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PREFACE

This book is intended for students of mathematics, physics, and engineer-
ing at the advanced undergraduate level or beyond. It is primarily a text for a
course at the advanced undergraduate level, but I hope it will also be useful as a
reference for people who have taken such a course and continue to use Fourier
analysis in their later work. The reader is presumed to have (i) a solid back-
ground in calculus of one and several variables, (ii) knowledge of the elementary
theory of linear ordinary differential equations (i.e., how to solve first-order linear
equations and second-order ones with constant coefficients), and (iii) an acquain-
tance with the complex number system and the complex exponential function
et = ¢*(cosy + isiny). In addition, the theory of analytic functions (power
series, contour integrals, etc.) is used to a slight extent in Chapters 5, 6, 7, and 9
and in a serious way in Sections 8.2, 8.4, 8.6, 10.3, and 10.4. I have written the
book so that lack of knowledge of complex analysis is not a serious impediment;
at the same time, for the benefit of those who do know the subject, it would be a
shame not to use it when it arises naturally. (In particular, the Laplace transform
without analytic functions is like Popeye without his spinach.) At any rate, the
facts from complex analysis that are used here are summarized in Appendix 2.

The subject of this book is the whole circle of ideas that includes Fourier
series, Fourier and Laplace transforms, and eigenfunction expansions for differ-
ential operators. I have tried to steer a middle course between the mathematics-
for-engineers type of book, in which Fourier methods are treated merely as a tool
for solving applied problems, and the advanced theoretical treatments aimed at
pure mathematicians, Since I thereby hope to please both the pure and the ap-
plied factions but run the risk of pleasing neither, I should give some explanation
of what I am trying to do and why I am trying to do it.

First, this book deals almost exclusively with those aspects of Fourier analysis
that are useful in physics and engineering rather than those of interest only in
pure mathematics. On the other hand, it is a book on applicable mathematics
rather than applied mathematics: the principal role of the physical applications
herein is to illustrate and illuminate the mathematics, not the other way around.
I have refrained from including many applications whose principal conceptual
content comes from Subject X rather than Fourier analysis, or whose appreciation
requires specialized knowledge from Subject X; such things belong more properly
in a book on Subject X where the background can be more fully explained. (Many
of my favorite applications come from quantum physics, but in accordance with
this principle [ have mentioned them only briefly.) Similarly, I have not worried
too much about the physical details of the applications studied here. For example,
when I think about the 1-dimensional heat equation I usually envision a long thin
rod, but one who prefers to envision a 3-dimensional slab whose temperature
varies only along one axis is free to do so; the mathematics is the same.
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Second, there is the question of how much emphasis to lay on the theoretical
aspects of the subject as opposed to problem-solving techniques. I firmly believe
that theory — meaning the study of the ideas underlying the subject and the
reasoning behind the techniques — is of intellectual value to everyone, applied or
pure. On the other hand, I do not take “theory” to be synonymous with “logical
rigor.” 1 have presented complete proofs of the theorems when it is not too
onerous to do so, but I often merely sketch the technical parts of an argument.
(If the technicalities cannot easily be filled in by someone who is conversant
with such things, I usually give a reference to a complete proof elsewhere.) Of
course, where to draw the line is a matter of judgment, and I suppose nobody will
be wholly satisfied with my choices. But those instructors who wish to include
more details in their lectures are free to do so, and readers who tire of a formal
argument have only to skip to the end-of-proof sign L. Thus, the book should be
fairly flexible with regard to the level of rigor its users wish to adopt.

One feature of the theoretical aspect of this book deserves special mention.
The development of Lebesgue integration and functional analysis in the period
1900-1950 has led to enormous advances in our understanding of the concepts
underlying Fourier analysis. For example, the completeness of L2 and the shift
from pointwise convergence to norm convergence or weak convergence simplifies
much of the discussion of orthonormal bases and the validity of series expansions.
These advances have usually not found their way into application-oriented books
because a rigorous development of them necessitates the building of too much
machinery. However, most of this machinery can be ignored if one is willing to
take a few things on faith, as one takes the intermediate value theorem on faith in
treshman calculus. Accordingly, in §3.3-4 1 assert the existence of an improved
theory of integration, the Lebesgue integral, in the context of which one has
(1) the completeness of L2, (i1} the fact that “nice” functions are dense in I
and (iii) the dominated convergence theorem. I then proceed to use these facts
without further ado. (The dominated convergence theorem, it should be noted,
is a wonderful tool even in the context of Riemann integrable functions.) Later,
in Chapter 9, I develop the theory of distributions as linear functionals on test
functions, the motivation being that the value of a distribution on a test function
is a smeared-out version of the value of a function at a point. Discussion of
functional-analytic technicalities (which are largely irrelevant at the elementary
level} is reduced to a minimum.

With the exception of the prerequisites and the facts about Lebesgue integra-
tion mentioned above, this book is more or less logically self-contained. However,
certain assertions made early in the book are established only much later:

(1) The completeness of the eigenfunctions of regular Sturm-Liouville problems
is stated in §3.5 and proved, in the case of separated boundary conditions,

in §10.3.

(1) The asymptotic formulas for Bessel functions given in §5.3 are proved via

Watson’s lemma in §8.6.

(111) The proofs of completeness of Legendre, Hermite, and Laguerre polynomials
in Chapter 6 rely on the Weierstrass approximation theorem and the Fourier
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inversion theorem, proved in Chapter 7.
(iv) The discussion of weak solutions of differential equations in §9.5 justifies
many of the formal calculations with infinite series in the earlier chapters.
Thus, among the applications of the material in the later part of the book is the
completion of the theory developed in the earlier part.

1
|
2
|
3
/’7\
4 5 6 7
/\
8 9

10

CHAPTER DEPENDENCE DIAGRAM

The main dependences among the chapters are indicated in the accompany-
ing diagram, but a couple of additional comments are in order.

First, there are some minor dependences that are not shown in the diagram.
For example, a few paragraphs of text and a few exercises in Sections 6.3, 7.5,
8.1, and 8.6 presuppose a knowledge of Bessel functions, but one can simply omit
these bits if one has not covered Chapter 5. Also, the discussion of techniques
in §4.1 is relevant to the applied problems in later chapters, particularly in §5.5.

Second, although Chapter 10 depends on Chapter 9, except in §10.2 the
only part of distribution theory needed in Chapter 10 is an appreciation of delta
functions on the real line and the way they arise in derivatives of functions with
jump discontinuities. Hence, one could cover Sections 10.1 and 10.3-4 after an
informal discussion of the delta function, without going through Chapter 9.

There is enough material in this book for a full-year course, but one can also
select various subsets of it to make shorter courses. For a one-term course one
could cover Chapters 1-3 and then select topics ad libitum from Chapters 4-7.
(If one wishes to present some applications of Bessel functions without discussing
the theory in detail, one could skip from the recurrence formulas in §5.2 to the
statement of Theorem 5.3 at the end of §5.4 without much loss of continuity.) I
have taught a one-quarter (ten-week) course from Chapters 1-5 and a sequel to
it from Chapters 7-10, omitting a few items here and there.

One further point that instructors should keep in mind is the following. Most
of the book deals with rather concrete ideas and techniques, but there are two
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places where concepts of a more general and abstract nature are discussed in a
serious way: Chapter 3 (L? spaces, orthogonal bases, Sturm-Liouville problems)
and Chapter 9 (functions as linear functionals, generalized functions). These
parts are likely to be difficult for students who have had little experience with
abstract mathematics, and instructors should plan their courses accordingly.

Fourier analysis and its allied subjects comprise an enormous amount of
mathematics, about which there is much more to be said than is included in this
book. 1 hope that my readers will find this fact exciting rather than dismaying.
Accordingly, 1 have included a sizable although not exhaustive bibliography of
books and papers to which the reader can refer for more information on things
that are touched on lightly here. Most of these references should be reasonably
accessible to the students for whom this book is primarily intended, but a few of
them are of a considerably more advanced nature. This is inevitable; the topics in
this book impinge on a lot of sophisticated material, and the full story on some
of the things discussed here (singular Sturm-Liouville problems, for instance)
cannot be told without going to a deeper level. But these advanced references
should be of use to those who have the necessary background, and may at least
serve as signposts to those who have yet to acquire it.

I am grateful to my colleagues Donald Marshall, Douglas Lind, Richard Bass,
and James Morrow and to the students in our classes for pointing out many mis-
takes in the first draft of this book and suggesting a number of improvements.
I also wish to thank the following reviewers for their helpful suggestions in re-
vising the manuscript: Giles Auchmuty, University of Houston; James Herod,
Georgia Institute of Technology; Raymond Johnson, University of Maryland;
Francis Narcowich, Texas A & M University; Juan Carlos Redondo, Univer-
sity of Michigan; Jeffrey Rauch, University of Michigan; Jesus Rodriguez, North
Carolina State University; and Michael Vogelius, Rutgers University.

Gerald B. Folland
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CHAPTER 1
OVERTURE

The subject of this book is Fourier analysis, which may be described as a collection
of related techniques for resolving general functions into sums or integrals of
simple functions or functions with certain special properties. Fourier analysis is
a powerful tool for many problems, and especially for solving various differential
equations of interest in science and engineering. The purpose of this introductory
chapter is to provide some background concerning partial differential equations.
Specifically, we introduce some of the basic equations of mathematical physics
that will provide examples and motivation throughout the book, and we discuss
a technique for solving them that leads directly to problems in Fourier analysis.

At the outset, let us present some notations that will be used repeatedly.
The real and complex number systems will be denoted by R and C, respectively.
We shall be working with functions of one or several real variables xy,...,xn.
We shall denote the ordered n-tuple (x,,...,xn) by x and the space of all such
ordered n-tuples by R".

In most of the applications, n will be 1, 2, 3, or 4, and the variables x; will
denote coordinates in one, two, or three space dimensions, together with time.
In this situation we shall usually write X, y, z instead of x;, xs, x5 for the spatial
variables, and we shall denote the time variable by ¢. Moreover, we shall use the
common subscript notation for partial derivatives:

ou a%u 0%u

Uy = 8_)?’ Uyxy = -a? Uxy = m, etc.

A function f of one real variable is said to be of class C*) on an interval I
if its derivatives f’,..., f*) exist and are continuous on /. Similarly, a function
of n real variables is said to be of class C'¥) on a set D c R” if all of its partial
derivatives of order < k exist and are continuous on D. If the function possesses
continuous derivatives of all orders, it is said to be of class C(*),

Finally, we use the common notation with square and round brackets for
closed and open intervals in the real line R:

[a,b]={x:a<x < b}, (a,b)={x:a<x<b},
[a,b)={x:a< x <b}, (a,b] ={x:a < x < b}



2 Chapter 1. Overture
1.1 Some equations of mathematical physics

In order to understand the significance of the ideas as they arise, it will be useful
to have a few physical applications in mind as examples of the sort of problems we
are trying to solve. Accordingly, we begin with a brief and informal discussion of
some of the basic partial differential equations of classical mathematical physics.
These equations all involve a fundamental differential operator known as the
Laplacian, which is defined as follows. If u is a function of the real variables

X,..., Xn of class C?), the Laplacian of u is the function V2u defined by
8%u  8%u 8%u
VIR RN, RS, . 1.1
dxi  ox? ox}? b
The first of the equations we shall study is the wave equation:
_ 0% _ 22
u,,—w—cv u. (1.2)

Here u represents a wave traveling through an n-dimensional medium—where, in
practice, n will usually be 1, 2, or 3. More precisely, x,..., X, are the coordinates
of a point x in the medium; ¢ is the time; ¢ is the speed of propagation of waves
in the medium; and u(x, ¢) is the amplitude of the wave at position x and time ¢.

The wave equation provides a reasonable mathematical model for a number
of physical processes, such as the following:

(a) Vibrations of a stretched string, such as a guitar string.

{(b) Vibrations of a column of air, such as an organ pipe or clarinet.

(c¢) Vibrations of a stretched membrane, such as a drumhead.

(d) Waves in an incompressible fluid, such as water.

(e} Sound waves in air or other elastic media.

