	MATLAB Compiler
	

	
	[image: image2.png]

Provide feedback about this page

mcc

Invoke MATLAB Compiler

Syntax

mcc [-options] mfile1

[mfile2 ... mfileN]

 [C/C++file1 ... C/C++fileN]

Description

mcc is the MATLAB command that invokes MATLAB Compiler. You can issue the mcc command either from the MATLAB command prompt (MATLAB mode) or the DOS or UNIX command line (standalone mode).

mcc prepares M-file(s) for deployment outside of the MATLAB environment, generates wrapper files in C or C++, optionally builds standalone binary files, and writes any resulting files into the current directory, by default.

If more than one M-file is specified on the command line, MATLAB Compiler generates a C or C++ function for each M-file. If C or object files are specified, they are passed to mbuild along with any generated C files.

Options

-a Add to Archive

Add a file to the CTF archive. Use

-a filename

to specify a file to be directly added to the CTF archive. Multiple -a options are permitted. MATLAB Compiler looks for these files on the MATLAB path, so specifying the full pathname is optional. These files are not passed to mbuild, so you can include files such as data files.

If only a directory name is included with the -a option, the entire contents of that directory are added recursively to the CTF archive. For example:

mcc -m hello.m -a ./testdir

In this example, testdir is a directory in the current working directory. All files in testdir, as well as all files in subdirectories of testdir, are added to the CTF archive, and the directory subtree in testdir is preserved in the CTF archive.

If a wildcard pattern is included in the filename, only the files in the directory that match the pattern are added to the CTF archive and subdirectories of the given path are not processed recursively. For example:

mcc -m hello.m -a ./testdir/*

In this example, all files in ./testdir are added to the CTF archive and subdirectories under ./testdir are not processed recursively.

mcc -m hello.m -a ./testdir/*.m

In this example, all files with the extension .m under ./testdir are added to the CTF archive and subdirectories of ./testdir are not processed recursively.

	Note Currently, * is the only supported wildcard.

All files added to the CTF archive using -a (including those that match a wildcard pattern or appear under a directory specified using -a) that do not appear on the MATLAB path at the time of compilation will cause a path entry to be added to the deployed application's run-time path so that they will appear on the path when the deployed application or component is executed.

When files are included, the absolute path for the DLL and header files is changed. The files are placed in the .\exe_mcr\ folder when the CTF file is expanded. The file is not placed in the local directory. This folder gets created from the CTF file the first time the EXE file is executed. The isdeployed function is provided to help you accommodate this difference in deployed mode.

The -a switch also creates a .auth file for authorization purposes. It ensures that the executable looks for the DLL- and H-files in the exe_mcr\exe folder.

-b Generate Excel-Compatible Formula Function

Generate a Visual Basic file (.bas) containing the Microsoft Excel Formula Function interface to the COM object generated by MATLAB Compiler. When imported into the workbook Visual Basic code, this code allows the MATLAB function to be seen as a cell formula function. This option requires MATLAB Builder for Excel.

-B Specify Bundle File

Replace the file on the mcc command line with the contents of the specified file. Use

-B filename[:<a1>,<a2>,...,<an>]

The bundle file filename should contain only mcc command line options and corresponding arguments and/or other filenames. The file may contain other -B options. A bundle file can include replacement parameters for Compiler options that accept names and version numbers. See Using Bundle Files for a list of the bundle files included with MATLAB Compiler.

-c Generate C Code Only

When used with a macro option, generate C wrapper code but do not invoke mbuild, i.e., do not produce a standalone application. This option is equivalent to -T codegen placed at the end of the mcc command line.

-d Specified Directory for Output

Place output in a specified directory. Use

-d directory

to direct the output files from the compilation to the directory specified by the -d option.

	Note Do not terminate the output directory with a slash or backslash, e.g., use mcc -md C:\TEMP test.m.
Do not use mcc -md C:\TEMP\ test.m.

