be equal
to the number of rows of B. To multiply, we simply use A*B. It is important

Command Usage

save filename Saves all variables in
filename.mat.

save filename var1 var2 Saves only variables var1
var2 in filename.mat.

save filename var1 -ascii Saves var1 in ASCII
format in filename.

© 2002 by Chapman & Hall/CRC

Appendix A: Introduction to MATLAB 515

to remember that the default interpretation of an operation is to perform the
corresponding array operation.

MATLAB follows the usual order of operations. The precedence can be
changed by using parentheses, as in other programming languages.

It is often useful to operate on an array element-by-element. For instance,
we might want to square each element of an array. To accomplish this, we add
a period before the operator. As an example, to square each element of array
A, we use A.^2. These operators are summarized below in Table A.4.

TATATATABBBBLLLLE AE AE AE A....3333

List of MATLAB Punctuation

Punctuation Usage

% A percent sign denotes a comment line. Information after
the % is ignored.

, A comma tells MATLAB to display the results. A blank
space works similarly. It also concatenates array elements
along a row.

; A semi-colon suppresses printing the contents of the
variable to the screen. It also concatenates array elements
along a column.

. . . Three periods denotes the continuation of a statement.
Comment statements and variable names cannot be
continued with this punctuation.

! An exclamation tells MATLAB to execute the following
as an operating system command.

: The colon specifies a range of numbers. For example, 1:10
means the numbers 1 through 10. A colon in an array
dimension accesses all elements in that dimension.

. The period before an operator tells MATLAB to perform
the corresponding operation on each element in the array.

© 2002 by Chapman & Hall/CRC

516 Computational Statistics Handbook with MATLAB

A.6 Data Constructs in MATLAB

BBBBaaaasic Datasic Datasic Datasic Data CCCCoooonstnstnstnstrrrructsuctsuctsucts

We do not cover the object-oriented aspects of MATLAB here. Thus, we are
concerned mostly with data that are floating point (type double) or strings
(type char). The elements in the arrays will be of these two data types.

The fundamental data element in MATLAB is an array. Arrays can be:

• The empty array created using [].
• A scalar array.

• A row vector, which is a array.
• A column vector, which is an array.

• A matrix with two dimensions, say or .
• A multi-dimensional array, say .

Arrays must always be dimensionally conformal and all elements must be
of the same data type. In other words, a matrix must have 3 elements
(e.g., numbers) on each of its 2 rows. Table A.5 gives examples of how to
access elements of arrays.

BuildingBuildingBuildingBuilding AAAArrrrrrrraaaaysysysys

In most cases, the statistician or engineer will be using outside data in an
analysis, so the data would be imported into MATLAB using load or some
other method described previously. Sometimes, we need to type in simple
arrays for testing code or entering parameters, etc. Here we cover some of the
ways to build small arrays. Note that this can also be used to concatenate
arrays.

TABLE A.TABLE A.TABLE A.TABLE A.4444

List of Element-by-Element Operators in MATLAB

Operator Usage

.* Multiply element-by-element.

./ Divide element-by-element.

.^ Raise elements to powers.

0 0×
1 1×

1 n×
n 1×

m n× n n×
m … n××

2 3×

© 2002 by Chapman & Hall/CRC

Appendix A: Introduction to MATLAB 517

Commas or spaces concatenate elements (which can be arrays) as columns.
Thus, we get a row vector from the following

temp = [1, 4, 5];

or we can concatenate two column vectors a and b into one matrix, as follows

temp = [a b];

The semi-colon tells MATLAB to concatenate elements as rows. So, we would
get a column vector from this command:

temp = [1; 4; 5];

We note that when concatenating array elements, the sizes must be confor-
mal. The ideas presented here also apply to cell arrays, discussed below.

Before we continue with cell arrays, we cover some of the other useful func-
tions in MATLAB for building arrays. These are summarized here.

CellCellCellCell AAAArrrrrrrraaaayyyyssss

Cell arrays and structures allow for more flexibility. Cell arrays can have ele-
ments that contain any data type (even other cell arrays), and they can be of
different sizes. The cell array has an overall structure that is similar to the
basic data arrays. For instance, the cells are arranged in dimensions (rows,
columns, etc.). If we have a cell array, then each of its 2 rows has to have
3 cells. However, the content of the cells can be different sizes and can contain
different types of data. One cell might contain char data, another double,
and some can be empty. Mathematical operations are not defined on cell
arrays.

In Table A.5, we show some of the common ways to access elements of
arrays, which can be cell arrays or basic arrays. With cell arrays, this accesses
the cell element, but not the contents of the cells. Curly braces, { }, are used
to get to the elements inside the cell. For example, A{1,1} would give us the
contents of the cell (type double or char). Whereas, A(1,1) is the cell itself

Function Usage

zeros, ones These build arrays containing all 0’s or
all 1’s, respectively.

rand, randn These build arrays containing uniform
(0,1) random variables or standard
normal random variables, respectively.
See Chapter 4 for more information.

eye This creates an identity matrix.

2 3×

© 2002 by Chapman & Hall/CRC

518 Computational Statistics Handbook with MATLAB

and has data type cell. The two notations can be combined to access part of
the contents of a cell. To get the first two elements of the contents of A{1,1},
assuming it contains a vector, we can use

A{1,1} (1:2).

Cell arrays are very useful when using strings in plotting functions such as
text.

Structures are similar to cell arrays in that they allow one to combine col-
lections of dissimilar data into a single variable. Individual structure ele-
ments are addressed by names called fields. We use the dot notation to access
the fields. Each element of a structure is called a record.

As an example, say we have a structure called node, with fields parent
and children. To access the parent field of the second node, we use
node(2).parent. We can get the value of the child of the fifth node using
node(5).child. The trees in Chapter 9 and Chapter 10 are programmed
using structures.

A.7 Script Files and Functions

MATLAB programs are saved in M-files. These are text files that contain
MATLAB commands, and they are saved with the .m extension. Any text edi-

TATATATABBBBLLLLEEEE AAAA....5555

Examples of Accessing Elements of Arrays

Notation Usage

a(i) Denotes the i-th element (cell) of a row or
column vector array (cell array).

A(:,i) Accesses the i-th column of a matrix or cell
array. In this case, the colon in the row
dimension tells MATLAB to access all rows.

A(i,:) Accesses the i-th row of a matrix or cell array.
The colon tells MATLAB to gather all of the
columns.

A(1,3,4) This accesses the element in the first row,
third column on the fourth entry of
dimension 3 (sometimes called the page).

© 2002 by Chapman & Hall/CRC

Appendix A: Introduction to MATLAB 519

tor can be used to create them, but the one that comes with MATLAB is rec-
ommended. This editor can be activated using the File menu or the toolbar.

When script files are executed, the commands are implemented just as if
you typed them in interactively. The commands have access to the workspace
and any variables created by the script file are in the workspace when the
script finishes executing. To execute a script file, simply type the name of the
file at the command line or use the option in the File menu.

Script files and functions both have the same .m extension. However, a
function has a special syntax for the first line. In the general case, this syntax
is

function [out1,...,outM] = func_name(in1,...,inN)

A function does not have to be written with input or output arguments.
Whether you have these or not depends on the application and the purpose
of the function. The function corresponding to the above syntax would be
saved in a file called func_name.m. These functions are used in the same
way any other MATLAB function is used.

It is important to keep in mind that functions in MATLAB are similar to
those in other programming languages. The function has its own workspace.
So, communication of information between the function workspace and the
main workspace is done via input and output variables.

It is always a good idea to put several comment lines at the beginning of
your function. These are returned by the help command.

We use a special type of MATLAB function in several examples contained
in this book. This is called the inline function. This makes a MATLAB
inline object from a string that represents some mathematical expression or
the commands that you want MATLAB to execute. As an optional argument,
you can specify the input arguments to the inline function object. For
example, the variable gfunc represents an inline object:

gfunc = inline('sin(2*pi*f + theta)','f','theta');

This calculates the based on two input variables: f and theta.
We can now call this function just as we would any MATLAB function.

x = 0:.1:4*pi;
thet = pi/2;
ys = gfunc(x, thet);

In particular, the inline function is useful when you have a simple function
and do not want to keep it in a separate file.

2πf θ+(),sin

© 2002 by Chapman & Hall/CRC

520 Computational Statistics Handbook with MATLAB

A.8 Control Flow

Most computer languages provide features that allow one to control the flow
of execution depending on certain conditions. MATLAB has similar con-
structs:

• For loops

• While loops
• If-else statements

• Switch statement

These should be used sparingly. In most cases, it is more efficient in MATLAB
to operate on an entire array rather than looping through it.

For LooLooLooLoopppp

The basic syntax for a for loop is

for i = array
commands

end

Each time through the loop, the loop variable i assumes the next value in
array. The colon notation is usually used to generate a sequence of numbers
that i will take on. For example,

for i = 1:10

The commands between the for and the end statements are executed once
for every value in the array. Several for loops can be nested, where each loop
is closed by end.

While LLLLoooooooopppp

A while loop executes an indefinite number of times. The general syntax is:

while expression
commands

end

The commands between the while and the end are executed as long as
expression is true. Note that in MATLAB a scalar that is non-zero evalu-
ates to true. Usually a scalar entry is used in the expression, but an array

© 2002 by Chapman & Hall/CRC

Appendix A: Introduction to MATLAB 521

can be used also. In the case of arrays, all elements of the resulting array must
be true for the commands to execute.

If-Else SSSStatementtatementtatementtatementssss

Sometimes, commands must be executed based on a relational test. The if-
else statement is suitable here. The basic syntax is

if expression
commands

elseif expression
commands

else
commands

end

Only one end is required at the end of the sequence of if, elseif and else
statements. Commands are executed only if the corresponding expression
is true.

Switch SSSSttttaaaatementementementementttt

The switch statement is useful if one needs a lot of if, elseif statements
to execute the program. This construct is very similar to that in the C lan-
guage. The basic syntax is:

switch expression
case value1

commands execute if expression is value1
case value2

commands execute if expression is value2
...
otherwise

commands
end

Expression must be either a scalar or a character string.

A.9 Simple Plotting

For more information on some of the plotting capabilities of MATLAB, the
reader is referred to Chapter 5 of this text. Other useful resources are the
MATLAB documentation Using MATLAB Graphics and Graphics and GUI’s
with MATLAB [Marchand, 1999]. In this appendix, we briefly describe some

© 2002 by Chapman & Hall/CRC

522 Computational Statistics Handbook with MATLAB

of the basic uses of plot for plotting 2-D graphics and plot3 for plotting 3-D
graphics. The reader is strongly urged to view the help file for more infor-
mation and options for these functions.

When the function plot is called, it opens a Figure window, if one is not
already there, scales the axes to fit the data and plots the points. The default
is to plot the points and connect them using straight lines. For example,

plot(x,y)

plots the values in vector x on the horizontal axis and the values in vector y
on the vertical axis, connected by straight lines. These vectors must be the
same size or you will get an error.

Any number of pairs can be used as arguments to plot. For instance, the
following command plots two curves,

plot(x,y1,x,y2)

on the same axes. If only one argument is supplied to plot, then MATLAB
plots the vector versus the index of its values.

The default is a solid line, but MATLAB allows other choices. These are
given in Table A.6.

If several lines are plotted on one set of axes, then MATLAB plots them as
different colors. The predefined colors are listed in Table A.7.

Plotting symbols (e.g., *, x, o, etc.) can be used for the points. Since the list
of plotting symbols is rather long, we refer the reader to the online help for
plot for more information. To plot a curve where both points and a con-
nected curve are displayed, use

plot(x, y, x, y, ‘b*’)

This command first plots the points in x and y, connecting them with straight
lines. It then plots the points in x and y using the symbol * and the color blue.

The plot3 function works the same as plot, except that it takes three vec-
tors for plotting:

plot3(x, y, z)

TTTTABABABABLLLLE A.6E A.6E A.6E A.6

Line Styles for Plots

Notation Line Type

- Solid LIne
: Dotted Line
-. Dash-dot Line
-- Dashed line

© 2002 by Chapman & Hall/CRC

Appendix A: Introduction to MATLAB 523

All of the line styles, colors and plotting symbols apply to plot3. Other
forms of 3-D plotting (e.g., surf and mesh) are covered in Chapter 5. Titles
and axes labels can be created for all plots using title, xlabel, ylabel
and zlabel.

Before we finish this discussion on simple plotting techniques in MATLAB,
we present a way to put several axes or plots in one figure window. This is
through the use of the subplot function. This creates an matrix of
plots (or axes) in the current figure window. We provide an example below,
where we show how to create two plots side-by-side.

% Create the left-most plot.
subplot(1,2,1)
plot(x,y)
% Create the right-most plot
subplot(1,2,2)
plot(x,z)

The first two arguments to subplot tell MATLAB about the layout of the
plots within the figure window. The third argument tells MATLAB which
plot to work with. The plots are numbered from top to bottom and left to
right. The most recent plot that was created or worked on is the one affected
by any subsequent plotting commands. To access a previous plot, simply use
the subplot function again with the proper value for the third argument p.
You can think of the subplot function as a pointer that tells MATLAB what
set of axes to work with.

Through the use of MATLAB’s low-level Handle Graphics functions, the
data analyst has complete control over graphical output. We do not present
any of that here, because we make limited use of these capabilities. However,
we urge the reader to look at the online help for propedit. This graphical
user interface allows the user to change many aspects or properties of the
plots.

TTTTAAAABBBBLLLLEEEE A.7A.7A.7A.7

Line Colors for Plots

Notation Color

b blue
g green
r red
c cyan
m magenta
y yellow
k black
w white

m n×

© 2002 by Chapman & Hall/CRC

524 Computational Statistics Handbook with MATLAB

A.10 Contact Information

For MATLAB product information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA, 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7101
E-mail: info@mathworks.com
Web: www.mathworks.com

There are two useful resources that describe new products, programming
tips, algorithm development, upcoming events, etc. One is the monthly elec-
tronic newsletter called the MATLAB Digest. Another is called MATLAB News
& Notes , published quarterly. You can subscribe to both of these at
www.mathworks.com or send an email request to

subscribe@mathworks.com

Back issues of these documents are available on-line.