(f) Electromagnetic waves, such as light waves and radio waves.
The number #n of spatial dimensions is 1 in examples (a) and (b}, 2 in examples
(c) and (d) (since the waves appear on the surface of the water), and 3 in ex-
amples (e) and (f). In (a), (c), and (d), u represents the transverse displacement
of the string, membrane, or fluid surface; in (b) and (e), u represents the lon-
gitudinal displacement of the air; and in (f), u is any of the components of the
electromagnetic field.

We shall not attempt to derive the wave equation from physical principles
here, since each of the preceding examples involves different physics. Examples
(a) and (f) are explained in Appendix 1; discussions of the others may be found,
for example, in Ingard [32]* and Taylor [51]. We should point out, however,
that in most cases the derivation involves making some simplifying assumptions.
Hence, the wave equation gives only an approximate description of the actual
physical process, and the validity of the approximation will depend on whether

* Numbers in brackets refer to the bibliography at the end of the book.
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certain physical conditions are satisfied. For instance, in example (a) the vibra-
tions should be small enough so that the string is not stretched beyond its limits
of elasticity. In example (f) it follows from Maxwell’s equations, the fundamen-
tal equations of electromagnetism, that the wave equation is satisfied exactly in
regions containing no electric charges or currents — but of course the assumption
of no charges or currents can only be approximately valid in the real world. (Of
course, it is precisely the fact that the wave equation is only an approximation
that allows it to be a useful model in so many different situations!)
The next basic differential equation on our list is the heat equation:

Uy = kv2u. (1.3)

This equation describes the diffusion of thermal energy in a homogeneous mate-
rial (that is, one whose composition does not change from point to point). As in
the wave equation, the variables x; are spatial coordinates and ¢ is time, but now
u(x, t) is the temperature at a position x and time ¢, and k is a constant called the
“thermal diffusivity” of the material. A brief derivation is given in Appendix 1.
As for the number of spatial variables, the case n = 3 is the most fundamental
from the physical point of view, but the cases n = | and n = 2 are also of in-
terest as models of situations where the heat flow is practically all in one or two
directions. For example, the heat equation with n = 1 can be used to describe
heat flow along a wire or rod, provided that heat flow in directions perpendicular
to the axis of the rod can be neglected. It can also be used to describe heat flow
in a slab of material, such as a wall separating two rooms, where only the heat
flow from one room toward the other (as opposed to flow in directions parallel
to the wall) is significant.

Two warnings: (1) The heat equation can be used to model heat flow in both
solids and fluids (liquids and gases), but in the latter case it does not take any
account of the phenomenon of convection; that is, it will provide a reasonable
model only if conditions are such as to exclude any macroscopic currents in the
fluid. (ii) The heat equation is not a fundamental law of physics, and it does not
give reliable answers at very low or very high temperatures. In particular, it is
obvious that if u is a solution then so is u + ¢ for any constant c; thus the heat
equation does not recognize the existence of absolute zero!

The heat equation can also be used to model other diffusion processes. For
example, if a drop of red dye is placed in a body of water, the dye will gradually
spread out and permeate the entire body. If convection effects are negligible,
equation (1.3) will describe the diffusion of the dye through the water (u(x,!)
now being the concentration of dye at position x and time ¢).

Next, we come to the Laplace equation:

Vu=0. (1.4)

Laplace’s equation arises in a number of different contexts. It is satisfied by the
electrostatic potential in any region containing no electric charge, and by the grav-
itational potential in any region containing no mass. It is also the equation that
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governs standing waves and steady-state heat distributions — that is, solutions
of the wave equation and the heat equation that are independent of time. We
shall meet other applications of it later on.

Partial differential equations such as the ones discussed above typically have
solutions in such great abundance that there is no reasonable way of giving an
explicit description of all of them. The most common way of pinning down
a particular solution is to impose some boundary conditions., Different types of
differential equations require different types of boundary conditions, and the par-
ticular conditions that are appropriate for a given physical problem will depend
on the particular physical situation. The physics is generally a good guide to
the mathematics: “reasonable” physical conditions usually lead to “reasonable”
mathematical problems.

FIGURE 1.1. The region D in x-space and the region D in x¢-space.

These matters may best be explained by examining a few examples. Let us
consider the heat equation: suppose we are interested in studying the diffusion
of heat in a body that occupies a bounded region D of x-space, given the initial
temperature distribution in the body. That is, we wish to solve the heat equation
(1.3) in the region

b={(x,z):xeb, z>0}

of (x, t)-space subject to the initial condition

u(x,0) = f(x), (1.5)

where f(x) is the temperature distribution at time ¢ = 0. (See Figure 1.1.) Equa-
tion (1.5) is a condition on u on the “horizontal” part of the boundary of D,
but it is not enough to specify u completely; we also need a boundary condition
on the “vertical” part of the boundary to tell what happens to the heat when it
reaches the boundary surface S of the spatial region D. Here the particular phys-
ical conditions at hand must be our guide. One reasonable assumption is that §
is held at a constant temperature u# (for example, by immersing the body in a
bath of ice water), thus:

u(x,ty=up forxesS, t>0. (1.6)
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Another reasonable assumption is that D is insulated, so that no heat can flow in
or out across S. Mathematically, this amounts to requiring the normal derivative
of u along the boundary S to vanish:

(Vu m)(x,t) =0 forxes, t>0. (1.7)

Here n is the unit outward normal vector to .S (and we are implicitly assuming
that the surface S is smooth, so that n is well-defined). A more realistic assump-
tion than either (1.6) or (1.7) is that the region outside D is held at a constant
temperature ug, and the rate of heat flow across the boundary S is proportional
to the difference in temperatures on the two sides:

(Vu-m)(x, 1) +a(u(x,1) ~u) =0 forxesS, t>0. (1.8)

This is Newton’s law of cooling, and a > 0 is the proportionality constant. The
conditions (1.6) and (1.7) may be regarded as the limiting cases of (1.8) as a — o
ora— 0.

At any rate, it turns out that the initial condition (1.5) together with any one
of the boundary conditions (1.6), (1.7), or (1.8) leads to a well-posed problem: one
having a unique solution that depends continuously (in some appropriate sense)
on the initial data f. The same discussion is also valid for the heat equation in
one or two space dimensions. (In one space dimension, the “region™ D is just an
interval in the x-axis, and the “normal derivative” Vu - n is just ux at the right
endpoint and —ux at the left endpoint.)

A similar analysis applies to boundary value problems for the wave equation
(1.2), with one significant difference: the wave equation is second-order in the
time variable ¢, whereas the heat equation is only first-order in ¢. For this reason,
in solving the wave equation it is appropriate to specify not only the initial values
of u as in (1.5) but also the initial velocity u;:

u(x,0) = f(x), u;(x,0) = g(x) forxe D. (1.9)

The imposition of the initial conditions (1.9) together with a boundary condition
of the form (1.6), (1.7), or (1.8) leads to a unique solution of the wave equation.
For example, to analyze the motion of a vibrating string of length / that is fixed at
both endpoints, we take the “region™ D to be the interval [0, /] on the x-axis and
solve the one-dimensional wave equation with boundary conditions (1.6) (where
ug = 0) and (1.9):

Uy = Cuxx,  u(x,0)= f(x) and wu(x,0)=g(x) for0O<x<I,
u(0,t)=u(l,t)=0 fort>0.

Remark: The “velocity” u, is not the same as the constant ¢ in the wave
equation. c¢ is the speed of propagation of the wave along the string, whereas u;
is the rate of change of the displacement of a particular point on the string. (The
same is true for waves in media other than strings.)
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The Laplace equation (1.4) is of a rather different character, as it does not
involve time. The most important boundary value problem for this equation, the
so-called Dirichlet problem, consists in specifying the values of # on the boundary
of the region in question. That is, we solve V2u = 0 in a region D subject to the
condition that u agrees with a given function f on the boundary S of D. This
is a well-posed problem when D is bounded and § is smooth (except perhaps
for corners and edges). Another useful boundary value problem for Laplace’s
equation is the Neumann problem, which consists of specifying the values of the
normal derivative Vu#-non S:

vV u=0in D, (Vu-n)(x) = g(x) forxesS.

Here we do not quite have uniqueness, for if « is a solution, then so is u + C
for any constant C. Moreover, the boundary data g must satisfy the condition
Jfs & = 0 in order for a solution to exist, because by the divergence theorem,

f/;(v::-:ﬂdS://]DVzudV:O

for any u such that V2« = 0. However, there are no other obstructions to existence
and uniqueness; and since there is only one constant to be specified to obtain
uniqueness, and only one linear equation to be satisfied to obtain existence, the
Neumann problem is still regarded as well behaved.

There is one more point that should be mentioned in connection with the in-
terpretation of boundary conditions. Suppose, for example, that we are interested
in the initial value problem for the heat equation:

ur=kViu forr>0,  u(x,0) = f(x).

If one interprets this absolutely literally, one obtains a solution by defining u(x, ¢)
to be f(x) when 7 = 0 and 0 when 7 > 0, but clearly this is not what is really
wanted unless f is identically zero! Rather, in such boundary value problems
there is always an implicit continuity assumption: we ask not only that u(x,0) =
f(x) but that u(x,¢) should approach f(x) as t — 0. The precise way in which
this approach is achieved (pointwise convergence, uniform convergence, mean
square convergence, etc.) will depend on the particular problem at hand. This is
not a matter that requires a lot of deep thought — merely a little care to avoid
making silly mistakes.

The wave, heat, and Laplace equations can be generalized by adding in an
extra term, as follows:

uy — V3 = F(x, 1), (1.10)
U — kViu = F(x,1), (1.11)
vZiu = F(x). (1.12)

These equations are called the inhomogeneous wave, heat, and Laplace equations;
equation (1.12) is also called the Poisson equation. Here F is a function that
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is given in advance, and the original equations (1.2), (1.3), and (1.4) are the
special cases where F = 0. The interpretation of F will vary with the particular
situation considered. In the wave equation (1.10), F may represent a force that
is driving the waves; in the case of electromagnetic fields, it represents the effect
of charges or currents (see Appendix 1). In the heat equation (1.11), F may
represent a source (or sink) of heat within the material in which the heat is
flowing. The Poisson equation (1.12) is satisfied by electrostatic potential in a
region when F is interpreted as —4n times the charge density in the region, or by
the graviatational potential when F is interpreted as 4n times the mass density.
(See Appendix 1. The difference in signs occurs because positive masses attract
each other, whereas positive charges repel.) The boundary conditions appropriate
for these inhomogeneous equations are much the same as for the corresponding
homogeneous equations.

Finally, we mention one other basic equation of physics, the Schrédinger
equation :

PO
U = —mv u+ V(xju.

In this equation  is the quantum-mechanical wave function for a particle of mass
m moving in a potential ¥ (x), # is Planck’s constant, and i = v/—1. When the
particle has a definite energy E, the time dependence drops out and one obtains
the steady-state equation

k.?

2 —
-mv u+V(xu=Eu.

For the physics behind these equations we refer the reader to books on quan-
tum mechanics such as Messiah [39] and Landau-Lifshitz [35]. Readers who are
not familiar with this subject can safely ignore the occasional references to the
Schrédinger equation, but those who are will find the solutions to some important
special cases in later chapters.

EXERCISES

1. Show that u(x,t) = t~1/2 exp(-x2/4kt) satisfies the heat equation u; = kuxx
fort > 0.

2. Show that u(x,y,1) = t~'exp[—(x? + y?)/4kt] satisfies the heat equation
U = k(uxx + tyy) for t > 0.

3. Show that u(x,y) = log(x? + y?) satisfies Laplace’s equation uxx + uyy = 0
for (x,y) # (0,0).

4. Show that u(x,y,z) = (x? + y? + z2)~1/2 satisfies Laplace’s equation uxx +
uyy + Uzz =0 for (x,y, z) # (0,0,0).

5. Proportionality constants in the equations of physics can often be eliminated
by a suitable choice of units of measurement. Mathematically, this amounts
to rewriting the equation in terms of new variables that are constant multiples
of the original ones. Show that the substitutions 7 = k¢ and t = cf reduce
the heat and wave equations, respectively, to #r = VZu and rr = V2u.
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6. The object of this exercise is to derive d’4lembert’s formula for the general
solution of the one-dimensional wave equation uy = cuxx.

a. Show that if u(y,z) = f(y) + g(z) where f and g are C'?) functions
of one variable, then u satisfies ¥y, = 0. Conversely, show that every
C? solution of uy: = 0 is of this form. (Hint: If v, = 0, then v is
independent of y.)

b. Let y = x — ¢t and z = x + ¢t. Use the chain rule to show that u, -
Cuxx = —4cuy;.

c. Conclude that the general C2) solution of the wave equation us; = ¢ tixx
is u(x,t) = f(x —ct) + g(x + ct) where f and g are C(?) functions of
one variable. (Observe that f(x — cf) represents a wave traveling to the
right with speed ¢, and g(x + ct) represents a wave traveling to the left
with speed c.)

d. Show that the solution of the initial value problem
Ui = Ctlxx, u(x,0) = ¢(x), u(x,0) = w(x)

= 1 X+t
ux,0) = §[o(x - ey + dlx +en] + 5 [ pydy,
x—ct
7. The voltage v and current / in an electrical cable along the x-axis satisfy the
coupled equations

ix+Cv+Guv =0, vy + Li; + Ri =0,

where C, G, L, and R are the capacitance, (leakage) conductance, induc-
tance, and resistance per unit length in the cable. Show that v and i/ both
satisfy the telegraph equation

Uxx = LCuy + (RC + LG)u; + RGu.