-e Suppress MS-DOS Command Window

Suppress appearance of the MS-DOS command window when generating a standalone application. Use -e in place of the -m option. This option is available for Windows only. Use with -R option to generate error logging as such:

 mcc -e -R -logfile,"bar.txt" -v foo.m

This macro is equivalent to:

-W WinMain -T link:exe

-f Specified Options File

Override the default options file with the specified options file. Use

-f filename

to specify filename as the options file when calling mbuild. This option allows you to use different ANSI compilers for different invocations of MATLAB Compiler. This option is a direct pass-through to the mbuild script.

	Note The MathWorks recommends that you use mbuild -setup.

-F Specified Project File

Specify that mcc use settings contained in the specified project file. Use

-F project_name.prj

to specify project_name as the project file name when calling mcc. This option enables the .prj file, along with all of its associated settings, to be fed back to mcc. Project files created using either mcc or deploytool are eligible to use this option. When using -F, no other arguments may be invoked against mcc.

-g Generate Debugging Information

Include debugging symbol information for the C/C++ code generated by MATLAB Compiler. It also causes mbuild to pass appropriate debugging flags to the system C/C++ compiler. The debug option enables you to backtrace up to the point where you can identify if the failure occurred in the initialization of MCR, the function call, or the termination routine. This option does not allow you to debug your M-files with a C/C++ debugger.

-G Debug Only

Same as -g.

-I Add Directory to Include Path

Add a new directory path to the list of included directories. Each -I option adds a directory to the beginning of the list of paths to search. For example,

-I <directory1> -I <directory2>

would set up the search path so that directory1 is searched first for M-files, followed by directory2. This option is important for standalone compilation where the MATLAB path is not available.

-l Generate a Function Library

Macro to create a function library. This option generates a library wrapper function for each M-file on the command line and calls your C compiler to build a shared library, which exports these functions. The library name is the component name, which is derived from the name of the first M-file on the command line. This macro is equivalent to

-W lib:string link:lib

-m Generate a Standalone Application

Macro to produce a standalone application. This macro is equivalent to

-W main -T link:exe

Use the -e option instead of the -m option to generate a standalone application while suppressing the appearance of the MS-DOS Command Window.

-M Direct Pass Through

Define compile-time options. Use

-M string

to pass string directly to the mbuild script. This provides a useful mechanism for defining compile-time options, e.g., -M "-Dmacro=value".

	Note Multiple -M options do not accumulate; only the rightmost -M option is used.

-N Clear Path

Passing -N effectively clears the path of all directories except the following core directories (this list is subject to change over time):

· matlabroot/toolbox/matlab
· matlabroot/toolbox/local
· matlabroot/toolbox/compiler/deploy
It also retains all subdirectories of the above list that appear on the MATLAB path at compile time. Including -N on the command line allows you to replace directories from the original path, while retaining the relative ordering of the included directories. All subdirectories of the included directories that appear on the original path are also included. In addition, the -N option retains all directories that the user has included on the path that are not under matlabroot/toolbox.

-o Specify Output Name

Specify the name of the final executable (standalone applications only). Use

-o outputfile

to name the final executable output of MATLAB Compiler. A suitable, possibly platform-dependent, extension is added to the specified name (e.g., .exe for Windows standalone applications).

-p Add Directory to Path

Used in conjunction with required option -N to add specific directories (and subdirectories) under matlabroot/toolbox to the compilation MATLAB path in an order sensitive way. Use the syntax:

-N -p directory
where directory is the directory to be included. If directory is not an absolute path, it is assumed to be under the current working directory. The rules for how these directories are included are

· If a directory is included with -p that is on the original MATLAB path, the directory and all its subdirectories that appear on the original path are added to the compilation path in an order-sensitive context.

· If a directory is included with -p that is not on the original MATLAB path, that directory is not included in the compilation. (You can use -I to add it.)

If a path is added with the -I option while this feature is active (-N has been passed) and it is already on the MATLAB path, it is added in the order-sensitive context as if it were included with -p. Otherwise, the directory is added to the head of the path, as it normally would be with -I.

-R Run-Time

Provide MCR run-time options. Use the syntax

-R option
to provide either of these run-time options.

	Option
	Description

	-nojvm
	Do not use the Java Virtual Machine (JVM).

	-nojit
	Do not use the MATLAB JIT (binary code generation used to accelerate M-file execution).