© 2002 by Chapman & Hall/CRC

www.mathworks.com
www.mathworks.com

Appendix B
Index of Notation

SSSSingle Lingle Lingle Lingle Leeeetttttttteeeersrsrsrs

Histogram bin

d Dimensionality

h Bin width or smoothing parameter

Null hypothesis

Alternative hypothesis

Sample central moment

n Sample size

p Probability

Quantile

Sample variance

T Statistic

Jackknife replicate

U Uniform (0,1) random variable

X A random variable

Order statistic

Sample mean

Bootstrap sample

Z Standard normal random variable

OtheOtheOtheOtherrrr

Expected value of X

Probability mass or density function

Bk

H0

H1

Mr

qp

S2

T i–()

X i()

X

x* x1
* … xn

*, ,()=

E X[]

f x()

© 2002 by Chapman & Hall/CRC

526 Computational Statistics Handbook with MATLAB

Cumulative distribution function

Nearest neighbor point-event cdf

Joint probability (mass) function

Nearest neighbor event-event cdf

K-function

Kernel

L-function

Likelihood function

Likelihood ratio

Probability of event E

Conditional probability

Class-conditional probability

Prior probability

Posterior probability

Proposal distribution - MCMC

Roughness

Variance of X

GreGreGreGreeeeek Symbolk Symbolk Symbolk Symbolssss

Probability of Type I error

Probability of Type II error

Projection vector - grand tour

Projection vector - grand tour

Acceptance probability - MCMC

Residuals

Bootstrap replicate
Intensity

r-th central moment

Mean

Histogram bin heights

Target distribution - MCMC

F x()

f x y,()

G w()

K d()

K t()

L d()

L θ x1 … xn, ,;()

LR x()

P E()

P E F()

P x ωj()

P ωj()

P ωj x()

q . Xt()

R f()

V X()

α

β

αααα t()

ββββ t()

α Xt Y,()

ε̂i

θ̂*b

λ s()

µr

µ

νk

π x()

© 2002 by Chapman & Hall/CRC

Appendix B: Index of Notation 527

Correlation coefficient

Variance

Covariance matrix

Standard normal probability density function

Standard normal cdf

Stationary distribution - MCMC

Class j

AcronymAcronymAcronymAcronymssss

cdf Cumulative distribution function

CSR Complete spatial randomness

EDA Exploratory data analysis

IQR Interquartile range

ISE Integrated squared error

MCMC Markov chain Monte Carlo

MIAE Mean integrated absolute error

MISE Mean integrated squared error

MSE Mean squared error

pdf Probability density function

PE Prediction error

RSE Residual squared error

SE Standard error

ρxy

σ2

Σ

φ x µ σ2,;()

Φ

ψ

ωj

© 2002 by Chapman & Hall/CRC

Appendix C
Projection Pursuit Indexes

In this appendix, we list several indexes for projection pursuit [Posse, 1995b],
and we also provide the M-file source code for the functions included in the
Computational Statistics Toolbox.

C.1 Indexes

Since structure is considered to be departures from normality, these indexes
are developed to detect non-normality in the projected data. There are some
criteria that we can use to assess the usefulness of projection indexes. These
include affine invariance [Huber, 1985], speed of computation, and sensitiv-
ity to departure from normality in the core of the distribution rather than the
tails. The last criterion ensures that we are pursuing structure and not just
outliers.

FFFFrrrrieieieieddddmmmmaaaannnn----TTTTukeukeukeukeyyyy IIIIndndndndeeeexxxx

This projection pursuit index [Friedman and Tukey, 1974] is based on inter-
point distances and is calculated using the following

,

where , , and is the indicator
function for positive values,

PIFT α β,() R2 rij
2–()3

1111 R2 rij
2–()

j 1=

n

∑
i 1=

n

∑=

R 2.29n 1 5⁄–= rij
2 zi

α zj
α–()2

zi
β zj

β–()2
+= 1111()

1111 x()
1 x 0>;

0 x 0.≤;

=

© 2002 by Chapman & Hall/CRC

530 Computational Statistics Handbook with MATLAB

This index has been revised from the original to be affine invariant [Swayne,
Cook and Buja, 1991] and has computational order

EEEEntntntntrrrropopopopyyyy IndIndIndIndeeeexxxx

This projection pursuit index [Jones and Sibson, 1987] is based on the entropy
and is given by

,

where is the bivariate standard normal density. The bandwidths
 are obtained from

.

This index is also

MomentMomentMomentMoment IIIIndndndndeeeexxxx

This index was developed in Jones and Sibson [1987] and is based on bivari-
ate third and fourth moments. This is very fast to compute, so it is useful for
large data sets. However, a problem with this index is that it tends to locate
structure in the tails of the distribution. It is given by

,

where

O n2() .

PIE α β,() 1
n
--- 1

nhαhβ
-------------- φ2

zi
α zj

α–()
hα

zi

β zj
β–()

hβ
--------------------,

j 1=

n

∑log

i 1=

n

∑ 2πe()log+=

φ2

hγ γ, α β,=

hγ 1.06n 1 5⁄– zi
γ zj

γ n⁄
j 1=

n

∑–

2

n 1–()⁄
i 1=

n

∑

1
2

=

O n2().

PIM α β,() 1
12
------ κ30

2 3κ21
2 3κ12

2 κ03
2 1

4
--- κ40

2 4κ31
2 6κ22

2 4κ13
2 κ04

2+ + + +()+ + + +

=

κ30
n

n 1–() n 2–()
---------------------------------- zi

α()3

i 1=

n

∑= κ03
n

n 1–() n 2–()
---------------------------------- zi

β()3

i 1=

n

∑=

© 2002 by Chapman & Hall/CRC

Appendix C: Projection Pursuit Indexes 531

.

DistaDistaDistaDistannnncescescesces

Several indexes estimate the distance between the density of the projected
data and a bivariate standard normal density. The projection indexes use
orthonormal polynomial expansions to estimate the marginal densities of the
projected data. One of these proposed by Friedman [1987] uses Legendre
polynomials with J terms. Note that MATLAB has a function for obtaining
these polynomials called legendre.

κ31
n n 1+()

n 1–() n 2–() n 3–()
-- zi

α()3
zi

β

i 1=

n

∑=

κ13
n n 1+()

n 1–() n 2–() n 3–()
-- zi

β()3
zi

α

i 1=

n

∑=

κ04
n n 1+()

n 1–() n 2–() n 3–()
-- zi

β()4 3 n 1–()3

n n 1+()
----------------------–

i 1=

n

∑

=

κ40
n n 1+()

n 1–() n 2–() n 3–()
-- zi

α()
4 3 n 1–()3

n n 1+()
----------------------–

i 1=

n

∑

=

κ22
n n 1+()

n 1–() n 2–() n 3–()
-- zi

α()2
zi

β()2 n 1–()3

n n 1+()
---------------------–

i 1=

n

∑

=

κ21
n

n 1–() n 2–()
---------------------------------- zi

α()2
zi

β

i 1=

n

∑= κ12
n

n 1–() n 2–()
---------------------------------- zi

β()2
zi

α

i 1=

n

∑=

L2

L2

L2

PILeg α β,() 1
4
--- 2j 1+() 1

n
--- Pjyi

α

i 1=

n

∑

2

2k 1+() 1
n
--- Pkyi

β

i 1=

n

∑

2

k 1=

J

∑+

j 1=

J

∑

2j 1+() 2k 1+() 1
n
--- Pj yi

α()Pk yi
β()

i 1=

n

∑

2

k 1=

J j–

∑
j 1=

J

∑+

=

© 2002 by Chapman & Hall/CRC

532 Computational Statistics Handbook with MATLAB

where is the Legendre polynomial of order a. This index is not affine
invariant, so Morton [1989] proposed the following revised index. This is
based on a conversion to polar coordinates as follows

.

We then have the following index where Fourier series and Laguerre polyno-
mials are used:

 ,

where represents the Laguerre polynomial of order a. Two more indexes
based on the distance using expansions in Hermite polynomials are given
in Posse [1995b].

C.2 MATLAB Source Code

The first function we look at is the one to calculate the chi-square projection
pursuit index.

function ppi = csppind(x,a,b,n,ck)

% x is the data, a and b are the projection vectors,
% n is the number of data points, and ck is the value
% of the standard normal bivariate cdf for the boxes.
z = zeros(n,2);
ppi = 0;
pk = zeros(1,48);
eta = pi*(0:8)/36;
delang = 45*pi/180;

Pa()

ρ zα()2
zβ()2

+= θ zβ

zα

atan=

PILF α β,() 1
π
--- 1

n
--- Ll ρ i() ρi 2⁄–()exp kθi()cos

i 1=

n

∑

2

k 1=

K

∑
l 0=

L

∑=

+
1
n
--- Ll ρ i() ρi 2⁄–()exp kθ i()sin

i 1=

n

∑

2

1
2π
------ 1

n
--- Ll ρ i() ρi 2⁄–()exp

i 1=

n

∑

2

l 0=

L

∑+

1
2πn
---------- ρ i 2⁄–()exp

i 1=

n

∑ 1
8π
------+–

La

L2

© 2002 by Chapman & Hall/CRC

Appendix C: Projection Pursuit Indexes 533

delr = sqrt(2*log(6))/5;
angles = 0:delang:(2*pi);
rd = 0:delr:5*delr;
nr = length(rd);
na=length(angles);

for j = 1:9
 % find rotated plane
 aj = a*cos(eta(j))-b*sin(eta(j));
 bj = a*sin(eta(j))+b*cos(eta(j));
 % project data onto this plane
 z(:,1) = x*aj;
 z(:,2) = x*bj;
 % convert to polar coordinates
 [th,r] = cart2pol(z(:,1),z(:,2));
 % find all of the angles that are negative

ind = find(th<0);
th(ind) = th(ind)+2*pi;

 % find # points in each box
 for i=1:(nr-1)% loop over each ring
 for k=1:(na-1)% loop over each wedge
 ind = ...

find(r>rd(i) & r<rd(i+1) & ...
th>angles(k) & th<angles(k+1));

 pk((i-1)*8+k)=...
(length(ind)/n-ck((i-1)*8+k))^2...
/ck((i-1)*8+k);

 end
 end
 % find the number in the outer line of boxes
 for k=1:(na-1)
 ind=...

find(r>rd(nr) & th>angles(k) & ...
th<angles(k+1));

 pk(40+k)=(length(ind)/n-(1/48))^2/(1/48);
 end
 ppi = ppi+sum(pk);
end
ppi = ppi/9;

Any of the other indexes can be coded in an M-file function and called by the
csppeda function given below. You would call your function instead of
csppind.

function [as,bs,ppm]=csppeda(Z,c,half,m)

% Z is the sphered data.

© 2002 by Chapman & Hall/CRC

534 Computational Statistics Handbook with MATLAB

% get the necessary constants
[n,p] = size(Z);
maxiter = 1500;
cs = c;
cstop = 0.00001;
cstop = 0.01;
as = zeros(p,1);% storage for the information
bs = zeros(p,1);
ppm = realmin;

% find the probability of bivariate standard normal
% over each radial box.
% NOTE: the user could put the values in to ck to
% prevent re-calculating each time. We thought the
% reader would be interested in seeing how we did
% it.
% NOTE: MATLAB 5 users should use the function
% quad8 instead of quadl.
fnr = inline('r.*exp(-0.5*r.^2)','r');
ck = ones(1,40);
ck(1:8) = quadl(fnr,0,sqrt(2*log(6))/5)/8;
ck(9:16) = quadl(fnr,sqrt(2*log(6))/5,...

2*sqrt(2*log(6))/5)/8;
ck(17:24) = quadl(fnr,2*sqrt(2*log(6))/5,...

3*sqrt(2*log(6))/5)/8;
ck(25:32) = quadl(fnr,3*sqrt(2*log(6))/5,...

4*sqrt(2*log(6))/5)/8;
ck(33:40) = quadl(fnr,4*sqrt(2*log(6))/5,...

5*sqrt(2*log(6))/5)/8;

for i=1:m
 % generate a random starting plane
 % this will be the current best plane
 a = randn(p,1);
 mag = sqrt(sum(a.^2));
 astar = a/mag;
 b = randn(p,1);
 bb = b-(astar'*b)*astar;
 mag = sqrt(sum(bb.^2));
 bstar = bb/mag;
 clear a mag b bb
 % find the projection index for this plane
 % this will be the initial value of the index
 ppimax = csppind(Z,astar,bstar,n,ck);

 % keep repeating this search until the value

© 2002 by Chapman & Hall/CRC

Appendix C: Projection Pursuit Indexes 535

% c becomes less than cstop or until the
% number of iterations exceeds maxiter

 mi = 0;
% number of iterations without increase in index

 h = 0;
 c = cs;
 while (mi < maxiter) & (c > cstop)

 % generate a p-vector on the unit sphere
 v = randn(p,1);
 mag = sqrt(sum(v.^2));
 v1 = v/mag;
 % find the a1,b1 and a2,b2 planes
 t = astar+c*v1;
 mag = sqrt(sum(t.^2));
 a1 = t/mag;
 t = astar-c*v1;
 mag = sqrt(sum(t.^2));
 a2 = t/mag;
 t = bstar-(a1'*bstar)*a1;
 mag = sqrt(sum(t.^2));
 b1 = t/mag;
 t = bstar-(a2'*bstar)*a2;
 mag = sqrt(sum(t.^2));
 b2 = t/mag;
 ppi1 = csppind(Z,a1,b1,n,ck);
 ppi2 = csppind(Z,a2,b2,n,ck);
 [mp,ip] = max([ppi1,ppi2]);
 if mp > ppimax

% then reset plane and index to this value
 eval(['astar=a' int2str(ip) ';']);
 eval(['bstar=b' int2str(ip) ';']);
 eval(['ppimax=ppi' int2str(ip) ';']);
 else
 h = h+1;% no increase
 end
 mi = mi+1;
 if h==half% then decrease the neighborhood
 c = c*.5;
 h = 0;
 end
 end
 if ppimax > ppm
 % save the current projection as a best plane
 as = astar;
 bs = bstar;
 ppm = ppimax;

© 2002 by Chapman & Hall/CRC

536 Computational Statistics Handbook with MATLAB

 end
end

Finally, we provide the following function for removing the structure from a
projection found using PPEDA.

function X = csppstrtrem(Z,a,b)

% maximum number of iterations allowed
maxiter = 5;
[n,d] = size(Z);

% find the orthonormal matrix needed via Gram-Schmidt
U = eye(d,d);
U(1,:) = a';% vector for best plane
U(2,:) = b';
for i = 3:d
 for j = 1:(i-1)
 U(i,:) = U(i,:)-(U(j,:)*U(i,:)')*U(j,:);
 end
 U(i,:) = U(i,:)/sqrt(sum(U(i,:).^2));
end

% Transform data using the matrix U.
% To match Friedman's treatment: T is d x n.
T = U*Z';
% These should be the 2-d projection that is 'best'.
x1 = T(1,:);
x2 = T(2,:);

% Gaussianize the first two rows of T.
% set of vector of angles
gam = [0,pi/4, pi/8, 3*pi/8];
for m = 1:maxiter
 % gaussianize the data
 for i=1:4
 % rotate about origin
 xp1 = x1*cos(gam(i))+x2*sin(gam(i));
 xp2 = x2*cos(gam(i))-x1*sin(gam(i));
 % Transform to normality
 [m,rnk1] = sort(xp1); % get the ranks
 [m,rnk2] = sort(xp2);
 arg1 = (rnk1-0.5)/n;% get the arguments
 arg2 = (rnk2-0.5)/n;
 x1 = norminv(arg1,0,1); % transform to normality
 x2 = norminv(arg2,0,1);
 end

© 2002 by Chapman & Hall/CRC

Appendix C: Projection Pursuit Indexes 537

end

% Set the first two rows of T to the
% Gaussianized values.
T(1,:) = x1;
T(2,:) = x2;
X = (U'*T)';

© 2002 by Chapman & Hall/CRC

Appendix D
MATLAB Code

In this appendix, we provide the MATLAB functions for some of the more
complicated techniques covered in this book. This includes code for the boot-
strap confidence interval, the adaptive mixtures algorithm for probabil-
ity density estimation, classification trees, and regression trees.