8. Set u(x, ) = f(x,t)e* in the telegraph equation of Exercise 7. What is the
differential equation satisfied by f? Show that a can be chosen so that this
equation is of the form fix = Af;; + Bf (with no first-order term), provided
that LC # 0.

1.2 Linear differential operators

The partial differential equations considered in the preceding section can all be
written in the form L(x) = F, where L(u) stands for u; — ¢*V2u, u; — kV2u,
or V2u. In each case L(u) is a function obtained from u by performing certain
operations involving partial derivatives, which we regard as the result of applying
the operator L to the function u.
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In general, a linear partial differential operator L is an operation that trans-
forms a function u of the variables x = (x|,...,X») into another function L(u)
given by

a%u
( —a(X)H+Zb1(X)a + JECU(X)W*_“.'
(Here the dots at the end indicate higher-order terms, but it is understood that the
whole sum contains only finitely many terms.) In other words, L(u) is obtained
by taking a finite collection of partial derivatives of #, multiplying them by the
coefficients a, b;, c;j, etc., and adding them up. We may describe the operator L
by itself, without reference to an input function u, by writing

+Eb(x)3 +E 8x,3xj+”" (1.13)
ij=1

The term /inear in the phrase “linear partial differential operator” refers to
the following fundamental property: if L is given by (1.13), u,...,u; are any
functions possessing the requisite derivatives, and ¢),...,¢; are any constants,
then

Licjuy+ -+ ceug) = ey L(uy ) + -+ + ¢ L{uy ). (1.14)

This is an immediate consequence of the fact that the derivative of a sum is the
sum of the derivatives, and the derivative of a constant multiple of a function is
the constant multiple of the derivative. Any function of the form ¢ju; +-- -+ ¢, 1t
(where the ¢;’s are constants) is called a linear combination of u,,...,u;. Thus,
(1.14) says that L takes every linear combination of ;’s into the corresponding
linear combination of L(u;)’s.

More generally, any operator L, differential or otherwise, that satisfies (1.14)
is called linear; here the inputs « and the outputs L(u«) can be any sort of objects
for which linear combinations make sense such as functions, vectors, numbers,
etc. For instance, the formula L(f) = fa t)dt defines a linear operation taking
continuous functions on the interval [a, b] to numbers; and if xg is a fixed 3-
dimensional vector, the formula L(x) = x x Xy (the cross product of x with xg)
defines a linear operation on 3-dimensional vectors.

A linear partial differential equation is simply an equation of the form

L({u) =

where L is a linear partial differential operator and F is a function of x. Such
an equation is called homogeneous if ¥ = 0 and inhomogeneous if F' # 0. The
boundary conditions we associate to a differential equation are usually of a similar
form themselves; that is, they are of the form “B(u) = f on the boundary” where
B is another linear differential operator and f is a function on the boundary. (W
shall often omit the phrase “on the boundary” and write the boundary conditions
simply as B(u) = f. Here also, the terms homogeneous and inhomogeneous refer
to the cases £ = 0 and f # 0.) The linearity of the operators L and B can be
restated in the following way.
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The Superposition Principle. If u,,...,u; satisfy the linear differential equations
L(u;) = F; and the boundary conditions B(u;) = f; for j = 1,...,k, and cy,...,¢c;
are any constants, then u = ciuy + -+ + ci Uy satisfies

L{u)=c\Fy + - + ¢ Fy, B(u)=C|f1+'“+Ckﬁ{.

The importance of the superposition principle can hardly be overestimated.
We shall use it repeatedly in a number of different ways, of which the most
important are the following.

Suppose we want to find all solutions of a differential equation subject to
one or more boundary conditions, say

L(u)=F, B(u) = f. (1.15)
If we can find all solutions of the corresponding homogenous problem
L[u) =0, B(u) =0 (1.16]

which is often simpler to handle, then it suffices to obtain just one solution, say
v, of the original problem (1.15). Indeed, if u is any other solution of (1.15),
then w = u — v satisfies (1.16), for L(w)=F - F =0and B(w) = f - f = 0.
Hence we obtain the general solution of (1.15) by adding the general solution w
of (1.16) to any particular solution of (1.15).

In the same spirit, the superposition principle can be used to break down a
problem involving several inhomogeneous terms into (presumably simpler) prob-
lems in which these terms are dealt with one at a time. For instance, suppose
we want to find a solution to (1.15). It suffices to find solutions u; and u, to the
problems

L(uy))=F, B(u)=0;

L(uy) =0,  B(uy) =1,

for we can then take u = u; + u;.

Perhaps most important, if u;,u,,... are any solutions to a homogeneous
differential equation L{u) = O that satisfy homogeneous boundary conditions
B(u) = 0, then any linear combination of the u;’s will satisfy the same differ-
ential equation and the same boundary conditions. Thus, starting out with a
sequence of solutions u;, we can generate many more solutions by taking linear
combinations. If we then take appropriate /imits of such linear combinations,
we arrive at solutions defined by infinite series or integrals — and this is where
things get interesting!

Of course, there are also nonlinear differential equations involving nonlinear
operations such as L(u) = uxx — sinu or L(u) = uux + (uy)°. Indeed, many
of the important equations of physics and engineering, including most of the
refinements of the wave equation to describe waves and vibrations, are nonlinear.
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However, nonlinear equations are, on the whole, much more difficult to solve than
linear ones, and their study is beyond the scope of this book.

One final note: the reader will have observed that all the differential equa-
tions we discussed in §1.1 involve the Laplacian V2. The reason for this is that
the Laplacian commutes with all rigid motions of Euclidean space; that is, if 7
denotes any translation or rotation of n-space, then V?(f0.7") = (V2f) 0.7 for
all functions f. Moreover, the on/y linear differential operators of order < 2 that
have this property are the operators aV> + b where a and b are constants. Hence,
the differential equation describing any process that is spatially symmetric (i.e.,
unaffected by translations and rotations) is likely to involve the Laplacian.

EXERCISES

1. Suppose u; and u; are both solutions of the linear differential equation
L(u) = f, where f # 0. Under what conditions is the linear combination
c Uy + ¢y also a solution of this equation?

2. Consider the nonlinear (ordinary) differential equation u’ = u(1 - u).
a. Show that u;(x) =e*/(1 + e*) and u,(x) = 1 are solutions.
b. Show that u; + u, is not a solution.
c. For which values of ¢ is cu; a solution? How about cu,?

3. Give examples of linear differential operators L and M for which it is not
true that L(M(u)) = M(L(u)) for all u. (Hint: At least one of L and M
must have nonconstant coefficients.)

4, What form must G have for the differential equation u; — uxx = G(x,t,u)
to be linear? Linear and homogeneous?

5. a. Show that for n = 1,2,3,..., un(x,y) = sin(nnx)sinh(nry) satisfies
Uxx + Uyy =0, u(0,y) =u(l,y) =u(x,0)=0.

b. Find a linear combination of the ux’s that satisfies u(x,1) = sin2zx —
sin 37mx.

c. Show that for n = 1,2,3,..., tn(x,y) = sin(nznx)sinh nn(1 - y) satisfies
Uxx + Uyy =0, u(0,y) = u(l,y) =u(x,1)=0.

d. Find a linear combination of the #,’s that satisfies #(x,0) = 2sinznx.
e. Solve the Dirichlet problem

Uxx + Uyy = 0, u[O,y) = u(l,y) = 0,
u(x,0) =2sinnx, wu(x,1)=sin2nx —sin3nx.
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1.3 Separation of variables

In this section we discuss a very useful technique for solving certain linear partial
differential equations, known as separation of variables. This technique works
only for very special sorts of equations, but fortunately the equations for which
it works include many of the most important ones.

The idea is as follows. Suppose, for simplicity, that we have a homogeneous
partial differential equation L(u) = 0 involving just two independent variables x
and y, with some homogeneous boundary conditions B(u) = 0. We try to find
solutions u of the form

u(x,y) = X(x)Y(»).

If the method is to work, when we substitute this formula for u into the equation
L(u) = 0, the terms can be rearranged so that the left side of the equation involves
only the variable x and the right side involves only the variable y, say P(x) =
Q(y). But since x and y are independent, a quantity that depends on x alone
and also on y alone must be a constant. Hence we have P(x)= C and Q(y) = C,
and these equations will be ordinary differential equations for the functions X
and Y whose product is u. With luck, these equations can be solved subject to
the boundary conditions on X and Y that are implied by the original conditions
on u, and we thus obtain a whole family of solutions by varying the constant
C. By the superposition principle, all linear combinations of these will also be
solutions; and if we are lucky, we will obtain all solutions of the original problem
by taking appropriate limits of these linear combinations.

The same procedure can be used for equations for functions of more than
two variables. If there are three independent variables involved, say x, y, and z,
we look for solutions of the form u of the form

u(x,y,z) = X(x)v(y, z).

If the variables can be separated, we obtain an ordinary differential equation
for X and a partial differential equation for v, but now involving only the two
variables ¥ and z. We can then try to write v(y,z) = Y(y)Z(z) and obtain
ordinary differential equations for ¥ and Z. In other words, we use separation
of variables to “peel off” the independent variables one at a time, thereby reducing
the original problem to some simpler ones.

Of course, once one has reduced the problem to some ordinary differential
equations, one must be able to solve them! For the time being all our examples
will involve homogeneous equations with real constant coefficients, whose solu-
tions we now briefly review. (See, for example, Boyce-DiPrima [10] for a more
extensive discussion.) For first-order equations the situation is very simple:

ff=af = f(x)=Ce".

For second-order equations, the basic fact is as follows.
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Theorem 1.1. The general solution of " +af +bf =0is f(x) = Cie"* + Cye"*,
where ry, ry are the roots of the equation r* + ar + b = 0 and C,, C, are arbitrary
complex numbers. If ry = ry, the general solution is (C; + Cyx)e"*.

Here r| and r, may, of course, be complex; see Appendix 2 for a discussion
of the complex exponential function. In certain cases it may be more convenient
to express the solution in terms of trigonometric or hyperbolic functions. In
particular:

(i) If ry = p+io and r, = p — io, the general solution is e’*(C,cosox +

Cysinox).

(ii) If @ > 0, the general solution of " + o*f = 0 is C, cosax + C; sinax, and
the general solution of " — af = 0 is C; coshax + C, sinh ax.

Enough generalities; let us look at a couple of specific examples.

Consider the problem of 1-dimensional heat flow: we may think of a circular
metal rod of length /, insulated along its curved surface so that heat can enter or
leave only at the ends. Suppose, moreover, that both ends are held at temperature
zero. (Zero in which temperature scale? It doesn’t matter: the mathematics is
the same.) Ignoring the question of initial conditions for the moment, we then
have the boundary value problem

Uy = ktxx, u(0,)=u(l,t)=0. (1.17)

If we substitute u(x,1) = X(x)7T(¢) into (1.17), we obtain
X(x)T'(t) = kX" (x)T(1), (1.18)
X(0)=X()=0. (1.19)

The variables in (1.18) may be separated by dividing both sides by kX (x)T(¢),
yielding
T'(t)/kT(t) = X"(x)/ X (x).

Now the left side depends only on ¢, whereas the right side depends only on x;
since they are equal, they must both be equal to a constant A:

T'(t) = AkT(1),  X"(x) = AX(x).