	Note The -R option is available only for standalone applications. To override MCR options in the other MATLAB Compiler targets, use the mclInitializeApplication and mclTerminateApplication functions. For more information on these functions, see Calling a Shared Library.

-S Create Singleton MCR

Create a singleton MCR when compiling a COM object. Each instance of the component uses the same MCR. Requires MATLAB Builder for .NET.

-T Specify Target Stage

Specify the output target phase and type. Use the syntax

-T target
to define the output type. Valid target values are as follows:

	Target
	Description

	codegen
	Generates a C/C++ wrapper file. The default is codegen.

	compile:exe
	Same as codegen plus compiles C/C++ files to object form suitable for linking into a standalone application.

	compile:lib
	Same as codegen plus compiles C/C++ files to object form suitable for linking into a shared library/DLL.

	link:exe
	Same as compile:exe plus links object files into a standalone application.

	link:lib
	Same as compile:lib plus links object files into a shared library/DLL.

-v Verbose

Display the compilation steps, including:

· MATLAB Compiler version number

· The source filenames as they are processed

· The names of the generated output files as they are created

· The invocation of mbuild
The -v option passes the -v option to mbuild and displays information about mbuild.

-w Warning Messages

Displays warning messages. Use the syntax

-w option[:<msg>]

to control the display of warnings. This table lists the valid syntaxes.

	Syntax
	Description

	-w list
	Generates a table that maps <string> to warning message for use with enable, disable, and error. Error and Warning Messages lists the same information.

	-w enable
	Enables complete warnings.

	-w disable[:<string>]
	Disables specific warning associated with <string>. Error and Warning Messages, lists the valid <string> values. Leave off the optional <string> to apply the disable action to all warnings.

	-w enable[:<string>]
	Enables specific warning associated with <string>. Error and Warning Messages, lists the valid <string> values. Leave off the optional <string> to apply the enable action to all warnings.

	-w error[:<string>]
	Treats specific warning associated with <string> as error. Leave off the optional <string> to apply the error action to all warnings.

-W Wrapper Function

Controls the generation of function wrappers. Use the syntax

-W type
to control the generation of function wrappers for a collection of MATLAB Compiler generated M-files. You provide a list of functions and MATLAB Compiler generates the wrapper functions and any appropriate global variable definitions. This table shows the valid options.

	Type
	Description

	main
	Produces a POSIX shell main() function.

	lib:<string>
	Creates a C interface and produces an initialization and termination function for use when compiling this compiler generated code into a larger application. This option also produces a header file containing prototypes for all public functions in all M-files specified. <string> becomes the base (file) name for the generated C/C++ and header file. Creates a .exports file that contains all nonstatic function names.

	cpplib:<string>
	Creates a C++ interface and produces an initialization and termination function for use when compiling this compiler generated code into a larger application. This option also produces a header file containing prototypes for all public functions in all M-files specified. <string> becomes the base (file) name for the generated C/C++ and header file. Creates a .exports file that contains all nonstatic function names.

	none
	Does not produce a wrapper file. The default is none.

-Y License File

Use

-Y license.dat_file

to override the default license.dat file with the specified argument.

-z Specify Path

Specify the path for library and include files. Use

-z path

to specify path to use for the compiler libraries and include files instead of the path returned by matlabroot.

-? Help Message

Display MATLAB Compiler help at the command prompt.

Linux mcc Cache Management Command Options

The Bourne shell front-end interface to the MATLAB Compiler uses a cache file to speed execution. The cache file contains precomputed values of critical environment variables. The cache is automatically built whenever the back-end interface is called, providing that the cache file doesn't already exist and the -nocache option is not used. Later executions of mcc will use it unless overridden by -nocache. Special command-line options are available to manage this cache, but they can only be executed on Linux in standalone command-line mode (not through MATLAB). The table summarizes these options.

	Linux Command Option
	Description

	-cache
	Prints the cache if used as the only argument. Can be used to rebuild the cache when used with other arguments in this table.

	-archarchitecture
	Assumes local host has architecture specified by this command. Rebuilds the cache unless -nocache is specified.

	-rmcache
	Removes the cache.

	-nocache
	Ignores the cache.