D.1 Bootstrap Confidence Interval

function[blo,bhi,bvals,z0,ahat]=...
csbootbca(data,fname,B,alpha)

thetahat = feval(fname,data);
[bh,se,bt] = csboot(data,fname,50);
[n,d] = size(data);
bvals = zeros(B,1);
% Loop over each resample and
% calculate the bootstrap replicates.
for i = 1:B
% generate the indices for the B bootstrap
% resamples, sampling with
% replacement using the discrete uniform.
ind = ceil(n.*rand(n,1));
% extract the sample from the data
% each row corresponds to a bootstrap resample
xstar = data(ind,:);
% use feval to evaluate the estimate for
% the i-th resample
bvals(i) = feval(fname, xstar);

end
numless = length(find(bvals<thetahat));
z0 = norminv(numless/B,0,1);
% find the estimate for acceleration using jackknife
jvals = zeros(n,1);

BCa

BCa

© 2002 by Chapman & Hall/CRC

540 Computational Statistics Handbook with MATLAB

for i = 1:n
 % use feval to evaluate the estimate

% with the i-th observation removed
 % These are the jackknife replications.

jvals(i) =...
feval(fname, [data(1:(i-1));data((i+1):n)]);

end
num = (mean(jvals)-jvals).^3;
den = (mean(jvals)-jvals).^2;
ahat = sum(num)/(6*sum(den)^(3/2));
zlo = norminv(alpha/2,0,1); % this is the z^(a/2)
zup = norminv(1-alpha/2,0,1); % this is the z^(1-a/2)
% Equation 14.10, E & T
arg = z0 + (z0 + zlo)/(1-ahat*(z0+zlo));
alpha1 = normcdf(arg,0,1);
arg = z0 + (z0 + zup)/(1-ahat*(z0+zup));
alpha2 = normcdf(arg,0,1);
k1 = floor(((B+1)*alpha1));
k2 = ceil(((B+1)*alpha2)); % ???
sbval = sort(bvals);
blo = sbval(k1);
bhi = sbval(k2);

D.2 Adaptive Mixtures Density Estimation

First we provide some of the helper functions that are used in csadpmix.
This first function calculates the estimated posterior probability, given the
current estimated model and the new observation.

% function post=rpostup(x,pies,mus,vars,nterms)
% This function will return the posterior.

function post = rpostup(x,pies,mus,vars,nterms)
f = exp(-.5*(x-mus(1:nterms)).^2./...
 vars(1:nterms)).*pies(1:nterms);
f = f/sum(f);
post = f;

Next we need a function that will update the mixing coefficients, the means
and the variances using the posteriors and the new data point.

% This function will update all of the parameters for
% the adaptive mixtures density estimation approach

© 2002 by Chapman & Hall/CRC

Appendix D: MATLAB Code 541

function [piess,muss,varss]=...
 csrup(x,pies,mus,vars,posterior,nterms,n)
inertvar = 10;
betan = 1/(n);
piess = pies(1:nterms);
muss = mus(1:nterms);
varss = vars(1:nterms);
post = posterior(1:nterms);
% update the mixing coefficients
piess = piess+(post-piess)*betan;
% update the means
muss = muss+betan*post.*(x-muss)./piess;
% update the variances
denom = (1/betan)*piess+inertvar;

varss = varss+post.*((x-muss).^2-varss)./denom;

Finally, the following function will set the initial variance for newly created
terms.

% This function will update the variances
% in the AMDE. Call with nterms-1,
% since new term is based only on previous terms

function newvar = cssetvar(mus,pies,vars,x,nterms)
f=exp(-.5*(x-mus(1:nterms))...

.^2./vars(1:nterms)).*pies(1:nterms);
f = f/sum(f);
f = f.*vars(1:nterms);
newvar = sum(f);

Here is the main MATLAB function csadpmix that ties everything together.
For brevity, we show only the part of the function that corresponds to the
univariate case. View the M-file for the multivariate case.

function [pies,mus,vars] = cadpmix(x,maxterms)
n = length(x);
mus = zeros(1,maxterms);
vars = zeros(1,maxterms);
pies = zeros(1,maxterms);
posterior = zeros(1,maxterms);
tc = 1;
% lower bound on new pies
minpie = .00001;
% bound on variance
sievebd = 1000;
% initialize density to first data point
nterms = 1;

© 2002 by Chapman & Hall/CRC

542 Computational Statistics Handbook with MATLAB

mus(1) = x(1);
% rule of thumb for initial variance - univariate
vars(1) = (std(x))^2/2.5;
pies(1) = 1;
% loop through all of the data points
for i = 2:n
 md = ((x(i)-mus(1:nterms)).^2)./vars(1:nterms);
 if min(md)>tc & nterms<maxterms

create = 1;
 else

create = 0;
 end
 if create == 0 % update terms
 posterior(1:nterms)=...
 csrpostup(x(i),pies,mus,vars,nterms);

[pies(1:nterms),mus(1:nterms),...
vars(1:nterms)]=csrup(x(i),pies,mus,...
vars,posterior,nterms,i);

 else % create a new term
 nterms = nterms+1;
 mus(nterms) = x(i);
 pies(nterms) = max([1/(i),minpie]);

% update pies
 pies(1:nterms-1)=...
 pies(1:nterms-1)*(1-pies(nterms));
 vars(nterms)=...
 cssetvar(mus,pies,vars,x(i),nterms-1);
 end % end if statement

% to prevent spiking of variances
 index = find(vars(1:nterms)<1/(sievebd*nterms));
 vars(index) = ones(size(index))/(sievebd*nterms);
end % for i loop
% clean up the model - get rid of the 0 terms
mus((nterms+1):maxterms) = [];
pies((nterms+1):maxterms) = [];
vars((nterms+1):maxterms) = [];

D.3 Classification Trees

In the interest of space, we only include (in the text) the MATLAB code for
growing a classification tree. All of the functions for working with trees are
included with the Computational Statistics Toolbox, and the reader can easily
view the source code for more information.

© 2002 by Chapman & Hall/CRC

Appendix D: MATLAB Code 543

function tree = csgrowc(X,maxn,clas,Nk,pies)

[n,dd] = size(X);
if nargin == 4% then estimate the pies

pies = Nk/n;
end
% The tree will be implemented as a structure.
% get the initial tree - which is the data set itself
tree.pies = pies;
% need for node impurity calcs:
tree.class = clas;
tree.Nk = Nk;
% maximum number to be allowed in the terminal nodes:
tree.maxn = maxn;
% number of nodes in the tree - total:
tree.numnodes = 1;
% vector of terminal nodes:
tree.termnodes = 1;
% 1=terminal node, 0=not terminal:
tree.node.term = 1;
% total number of points in the node:
tree.node.nt = sum(Nk);
tree.node.impurity = impure(pies);
tree.node.misclass = 1-max(pies);
% prob it is node t:
tree.node.pt = 1;
% root node has no parent
tree.node.parent = 0;
% This will be a 2 element vector of
% node numbers to the children.
tree.node.children = [];
% pointer to sibling node:
tree.node.sibling = [];
% the class membership associated with this node:
tree.node.class = [];
% the splitting value:
tree.node.split = [];
% the variable or dimension that will be split:
tree.node.var = [];
% number of points from each class in this node:
tree.node.nkt = Nk;
% joint prob it is class k and it falls into node t
tree.node.pjoint = pies;
% prob it is class k given node t
tree.node.pclass = pies;
% the root node contains all of the data:

© 2002 by Chapman & Hall/CRC

544 Computational Statistics Handbook with MATLAB

tree.node.data = X;

% Now get started on growing the very large tree.
% first we have to extract the number of terminal nodes
% that qualify for splitting.
% get the data needed to decide to split the node
[term,nt,imp]=getdata(tree);
% find all of the nodes that qualify for splitting
ind = find((term==1) & (imp>0) & (nt>maxn));
% now start splitting
while ~isempty(ind)
for i=1:length(ind)% check all of them

% get split
[split,dim]=...

splitnode(tree.node(ind(i)).data,...
tree.node(ind(i)).impurity,...

 tree.class,tree.Nk,tree.pies);
% split the node
tree = addnode(tree,ind(i),dim,split);

end % end for loop
[term,nt,imp]=getdata(tree);
tree.termnodes = find(term==1);
ind = find((term==1) & (imp>0) & (nt>maxn));
length(tree.termnodes);
itmp = find(term==1);

end % end while loop

D.4 Regression Trees

Below is the function for growing a regression tree. The complete set of func-
tions needed for working with regression trees is included with the
Computational Statistics Toolbox.

function tree = csgrowr(X,y,maxn)

n = length(y);
% The tree will be implemented as a structure
tree.maxn = maxn;
tree.n = n;
tree.numnodes = 1;
tree.termnodes = 1;
tree.node.term = 1;
tree.node.nt = n;

© 2002 by Chapman & Hall/CRC

Appendix D: MATLAB Code 545

tree.node.impurity = sqrer(y,tree.n);
tree.node.parent = 0;
tree.node.children = [];
tree.node.sibling = [];
tree.node.yhat = mean(y);
tree.node.split = [];
tree.node.var = [];
tree.node.x = X;
tree.node.y = y;

% Now get started on growing the tree very large
[term,nt,imp]=getdata(tree);
% find all of the nodes that qualify for splitting
ind = find((term==1) & (imp>0) & (nt>maxn));
% now start splitting
while ~isempty(ind)
 for i=1:length(ind)
 % get split
 [split,dim]=splitnoder(...
 tree.node(ind(i)).x,...
 tree.node(ind(i)).y,...
 tree.node(ind(i)).impurity,...
 tree.n);
 % split the node
 tree = addnoder(tree,ind(i),dim,split);
 end % end for loop
 [term,nt,imp]=getdata(tree);
 tree.termnodes = find(term==1);
 ind = find((term==1) & (imp>0) & (nt>maxn));
end % end while loop

© 2002 by Chapman & Hall/CRC

Appendix E
MATLAB Statistics Toolbox

The following tables list the functions that are available in the MATLAB
Statistics Toolbox, Version 3.0. This toolbox is available for purchase from
The MathWorks, Inc.

TTTTABABABABLLLLE E.1E E.1E E.1E E.1

Functions for Parameter Estimation (fit) and Distribution Statistics -
Mean and Variance (stat)

Function Purpose

betafit, betastat Beta distribution.

binofit, binostat Binomial distribution.

expfit, expstat Exponential distribution.

fstat F distribution

gamfit, gamstat Gamma distribution.

geostat Geometric distribution

hygestat Hypergeometric distribution

lognstat Lognormal distribution

mle Maximum likelihood parameter estimation.

nbinstat Negative binomial distribution

ncfstat Noncentral F distribution

nctstat Noncentral t distribution

ncx2stat Noncentral Chi-square distribution

normfit, normstat Normal distribution.

poissfit, poisstat Poisson distribution.

raylfit Rayleigh distribution.

tstat T distribution

unidstat Discrete uniform distribution

unifit, unifstat Uniform distribution.

weibfit, weibstat Weibull distribution.

© 2002 by Chapman & Hall/CRC

548 Computational Statistics Handbook with MATLAB

TTTTAAAABBBBLLLLEEEE EEEE.2.2.2.2

Probability Density Functions (pdf) and Cumulative Distribution
Functions (cdf)

Function Purpose

betapdf, betacdf Beta distribution

binopdf, binocdf Binomial distribution

chi2pdf, chi2cdf Chi-square distribution

exppdf, expcdf Exponential distribution

fpdf, fcdf F distribution

gampdf, gamcdf Gamma distribution

geopdf, geocdf Geometric distribution

hygepdf, hygecdf Hypergeometric distribution

lognpdf, logncdf Log normal distribution

nbinpdf, nbincdf Negative binomial distribution

ncfpdf, ncfcdf Noncentral F distribution

nctpdf, nctcdf Noncentral t distribution

ncx2pdf, ncx2cdf Noncentral chi-square distribution

normpdf, normcdf Normal distribution

pdf, cdf Probability density/Cumulative distribution

poisspdf, poisscdf Poisson distribution

raylpdf, raylcdf Rayleigh distribution

tpdf, tcdf T distribution

unidpdf, unidcdf Discrete uniform distribution

unifpdf, unifcdf Continuous uniform distribution

weibpdf, weibcdf Weibull distribution

© 2002 by Chapman & Hall/CRC

Appendix E: MATLAB Statistics Toolbox 549

TTTTAAAABBBBLLLLE E.3E E.3E E.3E E.3

Critical Values (inv) and Random Number Generation (rnd) for
Probability Distribution Functions

Function Purpose

betainv, betarnd Beta distribution

binoinv, binornd Binomial distribution

chi2inv, chi2rnd Chi-square distribution

expinv, exprnd Exponential distribution

finv, frnd F distribution

gaminv, gamrnd Gamma distribution

geoinv, geornd Geometric distribution

hygeinv, hygernd Hypergeometric distribution

logninv, lognrnd Log normal distribution

nbininv, nbinrnd Negative binomial distribution

ncfinv, ncfrnd Noncentral F distribution

nctinv, nctrnd Noncentral t distribution

ncx2inv, ncx2rnd Noncentral chi-square distribution

norminv, normrnd Normal distribution

poissinv, poissrnd Poisson distribution

raylinv, raylrnd Rayleigh distribution

tinv, trnd T distribution

unidinv, unidrnd Discrete uniform distribution

unifinv, unifrnd Continuous uniform distribution

weibinv, weibrnd Weibull distribution

icdf Specified inverse cdf

© 2002 by Chapman & Hall/CRC

550 Computational Statistics Handbook with MATLAB

TTTTAAAABBBBLLLLE E.4E E.4E E.4E E.4

Descriptive Statistics

Function Purpose

bootstrp Bootstrap statistics for any function.

corrcoef Correlation coefficient - also in standard
MATLAB

cov Covariance - also in standard MATLAB

crosstab Cross tabulation

geomean Geometric mean

grpstats Summary statistics by group

harmmean Harmonic mean

iqr Interquartile range

kurtosis Kurtosis

mad Median absolute deviation

mean Sample average - also in standard MATLAB

median Second quartile (50th percentile) of a sample - also
in standard MATLAB

moment Moments of a sample

nanmax, nanmin Maximum/minimum - ignoring NaNs

nanmean, nanmedian Mean/median - ignoring NaNs

nanstd, namsum Standard deviation/sum - ignoring NaNs

prctile Percentiles

range Range

skewness Skewness

std Standard deviation - also in standard MATLAB

tabulate Frequency table

trimmean Trimmed mean

var Variance - also in standard MATLAB

© 2002 by Chapman & Hall/CRC

Appendix E: MATLAB Statistics Toolbox 551

TTTTAAAABBBBLLLLE E.5E E.5E E.5E E.5

Linear Models

Function Purpose

anova1 One-way analysis of variance

anova2 Two-way analysis of variance

anovan n-way analysis of variance

aoctool Interactive tool for analysis of covariance

dummyvar Dummy-variable coding

friedman Friedman’s test

glmfit Generalized linear model fitting

kruskalwallis Kruskal-Wallis test

lscov Least-squares estimates with known covariance
matrix

manoval One-way multivariate analysis of variance

manovacluster Draw clusters of group means for manova1

multcompare Multiple comparisons of means and other
estimates

polyconf Polynomial evaluation and confidence interval
estimation

polyfit Least-squares polynomial fitting- also in standard
MATLAB

polyval Predicted values for polynomial functions- also
in standard MATLAB

rcoplot Residuals case order plot

regress Multivariate linear regression

regstats Regression diagnostics

ridge Ridge regression

robustfit Robust regression model fitting

rstool Multidimensional response surface visualization

stepwise Interactive tool for stepwise regression

x2fx Factor setting matrix (x) to design matrix (fx)