These are simple ordinary differential equations for T and X that can be solved
by elementary methods — indeed, almost by inspection. The general solution of
the equation for T is

T(t) = Coe¥,

and the general solution of the equation for X is
X(x) = Cjcosix + Cysinix, A= —A. (1.20)

(If A is positive, one might prefer to avoid imaginary numbers by rewriting (1.20)
as

! ! ' !
X(x) = C{ cosh ux + C3 sinh ux = C1+C29#x '3 %e"“, u=va.
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But so far A is just an arbitrary (possibly complex) constant, so there is no reason
yet to choose one form over the other.) However, we must now take account of
the boundary conditions (1.19). The condition X (0) = 0 forces C; = 0 in (1.20),
and the condition X (/) = 0 then becomes C;sin Al = 0. If we take C, = 0, then
our solution u(x, t) vanishes identically, which is of no interest: we are looking
for nontrivial solutions. So we take C, # 0; hence sinA/ = 0, which means that
Al = nn for some integer »; in other words, 4 = —(nn/I)2. (So A is negative
after alll) We may take n > 0, since the case n = 0 gives the zero solution and
replacing n by —n merely amounts to replacing C; by —C,.

In short, for every positive integer n we have obtained a solution ux(x,¢) of
(1.17), namely,

2.2
Un(x,t) = exp( i ; kr) sin m;x (i = 1,235 ::)s

(We have taken Cy = C, = 1; other choices of Cy and C; give constant
multiples of u,.) We obtain more solutions by taking linear combinations of the
un’s, and then passing to infinite linear combinations — that is, infinite series

00 o0 Rl
u=;anun=;anexp( n;; kt) sinm;x. (1.21)

Of course, there are questions to be answered about the convergence of such
series, but for the moment we shall not worry about that.

Finally, we bring the initial conditions into the picture: can we solve (1.17)
subject to the initial condition u(x,0) = f(x), where f is a given function on the
interval (0,/)? The solution (1.21) will do the job, provided that

f(x) =§an sin % (1.22)
1

We have now arived at one of the main subjects of this book: the study of series
expansions like (1.22). Before setting foot in this new territory, however, let us
look at a couple of other boundary value problems.

Consider the problem of heat flow in a rod, as before, but now assume that
the ends of the rod are insulated. Thus, instead of (1.17) we consider

Uy = kuxx, ux(o, I) = ux(f, f) =0. (123)

The technique we used to solve (1.17) also works here, with only the follow-
ing differences. The conditions (1.19) are replaced by

X0 =Xx1)=0, (1.24)
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which force C; = 0 (rather than C; = 0) and A/ = n# in (1.20). Again, we may
assume that n > 0 since cos(nnx/l) = cos(—nnx/l), but now we must include
n = 0. We thus obtain the sequence of solutions

iR
nen kt) nnx (n:O,l,Z,.--),

Un(x,t) = exp ( 72 ]

which can be combined to form the series

oo o0 Zioge 2!
—-n‘nckt nmx
u=2anun=2anexp( 7 )cos T
0 0

This series will solve the problem (1.23) subject to the initial condition u(x,0) =
f(x) provided that

flx) = fa,, cos 5= (1.25)
0

Thus we have arrived at another series expansion problem, different from but
similar to (1.22).

For yet another variation on the same theme, consider heat flow in a rod
that is bent into the shape of a circle, with the ends joined together. We may
specify the position of a point on the circle by its angular coordinate 8, measured
from some fixed base point. Since linear distance on a circle is proportional to
angular distance (Ax = rAf where r is the radius), the heat equation u; = kgutxx
can be rewritten as

Uy = kugg

where k = ko/r®. We try to find solutions of the form u(f,t) = ©(6)T(¢t), and
just as before we find that

T(t) = Coe™®',  ©(8) = Cycosv/—A+Cysinfv/-4  (1.26)

for some constant 4. Here there are no boundary conditions like (1.19) or (1.24)
because the rod has no ends. Instead, since the angular coordinate 6 is well-
defined only up to multiples of 2z, we have the requirement that ©(6) must be
periodic with period 2z. This condition does not kill off either of the coefficients
C, or C; in (1.26), but it does force v—A4 to be an integer n. The upshot is that
we obtain series solutions of the form

oo
u(,t) = Z(an cosn@ + by sinnB)e'"zk’,
0

and such a series will satisfy the initial condition u(8,0) = f(8) provided that

f() =i(an cosnf + by sin né). (1.27)
0
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Finally, we present an illustration of these techniques involving something
other than the heat equation. Consider the problem of a vibrating string of length
1, fixed at both endpoints. The mathematical problem to be solved is

Uy = uxx,  u(0,8)=wu(l,t)=0. (1.28)

If we take u(x,t) = X(x)T(t), (1.28) becomes
X(x)T"(t) = X" (x)T(t), (1.29)
X0)=XxX()=0 (1.30)

On dividing (1.29) through by ¢2X (x)7(t), we get
X"(x)/X(x) = T"(2)/*T(0),
and both sides of this equation must be equal to a constant that we call —1%. (As
before, 2 might be any complex number until we pin it down further.) Hence,
X"(x) = -A2X(x), T'(t)=-A232T().
The general solutions of these ordinary differential equations are
X(x) = Cycosix + CysinAx, T(t) = C3cosAct + Cysindct.

As with the heat equation, the boundary conditions (1.30) imply that C; =0 and
4 = nn/l where n is a (positive) integer. We therefore obtain the series solutions

2, . nmx nnct . nmct
u(x,r):Xl:smT(ancos—1—+bnsmT). (1.31)
We recall from §1.1 that the appropriate initial conditions for this problem are
to specify u(x,0) = f(x) and (8u/01)(x,0) = g(x). Setting ¢ = 0 in (1.31), we
find that

oo
f(x) = ;an sin %,

whereas if we differentiate (1.31) with respect to ¢ (ignoring possible difficulties
about differentiating an infinite series term by term) and then set t = 0, we get
o0
nmec, . HRAX
gx) =3 7 by sin -
1

Thus we are led once again to the problem of expanding f and g in a sine series
of the form (1.22).

To sum up: in order to carry out the program of solving differential equations
by separation of variables, there are two problems that have to be addressed.
First, there are some technicalities connected with the convergence properties of
infinite series; these are sometimes annoying but rarely are really serious. Second
and more important, the following questions must be answered. Can a given
function on the interval (0,1) be expanded in a sine series (1.22) or a cosine series
(1.25)? Can a periodic function with period 2 be expanded in a series of the form
(1.27)? If so, how?

It is to these and related questions that the next chapter is devoted.
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EXERCISES

1. Derive pairs of ordinary differential equations from the following partial dif-
ferential equations by separation of variables, or show that it is not possible.
a. yuxx +uy =0.
b. xzuxx + XUx +Uyy + U= 0.
C. Uxx + Uxy +Uyy = 0.
d. uxx +uxy +uy=0.
2. Derive sets of three ordinary differential equations from the following partial
differential equations by separation of variables.
a, Yuxx +XUyy + Xyuzz = 0.
b. x?uxx + Xtx + Uyy + X2uzz = 0.
3. Use the results in the text to solve

U = uxx, u(0,t) =u(l,t) =0,
u(x,0) = 2sinx — 3sindnx, u(x,0)=0 (O<x<1).

4. Use the results in the text to solve

U = ]!UuXX9 ux(ost) — ux(nsf) = 0:
u(x,0) =3 -4cos2x (0<x < m).

Determine a value of ¢ so that |u(x, ) — 3| < 107* for > t,.

5. By separation of variables, derive the solutions ua(x,y) = sinnnx sinhnmy
of
Uxx + tyy =0, u(0,y) = u(l,y) = u(x,0)=0

that were discussed in Exercise 5a, §1.2.
6. By separation of variables, derive the family
uin(x,y,2) = sinmnxcosnmy exp(:l: m? + n? nz)
of the problem

Viu=0, u(0,y,2)=u(l,y, z)=uy(x,0,z)=uy(x,1,z) = 0.

7. Use separation of variables to find an infinite family of independent solutions
of
Uy = kuxx, u(0,1) =0, ux(l,t)=0,

representing heat flow in a rod with one end held at temperature zero and
the other end insulated.



CHAPTER 2
FOURIER SERIES

In Chapter 1 we derived three problems concerning the expansion of functions
in terms of sines and cosines. The most fundamental of these is the expansion of
periodic functions, which is of importance not only for boundary value problems
but for the analysis of any sort of periodic phenomena, and which has provided
either direct or indirect inspiration for many of the developments of modern
mathematical analysis. Most of this chapter is devoted to the study of periodic
functions. Once they are understood, the other two expansion problems of §1.3
can be solved without difficulty, as we shall see in §2.4.

In many respects it is simpler and neater to work with the complex expo-
nential function e'? instead of the trigonometric functions cos # and sinf. We
recall that these functions are related by the formulas
i 4 e—fﬂ, . it ?—iﬂ’

2 2i
e'% = cos +isin.

cosf =

The advantages of cosine and sine are that they are real-valued and are, respec-
tively, even and odd; the advantages of the exponential are that its differentiation
formula (e'®)’ = ie'® and addition formula e'(?+%®) = ¢/®¢'® are simpler than the
corresponding formulas for cosine and sine. Accordingly, it is worthwhile to be
able to translate one formulation into the other without much effort; we urge the
readers who have not yet acquired this facility to spend a little time doing so. A
more complete list of the properties of exponential and trigonometric functions
of complex variables will be found in Appendix 2.

2.1 The Fourier series of a periodic function

Suppose that f(@) is a function defined on the real line such that f(6+2n) = f(0)
for all #. Such functions are said to be periodic with period 27, or 2n-periodic for
short. We shall assume that f is Riemann integrable on every bounded interval;
this will be the case if f is bounded and is continuous except perhaps at finitely
many points in each bounded interval. (We shall consider various other hypothe-
ses on f in subsequent sections.) Since we shall be using the complex exponential
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2.1 The Fourier series of a periodic function 19

function, we shall allow f to be complex-valued rather than merely real-valued.
This bit of extra generality causes no additional difficulties and indeed simplifies
some things; moreover, in more advanced work it is often crucial to use complex
functions.

We wish to know if f can be expanded in a series

f(6) = Yag+ Y _(ancosnd + by sin nf). (2.1)
1

Here }ay is the coefficient of the constant function 1 = cos 08, and the factor of
I is incorporated in it for reasons of later convenience (see the remark following
equation (2.6)). There is no by because sin06 = 0.

In view of the formulas cosnf = (% + ¢~"0)/2 and sinnf = (¢'"? -
e~"6)/2j, (2.1) can be rewritten as

o0
)= cne™ (2.2)
where
co=3ap;  cn=1%(an—iby) and c_n = Y(an + iby) for n=1,2,3,... (2.3)
Alternatively, if we start out with (2.2), by using the formulas e = cosnf +
isinn#, cos(—n)f = cosnb, and sin(—n)f = —sinnf, we can put it in the form
(2.1) where

ap = 2¢p; an=cn+c—p and by=i(ch —c—p) forn=123,... (2.4)

In what follows we shall work primarily with (2.2), but we shall also show how
to interpret the results in terms of (2.1).

As a first step towards analyzing general periodic functions in terms of
trigonometric series, let us consider the following question. If we know to begin
with that f(6) has a series expansion of the form (2.2), how can the coefficients
¢n be calculated in terms of f? The answer to this question is appealingly simple.
Let us multiply both sides of (2.2) by e~* (k being an integer) and integrate
from —x to n. Taking on faith for the moment that it is permissible to integrate
the series term by term, we obtain

f(G)e“"aa'G Zc f in=k1 g,

But

f” pitn=kgg — L in—k8|"
—n i(n—k) e

m % n
f ein=k0g0 — [" g9 =22 ifn=k.
-1 -

S el ;
= =k =0 ifn#k,
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Hence the only term in the series that survives the integration is the term with
n = k, and we obtain

n
f(0)e~*% 46 = 2ncy.
bt 4

In other words, relabeling the integer k as n, we have the desired formula for the

coefficients cn:

= " f(0)e" do (2.5)
ol === 2?: n . .

