
seems so simple and transparent: the software takes care of
the computations, and it’s easy to create the plots. But once
they start probing, students quickly learn that like any rich
scientific expression, the implications, the range of applica-
bility, and the associated multilevel understandings needed
to fully appreciate the subtleties involved take them far be-
yond the basics. Even professionals find surprises when per-
forming such computations, becoming aware of details that
they might not have fully appreciated until they asked more
sophisticated questions.

In the first of this five-part series,1 we discussed several
basic properties of the FFT. In addition to some funda-
mental elements, we treated zero-padding, aliasing, and the
relationship to a Fourier series, and ended with an intro-
duction to windowing. In this article, we’ll briefly look at
the convolution process.

Convolution
Convolution, a process some would say lies at the heart of
digital signal processing, involves two functions, which we’ll
call x(t) and h(t), where x(t), for example, could be an input
signal and h(t) some linear system’s impulse response. When
convolved, �, they yield an output function y(t). The
process expresses the amount of one function’s overlap as it
is shifted over the other, providing a kind of blending of the
two functions:

y(t) = x(t) � h(t). (1)

This process has many applications. Filtering is one exam-
ple: given the appropriate impulse response, we can create
any one of a number of filters. We’ll give some examples in
the next section, but we’ll postpone further information

about filtering and detrending until the next installment.
Correlation is another closely related process and can help
determine if a particular signal occurs in another datastream. 

Deconvolution is the reverse: in effect, it uses the
process itself to remove the effects of an undesired convo-
lution or data distortion. When taking data, a convolution
can obscure the desired information, perhaps due to in-
terfering physical interactions or by the detection system
itself (which has its own response). A gamma ray arriving
at a detector, for example, has a well-defined energy, yet
the detector output shows several associated effects related
to the interaction of the gamma ray with a crystal. If a nu-
clear physicist is interested in the gamma ray’s energy or
intensity instead of the detector’s response, then he or she
needs to know how to extract the appropriate information
from this much larger signal set. Deconvolving can remove
the detector response, restoring the data to a form closer
to the original.

When noise accompanies a signal, as it always does to
some extent, a direct deconvolution can generate unstable
results, which renders the process unusable. One way to re-
duce the noise’s influence is to assume that analytic func-
tions can represent either (or both) the original signal and
the convoluted signal. When such a representation is pos-
sible, the chances of success with the deconvolution process
greatly improve. Still, deconvolution is beyond the scope of
this series, so we won’t discuss it here.

The continuous convolution is defined as

y(t) = x(t) � h(t) 

= x(�)h(t – �)d� = x(t – �)h(�)d�. (2)

In his book on the FFT, E. Oran Brigham states that “Pos-
sibly the most important and powerful tool in modern sci-
entific analysis is the relationship between [Equation 2] and
its Fourier transform.”2 The relationship referred to is the
time–convolution theorem:

F{x(t) � h(t)} = F{x(t)} � F{h(t)} = X(f )H(f ), (3)

∫
−∞

∞
∫

−∞

∞
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where � denotes ordinary multiplication, and X( f ) and
H( f ) are the continuous Fourier transforms of x(t) and
h(t). 

In real life, we seldom have access to the functions x(t) and
h(t); instead, we have only finite time-series representations,
such as

xk = x(k � �t)

and

hk = h(k � �t), k = 0, 1, 2, …, N – 1. (4)

Given this discrete representation, we can’t compute y(t) ex-
actly, but we can compute a time-series approximation to it.
Specifically, we can write an expression for the discrete con-
volution as

n = 0, 1, 2, …, N – 1. (5)

If the response function were the trivial example in which
h0 has the value 1 and all other h values are 0, then the con-
volution process would just reproduce the input signal (if h0
differed from 1, it would scale the input signal proportion-
ally to h0). If all h’s were 0 except for hm, then we would scale
the input signal by the magnitude of hm and delay it by m
sample intervals. The convolution process is the summation
of such elements.

It’s important to keep two details in mind when per-
forming a convolution process: one, the two signals must
have the same number of elements (zero-padding easily
solves this problem), and two, the discrete convolution
theorem treats the data as if it were periodic. We can ex-
press the summation associated with this circular convolu-
tion as

. (6)

This cyclic effect causes a wraparound problem that we’ll
explain in more detail later.

The FFT form of the convolution of two time series is
given by

x � h = ifft(fft(x) � fft(h)), (7)

where the product of the two transforms is element by el-
ement and ifft stands for inverse FFT. (While we’re dis-
cussing convolution in the time domain and multiplication
in the frequency domain, we should mention that an in-
terchange of roles is also possible. Multiplication in the
time domain corresponds to convolution in the frequency
domain.)

We can readily program the summation required to com-
pute a convolution: as the number of data points increases,
the computational advantage goes to the convolution’s im-
plementation with FFT, even though it requires several
steps. The reason is that a convolution in the time domain
requires N 2 multiplications whereas the computational cost
of taking the FFT route is on the order of 3N log2(N) mul-
tiplications. Despite the fact that three steps are involved,
for large N, the advantages of the FFT approach are unmis-
takable. Even for the very modest case of N = 250, using
FFTs to compute a convolution is already more than 10
times faster than the time-domain computation.