© 2002 by Chapman & Hall/CRC

552 Computational Statistics Handbook with MATLAB

TTTTAAAABBBBLLLLE E.6E E.6E E.6E E.6

Nonlinear Models

Function Purpose

nlinfit Nonlinear least-squares data fitting (Newton’s
Method)

nlintool Interactive graphical tool for prediction in
nonlinear models

nlpredci Confidence intervals for prediction

nlparci Confidence intervals for parameters

nnls Non-negative least-squares

TTTTAAAABBBBLLLLE E.7E E.7E E.7E E.7

Cluster Analysis

Function Purpose

pdist Pairwise distance between observations

squareform Square matrix formatted distance

linkage Hierarchical cluster information

dendrogram Generate dendrogram plot

inconsistent Inconsistent values of a cluster tree

cophenet Cophenetic coefficient

cluster Construct clusters from linkage output

clusterdata Construct clusters from data

© 2002 by Chapman & Hall/CRC

Appendix E: MATLAB Statistics Toolbox 553

TTTTAAAABBBBLLLLE E.8E E.8E E.8E E.8

Design of Experiments (DOE) and Statistical Process Control (SPC)

Function Purpose

cordexch D-optimal design (coordinate exchange
algorithm)

daugment Augment D-optimal design

dcovary D-optimal design with fixed covariates

ff2n Two-level full-factorial design

fracfact Two-level fractional factorial design

fullfact Mixed-level full-factorial design

hadamarad Hadamard matrices (orthogonal arrays)

rowexch D-optimal (row exchange algorithm)

capable Capability indices

capaplot Capability plot

ewmaplot Exponentially weighted moving average plot

histfit Histogram with superimposed normal density

normspec Plot normal density between specification limits

schart S chart for monitoring variability

xbarplot Xbar chart for monitoring the mean

TTTTAAAABBBBLLLLE E.9E E.9E E.9E E.9

Multivariate Statistics and Principal Component Analysis

Function Purpose

classify Linear discriminant analysis

mahal Mahalanobis distance

manova1 One-way multivariate analysis of variance

barttest Bartlett’s test for dimensionality

pcacov Principal components from covariance matrix

pcares Residuals from principal components

princomp Principal component analysis from raw data

© 2002 by Chapman & Hall/CRC

554 Computational Statistics Handbook with MATLAB

TTTTAAAABBBBLLLLE E.E E.E E.E E.11110000

Hypothesis Tests

Function Purpose

ranksum Wilcoxon rank sum test (independent samples)

signrank Wilcoxon sign rank test (paired samples)

signtest Sign test (paired samples)

ztest Z test

ttest One sample t test

ttest2 Two sample t test

jbtest Jarque-Bera test of normality

kstest Kolmogorov-Smirnov test for one sample

kstest2 Kolmogorov-Smirnov test for two samples

lillietest Lilliefors test of normality

TTTTAAAABBBBLLLLE E.E E.E E.E E.11111111

Statistical Plotting

Function Purpose

cdfplot Plot of empirical cumulative distribution function

fsurfht Interactive contour plot of a function

gline Point, drag and click line drawing on figures

gname Interactive point labeling in x-y plots

gplotmatrix Matrix of scatter plots grouped by a common
variable

gscatter Scatter plot of two variables grouped by a third

lsline Add least-square fit line to scatter plot

normplot Normal probability plot

qqplot Quantile-quantile plot

refcurve Reference polynomial curve

refline Reference line

surfht Interactive contour plot of a data grid

weibplot Weibull probability plot

© 2002 by Chapman & Hall/CRC

Appendix E: MATLAB Statistics Toolbox 555

TTTTAAAABBBBLLLLE E.E E.E E.E E.11112222

Statistics Demos

Function Purpose

aoctool Interactive tool for analysis of covariance

disttool GUI tool for exploring probability distribution
functions

glmdemo Generalized linear model slide show

polytool Interactive graph for prediction of fitted
polynomials

randtool GUI tool for generating random numbers

rsmdemo Reaction simulation

robustdemo Interactive tool to compare robust and least
squares fits

TTTTAAAABBBBLLLLE E.E E.E E.E E.11113333

File-based I/O

Function Purpose

tblread Read in data in tabular format

tblwrite Write out data in tabular format in file

tdfread Read in text and numeric data from tab-delimited
file

caseread Read in case names

casewrite Write out case names to file

© 2002 by Chapman & Hall/CRC

Appendix F
Computational Statistics Toolbox

The Computational Statistics Toolbox can be downloaded from:

http://www.infinityassociates.com

http://lib.stat.cmu.edu.

Please review the readme file for installation instructions and information on
any recent changes.

TTTTAAAABBBBLLLLEEEE FFFF.1.1.1.1

Chapter 2 Functions: Probability Distributions

Distribution
PDF (p) / CDF (c) MATLAB Function

Beta csbetap, csbetac

Binomial csbinop, csbinoc

Chi-square cschip, cschic

Exponential csexpop, csexpoc

Gamma csgammp, csgammc

Normal - univariate csnormp, csnormc

Normal - multivariate csevalnorm

Poisson cspoisp, cspoisc

Continuous Uniform csunifp, csunifc

Weibull csweibp, csweibc

© 2002 by Chapman & Hall/CRC

http://www.infinityassociates.com
http://lib.stat.cmu.edu.

558 Computational Statistics Handbook with MATLAB

TTTTAAAABBBBLLLLEEEE FFFF.2.2.2.2

Chapter 3 Functions: Statistics

Purpose MATLAB Function

These functions are used to obtain
parameter estimates for a distribution.

csbinpar
csexpar
csgampar
cspoipar
csunipar

These functions return the quantiles. csbinoq
csexpoq
csunifq
csweibq
csnormq

csquantiles

Other descriptive statistics csmomentc
cskewness
cskurtosis
csmoment
csecdf

TTTTAAAABBBBLLLLEEEE FFFF....3333

Chapter 4 Functions: Random Number Generation

Distribution MATLAB Function

Beta csbetarnd

Binomial csbinrnd

Chi-square cschirnd

Discrete Uniform csdunrnd

Exponential csexprnd

Gamma csgamrnd

Multivariate Normal csmvrnd

Poisson cspoirnd

Points on a sphere cssphrnd

© 2002 by Chapman & Hall/CRC

Appendix F: Computational Statistics Toolbox 559

TTTTAAAABBBBLLLLEEEE FFFF.4.4.4.4

Chapter 5 Functions: Exploratory Data Analysis

Purpose MATLAB Function

Star Plot csstars

Stem-and-leaf Plot csstemleaf

Parallel Coordinates Plot csparallel

Q-Q Plot csqqplot

Poissonness Plot cspoissplot

Andrews Curves csandrews

Exponential Probability Plot csexpoplot

Binomial Plot csbinoplot

PPEDA csppeda
csppstrtrem

csppind

TTTTAAAABBBBLLLLEEEE FFFF....5555

Chapter 6 Functions: Bootstrap

Purpose MATLAB Function

General bootstrap: resampling, estimates of
standard error and bias

csboot

Constructing bootstrap confidence intervals csbootint
csbooperint
csbootbca

TTTTAAAABBBBLLLLEEEE FFFF.6.6.6.6

Chapter 7 Functions: Jackknife

Purpose MATLAB Function

Implements the jackknife and returns the jackknife
estimate of standard error and bias

csjack

Implements the jackknife-after-bootstrap and
returns the jackknife estimate of the error in the
bootstrap

csjackboot

© 2002 by Chapman & Hall/CRC

560 Computational Statistics Handbook with MATLAB

TTTTAAAABBBBLLLLEEEE FFFF....7777

Chapter 8 Functions: Probability Density Estimation

Purpose MATLAB Function

Bivariate histogram cshist2d
cshistden

Frequency polygon csfreqpoly

Averaged Shifted Histogram csash

Kernel density estimation cskernnd
cskern2d

Create plots csdfplot
csplotuni

Finite and adaptive mixtures csfinmix
csadpmix

TTTTAAAABLBLBLBLEEEE FFFF.8.8.8.8

Chapter 9 Functions: Statistical Pattern Recognition

Purpose MATLAB Function

Creating, pruning and displaying classification
trees

csgrowc
csprunec
cstreec

csplotreec
cspicktreec

Creating, analyzing and displaying clusters cshmeans
cskmeans

Statistical pattern recognition using Bayes
decision theory

csrocgen
cskernmd
cskern2d

© 2002 by Chapman & Hall/CRC

Appendix F: Computational Statistics Toolbox 561

TTTTABABABABLLLLEEEE FFFF.9.9.9.9

Chapter 10 Functions: Nonparametric Regression

Purpose MATLAB Function

Loess smoothing csloess
csloessenv
csloessr

Local polynomial smoothing cslocpoly

Functions for regression trees csgrowr
cspruner
cstreer

csplotreer
cspicktreer

Nonparametric regression using kernels csloclin

TTTTAAAABBBBLLLLEEEE FFFF....11110000

Chapter 11 Functions: Markov Chain Monte Carlo

Purpose MATLAB Function

Gelman-Rubin convergence diagnostic csgelrub

Graphical demonstration of the Metropolis-
Hastings sampler

csmcmcdemo

TTTTAAAABBBBLLLLEEEE FFFF....11111111

Chapter 12 Functions: Spatial Statistics

Purpose MATLAB Function

Functions for generating samples from spatial
point processes

csbinproc
csclustproc
csinhibproc
cspoissproc

csstraussproc

Interactively find a study region csgetregion

Estimate the intensity using the quartic kernel (no
edge effects)

csintkern

Estimating second-order effects of a spatial point
pattern

csfhat
csghat
cskhat

© 2002 by Chapman & Hall/CRC

Appendix G
Data Sets

In this appendix, we list the data sets that are used in the book. These data are
available for download in either text format (.txt) or MATLAB binary for-
mat (.mat). They can be downloaded from

• http://lib.stat.cmu.edu

• http://www.infinityassociates.com

abrasion
The abrasion data set has 30 observations, where the two predictor vari-
ables are hardness and tensile strength (x). The response variable is abrasion
loss (y) [Hand, et al., 1994; Davies and Goldsmith, 1972]. The first column of
x contains the hardness and the second column contains the tensile strength.

anaerob
A subject performs an exercise, gradually increasing the level of effort. The
data set called anaerob has two variables based on this experiment: oxygen
uptake and the expired ventilation [Hand, et al., 1994; Bennett, 1988]. The
oxygen uptake is contained in the variable x and the expired ventilation is in
y.

anscombe
These data were taken from Hand, et al. [1994]. They were originally from
Anscombe [1973], where he created these data sets to illustrate the impor-
tance of graphical exploratory data analysis. This file contains four sets of x
and y measurements.

bank
This file contains two matrices, one corresponding to features taken from 100
forged Swiss bank notes (forge) and the other comprising features from 100
genuine Swiss bank notes (genuine) [Flury and Riedwyl, 1988]. There are
six features: length of the bill, left width of the bill, right width of the bill,

© 2002 by Chapman & Hall/CRC

http://lib.stat.cmu.edu
http://www.infinityassociates.com

564 Computational Statistics Handbook with MATLAB

width of the bottom margin, width of the top margin and length of the image
diagonal.

biology
The biology data set contains the number of research papers (numpaps) for
1534 biologists [Tripathi and Gupta, 1988; Hand, et al., 1994]. The frequencies
are given in the variable freqs.

bodmin
These data represent the locations of granite tors on Bodmin Moor [Pinder
and Witherick, 1977; Upton and Fingleton, 1985; Bailey and Gatrell, 1995].
The file contains vectors x and y that correspond to the coordinates of the
tors. The two-column matrix bodpoly contains the vertices to the region.

boston
The boston data set contains data for 506 census tracts in the Boston area,
taken from the 1970 Census [Harrison and Rubinfeld, 1978]. The predictor
variables are: (1) per capita crime rate, (2) proportion of residential land
zoned for lots over 25,000 sq.ft., (3) proportion of non-retail business acres, (4)
Charles River dummy variable (1 if tract bounds river; 0 otherwise), (5) nitric
oxides concentration (parts per 10 million), (6) average number of rooms per
dwelling, (7) proportion of owner-occupied units built prior to 1940, (8)
weighted distances to five Boston employment centers, (9) index of accessi-
bility to radial highways, (10) full-value property-tax rate per $10,000, (11)
pupil-teacher ratio, (12) proportion of African-Americans, and (13) lower sta-
tus of the population. These are contained in the variable x. The response
variable y represents the median value of owner-occupied homes in $1000's.
These data were downloaded from
http://www.stat.washington.edu/raftery/Courses/

Stat572-96/Homework/Hw1/hw1_96/boston_hw1.html

brownlee
The brownlee data contains observations from 21 days of a plant operation
for the oxidation of ammonia [Hand, et al., 1994; Brownlee, 1965]. The predic-
tor variables are: is the air flow, is the cooling water inlet temperature
(degrees C), and is the percent acid concentration. The response variable
Y is the stack loss (the percentage of the ingoing ammonia that escapes). The
matrix x contains the observed predictor values and the vector y has the cor-
responding response variables.

cardiff
This data set has the locations of homes of juvenile offenders in Cardiff, Wales
in 1971 [Herbert, 1980]. The file contains vectors x and y that correspond to
the coordinates of the homes. The two-column matrix cardpoly contains
the vertices to the region.

X1 X2

X3

© 2002 by Chapman & Hall/CRC

http://www.stat.washington.edu/raftery/Courses/Stat572-96/Homework/Hw1/hw1_96/boston_hw1.html

Appendix G: Data Sets 565

cereal
These data were obtained from ratings of eight brands of cereal [Chakrapani
and Ehrenberg, 1981; Venables and Ripley, 1994]. The cereal file contains a
matrix where each row corresponds to an observation and each column rep-
resents one of the variables or the percent agreement to statements about the
cereal. It also contains a cell array of strings (labs) for the type of cereal.

coal
The coal data set contains the number of coal mining disasters (y) over 112
years (year) [Raftery and Akman, 1986].

counting
In the counting data set, we have the number of scintillations in 72 second
intervals arising from the radioactive decay of polonium [Rutherford and
Geiger, 1910; Hand, et al., 1994]. There are a total of 10097 scintillations and
2608 intervals. Two vectors, count and freqs, are included in this file.

elderly
The elderly data set contains the height measurements (in centimeters) of
351 elderly females [Hand, et al., 1994]. The variable that is loaded is called
heights.

environ
This data set was analyzed in Cleveland and McGill [1984]. They represent
two variables comprising daily measurements of ozone and wind speed in
New York City. These quantities were measured on 111 days between May
and September 1973. One might be interested in understanding the relation-
ship between ozone (the response variable) and wind speed (the predictor
variable).

filip
These data are used as a standard to test the results of least squares calcula-
tions. The file contains two vectors x and y.

flea
The flea data set [Hand, et al., 1994; Lubischew, 1962] contains measure-
ments on three species of flea beetle: Chaetocnema concinna (conc), Chaetoc-
nema heikertingeri (heik), and Chaetocnema heptapotamica (hept). The features
for classification are the maximal width of aedeagus in the forepart (microns)
and the front angle of the aedeagus (units are 7.5 degrees).

forearm
These data [Hand, et al., 1994; Pearson and Lee, 1903] consist of 140 measure-
ments of the length (in inches) of the forearm of adult males. The vector x
contains the measurements.