Examples

Make a standalone executable for myfun.m.

mcc -m myfun

Make a standalone executable for myfun.m, but look for myfun.m in the /files/source directory and put the resulting C files and in the /files/target directory.

mcc -m -I /files/source -d /files/target myfun

Make the standalone myfun1 from myfun1.m and myfun2.m (using one mcc call).

mcc -m myfun1 myfun2

Make a shared/dynamically linked library called liba from a0.m and a1.m.

mcc -W lib:liba -T link:lib a0 a1

Technical Solutions

Solution Number: 1-171Z6

Date Last Modified: 23 Feb 2007

	Product:
	
	MATLAB® Compiler

	Reported in Release:
	
	R12

	Fixed in Release:
	
	

	Platform:
	
	All Platforms

	Operating System:
	
	All OS

Subject:

What libraries should I include when distributing my stand-alone application?

Problem Description:

I would like to deploy a stand-alone application that was generated by MATLAB Compiler. What libraries should I include when distributing my stand-alone application?

	Solution:

As of MATLAB Compiler 4.0 (R14), all MATLAB run-time libraries necessary to run your application are included in MATLAB Component Runtime. In order to install MATLAB Component Runtime on a target machine, deploy and run the file mcrInstaller.exe, which is located in the following location on PC:

$MATLAB\toolbox\compiler\deploy\win32\mcrinstaller.exe

On UNIX/LINUX, use BUILDMCR to create a deployable MCR ZIP-file.

In addition to deploying MATLAB Component Runtime, you should also include the following in your distribution:

1. The application file generated by MATLAB Compiler (your executable or shared library).

2. The CTF-file generated by MATLAB Compiler.

After MATLAB Component Runtime has been installed on the target machine, the application file and CTF-file must reside in the same directory in order for the stand-alone application to run.

For previous versions of MATLAB Compiler or the Math and Graphics Libraries, read the following:

The MATLAB Math and Graphics Libraries for R12 and R13 have prepackaged all the MATLAB run-time libraries required by stand-alone applications into a single, self-extracting archive file, called the MATLAB Math and Graphics Run-Time Library Installer. Instead of including all the run-time libraries individually in your stand-alone application distribution package, simply distribute the mglinstaller.exe with your stand alone application.

On UNIX, the MGLINSTALLER is located in the $MATLAB/extern/lib/$ARCH/mglinstaller directory.

On PC, the MGLINSTALLER.EXE is located in the $MATLAB\extern\lib\win32\mglinstaller.exe

You should include the following in your distribution:

* The contents, if any, of a directory named 'bin', created by MBUILD in the same directory as your application executable

* Any custom MEX files your application uses

* All the MATLAB Math run-time libraries

You may run into this problem:

Your application may compile successfully but fail when you try to start it. If you run the application from a DOS command window, you or one of your users may see an error message such as:

The ordinal #### could not be located in the dynamic-link library dforrt.dll.

To fix this problem, locate the files named dforrt.dll or dformd.dll in your Windows system directory and replace them with the versions of these files in the $MATLAB\bin\win32 directory, where $MATLAB represents the name of your root MATLAB installation directory.

This same solution works for users of your application who encounter the same problem. They can, however, replace the versions of these files in the Windows system directory with the versions they find in <MGLRUNTIMELIBRARY>\bin\win32 directory, where <MGLRUNTIMELIBRARY> is the name of the directory in which they installed the MATLAB Math and Graphics Run-Time Libraries.

For MATLAB 5.3.x or MATLAB 5.2:

The MGLINSTALLER utility was not available with these versions. In order to distribute a stand-alone application with these earlier versions, you must include the application's executable as well as the shared libraries against which the application was linked. This package of files includes:

libmmfile.ext
libmatlb.ext
libmcc.ext
libmat.ext
libmx.ext
libmx.ext
libut.ext
sgl.ext (if your application uses the Graphics Library)

where .ext is .dll on Windows; .a on IBM RS/6000 and Sun4; .so on Solaris, Alpha, Linux, and SGI; and .sl on HP 700.

The DLLs must be on the system path. You must either install them in a directory that is already on the path or modify the PATH variable to include the new directory.

[image: image3][image: image4][image: image5][image: image6][image: image7][image: image8][image: image9][image: image10][image: image11]