One way to implement the summation shown in Equation
6 is by expressing the equation itself in matrix form. Create
an N � N matrix in which the first column takes on the x-
values from x0 to xN–1. Let the next column take on the same
x-values but shifted down one row, with the last value be-
coming the first, and repeat this rolling procedure for each
successive column. Multiplying this x-matrix by the h-vector
yields a circular convolution. We get a linear convolution from
this same multiplication if we set all the terms in the x-matrix
above the diagonal to zero.

To avoid the wraparound pitfall, we could do one of two
things: compute the linear convolution (setting all elements
above the x-matrix’s diagonal to zero) or zero-pad the func-
tions so that the total number of data points is at least N0 +
K0 – 1, where N0 and K0 are the original numbers of data
points in the functions x and h. With this number of ele-
ments, we avoid any distortion due to wraparound:

.(8)

Examples
As an example of a linear convolution calculation, consider
the signals
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(9)

and

(10)

which we discretize to have 32 equally spaced points on the
interval [0,1].

Figure 1 shows the signal, the impulse response, and the

associated continuous and discrete convolutions. The dis-
crete convolution as computed by taking the IFFT of the
product of the FFTs of x and h is identical to that obtained
via matrix multiplication.

Figure 2 shows the wraparound associated with the circu-
lar convolution example. The convolution is altered for the
number of nonzero data points in h. 

In Figure 3, we show the FFTs of the linear and circular
convolutions. The FFT of the convolution resulting from
the matrix multiplication is the same as the product of x and
h’s FFTs. In the figure, we can see some frequency depen-
dence associated with the convolution process. Figure 4 gives
an overall summary of the operations and their interrelation.

For a more realistic example of convolution, let’s look at
the propagation of an acoustic pressure wave through a rec-
tangular waveguide. The waveguide’s resonant conditions
restrict the wave numbers of the transverse wave compo-
nents to discrete values, and the wave propagates only in cer-
tain modes. If we treat the waveguide as a linear device with
an impulse response h, then we can predict the form of the
transmitted signal by taking the convolution of our input
signal x and the impulse response of the waveguide. Kristien
Meykens and colleagues3 show that for modes other than (0,
0), the impulse response departs from a �-function in which
the lower frequencies resemble a reversed chirp.

Figure 5 shows the convolution of an input signal consist-
ing of a brief acoustic burst with the impulse response of a rec-
tangular waveguide (which we represent as a chirp function).
We form this input signal by multiplying an 8-kHz sine wave
by a Bartlett (tent-shaped) window. The chirp function repre-
sents the impulse response for the waveguide’s (1, 0) mode, and
f(t) = 103 + 2 � 106t represents the chirp function’s frequency
dependence. The chirp expression is simply sin(�(t)), where

. (11)

I n general, a convolution shows the two functions’ entan-
glement. The examples we’ve discussed here provide a

clear instance in which we can see where the similarity be-
tween the input signal and the impulse response is the great-
est. Such computations are in reasonable agreement with ex-
perimental results.3

In the next installment of this series, we’ll continue to ex-
amine the problem of spectrum estimation with a discussion
of the autocorrelation function and the correlogram esti-
mates, which are based upon it.
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Figure 1. Comparison of continuous and discrete convolution
calculations. We calculated the convolution of x(t) and h(t) in
three ways: continuous and discrete in the time and frequency
domains. The discrete convolution calculations approach the
continuous form.
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Figure 2. Convolution with and without wraparound
distortions. The blue curve shows the circular form of the
convolution without zero-padding. The red curve is based on a
zero-padded calculation that avoids the distortion associated
with circularity. The diamonds show the h response curve
(scaled at 10 percent of true height); the width of the
response function is associated with the region in which the
circular convolution is spoiled.
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Figure 5.  The convolution of a windowed sine wave burst and
a chirp function. The top curve shows the input signal, and the
middle curves show the impulse response of the waveguide (a
chirp function). The chirp frequency increases linearly with
time, ranging from roughly 1 kHz at t = 0 to roughly 17 kHz at
t = 8 ms; the frequency increases at a rate of approximately 2
kHz/ms. The bottom curves show the convolution and the
approximate frequencies associated with the most significant
section of the convolution over time. The one marked point
represents the frequency of the windowed sine curve which is
8 kHz. The slope of the line representing frequency is about
1.9 kHz/ms.                                
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Figure 3. The FFTs of the linear and circular convolutions. The
two curves are shown with (solid curves) and without (circles
and diamonds) zero padding. We computed these FFTs from
the convolution data for Figure 1’s discrete transform. The
results are the same as those obtained by taking the product
of x and h’s FFTs.
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Figure 4. The interrelation between time and frequency
domain operations that lead to convolution. Multiplying the
FFT’s of x and h followed by an IFFT also lead to the
convolution. An FFT of the convolution would yield the same
result as the product of the FFTs.
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