© 2002 by Chapman & Hall/CRC

566 Computational Statistics Handbook with MATLAB

geyser
These data represent the waiting times (in minutes) between eruptions of the
Old Faithful geyser at Yellowstone National Park [Hand, et al, 1994; Scott,
1992]. This contains one vector called geyser.

helmets
The data in helmets contain measurements of head acceleration (in g)
(accel) and times after impact (milliseconds) (time) from a simulated
motorcycle accident [Hand, et al., 1994; Silverman, 1985].

household
The household [Hand, et al., 1994; Aitchison, 1986] data set contains the
expenditures for housing, food, other goods, and services (four expenditures)
for households comprised of single people. The observations are for single
women and single men.

human
The human data set [Hand, et al., 1994; Mazess, et al., 1984] contains measure-
ments of percent fat and age for 18 normal adults (males and females).

insect
In this data set, we have three variables measured on ten insects from each of
three species [Hand, et al.,1994]. The variables correspond to the width of the
first joint of the first tarsus, the width of the first joint of the second tarsus and
the maximal width of the aedeagus. All widths are measured in microns.
When insect is loaded, you get one matrix called insect. Each
group of 10 rows belongs to one of the insect species.

insulate
The insulate data set [Hand, et al., 1994] contains observations corre-
sponding to the average outside temperature in degrees Celsius (first col-
umn) and the amount of weekly gas consumption measured in 1000 cubic
feet (second column). One data set is before insulation (befinsul) and the
other corresponds to measurements taken after insulation (aftinsul).

iris
The iris data were collected by Anderson [1935] and were analyzed by
Fisher [1936] (and many statisticians since then!). The data consist of 150
observations containing four measurements based on the petals and sepals of
three species of iris. The three species are: Iris setosa, Iris virginica and Iris ver-
sicolor. When the iris data are loaded, you get three matrices, one
corresponding to each species.

law/lawpop
The lawpop data set [Efron and Tibshirani, 1993] contains the average scores
on the LSAT (lsat) and the corresponding average undergraduate grade

30 3×

50 4×

© 2002 by Chapman & Hall/CRC

Appendix G: Data Sets 567

point average (gpa) for the 1973 freshman class at 82 law schools. Note that
these data constitute the entire population. The data contained in law com-
prise a random sample of 15 of these classes, where the lsat score is in the
first column and the gpa is in the second column.

longley
The data in longley were used by Longley [1967] to verify the computer cal-
culations from a least squares fit to data. The data set (X) contains measure-
ments of 6 predictor variables and a column of ones representing the constant
term. The observed responses are contained in Y.

measure
The measure [Hand, et. al., 1994] data contain 20 measurements of chest,
waist and hip data. Half of the measured individuals are women and half are
men.

moths
The moths data represent the number of moths caught in a trap over 24 con-
secutive nights [Hand, et al., 1994].

nfl
The nfl data [Csorgo and Welsh, 1989; Hand, et al., 1994] contain bivariate
measurements of the game time to the first points scored by kicking the ball
between the end posts (), and the game time to the first points scored by
moving the ball into the end zone (). The times are in minutes and seconds.

okblack and okwhite
These data represent locations where thefts occurred in Oklahoma City in the
late 1970’s [Bailey and Gatrell, 1995]. The file okwhite contains the data for
Caucasian offenders, and the file okblack contains the data for African-
American offenders. The boundary for the region is not included with these
data.

peanuts
The peanuts data set [Hand, et al., 1994; Draper and Smith, 1981] contains
measurements of the average level of alfatoxin (X) of a batch of peanuts and
the corresponding percentage of non-contaminated peanuts in the batch (Y).

posse
The posse file contains several data sets generated for simulation studies in
Posse [1995b]. These data sets are called croix (a cross), struct2 (an L-
shape), boite (a donut), groupe (four clusters), curve (two curved
groups), and spiral (a spiral). Each data set has 400 observations in 8-D.
These data can be used in PPEDA.

X1

X2

© 2002 by Chapman & Hall/CRC

568 Computational Statistics Handbook with MATLAB

quakes
The quakes data [Hand, et al., 1994] contain the time in days between suc-
cessive earthquakes.

remiss
The remiss data set contains the remission times for 42 leukemia patients.
Some of the patients were treated with the drug called 6-mercaptopurine
(mp), and the rest were part of the control group (control) [Hand, et al.,
1994; Gehan, 1965].

snowfall
The Buffalo snowfall data [Scott, 1992] represent the annual snowfall in
inches in Buffalo, New York over the years 1910-1972. This file contains one
vector called snowfall.

spatial
These data came from Efron and Tibshirani [1993]. Here we have a set of mea-
surements of 26 neurologically impaired children who took a test of spatial
perception called test A.

steam
In the steam data set, we have a sample representing the average atmo-
spheric temperature (x) and the corresponding amount of steam (y) used per
month [Draper and Smith, 1981]. We get two vectors x and y when these data
are loaded.

thrombos
The thrombos data set contains measurements of urinary-thromboglobulin
excretion in 12 normal and 12 diabetic patients [van Oost, et al.; 1983;
Hand, et al., 1994].

tibetan
This file contains the heights of 32 Tibetan skulls [Hand, et al. 1994; Morant,
1923] measured in millimeters. These data comprise two groups of skulls col-
lected in Tibet. One group of 17 skulls comes from graves in Sikkim and
nearby areas of Tibet and the other 15 skulls come from a battlefield in Lhasa.
The original data contain five measurements for the 32 skulls. When you load
this file, you get a matrix called tibetan.

uganda
This data set contains the locations of crater centers of 120 volcanoes in west
Uganda [Tinkler, 1971, Bailey and Gatrell, 1995]. The file has vectors x and y
that correspond to the coordinates of the craters. The two-column matrix
ugpoly contains the vertices to the region.

32 5×

© 2002 by Chapman & Hall/CRC

Appendix G: Data Sets 569

whisky
In 1961, 16 states owned the retail liquor stores (state). In 26 others, the
stores were owned by private citizens (private). The data contained in
whisky reflect the price (in dollars) of a fifth of Seagram 7 Crown Whisky
from these 42 states. Note that this represents the population, not a sample
[Hand, et al., 1994].

© 2002 by Chapman & Hall/CRC

References

Aarts, E. and J. Korst. 1989. Simulated Annealing and Boltzmann Machines, New York:
John Wiley & Sons.

Aitchison, J. 1986. The Statistical Analysis of Compositional Data, London: Chapman
and Hall.

Albert, James H. 1993. “Teaching Bayesian statistics using sampling methods and
MINITAB,” The American Statistician. 47: pp. 182-191.

Anderberg, Michael R. 1973. Cluster Analysis for Applications, New York: Academic
Press.

Anderson, E. 1935. “The irises of the Gaspe Peninsula,” Bulletin of the American Iris
Society, 59: pp. 2-5.

Andrews, D. F. 1972. “Plots of high-dimensional data,” Biometrics, 28: pp. 125-136.

Andrews, D. F. 1974. “A robust method of multiple linear regression," Technometrics,
16: pp. 523-531.

Andrews, D. F. and A. M. Herzberg. 1985. Data: A Collection of Problems from Many
Fields for the Student and Research Worker, New York: Springer-Verlag.

Anscombe, F. J. 1973. “Graphs in statistical analysis,” The American Statistician, 27:
pp. 17-21.

Arlinghaus, S. L. (ed.). 1996. Practical Handbook of Spatial Statistics, Boca Raton: CRC
Press.

Arnold, Steven F. 1993. “Gibbs sampling,” in Handbook of Statistics, Vol 9, Computa-
tional Statistics, C. R. Rao, ed., The Netherlands: Elsevier Science Publishers, pp.
599-625.

Ash, Robert. 1972. Real Analysis and Probability, New York: Academic Press.

Asimov, Daniel. 1985. "The grand tour: a tool for viewing multidimensional data,"
SIAM Journal of Scientific and Statistical Computing, 6: pp. 128-143.

Bailey, T. C. and A. C. Gatrell. 1995. Interactive Spatial Data Analysis, London: Longman
Scientific & Technical.

Bain, L. J. and M. Engelhardt. 1992. Introduction to Probability and Mathematical Statis-
tics, Second Edition, Boston: PWS-Kent Publishing Company.

Banks, Jerry, John Carson, Barry Nelson, and David Nicol. 2001. Discrete-Event Sim-
ulation, Third Edition, New York: Prentice Hall.

Bennett, G. W. 1988. “Determination of anaerobic threshold,” Canadian Journal of
Statistics, 16: pp. 307-310.

Besag, J. and P. J. Diggle. 1977. “Simple Monte Carlo tests for spatial patterns,” Applied
Statistics, 26: pp. 327-333.

© 2002 by Chapman & Hall/CRC

572 Computational Statistics Handbook with MATLAB

Bickel, Peter J. and Kjell A. Doksum. 2001. Mathematical Statistics: Basic Ideas and
Selected Topics, Vol 1, Second Edition, New York: Prentice Hall.

Billingsley, Patrick. 1995. Probability and Measure, 3rd Edition, New York: John Wiley
& Sons.

Bolton, R. J. and W. J. Krzanowski. 1999. “A characterization of principal components
for projection pursuit,” The American Statistician, 53: pp. 108-109.

Boos, D. D. and J. Zhang. 2000. “Monte Carlo evaluation of resampling-based hy-
pothesis tests,” Journal of the American Statistical Association, 95: pp. 486-492.

Bowman, A. W. and A. Azzalini. 1997. Applied Smoothing Techniques for Data Analysis:
The Kernel Approach with S-Plus Illustrations, Oxford: Oxford University Press.

Breiman, Leo. 1992. Probability. Philadelphia: Society for Industrial and Applied Math-
ematics.

Breiman, Leo, Jerome H. Friedman, Richard A. Olshen and Charles J. Stone. 1984.
Classification and Regression Trees, New York: Wadsworth, Inc.

Brooks, S. P. 1998. “Markov chain Monte Carlo and its application,” The American
Statistician, 47: pp. 69-100.

Brooks, S. P. and P. Giudici. 2000. “Markov chain Monte Carlo convergence assess-
ment via two-way analysis of variance,” Journal of Computational and Graphical
Statistics, 9: pp. 266-285.

Brownlee, K. A. 1965. Statistical Theory and Methodology in Science and Engineering,
Second Edition, London: John Wiley & Sons.

Cacoullos, T. 1966. “Estimation of a multivariate density,” Annals of the Institute of
Statistical Mathematics, 18: pp. 178-189.

Canty, A. J. 1999. “Hypothesis tests of convergence in Markov chain Monte Carlo,”
Journal of Computational and Graphical Statistics, 8: pp. 93-108.

Carr, D., R. Littlefield, W. Nicholson, and J. Littlefield. 1987. “Scatterplot matrix
techniques for large N,” Journal of the American Statistical Association, 82: p. 424-
436.

Carter, R. L. and K. Q. Hill. 1979. The Criminals’ Image of the City, Oxford: Pergamon
Press.

Casella, George and Roger L. Berger. 1990. Statistical Inference, New York: Duxbury
Press.

Casella, George, and E. I. George. 1992. “An introduction to Gibbs Sampling,” The
American Statistician, 46: pp. 167-174.

Cencov, N. N. 1962. “Evaluation of an unknown density from observations,” Soviet
Mathematics, 3: pp. 1559-1562.

Chakrapani, T. K. and A. S. C. Ehrenberg. 1981. “An alternative to factor analysis in
marketing research - Part 2: Between group analysis,” Professional Marketing
Research Society Journal, 1: pp. 32-38.

Chambers, John. 1999. “Computing with data: Concepts and challenges,” The Amer-
ican Statistician, 53: pp. 73-84.

Chambers, John and Trevor Hastie. 1992. Statistical Models in S, New York: Wadsworth
& Brooks/Cole Computer Science Series.

Chernick, M. R. 1999. Bootstrap Methods: A Practitioner’s Guide, New York: John Wiley
& Sons.

© 2002 by Chapman & Hall/CRC

References 573

Chernoff, Herman. 19 73. “The use of faces to represent points in k-dimensional space
graphically,” Journal of the American Statistical Association, 68: 361-368.

Chib, S., and E. Greenberg. 1995. “Understanding the Metropolis-Hastings Algo-
rithm,” The American Statistician, 49: pp. 327-335.

Cleveland, W. S. 1979. “Robust locally weighted regression and smoothing scatter-
plots,” Journal of the American Statistical Association, 74, pp. 829-836.

Cleveland, W. S. 1993. Visualizing Data, New York: Hobart Press.

Cleveland, W. S. and Robert McGill. 1984. “The many faces of a scatterplot,” Journal
of the American Statistical Association, 79: pp. 807-822.

Cliff, A. D. and J. K. Ord. 1981. Spatial Processes: Models and Applications, London:
Pion Limited.

Cook, D., A. Buha, J. Cabrera, and C. Hurley. 1995. “Grand tour and projection
pursuit,” Journal of Computational and Graphical Statistics, 4: pp. 155-172.

Cowles, M. K. and B. P. Carlin. 1996. “Markov chain Monte Carlo convergence
diagnostics: a comparative study,” Journal of the American Statistical Association,
91: pp. 883–904.

Crawford, Stuart. 1991. “Genetic optimization for exploratory projection pursuit,”
Proceedings of the 23rd Symposium on the Interface, 23: pp. 318-321.

Cressie, Noel A. C. 1993. Statistics for Spatial Data, Revised Edition. New York: John
Wiley & Sons.

Csorgo, S. and A. S. Welsh. 1989. “Testing for exponential and Marshall-Olkin distri-
butions,” Journal of Statistical Planning and Inference, 23: pp. 278-300.

David, Herbert A. 1981. Order Statistics, 2nd edition, New York: John Wiley & Sons.

Dempster, A. P., Laird, N. M., and Rubin, D. B. 1977. “Maximum likelihood from
incomplete data via the EM algorithm (with discussion),” Journal of the Royal
Statistical Society: B, 39: pp. 1-38.

Deng, L. and D. K. J. Lin. 2000. “Random number generation for the new century,”
The American Statistician, 54: pp. 145-150.

Devroye, Luc. and L. Gyorfi. 1985. Nonparametric Density Estimation: the View, New
York: John Wiley & Sons.

Devroye, Luc, Laszlo Gyorfi and Gabor Lugosi. 1996. A Probabilistic Theory of Pattern
Recognition, New York: Springer-Verlag.

Diggle, Peter J. 1981. “Some graphical methods in the analysis of spatial point pat-
terns,” in Interpreting Multivariate Data, V. Barnett, ed., New York: John Wiley &
Sons, pp. 55-73.

Diggle, Peter J. 1983. Statistical Analysis of Spatial Point Patterns, New York: Academic
Press.

Diggle, P. J. and R. J. Gratton. 1984. “Monte Carlo methods of inference for implicit
statistical models,” Journal of the Royal Statistical Society: B, 46: pp. 193–227.