It is now an easy matter to find the coefficients a, and b, for the series (2.1):
1 n
ap = 2¢o = -/ 1(6)d8,
T Jen

and forn=1,2,3,...,

an=Cn+Cp = Lfn f(8)(e*""6+e‘-”9)d9—l " f(@)cosn8do
n = tn -n - 2?1, e — P x ¥

: n 3 . n
b W = ﬁf 7(8) (e~ — i) dp = %/ £(6)sinnf d6;
- -n
that is, .
g, = %f f(8)cosn8ds  (n>0);
—-n

l s

T J-n

(2.6)
bn f(8)sinnfBdé (n>1).

(Note that the formula for a, here holds also for n = 0; this is the reason for the
factor of % in (2.1).)

To recapitulate: if f has a series expansion of the form (2.1) (or (2.2)), and
if the series converges decently so that term-by-term integration is permissible,
then the coefficients a, and b, [or cn] are given by (2.6) [or (2.5)]. But now if
f is any Riemann-integrable periodic function, the integrals in (2.5) and (2.6)
make perfectly good sense, and we can use them to define the coefficients an, bn,
and c,. We are now in a position to make a formal definition.

Definition. Suppose f is periodic with period 2n and integrable over [-n, ].
The numbers ¢, defined by (2.5), or the numbers a, and b, defined by (2.6), are
called the Fourier coefficients of f, and the corresponding series

[s o] o0
che‘”e or 3ag+ Y (ancosnf + bysinng)
-0 1

is called the Fourier series of f.

Instead of integrating from —=x to 7 in (2.5) and (2.6), one could equally well
integrate over any interval of length 2z, for instance from 0 to 2x. The result
will be the same since the integrands are all 2z-periodic. This is an instance of
the following general fact, which is sufficiently useful to merit a special mention.
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Lemma 2.1. If F is periodic with period P, then fa‘”‘p F(x)dx is independent of
a.

Proof: Let

g(a)=]:+PF[x}dx=fOHPF(x)dx—f:F(x)dx.

By the fundamental theorem of calculus, g’(a) = F(a + P) — F(a), so by the
periodicity of F, g’ vanishes identically. Thus g is constant. 1

Another useful observation in this context is that

a
aF(x)d;::{zfo F(x)dx if F is even,
- 0 if F is odd.

(Recall that F is even if F(-x) = F(x) and odd if F(—x) = —F(x).) Since cos né
is even and sin n6 is odd, we have the following result.

Lemma 2.2. With reference to the formulas (2.6),

n
if f is even, an = %fo f(B)cosnBdbB and by =0;

if fis odd, an=0 and bﬂ=%fnf(9)sinn0d9.
0

Whether the Fourier series of a 2z-periodic function f is written in the
trigonometric form (2.1) or the exponential form (2.2), the constant term in the
series is

A / " 1(6)do6
Cap==x0n = =— %
0 340 I e

which is nothing but the average or mean value of f on the interval [-x, ]. By
Lemma 2.1, it is also the mean value of f on any interval of length 2z. This fact
is very useful, and it may be more easily remembered than the integral formula;
accordingly, we display it as a lemma.

Lemma 2.3. The constant term in the Fourier series of a 2n-periodic function f is
the mean value of f on an interval of length 2n.

The preceding discussion shows that if we wish to find a trigonometric series
that converges to a given periodic function f, the Fourier series of f is the only
reasonable candidate; but we do not yet know whether it always does the job.
Before tackling this general question, let us compute a couple of examples.
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(a)

(b)

(d)

()

FIGURE 2.1. The triangle wave of Example 1 and some partial sums of its
Fourier series: (a) the triangle wave, (b) Sy, (¢) S;, (d) S3, and (e) S,, where
Sk = n - (4/7n) oK (2k — 1)"2 cos(2k - 1)6.
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Example 1. Let f be the 2n-periodic function determined by the formula
f(8)=16] for —a<O<m

that is, f is the triangle wave depicted in Figure 2.1(a). Since f is even, we can
calculate the coefficients a, and b, by using Lemma 2.2. We have b, = 0 and

2 T 2 [T
=—f f(ﬂ)cosnt?dﬁ::—f B cosnb df.
n 0 ¥/ 0

Thus, for n =0,
ag——f sde—_e‘* i,
0

and for n > 0,

280sinnf|" 2 [Tsinnd 2cosnf|* _ 2(-1)"-1

n= — [—— dﬂ - 5 = - 3 i

T n |y mjy n T on |, ™ n
since sinnm = 0 and cosnzm = (—1)". Now, (—1)" — 1 equals —2 when #n is odd
and 0 when n is even. Therefore, the Fourier series of f is

n 4 1 4 cos(2k — 1)6

TR, L Il ooy @)

The graphs of the first few partial sums of this series are shown in Figure 2.1(b-e).
Evidently they provide good approximations to f: after only five terms (including
the constant term), the graph of the partial sum is almost indistinguishable from
the graph of f, except that the corners are a bit rounded. Moreover, we can easily
see that the whole series converges absolutely, by comparison to the convergent
series 305° n 2

Example 2. Let g be the 2n-periodic function determined by the formula
g@y=0 for —n<O<m.

In other words, g is the sawtooth wave depicted in Figure 2.2(a). We could use
Lemma 2.2 to calculate a, and b, since g is odd, but for the sake of variety we
shall use (2.5) to calculate ¢, instead. For n = 0 we have

1 n
co=ﬁﬁnﬁd9=0,

and for n # 0 we integrate by parts to obtain

_ 1 n —ing _ 1 ee—inﬂ
cn-z—rf_xt?e de-——ﬁ*—m

_ 1 _ing 0 L
=37 (m*:ﬂ)

2 r —ingd
_71_] e 4o

2 ) —in

b4 [_l)n+l

" in

L
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AN
AN

N
V&

(b) \/-//_/\
© \///\ \// //\
FiGURE 2.2. The sawtooth wave of Example 2 and some partial sums of

its Fourier series: (a) the sawtooth wave, (b) S3, (c) Ss, and (d) S;4, where
Sy =25 N(-1)"'n"sinng.

(d)
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since e~"* = (—1)". Hence the Fourier series of g is

(_l)n+le£n8
S

Here n runs through all positive and negative integers. Since (—1)" = (-1)7",
the nth and (—n)th terms of this series can be combined to give

ind —infl _1yn+l
(LY (i’T*e . ):2( L) sin né,

—in
and thus the Fourier series of g is

o0 (_ l)n+l .
2;Ts1nn6. (2.8)

The graphs of some partial sums of this series are shown in Figure 2.2(b-d).
One can see that these partial sums do approximate the original function g, but
a comparison of Figures 2.1 and 2.2 shows that the quality of the approximation
here is markedly inferior to that in Example 1. One must add many more terms
to the series to get a comparably close fit to the original curve, particularly near
the discontinuities. (See also Figure 2.8 in §2.6, showing the 40th partial sum
of the Fourier series of the reversed sawtooth wave, for an even more dramatic
demonstration of this fact.)

Analytically, the reason for this is that the terms in the series (2.7) tend to
zero much more rapidly than the terms in the series (2.8). Precisely, if one disre-
gards the even-order terms in (2.7) (which are all zero), the nth term in (2.7) is of
the order of magnitude of (27— 1)~2, whereas the nth term in (2.8) is of the order
of magnitude of n~!. Thus, the contributions of the high-order terms is much
less in (2.7) than in (2.8). As we shall see in §2.3, this phenomenon is intimately
related to the fact that the triangle wave is smoother than the sawtooth wave:
the former is everywhere continuous, whereas the latter has jump discontinuities.
The point is that the rougher a function is, the more difficult it is to approximate
it with perfectly smooth functions like linear combinations of cos n8 and sin né.

In fact, there sems to be some danger that the series (2.8) will not converge:
the nth term has magnitude roughly n~! in general, and 3°{° n~! diverges. On
the other hand, at a given point § some of the functions sin n€ will be positive
and others will be negative, so there may be some cancellation effects that will
prevent divergence. This is in fact the case, as we shall prove in the next section.
For the moment, we simply wish to impress on the reader that the convergence
of Fourier series is not a simple matter.

Table 1 gives a list of some elementary Fourier series. It includes all the ex-
amples we shall need later on. The fact that all the functions in this table really
are the sums of their Fourier series (except perhaps at their points of discontinu-
ity) follows from Theorem 2.1 in §2.2.

We conclude this section by deriving an estimate on the Fourier coefficients
that will be needed to establish convergence results in the following sections.
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TABLE 1, FOURIER SERIES

The functions f in this table are all understood to be 2z-periodic. The formula
for f(#) on either (—x, m) or (0, 27) (except perhaps at its points of discontinuity)
is given in the left column; the Fourier series of f is given in the right column;
and the graph of f is sketched on the facing page.

1
.| f(8)=6 (-n<fO<m) ZZ( n™ sin né
2| f0)=160 (~m<b<m) 4 ifj cos(2x - L1
a )_ f_n 1 n_l)z
. sinnf
3./ fl6)=n-6 (0<6<2m) 2; -
[0 (-m<8<0) T cos(2n - 1)8
* fw)“{a (0<8<m) 4 ‘Z T2n-1)2
0 1\(ne)
+Z( L) sin né
1
5.| £(6) =sin’6 3 —4cos26
-1 (-m<8<0) 4 ¢~ sin(2n - 1)0
& f(e)_{l 0<8<7) ml T am-T
{0 (-m<6<0) 1, 2&sin(2n-1)0
W f(a)_{l 0<8<n) 2*1:? 2n-1
g 2 4 XX cos2nb
8.| £(6) =|sing) ;—;Z yre g
_ 2 4 (=1)"cos2nd
9. | £(8) = |cos 6] = ;Z o
{0 (-t < 6<0) 1 2~cos2nf 1 .
0 f(m_{sinﬁ (0<8<m) E—E;4n2_l+§sm8
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TABLE 1 (continued)

11,

12,

13,

14,

15.

17.

18.

19

20.

) (~a<f<a)
f(ﬁ)—{ az=l (a<f<m)
all (-n<6<-a)
(2a)~! (16| <a)
16)= { (a< |8 <m)
(2a)™! (16-6¢| < a)
f16)= { (a< |3-80| <)
1 (-a<éb<a)
f(&):{-l (2a< 6 < 4a)
0  elsewhere in (-7, 7)
a~*(a-{6)) (161 <a)
f(6)= { (a< |8 <m)

f6)=6* (-m<8<n)

f(6) =

B(n—-10]) (-m<@<m)

fl@)=e" (-n<6<n)

f@)=e® (0<0<2nm)

f(6)=sinh® (-m< @ <n)

1 < sinna
E; (cosnfycosnb

o0 .
> smnna {(1 - cos 3na)cosnf
1

—sin 3nasin nﬂ]
1 2 2 cosna
=+ = E —————~cosnf
2n n 7
2 et n
7 (-1)
=% 42 3 C0s né

1

8 & sin(2n - 1)0

ma (2n- 2n-13

smhbn = fe 1)”
b=

e2mh _ | X ,inb
2n b—-in
—oc
2sinh 7 & (-=1)"*1n

sin nf

T 3 n2+1
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(11) (12)

go_;r I_';_i &a_n T I—I:_
(13) , (14)

a | +
(15) (16)

NNV,

(17) (18)

19) (20)
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Bessel’s Inequality. If [ is 2n-periodic and Riemann integrable on [-n, ), and
the Fourier coefficients ¢ are defined by (2.5), then

Sl < 5 [ 1£(6)%6.

Proof: Since |z|* = zZ for any complex number z,

2

N s
1£(6)- 3 cnei™
N

_ (f(ﬁ} _ ;trcnema) (m _ _z:igﬂe-ma)

L) N
= 1f(0)F =3 [ca @)™ +Tnf(@)e™ ] + 3 cmCne'™ ",
-N mn=—N

Now divide both sides by 2z and integrate from —n to n. Taking account of the
formulas

1 <l gy . . 1 (" im-mp 0 _ JO if m#n,
2nj_ﬂf(6)e d0 = cn, ﬂf_ue de_{l ey
1/“
2n J_,

1 n 2 N N
-/ |£(0)12d6 - g[c,,a, s z,,en] I’ ;Nc,,an

we obtain

2
dé

N P
£0) =Y cne'™
=N

YA
=L f@rde -3
=5 ) > al?.