Draper, N. R. and H. Smith. 1981. Applied Regression Analysis, 2nd Edition, New York:
John Wiley & Sons.

du Toit, S. H. C., A. G. W. Steyn and R. H. Stumpf. 1986. Graphical Exploratory Data
Analysis, New York: Springer-Verlag.

Duda, Richard O. and Peter E. Hart. 1973. Pattern Classification and Scene Analysis,
New York: John Wiley & Sons.

L1

© 2002 by Chapman & Hall/CRC

574 Computational Statistics Handbook with MATLAB

Duda, Richard O., Peter E. Hart, and David G. Stork. 2001. Pattern Classification, Second
Edition, New York: John Wiley & Sons.

Durrett, Richard. 1994. The Essentials of Probability, New York: Duxbury Press.

Efron, B. 1979. “Computers and the theory of statistics: thinking the unthinkable,”
SIAM Review, 21: pp. 460-479.

Efron, B. 1981. “Nonparametric estimates of standard error: the jackknife, the boot-
strap and other methods,” Biometrika, 68: pp. 589-599.

Efron, B. 1982. The Jackknife, the Bootstrap, and Other Resampling Plans, Philadelphia:
Society for Industrial and Applied Mathematics.

Efron, B. 1983. “Estimating the error rate of a prediction rule: improvement on cross-
validation,” Journal of the American Statistical Association, 78: pp. 316-331.

Efron, B. 1985. “Bootstrap confidence intervals for a class of parametric problems,”
Biometrika, 72: pp. 45–58.

Efron, B. 1986. “How biased is the apparent error rate of a prediction rule?” Journal
of the American Statistical Association, 81: pp. 461-470.

Efron, B. 1987. “Better bootstrap confidence intervals’ (with discussion),” Journal of
the American Statistical Association, 82: pp. 171-200.

Efron, B. 1990. “More efficient bootstrap computations, Journal of the American Statis-
tical Association, 85: pp. 79-89.

Efron, B. 1992. “Jackknife-after-bootstrap standard errors and influence functions,”
Journal of the Royal Statistical Society: B, 54: pp. 83-127.

Efron, B. and G. Gong. 1983. “A leisurely look at the bootstrap, the jackknife and
cross-validation,” The American Statistician, 37: pp. 36-48.

Efron, B. and R. J. Tibshirani. 1991. “Statistical data analysis in the computer age,”
Science, 253: pp. 390-395.

Efron, B. and R. J. Tibshirani. 1993. An Introduction to the Bootstrap, London: Chapman
and Hall.

Egan, J. P. 1975. Signal Detection Theory and ROC Analysis, New York: Academic Press.

Embrechts, P. and A. Herzberg. 1991. “Variations of Andrews’ plots,” International
Statistical Review, 59: pp. 175-194.

Epanechnikov, V. K. 1969. “Non-parametric estimation of a multivariate probability
density,” Theory of Probability and its Applications, 14: pp. 153-158.

Everitt, Brian S. 1993. Cluster Analysis, Third Edition, New York: Edward Arnold
Publishing.

Everitt, B. S. and D. J. Hand. 1981. Finite Mixture Distributions, London: Chapman
and Hall.

Fienberg, S. 1979. “Graphical methods in statistics,” The American Statistician, 33: pp.
165-178.

Fisher, R. A. 1936. “The use of multiple measurements in taxonomic problems,”
Annals of Eugenics, 7: pp. 179-188.

Flick, T., L. Jones, R. Priest, and C. Herman. 1990. “Pattern classification using pro-
jection pursuit,” Pattern Recognition, 23: pp. 1367-1376.

Flury, B. and H. Riedwyl. 1988. Multivariate Statistics: A Practical Approach, London:
Chapman and Hall.

© 2002 by Chapman & Hall/CRC

References 575

Fortner, Brand. 1995. The Data Handbook: A Guide to Understanding the Organization
and Visualization of Technical Data, Second Edition, New York: Springer-Verlag.

Fortner, Brand and Theodore E. Meyer. 1997. Number by Colors: A Guide to Using Color
to Understand Technical Data, New York: Springer-Verlag.

Fraley, C. 1998. “Algorithms for model-based Gaussian hierarchical clustering,” SIAM
Journal on Scientific Computing, 20: pp. 270-281.

Fraley, C. and A. E. Raftery. 1998. “How many clusters? Which clustering method?
Answers via model-based cluster analysis,” The Computer Journal, 41: pp. 578-588.

Freedman, D. and P. Diaconis. 1981. “On the histogram as a density estimator:
theory,” Zeitschrift fur Wahrscheinlichkeitstheorie und verwandte Gebiete, 57: pp. 453-
476.

Friedman, J. 1987. “Exploratory projection pursuit,” Journal of the American Statistical
Association, 82: pp. 249-266.

Friedman, J. and W. Stuetzle. 1981. “Projection pursuit regression,” Journal of the
American Statistical Association, 76: pp. 817-823.

Friedman, J. and John Tukey. 1974. “A projection pursuit algorithm for exploratory
data analysis,” IEEE Transactions on Computers, 23: pp. 881-889.

Friedman, J., W. Stuetzle, and A. Schroeder. 1984. “Projection pursuit density estima-
tion,” Journal of the American Statistical Association, 79: pp. 599-608.

Frigge, M., C. Hoaglin, and B. Iglewicz. 1989. “Some implementations of the boxplot,”
The American Statistician, 43: pp. 50-54.

Fukunaga, Keinosuke. 1990. Introduction to Statistical Pattern Recognition, Second Edi-
tion, New York: Academic Press.

Gehan, E. A. 1965. “A generalized Wilcoxon test for comparing arbitrarily single-
censored samples,” Biometrika, 52: pp. 203-233.

Gelfand, A. E. and A. F. M. Smith. 1990. “Sampling-based approaches to calculating
marginal densities,” Journal of the American Statistical Association, 85: pp. 398-409.

Gelfand, A. E., S. E. Hills, A. Racine-Poon, and A. F. M. Smith. 1990. “Illustration of
Bayesian inference in normal data models using Gibbs sampling,” Journal of the
American Statistical Association, 85: pp. 972-985.

Gelman, A. 1996. “Inference and monitoring convergence,” in Markov Chain Monte
Carlo in Practice, W. R. Gilks, S. Richardson, and D. T. Spiegelhalter, eds., London:
Chapman and Hall, pp. 131-143.

Gelman, A. and D. B. Rubin. 1992. “Inference from iterative simulation using multiple
sequences (with discussion),” Statistical Science, 7: pp. 457–511.

Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin. 1995. Bayesian Data Analysis,
London: Chapman and Hall.

Geman, S. and D. Geman. 1984. “Stochastic relaxation, Gibbs distributions and the
Bayesian restoration of images,” IEEE Transactions PAMI, 6: pp. 721-741.

Gentle, James E. 1998. Random Number Generation and Monte Carlo Methods, New York:
Springer-Verlag.

Gentle, James E. 2001. Computational Statistics, (in press), New York: Springer-Verlag.

Geyer, C. J. 1992. “Practical Markov chain Monte Carlo,” Statistical Science, 7: pp. 473-
511.

L2

© 2002 by Chapman & Hall/CRC

576 Computational Statistics Handbook with MATLAB

Gilks, W. R., S. Richardson, and D. J. Spiegelhalter. 1996a. “Introducing Markov chain
Monte Carlo,” in Markov Chain Monte Carlo in Practice, W. R. Gilks, S. Richardson,
and D. T. Spiegelhalter, eds., London: Chapman and Hall, pp. 1-19.

Gilks, W. R., S. Richardson, and D. J. Spiegelhalter (eds.). 1996b. Markov Chain Monte
Carlo in Practice, London: Chapman and Hall.

Gordon, A. D. 1999. Classification, London: Chapman and Hall.

Green P. J. and B. W. Silverman. 1994. Nonparametric Regression and Generalized Linear
Models: A Roughness Penalty Approach, Chapman and Hall.

Haining, Robert. 1993. Spatial Data Analysis in the Social and Environmental Sciences,
Cambridge: Cambridge University Press.

Hair, Joseph, Rolph Anderson, Ronald Tatham and William Black. 1995. Multivariate
Data Analysis, Fourth Edition, New York: Prentice Hall.

Hald, A. 1952. Statistical Theory with Engineering Applications, New York: John Wiley
& Sons.

Hall, P. 1992. The Bootstrap and Edgeworth Expansion, New York: Springer-Verlag.

Hall, P. and M. A. Martin. 1988. “On bootstrap resampling and iteration,” Biometrika,
75: pp. 661-671.

Hand, D., F. Daly, A. D. Lunn, K. J. McConway and E. Ostrowski. 1994. A Handbook
of Small Data Sets, London: Chapman and Hall.

Hanley, J. A. and K. O. Hajian-Tilaki. 1997. “Sampling variability of nonparametric
estimates of the areas under receiver operating characteristic curves: An update,”
Academic Radiology, 4: pp. 49-58.

Hanley, J. A. and B. J. McNeil. 1983. “A method of comparing the areas under receiver
operating characteristic curves derived from the same cases,” Radiology, 148: pp.
839-843.

Hanselman, D. and B. Littlefield. 1998. Mastering MATLAB 5: A Comprehensive Tutorial
and Reference, New Jersey: Prentice Hall.

Hanselman, D. and B. Littlefield. 2001. Mastering MATLAB 6: A Comprehensive Tutorial
and Reference, New Jersey: Prentice Hall.

Harrison, D., and D. L. Rubinfeld. 1978. “Hedonic prices and the demand for clean
air,” Journal of Environmental Economics and Management, 5: pp. 81-102.

Hartigan, J. 1975. Clustering Algorithms, New York: Wiley-Interscience.

Hastie, T. J. and R. H. Tibshirani. 1990. Generalized Additive Models, London: Chapman
and Hall.

Hastings, W. K. 1970. “Monte Carlo sampling methods using Markov chains and
their applications,” Biometrika, 57: pp. 97-109.

Herbert, D. T. 1980 “The British experience,” in Crime: a Spatial Perspective, D. E.
Georges-Abeyie and K. D. Harries, eds., New York: Columbia University Press.

Hjorth, J. S. U. 1994. Computer Intensive Statistical Methods: Validation Model Selection
and Bootstrap, London: Chapman and Hall.

Hoaglin, D. C. and D. F. Andrews. 1975. “The reporting of computation-based results
in statistics,” The American Statistician, 29: pp. 122-126.

Hoaglin, D. and John Tukey. 1985. “Checking the shape of discrete distributions,” in
Exploring Data Tables, Trends and Shapes, D. Hoaglin, F. Mosteller, J. W. Tukey,
eds., New York: John Wiley & Sons.

© 2002 by Chapman & Hall/CRC

References 577

Hoaglin, D. C., F. Mosteller, and J. W. Tukey (eds.). 1983. Understanding Robust and
Exploratory Data Analysis, New York: John Wiley & Sons.

Hogg, Robert. 1974. “Adaptive robust procedures: a partial review and some sug-
gestions for future applications and theory (with discussion),” The Journal of the
American Statistical Association, 69: pp. 909-927.

Hogg, Robert and Allen Craig. 1978. Introduction to Mathematical Statistics, 4th Edition,
New York: Macmillan Publishing Co.

Hope, A. C. A. 1968. “A simplified Monte Carlo Significance test procedure,” Journal
of the Royal Statistical Society, Series B, 30: pp. 582-598.

Huber, P. J. 1973. “Robust regression: asymptotics, conjectures, and Monte Carlo,”
Annals of Statistics, 1: pp. 799-821.

Huber, P. J. 1981. Robust Statistics, New York: John Wiley & Sons.

Huber, P. J. 1985. “Projection pursuit (with discussion),” Annals of Statistics, 13: pp.
435-525.

Hunter, J. Stuart. 1988. “The digidot plot,” The American Statistician, 42:. pp. 54-54.

Inselberg, Alfred. 1985. “The plane with parallel coordinates,” The Visual Computer,
1: pp. 69-91.

Isaaks. E. H. and R. M. Srivastava. 1989. An Introduction to Applied Geo-statistics, New
York: Oxford University Press.

Izenman, A. J. 1991. ‘Recent developments in nonparametric density estimation,”
Journal of the American Statistical Association, 86: pp. 205-224.

Jackson, J. Edward. 1991. A User’s Guide to Principal Components, New York: John
Wiley & Sons.

Jain, Anil K. and Richard C. Dubes. 1988. Algorithms for Clustering Data, New York:
Prentice Hall.

Joeckel, K. 1991. “Monte Carlo techniques and hypothesis testing,” The Frontiers of
Statistical Computation, Simulation and Modeling, Volume 1 of the Proceedings
ICOSCO-I, pp. 21-41.

Johnson, Mark E. 1987. Multivariate Statistical Simulation, New York: John Wiley &
Sons.

Jones, M. C. and R. Sibson. 1987. “What is projection pursuit" (with discussion),”
Journal of the Royal Statistical Society, Series A, 150: pp. 1–36.

Journel, A. G. and C. J. Huijbregts. 1978. Mining Geostatistics, London: Academic
Press.

Kalos, Malvin H. and Paula A. Whitlock. 1986. Monte Carlo Methods, Volume 1: Basics,
New York: Wiley Interscience.

Kaplan, D. T. 1999. Resampling Stats in MATLAB, Arlington, VA: Resampling Stats, Inc.

Kaufman, Leonard and Peter J. Rousseeuw. 1990. Finding Groups in Data: An Intro-
duction to Cluster Analysis, New York: John Wiley & Sons.

Keating, Jerome, Robert Mason and Pranab Sen. 1993. Pitman’s Measure of Closeness
- A Comparison of Statistical Estimators, New York: SIAM Press.

Kirkpatrick, S., C. D. Gelatt Jr., and M. P. Vecchi. 1983. “Optimization by simulated
annealing,” Science, 220: pp. 671-680.

Kotz, Samuel and Norman L. Johnson (eds.). 1986. Encyclopedia of Statistical Sciences,
New York: John Wiley & Sons.

© 2002 by Chapman & Hall/CRC

578 Computational Statistics Handbook with MATLAB

Launer, R., and G. Wilkinson (eds.). 1979. Robustness in Statistics, New York: Academic
Press.

Lehmann, E. L. 1994. Testing Statistical Hypotheses, London: Chapman and Hall.

Lehmann, E. L. and G. Casella. 1998. Theory of Point Estimation, Second Edition, New
York: Springer-Verlag.

LePage, R. and L. Billard (eds.). 1992. Exploring the Limits of the Bootstrap, New York:
John Wiley & Sons.

Levy, Paul S. and Stanley Lemeshow. 1999. Sampling of Populations: Methods and
Applications, New York: John Wiley & Sons.

Li, G. and Z. Chen. 1985. “Projection-pursuit approach to robust dispersion matrices
and principal components: primary theory and Monte Carlo,” Journal of the
American Statistical Association, 80: pp. 759-766.

Lindgren, Bernard W. 1993. Statistical Theory, Fourth Edition, London: Chapman and
Hall.

Lindley, D. V. 1995. Bayesian Statistics, A Review, Philadelphia: Society for Industrial
and Applied Mathematics.

Lindsey, J. C., A. M. Herzberg, and D. G. Watts. 1987. “A method for cluster analysis
based on projections and quantile-quantile plots,” Biometrics, 43: pp. 327-341.

Loader, Clive. 1999. Local Regression and Likelihood, New York: Springer-Verlag.

Loh, W. Y. 1987. “Calibrating confidence coefficients,” Journal of the American Statistical
Association, 82: pp. 155-162.

Longley, J. W. 1967. “An appraisal of least squares programs for the electronic com-
puter from the viewpoint of the user,” Journal of the American Statistical Associa-
tion, 62: pp. 819-841.

Lubischew, A. A. 1962. “ On the use of discriminant functions in taxonomy,” Biomet-
rics, 18: pp. 455-477.

Lusted, L. B. 1971. “Signal detectability and medical decision-making,” Science, 171:
pp. 1217-1219.

Marchand, Patrick. 1999. Graphics and GUI’s with MATLAB, Second Edition, Boca Raton:
CRC Press.

Mazess, R. B., W. W. Peppler, and M. Gibbons. 1984. “Total body composition by
dualphoton (153Gd) absorptiometry,” American Journal of Clinical Nutrition, 40: pp.
834-839.

McGill, Robert, John Tukey, and Wayne Larsen. 1978. “Variations of box plots,” The
American Statistician, 32: pp. 12-16.

McLachlan, G. J. and K. E. Basford. 1988. Mixture Models: Inference and Applications to
Clustering, New York: Marcel Dekker.

McLachlan, G. J. and T. Krishnan. 1997. The EM Algorithm and Extensions, New York:
John Wiley & Sons.

McLachlan, G. J. and D. Peel. 2000. Finite Mixture Models, New York: John Wiley &
Sons.

McNeil, B. J., E. Keeler, and S. J. Adelstein. 1975. “Primer on certain elements of
medical decision making,” New England Journal of Medicine, 293: pp. 211-215.

Meeker, William and Luis Escobar. 1998. Statistical Methods for Reliability Data, New
York: John Wiley & Sons.

© 2002 by Chapman & Hall/CRC

References 579

Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. 1953.
“Equations of state calculations by fast computing machine,” Journal of Chemistry
and Physics, 21: pp. 1087-1091.

Meyn, S. P. and R. L. Tweedie. 1993. Markov Chains and Stochastic Stability, New York:
Springer-Verlag.

Minnotte, M. and R. West. 1998. “The data image: a tool for exploring high dimen-
sional data sets,” Proceedings of the ASA Section on Statistical Graphics.

Montanari, Angela and Laura Lizzani. 2001. “A projection pursuit approach to vari-
able selection,” Computational Statistics and Data Analysis, 35: pp. 463-473.

Montgomery, Douglas C., George C. Runger and Norma F. Hubele. 1998. Engineering
Statistics, New York: John Wiley & Sons.

Mood, Alexander, Franklin Graybill and Duane Boes. 1974. Introduction to the Theory
of Statistics, Third Edition, New York: McGraw-Hill Publishing.

Mooney, C. Z. 1997. Monte Carlo Simulation, London: Sage Publications.

Mooney, C. Z. and R. D. Duval. 1993. Bootstrapping: A Nonparametric Approach to
Statistical Inference, London: Sage University Press.

Morant, G. M. 1923. “A first study of the Tibetan skull,” Biometrika, 14: pp. 193-260.

Morton, S. 1989. “Interpretable projection pursuit,” Technical Report 106, Stanford
University, Laboratory for Computational Statistics.

Mosteller, F. and J. W. Tukey. 1977. Data Analysis and Regression: A Second Course in
Statistics, New York: Addison-Wesley.

Mosteller, F. and D. L. Wallace. Inference and Disputed Authorship: The Federalist Papers,
New York: Addison-Wesley.

Murdoch, Duncan J. 2000. “Markov chain Monte Carlo,” Chance, 13: pp. 48-51.

Nadaraya, E. A. 1964. “On estimating regression,” Theory of Probability and its Appli-
cations, 10: pp. 186-190.

Nason, Guy. 1995. “Three-dimensional projection pursuit,” Applied Statistics, 44: pp.
411–430.

Norris, J. 1997. Markov Chains, Cambridge: Cambridge University Press.

Parzen, E. 1962. “On estimation of probability density function and mode,” Annals
of Mathematical Statistics, 33: pp. 1065-1076.

Pearson, K. and A. Lee. 1903. “On the laws of inheritance in man. I. Inheritance of
physical characters,” Biometrika, 2: pp. 357-462.

Pinder, D. A. and M. E. Witherick. 1977. “The principles, practice and pitfalls of
nearest neighbor analysis,” Geography, 57: pp. 277–288.

Polansky, Alan M. 1999. “Upper bounds on the true coverage of bootstrap percentile
type confidence intervals,” The American Statistician, 53: pp. 362-369.

Politis, D. N., J. P. Romano, and M. Wolf. 1999. Subsampling, New York: Springer-
Verlag.

Port, Sidney C. 1994. Theoretical Probability for Applications, New York: John Wiley &
Sons.

Posse, Christian. 1995a. “Projection pursuit exploratory data analysis,” Computational
Statistics and Data Analysis, 29: pp. 669–687.

Posse, Christian. 1995b. “Tools for two-dimensional exploratory projection pursuit,”
Journal of Computational and Graphical Statistics, 4: pp. 83–100.

© 2002 by Chapman & Hall/CRC

580 Computational Statistics Handbook with MATLAB

Priebe, C. E. 1993. Nonparametric maximum likelihood estimation with data-driven smooth-
ing, Ph.D. Dissertation, Fairfax, VA: George Mason University.

Preibe, C. E. 1994. “Adaptive mixture density estimation,” Journal of the American
Statistical Association, 89: pp. 796-806.

Priebe, C. E., R. A. Lori, D. J. Marchette, J. L. Solka, and G. W. Rogers. 1994. “Non-
parametric spatio-temporal change point analysis for early detection in mam-
mography,” Proceedings of the Second International Workshop on Digital Mammog-
raphy, SIWDM, pp. 111-120.

Priebe, C. E. and D. J. Marchette. 2000. “Alternating kernel and mixture density
estimates,” Computational Statistics and Data Analysis, 35: pp. 43-65.

Quenouille, M. 1949. “Approximate tests of correlation in time series,” Journal of the
Royal Statistical Society, Series B, 11: pp. 18-44.

Quenouille, M. 1956. “Notes on bias estimation,” Biometrika, 43: pp. 353-360.

Rafterty, A. E. and V. E. Akman. 1986. “Bayesian analysis of a Poisson process with
a change-point,” Biometrika, 85: pp. 85-89.

Raftery, A. E. and S. M. Lewis. 1992. “How many iterations in the Gibbs sampler?”,
in Bayesian Statistics 4, J. M. Bernardo, J. Berger, A. P. Dawid and A. F. M. Smith,
eds., Oxford: Oxford University Press, pp. 763-773.

Raftery, A. E. and S. M. Lewis. 1996. “Implementing MCMC,” in Markov Chain Monte
Carlo in Practice, W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, eds., London:
Chapman and Hall, pp. 115-130.

Rao, C. R. 1993. Computational Statistics, The Netherlands: Elsevier Science Publishers.

Redner, A. R. and H. F. Walker. 1984. “Mixture densities, maximum likelihood and
the EM algorithm,” SIAM Review, 26: pp. 195-239.

Ripley, B. D. 1976. “The second-order analysis of stationary point processes,” Journal
of Applied Probability, 13: pp. 255-266.

Ripley, B. D. 1981. Spatial Statistics, New York: John Wiley & Sons.

Ripley, Brian D. 1996. Pattern Recognition and Neural Networks, Cambridge: Cambridge
University Press.

Robert, C. P. 1995. “Convergence control techniques for Markov chain Monte Carlo
algorithms,” Statistical Science, 10: pp. 231-253.

Robert, C. P. and G. Casella. 1999. Monte Carlo Statistical Methods, New York: Springer-
Verlag.

Roberts, G. O. 1996. “Markov chain concepts related to sampling algorithms,” in
Markov Chain Monte Carlo in Practice, W. R. Gilks, S. Richardson, and D. J. Spiegel-
halter, eds., London: Chapman and Hall, pp. 45-57.

Roberts, G. O. 2000. Computer Intensive Methods, Course Notes, Lancaster University,
UK, www.maths.lancs.ac.uk/~robertgo/notes.ps.

Rohatgi, V. K. 1976. An Introduction to Probability Theory and Mathematical Statistics by
New York: John Wiley & Sons.

Rohatgi, V. K. and A. K. Nd. Ehsanes Saleh. 2000. An Introduction to Probability and
Statistics, New York: John Wiley & Sons.

Rosenblatt, M. 1956. “Remarks on some nonparametric estimates of a density func-
tion,” Annals of Mathematical Statistics, 27: pp. 832-837.

© 2002 by Chapman & Hall/CRC

http://www.maths.lancs.ac.uk/~robertgo/

References 581

Ross, Sheldon. 1994. A First Course in Probability, Fourth Edition. New York: Macmillan
College Publishing.

Ross, Sheldon. 1997. Simulation, Second Edition, New York: Academic Press.

Ross, Sheldon. 2000. Introduction to Probability Models, Seventh Edition, San Diego:
Academic Press.

Rousseeuw, P. J. and A. M. Leroy. 1987. Robust Regression and Outlier Detection, New
York: John Wiley & Sons.

Rousseeuw, P, J., I. Ruts, and J. W. Tukey. 1999. “The bagplot: A bivariate boxplot,”
The American Statistician, 53: pp. 382-387.

Rubin, Donald B. 1987. “Comment on Tanner and Wong: The calculation of posterior
distributions by data augmentation,” Journal of the American Statistical Association,
82: pp. 543-546.

Rubin, Donald B. 1988. “Using the SIR algorithm to simulate posterior distributions
(with discussion),” in Bayesian Statistics 3, J. M. Bernardo, M. H. DeGroot, D. V.
Lindley, and A. F. M. Smith, eds., Oxford: Oxford University Press, pp. 395-402.

Rubinstein, Reuven Y. 1981. Simulation and the Monte Carlo Method, New York: John
Wiley & Sons.

Rutherford, E. and M. Geiger. 1910. “The probability variations in the distribution of
alpha-particles,” Philosophical Magazine, Series 6, 20: pp. 698-704.

Safavian, S. R. and D. A. Landgrebe. 1991. “A survey of decision tree classifier
methodology,” IEEE Transactions on Systems, Man and Cybernetics, 21: pp. 660-674.

Sasieni, Peter and Patrick Royston. 1996. “Dotplots,” Applied Statistics, 45: pp. 219-234.

Scott, David W. 1979. “On optimal and data-based histograms,” Biometrika, 66: pp.
605-610.

Scott, David W. 1985. “Frequency polygons,” Journal of the American Statistical Asso-
ciation, 80: pp. 348-354.

Scott, David W. 1992. Multivariate Density Estimation: Theory, Practice, and Visualization,
New York: John Wiley & Sons.

Shao, J. and D. Tu. 1995. The Jackknife and Bootstrap, New York: Springer-Verlag.

Silverman, B. W. 1985. “Some aspects of the spline smoothing approach to nonpara-
metric curve fitting,” Journal of the Royal Statistical Society, Series B, 47: pp. 1-52.

Silverman, B. W. 1986. Density Estimation for Statistics and Data Analysis, London:
Chapman and Hall.

Simon, J. 1999. Resampling: The New Statistics, Arlington, VA: Resampling Stats, Inc.

Simonoff, J. S. 1996. Smoothing Methods in Statistics, New York: Springer-Verlag.

Snedecor, G. W. and G. C. Cochran. 1967. Statistical Methods, Sixth Edition, Ames:
Iowa State University Press.

Snedecor, G. W. and G. C. Cochran. 1980. Statistical Methods, Seventh Edition, Ames:
Iowa State University Press.

Solka, J., W. L. Poston, and E. J. Wegman. 1995. “A visualization technique for
studying the iterative estimation of mixture densities,” Journal of Computational
and Graphical Statistics, 4: pp. 180-198.

Solka, J. 1995. Matching Model Information Content to Data Information, Ph.D. Disser-
tation, Fairfax, VA: George Mason University.

© 2002 by Chapman & Hall/CRC

582 Computational Statistics Handbook with MATLAB

Spath, Helmuth. 1980. Cluster Analysis Algorithms for Data Reduction and Classification
of Objects, New York: Halsted Press.

Strang, Gilbert. 1988. Linear Algebra and its Applications, Third Edition, San Diego:
Harcourt Brace Jovanovich.

Swayne, D. F., D. Cook, and A. Buja. 1991. “XGobi: Interactive dynamic graphics in
the X window system with a link to S,” ASA Proceedings of the Section on Statistical
Graphics. pp. 1-8.

Tanner, Martin A. Tools for Statistical Inference: Methods for the Exploration of Posterior
Distributions and Likelihood Functions, Third Edition, New York: Springer-Verlag.

Tapia, R. A. and J. R. Thompson. 1978. Nonparametric Probability Density Estimation,
Baltimore: Johns Hopkins University Press.

Teichroew, D. 1965. “A history of distribution sampling prior to the era of the com-
puter and its relevance to simulation,” Journal of the American Statistical Associa-
tion, 60: pp. 27-49.

Terrell, G. R. 1990. “The maximal smoothing principle in density estimation,” Journal
of the American Statistical Association, 85: p. 470-477.

Thisted, R. A. 1988. Elements of Statistical Computing, London: Chapman and Hall.

Tibshirani, R. 1988. “Variance stabilization and the bootstrap,” Biometrika, 75: pp. 433-
444.

Tierney, L. 1994. “Markov chains for exploring posterior distributions (with discus-
sion),” Annals of Statistics, 22: pp. 1701-1762.

Tierney, L. 1996. “Introduction to general state-space Markov chain theory,” in Markov
Chain Monte Carlo in Practice, W. R. Gilks, S. Richardson, and D. J. Spiegelhalter,
eds., London: Chapman and Hall, pp. 59-74.

Tinkler, K. J. 1971. “Statistical analysis of tectonic patterns in areal volcanism: the
Bunyaruguru volcanic field in west Uganda,” Mathematical Geology, 3: pp.
335–355.

Titterington, D. M., A. F. M. Smith, and U. E. Makov. 1985. Statistical Analysis of Finite
Mixture Distributions, New York: John Wiley & Sons.

Tripathi, R. C. and R. C. Gupta. 1988. “Another generalization of the logarithmic
series and the geometric distribution,” Communications in Statistics - Theory and
Methods, 17: pp. 1541-1547.

Tufte, E. 1983. The Visual Display of Quantitative Information, Cheshire, CT: Graphics
Press.

Tufte, E. 1990. Envisioning Information, Cheshire, CT: Graphics Press.

Tufte, E. 1997. Visual Explanations, Cheshire, CT: Graphics Press.

Tukey, John W. 1958. “Bias and confidence in not quite large samples,” Annals of
Mathematical Statistics, 29: pp. 614.

Tukey, John W. 1977. Exploratory Data Analysis, New York: Addison-Wesley.

Upton, G. and B. Fingleton. 1985. Spatial Data Analysis by Example: Volume I: Point
Pattern and Quantitative Data, New York: John Wiley & sons.

Utts, Jessica. 1996. Seeing Through Statistics, New York: Duxbury Press.

van Oost, B. A., B. Veldhayzen, A. P. M. Timmermans, and J. J. Sixma. 1983. “Increased
urinary -thromoglobulin excretion in diabetes assayed with a modified RIA
kit-technique,” Thrombosis and Haemostasis, 9: pp. 18-20.