But the integral on the left is certainly nonnegative, so

1 [ 2 L
05'2-1; 1£(6)! dB—ZWﬂ] .
3t =
Letting N — oo, we obtain the desired result. 1
Bessel’s inequality can also be stated in terms of the coefficients a, and by
defined by (2.6). Indeed, by equation (2.4), for n > 1 we have
\an|? + |bn|* = @nGn + bnbn
= (Cn + C’-—n)[?n + E—n) + i(Cn - C—n)(— I)(En - E—H]
= 2CnEn + 2C—n?—n,
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so that
laol> =4lcol’,  lanf* + 1bal? = 2(Jenl® + le-nl?) forn > 1.

" Therefore,

%1ao|2+§zlj(ian12+|bn|2)— S lenlt < 5 [ 16)7d8.

It turns out, as we shall see later, that Bessel’s inequality is actually an equal-
ity. For now, its main significance is simply the fact that the series 3" |an|?,
S |bul?, and 3 |cn|? are all convergent. As a consequence, we obtain the follow-
ing result, which is a special case of a theorem known as the Riemann-Lebesgue
lemma.

Corollary 2.1. The Fourier coefficients an, bn, and cn all tend to zero as n — oo
(and as n — —co in the case of cn ).

Proof: \an|?, |ba|?, and |cn|? are the nth terms of convergent series, so they
tend to zero as n — oo; hence so do an, ba, and ¢y, 1

EXERCISES

\jeﬁ'f‘y the formulas of Table 1. That is, for 3 < n < 20, Exercise »n is to show
that the series in the right column of entry n in Table 1 is the Fourier series of
the function in the left column. (Entries 1 and 2 are Examples 1 and 2 in the
text.) Some of these functions are related to each other, and you may be able
to use this fact to avoid caclulating all the Fourier coefficients from scratch each
time. Entries 3 and 4 can be derived from entries 1 and 2; entry 7 can be derived
from entry 6; entries 9 and 10 can be derived from entry 8; entries 13 and 14
can be derived from entry 12; and entries 19 and 20 can be derived from entry
18.

2.2 A convergence theorem

Question: does the Fourier series of a periodic function f converge to f? The
answer is certainly not obvious — for example, why should one be able to expand
nonsmooth functions like the examples in §2.1 in a series whose individual terms
cos nx and sinnx possess derivatives of all orders? Fourier’s assertion that the
answer is yes was initially greeted with a certain amount of disbelief. In fact, the
answer is always yes provided that things are interpreted suitably, although the
situation is somewhat more delicate than one might initially expect.

In this section we shall show that the Fourier series of f converges to f under
certain reasonably general hypotheses on f; later, in §2.3, §2.6, §3.4, and §9.3, we
shall present some variants of this result under other conditions on f. We first
define the class of functions with which we shall be working.



32 Chapter 2. Fourier Series

Suppose —oo < @ < b < co. We say that a function f on the closed interval
[a, b] is piecewise continuous provided that
(i) f is continuous on [a, b] except perhaps at finitely many points x;,..., X;;
(ii) at each of the points xy,..., Xy, the left-hand and right-hand limits of f,

fixi=)= ) im0 = h) and Sy =, Hm S+ ),

exist. (If the endpoint a (or b) is one of the exceptional points x;, we require

only the right-hand (or left-hand) limit to exist.)

That is, f is piecewise continuous on [a, b] if f is continuous there except for

finitely many finite jump discontinuities. (When we say that the limits f(x;x)

exist, we mean in particular that they are finite: oo is not allowed as a value.) We

denote the class of piecewise continuous functions on [a, b] by PC(a, b).

Next, we say that a function f on [a, b] is piecewise smooth if f and its first
derivative f” are both piecewise continuous on [a, b], and we denote the class of
piecewise smooth functions on [a, b] by PS(a,b). More precisely, f € PS(a,b)
if and only if

(i) fe PC(a,b),

(ii) f' exists and is continuous on (a, b) except perhaps at finitely many points
Xi,...,Xg (which will include any points where f is discontinuous), and the
one-sided limits f'(x;-) and f'(x;+) (j = 1,...,K), and also f'(a+) and
f'(b-), exist.

In other words, f is piecewise smooth if its graph is a smooth curve except

for finitely many jumps (where f is discontinuous) and corners (where f' is

discontinuous). We do not allow infinite discontinuities (such as f(x) = 1/x has

at x = 0) or sharp cusps (where f’ becomes infinite). See Figure 2.3.

AN~ \‘[ J[L{/“

FIGURE 2.3. A piecewise smooth function (left) and a function that is not
piecewise smooth (right).

One last bit of terminology: a function defined on the whole real line R
is said to be piecewise continuous or piecewise smooth on R if it is so on every
bounded interval [a, b]. (That is, f or f' may have infinitely many discontinuities
on the whole line but only finitely many in any bounded interval.) We denote the
spaces of piecewise continuous and piecewise smooth functions on R by PC(R)
and PS(R).
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We now return to consideration of the Fourier series of a 2z-periodic func-
tion f(8). We recall that this is defined to be

o ==} .
a0 +Z(an cosnf + bpsinnf) = Ecne”‘e (2.9)
1 -0

where
]. n i i !
an = ~—f fly)cosnydy, bn= —»f Sfy)sinnydy,
7[ 4 4 -0

. ‘ (2.10)
2= [ Swe ™ dy.

(We have labeled the variable of integration in (2.10) as y simply for later con-
venience.)

What meaning is to be attached to this series? Of course, the sum of any
infinite series is defined to be the limit of its partial sums. When we write the
series (2.9) in trigonometric form, we agree always to group together the terms
involving cosn8 and sin né as indicated above; correspondingly, when we write
it in exponential form, we agree always to group together the terms involving
e"? and e~"%, (This convention will always be in force.) Thus we take the Nth
partial sum of the series (2.9) to be the sum S/.(6) defined by

SJ,{,(B) = za0+z:{a,, cos nf + by sinné) = Zc g (2.11)
-N

and our aim is to show that SJ, converges to f as N — oc.
If we plug the definition (2.10) of ¢, into (2.11), we see that

T N n
$4(6) = o= i fW)em@Vay = 3" [* e Ddy.
N 2n = J-x 4 =) g

The last equality results from replacing n by —n; this does not affect the sum
since n ranges from —N to N. If we now make the change of variable ¢ = y ~ 0
and use Lemma 2.1, we obtain

S§(0) = j £(0 +§)e"dg =5 f £(6 + d)ei™do.
In short,

S4(6) = _“ f(6+6)D(#)d#, where Dy(8) = o= Ee”’“’ (2.12)
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The function Dy(¢) is called the Nth Dirichlet kernel. We can express Dy

in a more computable form by recognizing that it is the sum of a finite geometric
progression:

2N
_ 1 —ing i, Hi2Ney _ 1 —iNg < ing
DN(¢)_2ne (1+e+---+e )_zﬁe 20 8",

Since K r* = (rX*! = 1)/(r — 1) for any r # 1, for ¢ # 0 we have

1 _ineel@NHS | piNEDS _ p=iN9
Moreover, on multiplying top and bottom by e~/%/2, we obtain
1 exp[i(N + 1] —exp[~i(N+ 1g] | sin(V + §)o
Dn(9) =5 ; = 5= . (2.14)

exp(i}¢) — exp(-i30) T2 sing
From this formula it is easy to sketch the graph of Dy: it is the rapidly oscillating
sine wave y = sin(N + %)da amplitude-modulated to fit inside the envelope y =
+(2m)"' csc }¢. See Figure 2.4.

' \]

Wm‘ﬁﬁn A‘?\.ﬂ' P ol
= \* vy ”‘\l N ‘l'u VBT 2 2

!
]

i L[]

FIGURE 2.4. Graphs of the Dirichlet kernel Dys(¢) (solid) and its envelope
+(27)"! esc $¢ (dashed) on the interval -7 < ¢ < 7.

The pictorial intuition behind the fact that S{,(S) — f(8) is as follows: in

the integral formula (2.12) for S{,(G), the sharp central spike of Dy (¢) at ¢ =0
picks out the value f(6), and the rapid oscillations of Dy(¢) away from ¢ = 0
kill off most of the rest of the integral because of cancellations between positive
and negative values. Before proceeding to the actual proof, however, we need
one more fact about Dy .
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Lemma 2.4. For any N,

0 n
LIDN(B)df?:/; DN(E))dG:%.

Proof: From formula (2.12) we have

1 1
Dy(68) = 5—+ = > cosnd,
1

n
so that -
]”D @do=|L  Lysinnd] 1
0 ¥ T2 m ~ . -
and likewise for the integral from —n to 0. 1

Here at last is our main convergence theorem. It says that the Fourier series
of a function f € PS(R) converges pointwise to f, provided that we (re)define f
at its points of discontinuity to be the average of its left- and right-hand limits.

Theorem 2.1. If f is 2n-periodic and piecewise smooth on R, and Si,r is defined by
(2.10) and (2.11), then

Jim s{(6) = 4[(6-) + £(6+)]

for every 8. In particular, limy_, o Sﬁ(f)) = f(8) for every 6 at which f is contin-
Uous.

Proof By Lemma 2.4, we have

0 n
41(0-)= 7(6-) [ Dy(¢)dg,  $/(6+)= 1(6+) [ Dy()de,
and hence by equation (2.12),

S4(0) - 4[f(6-) + £(6+)]
= [ [76+9) - 10| Da@ s+ [ [16+9) - 16+)|Date)do.
- 0

We wish to show that for each fixed 6, this quantity approaches zero as N — oc.
But by formula (2.13), we can write it as

3 [ 8@ - ¥ g (215)
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where g(¢) is defined to be

f6+8) = 1(6-) ¢
et — 1

S0 +¢) - f(6+)

- <¢<0, 1

for0< ¢ < m.

gisa well-behaved function on [-7, 7], as smooth as f is, except near ¢ = 0
(where e'® — 1 vanishes). However, by 'Hépital’s rule,

jim 5= i JE+9=101) _ yy SO0 _[10%)

d—0+ eiv — 1 ¢—-0+ ieio

Similarly, g(¢) approaches the finite limit i~' /’(6-) as ¢ approaches zero from
the left. Hence g is actually piecewise continuous on [—7, 7], so by the corollary
to Bessel’s inequality in §2.1, its Fourier coefficients

Cn= o= f g(@)e" dg

tend to zero as n — +oc. But the expression (2.15) is nothing but C_y.) - C,
so it vanishes as N — oc; and this is what we needed to show. 1

Let us see what this theorem says with regard to the two examples of the pre-
vious section. The function f of Example 1 is piecewise smooth and everywhere
continuous, so the Fourier series of f converges to f at every point. Thus,

n 4 C~cos(2n - 1)6

7-5‘; on = 17 =10 for —n<@<m. (2.16)
On the other hand, the function g of Example 2 is piecewise smooth and contin-
uous except at the points & = kxn with k odd. At these discontinuities we have
glkn—) = n and g(kn+) = -n, so $[g(kn—) + g(kn+)] = 0. Thus the Fourier

series of g converges to g at all points except 6 = kn (k odd), where it converges
to zero. Hence,

n+l
1) sinnf =

for —n<O<nm. (2.17)

[SSTRS )

1
In particular, if we take 8 = 0 in (2.16), we obtain the formula

SO n?

l = —
Z(zk-l)z l+g+tm+gt =7

(As the reader may check, the same formula results from taking taking 6 = 7.)
Moreover, if we take § = 47 in (2.17) and use the fact that sin 3n is alternately
1 and —1 when # is odd and 0 when n is even, we find that

< (—1)k! 11 1

= =

2k — 1 3



2.2 A convergence theorem 37

These are two interesting instances where numerical series can be evaluated as
special values of Fourier series. Others can be found in the exercises.

Theorem 2.1 says that the Fourier series of a 2zn-periodic piecewise smooth
function f converges to f everywhere, provided that f is (re)defined at each of
its points of discontinuity to be the average of its left- and right-hand limits there.
Henceforth, when we speak of piecewise smooth functions, we shall assume that
this adjustment has been made, unless we explicitly state otherwise. This will
obviate the need to single out the points of discontinuity for special attention. In
particular, with this understanding, we have the following uniqueness theorem.

Corollary 2.2. If f and g are 2n-periodic and piecewise smooth, and f and g have
the same Fourier coefficients, then f = g.