β

© 2002 by Chapman & Hall/CRC

References 583

Venables, W. N. and B. D. Ripley. 1994. Modern Applied Statistics with S-Plus, New
York: Springer-Verlag.

Wadsworth, H. M. (ed.). 1990. Handbook of Statistical Methods for Engineers and Scien-
tists, New York: McGraw-Hill.

Wainer, H. 1997. Visual Revelations: Graphical Tales of Fate and Deception from Napoleon
Bonaparte to Ross Perot, New York: Copernicus/Springer-Verlag.

Walpole, R. E. and R. H. Myers. 1985. Probability and Statistics for Engineers and
Scientists, New York: Macmillan Publishing Company.

Wand, M.P. and M. C. Jones. 1995. Kernel Smoothing, London: Chapman and Hall.

Watson, G. S. 1964. “Smooth regression analysis,” Sankhya Series A, 26: pp. 101-116.

Webb, Andrew. 1999. Statistical Pattern Recognition, Oxford: Oxford University Press.

Wegman, E. 1986. Hyperdimensional Data Analysis Using Parallel Coordinates, Technical
Report No. 1, George Mason University Center for Computational Statistics.

Wegman, E. 1988. “Computational statistics: A new agenda for statistical theory and
practice,” Journal of the Washington Academy of Sciences, 78: pp. 310-322.

Wegman, E. 1990. “Hyperdimensional data analysis using parallel coordinates,” Jour-
nal of the American Statistical Association, 85: pp. 664-675.

Wegman, E. and J. Shen. 1993. “Three-dimensional Andrews plots and the grand
tour,” Proceedings of the 25th Symposium on the Interface, pp. 284-288.

Wegman, E., D. Carr, and Q. Luo. 1993. “Visualizing multivariate data,” in Multivariate
Analysis: Future Directions, C. R. Rao, ed., The Netherlands: Elsevier Science
Publishers, pp. 423-466.

Weiss, Neil. 1999. Introductory Statistics, New York: Addison Wesley Longman.

Wilcox, Rand R. 1997. Introduction to Robust Estimation and Hypothesis Testing, New
York: Academic Press.

Wilk, M. and R. Gnanadesikan. 1968. “Probability plotting methods for the analysis
of data,” Biometrika, 55: pp. 1-17.

Wilkinson, Leland. 1999. The Grammar of Graphics, New York: Springer-Verlag.

© 2002 by Chapman & Hall/CRC

	fm.pdf
	Computational Statistics Handbook with MATLAB®
	Table of Contents
	Preface

	Chapter 1.pdf
	Computational Statistics Handbook with MATLAB®
	Contents
	Chapter 1: Introduction
	1.1 What Is Computational Statistics?
	1.2 An Overview of the Book
	Philosphy
	Wh What Is t Covere Covered
	A Word About N Notation ion

	1.3 MATLAB Code
	Computational Statist Statistics Toolbox oolbox
	Internet Resourc Resources

	1.4 Further Reading

	Chapter 2.pdf
	Computational Statistics Handbook with MATLAB®
	Contents
	Chapter 2: Probability Concepts
	2.1 Introduction
	2.2 Probability
	Background
	Probability
	Axioms of Probability

	2.3 Conditional Probability and Independence
	Conditional Probability
	Independence
	Bayes Theorem

	2.4 Expectation
	Mean and Variance
	Skewness
	Kurtosis

	2.5 Common Distributions
	Binomial
	Example 2.1
	Example 2.2
	Example 2.3
	Example 2.4
	Example 2.5
	Example 2.6
	Example 2.7
	Example 2.8
	Example 2.9
	Example 2.10

	2.6 MATLAB Code
	2.7 Further Reading
	Exercises

	Chapter 3.pdf
	Computational Statistics Handbook with MATLAB®
	Contents
	Chapter 3: Sampling Concepts
	3.1 Introduction
	3.2 Sampling Terminology and Concepts
	Sample Mean and Sample Variance
	Sample Moments
	Example 3.1

	Covariance
	Example 3.2

	3.3 Sampling Distributions
	3.4 Parameter Estimation
	Bias
	Mean Squared Error
	Relative Efficiency
	Standard Error
	Maximum Likelihood Estimation
	Example 3.3

	Method of Moments
	Example 3.4

	3.5 Empirical Distribution Function
	Quantiles
	Example 3.5
	Example 3.6

	3.6 MATLAB Code
	3.7 Further Reading
	Exercises

	Chapter 4.pdf
	Computational Statistics Handbook with MATLAB®
	Contents
	Chapter 4: Generating Random Variables
	4.1 Introduction
	4.2 General Techniques for Generating Random Variables
	Uniform Random Numbers
	Example 4.1

	Inverse Transform Method
	Example 4.2
	Example 4.3

	Acceptance-Rejection Method
	Example 4.4
	Example 4.5

	4.3 Generating Continuous Random Variables
	Normal Distribution
	Exponential Distribution
	Example 4.6

	Gamma
	Example 4.7

	Chi-Square
	Example 4.8

	Beta
	Example 4.9

	Multivariate Nomal
	Example 4.10

	Generating Variates on a Sphere
	Example 4.11

	4.4 Generating Discrete Random Variables
	Binomial
	Example 4.12

	Poisson
	Example 4.13

	Discrete Uniform
	Example 4.14

	4.5 MATLAB Code
	4.6 Further Reading
	Exercises

	Chapter 5.pdf
	Computational Statistics Handbook with MATLAB®
	Contents
	Chapter 5: Exploratory Data Analysis
	5.1 Introduction
	5.2 Exploring Univariate Data
	Histograms
	Example 5.1
	Example 5.2

	Stem-and-Leaf
	Example 5.3

	Quantile-Based Plots - Continuous Distributions
	Q-QPlot
	Example 5.4
	Example 5.5

	Quantile Plots
	Example 5.6

	Quantile Plots - Discrete Distributions
	Poissonness Plot
	Example 5.7
	Example 5.8

	Binomialness Plot
	Example 5.9

	Box Plots
	Example 5.10

	5.3 Exploring Bivariate and Trivariate Data
	Scatterplots
	Example 5.11

	Surface Plots
	Example 5.12

	Contour Plots
	Example 5.13

	Bivariate Histogram
	Example 5.14
	Example 5.15

	3-D Scatterplot
	Example 5.16

	5.4 Exploring Multi- Dimensional Data
	Scatterplot Matrix
	Example 5.17

	Slices and Isosurfaces
	Example 5.18
	Example 5.19
	Example 5.20

	Star Plots
	Example 5.21

	Andrews Curves
	Example 5.22
	Example 5.23

	Parallel Coordinates
	Example 5.24
	Example 5.25
	Example 5.26

	Projection Pursuit
	Projection Pursuit Index
	Finding the Structure
	Structure Removal
	Example 5.27

	Grand Tour
	Example 5.28

	5.5 MATLAB Code
	5.6 Further Reading
	Exercises

	Chapter 6.pdf
	Computational Statistics Handbook with MATLAB®
	Contents
	Chapter 6: Monte Carlo Methods for Inferential Statistics
	6.1 Introduction
	6.2 Classical Inferential Statistics
	Hypothesis Testing
	Example 6.1
	Example 6.2
	Example 6.3
	Example 6.4

	Confidence Intervals
	Example 6.5

	6.3 Monte Carlo Methods for Inferential Statistics
	Basic Monte Carlo Procedure
	Monte Carlo Hypothesis Testing
	Example 6.6
	Example 6.7

	Monte Carlo Assessment of Hypothesis Testing
	Example 6.8

	6.4 Bootstrap Methods
	General Bootstrap Methodology
	Bootstrap Estimate of Standard Error
	Example 6.9

	Bootstrap Estimate of Bias
	Example 6.10

	Bootstrap Confidence Intervals
	Bootstrap Standard Confidence Interval
	Bootstrap-t Confidence Interval
	Example 6.11
	Bootstrap Percentile Interval
	Example 6.12

	6.5 MATLAB Code
	6.6 Further Reading
	Exercises

	Chapter 7.pdf
	Computational Statistics Handbook with MATLAB®
	Contents
	Chapter 7: Data Partitioning
	7.1 Introduction
	7.2 Cross- Validation
	Example 7.1
	Example 7.2
	Example 7.3

	7.3 Jackknife
	Example 7.4
	Example 7.5
	Example 7.6
	Example 7.7

	7.4 Better Bootstrap Confidence Intervals
	Example 7.8

	7.5 Jackknife- After- Bootstrap
	Example 7.9

	7.6 MATLAB Code
	7.7 Further Reading
	Exercises

	Chapter 8.pdf
	Computational Statistics Handbook with MATLAB®
	Contents
	Chapter 8: Probability Density Estimation
	8.1 Introduction
	8.2 Histograms
	1-D Histograms
	Example 8.1
	Example 8.2

	Multivariate Histograms
	Frequency Polygons
	Example 8.3
	Example 8.4

	Averaged Shifted Histograms
	Example 8.5

	8.3 Kernel Density Estimation
	Univariate Kernel Estimators
	Example 8.6

	Multivariate Kernel Estimators
	Example 8.7

	8.4 Finite Mixtures
	Univariate Finite Mixtures
	Example 8.8

	Visualizing Finite Mixtures
	Example 8.9

	Multivariate Finite Mixtures
	Example 8.10

	EM Algorithm for Estimating the Parameters
	Example 8.11

	Adaptive Mixtures
	Example 8.12

	8.5 Generating Random Variables
	Example 8.13

	8.6 MATLAB Code
	8.7 Further Reading
	Exercises

	Chapter 9.pdf
	Computational Statistics Handbook with MATLAB®
	Contents
	Chapter 9: Statistical Pattern Recognition
	9.1 Introduction
	9.2 Bayes Decision Theory
	Estimating Class-Conditional Probabilities: Parametric Method
	Example 9.1

	Estimating Class-Conditional Probabilities: Nonparametric
	Example 9.2

	Bayes Decision Rule
	Example 9.3
	Example 9.4

	Likelihood Ratio Approach
	Example 9.5

	9.3 Evaluating the Classifier
	Independent Test Sample
	Example 9.6

	Cross-Validation
	Example 9.7

	Receiver Operating Characteristic (ROC) Curve
	Example 9.8

	9.4 Classification Trees
	Example 9.9
	Growing the Tree
	Example 9.10
	Example 9.11

	Pruning the Tree
	Example 9.12

	Choosing the Best Tree
	Selecting the Best Tree Using an Independent Test Sample
	Example 9.13
	Selecting the Best Tree Using Cross-Validation
	Example 9.14

	9.5 Clustering
	Measures of Distance
	Example 9.15

	Hierarchical Clustering
	Example 9.16
	Example 9.17

	K-Means Clustering
	Example 9.18

	9.6 MATLAB Code
	9.7 Further Reading
	Exercises

	Chapter 10.pdf
	Computational Statistics Handbook with MATLAB®
	Contents
	Chapter 10: Nonparametric Regression
	10.1 Introduction
	Example 10.1
	Example 10.2

	10.2 Smoothing
	Loess
	Example 10.3

	Robust Loess Smoothing
	Example 10.4

	Upper and Lower Smooths
	Example 10.5

	10.3 Kernel Methods
	Nadaraya-Watson Estimator
	Example 10.6

	Local Linear Kernel Estimator
	Example 10.7

	10.4 Regression Trees
	Growing a Regression Tree
	Example 10.8

	Pruning a Regression Tree
	Selecting a Tree
	Example 10.9

	10.5 MATLAB Code
	10.6 Further Reading
	Exercises

	Chapter 11.pdf
	Computational Statistics Handbook with MATLAB®
	Contents
	Chapter 11: Markov Chain Monte Carlo Methods
	11.1 Introduction
	11.2 Background
	Bayesian Inference
	Monte Carlo Integration
	Example 11.1

	Markov Chains
	Analyzing the Output

	11.3 Metropolis- Hastings Algorithms
	Metropolis-Hastings Sampler
	Example 11.2

	Metropolis Sampler
	Example 11.3

	Independence Sampler
	Autoregressive Generating Density
	Example 11.4
	Example 11.5

	11.4 The Gibbs Sampler
	Example 11.6
	Example 11.7
	Example 11.8

	11.5 Convergence Monitoring
	Gelman and Rubin Method
	Example 11.9

	Raftery and Lewis Method

	11.6 MATLAB Code
	11.7 Further Reading
	Exercises

	Chapter 12.pdf
	Computational Statistics Handbook with MATLAB®
	Contents
	Chapter 12: Spatial Statistics
	12.1 Introduction
	What Is Spatial Statistics?
	Types of Spatial Data
	Spatial Point Patterns
	Complete Spatial Randomness

	12.2 Visualizing Spatial Point Processes
	Example 12.1
	Example 12.2
	Example 12.3

	12.3 Exploring First- order and Second- order Properties
	Estimating the Intensity
	Example 12.4

	Estimating the Spatial Dependence
	Nearest Neighbor Distances - G and F Distributions
	K-Function
	Example 12.5
	Example 12.6

	12.4 Modeling Spatial Point Processes
	Nearest Neighbor Distances
	Example 12.7

	K-Function
	Example 12.8
	Example 12.9

	12.5 Simulating Spatial Point Processes
	Homogeneous Poisson Process
	Example 12.10

	Binomial Process
	Example 12.11

	Poisson Cluster Process
	Example 12.12

	Inhibition Process
	Example 12.13

	Strauss Process
	Example 12.14

	12.6 MATLAB Code
	12.7 Further Reading
	Exercises

	Appendix A.pdf
	Computational Statistics Handbook with MATLAB®
	Contents
	Appendix A: Introduction to MATLAB
	A. 1 What Is MATLAB?
	A. 2 Getting Help in MATLAB
	A. 3 File and Workspace Management
	A. 4 Punctuation in MATLAB
	A. 5 Arithmetic Operators
	A. 6 Data Constructs in MATLAB
	A. 7 Script Files and Functions
	A. 8 Control Flow
	A. 9 Simple Plotting
	A. 10 Contact Information

	Appendix B.pdf
	Computational Statistics Handbook with MATLAB®
	Contents
	Appendix B: Index of Notation
	Single Letters
	Other
	Greek Symbols
	 Acronyms

	Appendix C.pdf
	Computational Statistics Handbook with MATLAB®
	Contents
	Appendix C: Projection Pursuit Indexes
	C. 1 Indexes
	Friedman-Tukey Index
	Entropy Index
	Moment Index
	L2 Distances

	C. 2 MATLAB Source Code

	Appendix D.pdf
	Computational Statistics Handbook with MATLAB®
	Contents
	Appendix D: MATLAB Code
	D.1 Bootstrap Confidence Interval BCa
	D. 2 Adaptive Mixtures Density Estimation
	D. 3 Classification Trees
	D. 4 Regression Trees

	Appendix E.pdf
	Computational Statistics Handbook with MATLAB®
	Contents
	Appendix E: MATLAB Statistics Toolbox

	Appendix F.pdf
	Computational Statistics Handbook with MATLAB®
	Appendix F
	Computational Statistics Toolbox

	Appendix G.pdf
	Computational Statistics Handbook with MATLAB®
	Contents
	Appendix G: Data Sets
	References