Proof: [ and g are both the sum of the same Fourier series. 1

EXERCISES

1. Which of the following functions are continuous, piecewise continuous, or
piecewise smooth on [-7, 7]?
a. f(f)=csch. b. f(B)=(sin@®)3. ¢ f(8)=(sing)*>.
d. f(6)=cos@if 8 >0, f(0)=—cosf if § <0.
e. f(6)=sinfif >0, f(#)=sin26 if 6 < 0.
f. f(6) = (sin6)"/3 if 6 < §n, f(6) =cos if 6 > n.
2. To what values do the series in entries 6, 7, 12, and 18 of Table 1, §2.1,
converge at the points where their sums are discontinuous?

The Fourier series for a number of piecewise smooth functions are listed in Table
1 of §2.1, and Theorem 2.1 tells what the sums of these series are. By using this
information and choosing suitable values of 6 (usually 0, 4=, or =), derive the
following formulas for the sums of numerical series. (The relevant entries from
Table 1 are indicated in parentheses.)

- 1 1 = (-l g2
3‘Z4n2-1‘§’ 2 B ®).

: -1 4
LR w
6. in(;-ll-};z =—2%cschbn—ﬁ (18 or 19).
7. ij:nz-:-bz = Xcothbr— 51y (18 or 19; this i a bit tricky).
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2.3 Derivatives, integrals, and uniform convergence

This section is devoted to an examination of the behavior of Fourier series in
relation to the processes of calculus.

We shall be largely concerned here with periodic functions that are both
continuous and piecewise smooth. Pictorially, the graph of such a function is a
smooth curve except that it can have “corners” where the derivative jumps. The
fundamental theorem of calculus,

b
£(b) - f(a) = ] £1(6)ds,

applies to functions f that are continuous and piecewise smooth, even though
f’ is undefined at the “corners.” To see this it suffices to express the integral
on the right as the sum of integrals over the subintervals of [a, b] on which f is
differentiable; the continuity of f guarantees that the endpoint evaluations at the
intermediate subdivision points cancel out. For example, if f is differentiable
except at the point ¢ € (a, b), we have

/:f’(ﬂ)de = /:f'(ﬂ)a'%f: f(6)dé
= [fle) - f@] + [1b) - £(0)] = £(b) - f(a).

This observation will be used implicitly in several of the following calculations,
including the proof of Theorem 2.2.

Our first main result relates the Fourier coefficients of a function to those of
its derivative. The fact that this relation is so simple is one of the main reasons
underlying the utility of Fourier series.

Theorem 2.2. Suppose f is 2n-periodic, continuous, and piecewise smooth. Let
an, ba, and cn be the Fourier coefficients of f defined in (2.5) and (2.6), and let
ay, by, and c,, be the corresponding Fourier coefficients of f'. Then

an = nbp, by, = —nay, Ch = incn.

Proof: This is a simple matter of integration by parts. For example,

th= o= [ 1B df = L f(g)e=

4
2n J_, ]

- %/;nf(ﬁ)[wf’ne“'"&}d&.

The first term on the right vanishes because f(-7) = f(x) and ¢/"* = ¢~"" =
(=1)", and the second term is inc,. The argument for a, and b}, is the same; we
leave the details to the reader. 1

Combining this result with the theorem of the previous section, we easily
obtain the basic results on differentiation and integration of Fourier series.
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Theorem 2.3. Suppose f is 2n-periodic, continuous, and piecewise smooth, and
suppose also that ' is piecewise smooth. If

o0
3" cne™® = fag+ " (an cosnb + bnsin nd)
1

is the Fourier series of f(8), then f'(6) is the sum of the derived series

oo o0
S incne'™® =S (nby cosn — nay sinn)
-0 1

for all @ at which f'(8) exists. At the exceptional points where f' has jumps, the
series converges to %[f’[t?*] + f’(9+)}‘

Proof: Since f” is piecewise smooth, by Theorem 2.1 it is the sum of its
Fourier series at every point (with appropriate modifications at the jumps). By
Theorem 2.2, the coefficients of "%, cosn@, and sinn@ in this series are incy,
nbn, and —nap. The result follows. 1

In considering integration of Fourier series, one must keep in mind that the
indefinite integral of a periodic function may not be periodic. For example, the
constant function f(#) = 1 is periodic, but its antiderivative F(f) = 6 is not.
However, the integral of every term in a Fourier series is periodic except for the
constant term, from which we see that a periodic function has a periodic integral
precisely when the constant term in its Fourier series vanishes, i.e., when its mean
value on [-7, 7] is zero. We therefore arrive at the following result.

Theorem 2.4. Suppose f is 2n-periodic and piecewise continuous, with Fourier
coefficients an, ba, cn, and let F(8) = f(f f($)de. If co(= Lag) =0, then for all
we have

) )
F(@)=Co+ Y Bei" = 4o+ Y ("‘;!—" sinnf %cosn&) (2.18)
n#0 1

where the constant term is the mean value of F on [-n, 7]
1 n
= Jdg = E/_RF(O)dS. (2.19)

The series on the right of (2.18) is the series obtained by formally integrating the
Fourier series of f term by term, whether the latter series actually converges or not.
If cg # 0, the sum of the series on the right of (2.18) is F(8) — co0.

Proof: F is continuous and piecewise smooth, being the integral of a piece-
wise continuous function. Moreover, if ¢y = 0, F is 2n-periodic, for

. #+2n n
F(0+27) - F(6) = [8 f(6)dé = [_ f(@)dé = 2meo =0,



40 Chapter 2. Fourier Series

Hence, by Theorem 2.1, F(6) is the sum of its Fourier series at every #. But
by Theorem 2.2 applied to F, the Fourier coefficients 4,, Bx, and C, of F are
related to those of f by
_ bn _ an _Cn
An——?, - Cn—a (n#0).

The formula (2.19) for the constant Cj or éAU is just the usual formula for the
zeroth Fourier coefficient of F. If ¢; # 0, these arguments can be applied to the
function f(0) — ¢, rather than f(8), yielding the final assertion. 1

Example. Let f be the periodic function such that () =1 for 0 < 8 < 7w and
f(8) = -1 for —n < 6 <0, and let F(6) = foe f(¢)d¢. Clearly F(6) = |6 for
|6] < m. By entry 4 of Table 1, §2.1, the Fourier series of f is (4/n) Y 7°(2n -
1)~'sin(2n — 1)8, so by Theorem 2.4 we have

n
F(8)=Cy- z co(sz(in-_l 1)60 where C = flE[_,, 6] d6 = _’ZE

Thus we recover the result of entry 2 of Table 1.

Theorem 2.1 gave conditions under which the Fourier series of f converges
pointwise to f. However, experience in working with infinite series teaches us
that simple pointwise convergence of a series can be a tricky business, and that
we are much better off if the convergence is absolute and uniform. We recall
the definitions: suppose the series 3" g»(x) converges to g(x) on a set S. The
convergence is absolute if the series 3.{° |gn(x)| also converges for x € S, and
uniform if not only does the difference g(x) — 3V gn(x) tend to zero for each
x € 8§, but so does the maximum of this difference over the whole set S:

sup
xES

N
g(x) - Egn{x)\ -0 as N — 0.
1

The most useful criterion for guaranteeing absolute and uniform convergence is
the Weierstrass M-test: if there is a sequence M, of positive constants such that

o0
|gn(x)| <My forxeS, and Y My< oo,
1

then the series 3_{° gn(x) is absolutely and uniformly convergent.
In the case of Fourier series, we have the obvious estimates
fn6| =

|an cos n| < |an|, |by sin nb| < |bal, |cne |enl.

Hence the Weierstrass M-test will apply to a Fourier series in trigonometric form
if 3°5° 1an| < oc and Y°§° |bn| < oo, and to a Fourier series in exponential form if
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S len] < oo, Since it follows from the equations (2.3) and (2.4) relating ax,
bn, and Cn that

icxn| < |an] + |bnl, lan| < |cn| + |C=nl, {bal < |en| + [C=nl,
the conditions 3°(° |an| < oo and 377 |bn| < oo are completely equivalent to

the condition % _ |ca| < oc. We now present a sufficient (but not necessary)
condition for them to hold.

Theorem 2.5. If f is 2m-periodic, continuous, and piecewise smooth, then the
Fourier series of f converges to f absolutely and uniformly on R.

Proof: By Theorem 2.1 and the remarks just made, it suffices to show that
the series 3°°°_ |cx| converges. Let ¢, denote the Fourier coefficients of f’. By

Theorem 2.2 we know that ¢, = (in) !¢y, for n # 0, and by Bessel’s inequality
applied to f7,

oo " 1 P 3
Y ekt < ELW(BN 40 < .
—o
Hence, by the Cauchy-Schwarz inequality,

oc 1/2 1/2
3 lenl = leol + ) £|60|+(Z;}2—) (ZICL!Z) < oo,

i
n#0 n n#0 n#0

since Z,,#o(l/nl) = 22?"(1/?&2) < . (In case the reader needs reminding: the
Cauchy-Schwarz inequality says that the dot product of two vectors is bounded
by the product of their norms. It is valid in any number n of dimensions and
also in the limit as n — oo. We shall discuss it in more detail in Chapter 3.) 1

Let us return to Theorem 2.3, If f has many derivatives, Theorem 2.3 can be
applied several times in succession to calculate the Fourier series of f*, f”, /",
etc. Each time one takes a derivative, the magnitude of the Fourier coefficients
cn (or an and by) increases by a factor of |n|, which means that the derived series
converges more slowly than the original series. Or, to put it another way, if the
derived series converges at all, the original series must converge relatively rapidly.
Thus there is a connection between the differentiability properties of a function
and the rate of convergence of its Fourier series. Here is a precise result along
these lines.

Theorem 2.6. Suppose f is 2n-periodic. If f is of class C*~1) and f*=1 s
piecewise smooth (thus ) exists except at finitely many points in each bounded
interval and is piecewise continuous), then the Fourier coefficients of [ satisfy

Zlnkaniz < oo, Z:Inkbnl2 < oo, zmkcﬂz < o0.

In particular,

n*a, — 0, nkby — 0, nken — 0 as n — oo.

On the other hand, suppose the Fourier coefficients cn (n # 0) satisfy |cn] <
Cln|~%+2) (equivalently, |an| < Cn~**+*) and |by| < Cn=k*%)) for some C > 0
and o > 1. Then f is of class C'¥).
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Proof: For the ﬁrst pan we apply Theorem 2.2 k times to conclude that

the Fourier coeﬂi(:lents k) of £1K) are given by c{¥) = (in)*cx, and similarly for

£,’” and b,, . The conclusions then follow from Bessel’s inequality (applied to
£y and its corollary. For the second part, we observe that since a > 1,

S el < CY In*+) <2 Y n <0 for j <k
n#0 n#0 n>0

Thus, by the Weierstrass M-test, the series > (in)/cne™? are absolutely and
uniformly convergent for j < k. They therefore define continuous functions,
which are the derivatives ) of f(6) = 3 cne™®. |

The two halves of Theorem 2.6 are not perfect converses of each other; this
is in the nature of things. (There is no simple “if and only if” theorem of this
sort.) However, the moral is clear: the more derivatives a function has, the more
rapidly its Fourier coefficients will tend to zero, and vice versa. In particular, f
has derivatives of all orders precisely when its Fourier coefficients tend to zero
more rapidly than any power of n (for example, ¢, = e~elnl),

Another aspect of this phenomenon: the basic functions e'*” or cosnf
and sinnf are, of course, perfectly smooth individually, but they become more
“jagged,” that is, more highly oscillatory, as # — oc. In order to synthesize non-
smooth functions from these smooth ingredients, then, the proper technique is
to use relatively large amounts of the high-frequency (i.e., large-n) functions.

These points are worth remembering; they are among the basic lessons of
Fourier analysis. The reader can see how they work by examining the entries
Table 1 in §2.1. For instance, the sawtooth wave in entry 2 is piecewise smooth
but not continuous; its Fourier coefficients are on the order of n~!. The triangle
wave in entry 1 is one step better — continuous and piecewise smooth, with
a piecewise smooth derivative; its Fourier coefficients are on the order of n=2
These examples are quite typical.

inf

EXERCISES

1. Derive the result of entry 16 of Table 1, §2.1, by using equation (2.17) and
Theorem 2.4.
2. Starting from entry 16 of Table 1 and using Theorem 2.4, show that

a. —n26—122 ” 5“”’9 (~m < 0 < n);

- n+1 4
b. 64_23262=4BZ(_1-‘_"H_40-9-_—M_% (_RSQS“)’
=1 =
C. ZI:F—%

3. Evaluate 3" {°(2n — 1)~%cos(2n — 1)8 by using entry 17 of Table 1.
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4. By entry 8 of Table 1, we have

sinf =

Al

4 X cos2nf

and we also have

]
cosf = ;—gsinﬁ": —j:msinr.ﬁdrﬁ.

Show that the series (*) can be differentiated and integrated termwise to yield
two apparently different expressions for cos @ for 0 < § < =, and reconcile
these two expressions. (Hint: Equation (2.17) is useful.)

5. Let f(8) be the periodic function such that f(6) = €% for -7 < 6 < =, and
let 5% cne™? be its Fourier series; thus e/ = 3 c,e'® for 6] < n. If we
formally differentiate this equation, we obtain e’ = ¥ inc,e®. But then
¢n = incn, or (1 —in)cy = 0, so ¢x = 0 for all n. This is obviously wrong;
where is the mistake?

6. The Fourier series in entries 11 and 12 of Table 1 are clearly related: the
second is close to being the derivative of the first. Find the exact relationship
(a) by examining the series and (b) by examining the functions that the series
represent.

7. How smooth are the following functions? That is, how many derivatives can
you guarantee them to have?

= g o cos nf
o €05 2"6

¢ fley=% "'052,, :
0

2.4 Fourier series on intervals

Fourier series give expansions of periodic functions on the line in terms of
trigonometric functions. They can also be used to give expansions of functions
defined on a finite interval in terms of trigonometric functions on that interval.

Suppose the interval in question is [-7, ). (Other intervals can be trans-
formed into this one by a linear change of variable; we shall discuss this point
later.) Given a bounded, integrable function f on [-x, ], we extend it to the
whole real line by requiring it to be periodic of period 2z. Actually, to be com-
pletely consistent about this we should start out with f defined only on the half-
open interval (—m, ] or [-7n, ), or else (re)define f at the endpoints so that
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f(-n) = f(n). To be definite, we follow the first course of action; then the
periodic extension of f to the whole line is given by

f(0+2nm) = f(0) forall § € (—n,n] and all integers ».

For instance, the periodic functions discussed in Examples 1 and 2 of §2.1 are
the periodic extiensions of the functions f(#) = |6| and g(6) = @ from (-n,x]
to the whole line.

If f is a piecewise smooth function on (—=, 7], we can expand its periodic
extension in a Fourier series, and then by restricting the variable 6 to [-=, n],
we obtain an expansion of the original function. All of what we have said in the
previous sections applies to this situation, but there is one point that needs at-
tention. If the original f is piecewise continuous or piecewise smooth on [—7, 7],
then its periodic extension will be piecewise continuous or piecewise smooth on
R. However, even if f is perfectly smooth on [—#, r], there will generally be dis-
continuities in the extended function or its derivatives at the points (2n + 1)z,
an integer, where (so to speak) the copies of f are glued together. To be precise,
suppose f is continuous on [-7,#]. Then the extension will be continuous at the
points (2n + 1)z if and only if f(-7#) = f(=#), and in this case the extension will
have derivatives up to order k at (2n + 1)z if and only if fU)(-n+) = fU)(n-)
for j < k. (This is illustrated by the examples in §2.1: see Figures 2.1(a) and
2.2(a).) These phenomena must be kept in mind when one studies the relations
between the smoothness properties of f and the size of its Fourier coefficients as
in Theorem 2.6.

Two interesting variations can be made on this theme. Suppose now that
we are interested in functions on the interval [0, n] rather than [-7,n]. We can
make such a function f into a 2z-periodic function, and hence obtain a Fourier
expansions for it, by a twofold extension process: first we extend f in some
simple way to the interval [-n, n], then we extend the result periodically. There
are two standard ways of performing the first step: we extend f to [-x, 7] by
declaring it to be either even or odd. That is, we have the even extension feven of
f to [-n, ] defined by

Jeven(—8) = f(8) for 8 € [0, n]
and the odd extension f,44 of f to [-7, 7] defined by
foaa(—0) = —f(6) for 6 € (0,7],  foaa(0) = 0.
(See Figure 2.5.) The advantage of using feven Or foqq rather than any other

extension is that the Fourier coefficients turn out very simply. Indeed, it follows
from Lemma 2.2 of §2.1 that

T
f Jeven(6) cosnBdf = 2]: f(8)cosnbde, § Jeven(8)sinnfdf =0,
-1 -
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whereas
f’ foga(6) cosndé =0, f" fosa(6) sinn6 d6 = 2/” £(6)sinné do.
-n -7 0

Thus the Fourier series of feven involves only cosines and the Fourier series of
fodaa involves only sines; moreover, the Fourier coefficients for these two cases
can be computed in terms of the values of the original function f on [0, n]. We
are thus led to the following definitions.

Definition. Suppose f is an integrable function on [0, ]. The series
=] 2 n
Yag+Y " ancosnf, where a, = = /0 f(8)cosnd de,
1
is called the Fourier cosine series of f. The series

S bnsinnf, where b, = %]“ 7(8)sinn6 db,
1 0

is called the Fourier sine series of f.

N~ AN A~ _~ANA

FIGURE 2.5. A function defined on [0, ] (left), its even extension (middle),
and its odd extension (right).

If f is piecewise continuous or piecewise smooth on [0, n], its even periodic
and odd periodic extensions will have the same properties on R, but as before,
one must watch for extra discontinuities at the points nz (n an integer) where
the pieces are joined together. If f is continuous on [0, n], the even periodic
extension will be continuous everywhere, but its derivative will have jumps at the
points 2nx or (2n + 1)z unless f'(0+) = 0 or f'(n—) = 0, respectively. The odd
periodic extension is less forgiving: it will have discontinuities at the points 2nn
or (2n+1)7 unless f(0) = 0 or f(n) = 0, respectively. (As for higher derivatives:
there are potential problems with the odd-order derivatives of the even periodic
extension and with the even-order derivatives of the odd periodic extension at
the points nn.)
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Example 1. Consider the function f(#) = 8 on [0, z]. Its even and odd periodic
extensions are given on (-7, 7) by feven(8) = |0| and fo4q4(8) = 6; these are the
functions whose Fourier series we worked out in §2.1. Hence,
0 1o 0
_ (=1)"™'sinnd _m 4 ~cos(2n-1)6
6_2;—”‘ =5 arz#_(zn—l)i 0<8<mn).
Here f is perfectly smooth on [0, 7], but f,qq has discontinuities at the odd
multiples of 7. feven is continuous everywhere, but its first derivative has dis-

continuities at all integer multiples of 7. The reader may find other examples in
Table 1.

At any rate, if we keep these remarks in mind and apply Theorem 2.1, we
arrive at the following result.

Theorem 2.7. Suppose f is piecewise smooth on [0,n]. The Fourier cosine series
and the Fourier sine series of [ converge to 5| f(6-)+ f(6+)] at every 6 € (0, ).

In particular, they converge to f(8) at every 8 € (0,n) where f is continuous. The
Fourier cosine series of f converges to f(0+) at 6 =0 and to f(n-) at 8 = n, the
Fourier sine series of f converges to 0 at both these points.

The results of the previous section on termwise differentiation and uniform
convergence can be applied to these series, provided that one takes account of
the behavior at the endpoints as indicated above.

Finally, we may wish to consider periodic functions whose period is some-
thing other than 2z, or functions defined on intervals other than [-z, 7] or [0, z].
These situations can be reduced to the ones we have already studied by making
a simple change of variable.

For instance, suppose f(x) is a periodic function with period 2/. (The factor
of 2 is merely for convenience.) We make the change of variables

=9 so=rw=1(%).

4 4

Then g is 2n-periodic, so if it is piecewise smooth we can expand it in a Fourier
series:

o . inf 1 /" no
)= cne'™, c=—/ fe~""dg.
g(9) _Zmn n=3z) &0

If we now substitute § = nx// into these formulas, we obtain the 2/-periodic
Fourier series of the original function f-

oo _ ! )
fx) =Y ™™, cp= il-f [_ 1 f(x)e=immxll g, (2.20)
The corresponding formula in terms of cosines and sines is
o0
fx)=4ap+3 [an oosﬁw,, sin %} (2.21)
1
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! i
=1 [ focsEdx,  b=7 [ f@snEdx @2

From this it follows that the Fourier cosine and sine expansions of a piece-
wise smooth function f on the interval [0, /] are

f(x)=4ag+Y_ ancos f?, an = T/ f(x) cos ﬂ dx, (2.23)
1

and

flx)= Z by sin m;x / f(x)sin ﬂ dx. (2.24)

These formulas are probably worth memorizing; they are used very frequently.
Another point worth remembering is that, just as in the case of Fourier series for
periodic functions, the constant term }aq in the Fourier cosine series of a function

f on an interval is the mean value of f on that interval: ag =171 fé fix)dx.

Example 2. Let us find the Fourier cosine and sine expansions of f(x) = x on
[0,/]. Having set 6§ = mx//, this amounts to finding the expansions of g(6) = [6/n
on [0, #], which we have done above. Namely, for 0 < § < 7 we have

Finally, what if we wish to use an interval of length / whose left endpoint is
not 0, say [a, a +/]? Simply apply the preceding formulas to g{x) = f(x + a);
we leave it to the reader to write out the resulting formulas for f(x).

EXERCISES

In Exercises 1-6, find both the Fourier cosine series and the Fourier sine series of
the given function on the interval [0, z]. Try to use the results of Table 1, §2.1,
rather than working from scratch. To what values do these series converge when
6 =0and 8 =n?

1. f(8)=1.
2. f(6)=m-@.
3. f(6) =siné.

4. £(6) = cosé.
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5. f(6) = 62. (For the sine series, use entries 1 and 17 of Table 1.)
6. f() =6 for0< < in, f(6)=n-6 for §n < 6 < n. (For the sine series,
use entry 11 of Table 1, and for the cosine series, entry 2.)

In Exercises 7-11, expand the function in a series of the indicated type. For
example, “sine series on [0, /]” means a series of the form 3 bn sin(nnx//). Again,
use previously derived results as much as possible.

7. f(x) = 1; sine series on [0, 67].

8. f(x)=1- x; cosine series on [0, 1].

9. f(x)=1for0< x <2, f(x)=-1 for 2 < x < 4; cosine series on [0, 4].

10. f(x) = Ix — x?; sine series on [0, /].

11. f(x) = e*; series of the form 3°°_ c,e?™* on [0, 1].

12. Suppose f is a piecewise continuous function on [0, 7] such that f(8) =
f(m — 6). (That is, the graph of f is symmetric about the line § = }7.) Let
an and b, be the Fourier cosine and sine coefficients of f. Show that a, =0
for n odd and b, = 0 for n even.

2.5 Some applications

At this point we are ready to complete the solutions of the boundary value prob-
lems that were discussed in §1.3. The first of these problems was the one describ-
ing heat flow on an interval [0, /], where the initial temperature is f(x) and the
endpoints are held at temperature zero,

Uy = Ktlxx, u(x,0) = f(x) forx €[0,/], u(0,t) =u(l,t)=0 fort>0,

and we derived the following series as a candidate for a solution:

) 2,2

u(x,t) = ;bn exp (*n ;; kt) sin m;x,

o (2.25)
where f(x)= Z by sin @.

1
The questions that we left open were: (1) Can the initial temperature f be ex-
pressed as such a sine series? (2) Does this formula for u actually define a solution
of the heat equation with the given boundary conditions? We now know that the
answer to the first question is yes, provided that f is piecewise smooth on [0,/]
(certainly a reasonable requirement from a physical point of view): we have
merely to expand f in its Fourier sine series (2.24). Let us therefore address the
second question.

The individual terms in the series for u solve the heat equation, by the way

they were constructed. Moreover, when ¢ > 0 the factor exp(—n®n?kt//) tends to
zero very rapidly as n — oo, so that the series converges nicely. More precisely,
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since the coefficients b, tend to zero as n — oo and in particular are bounded by
some constant C, for any positive € we have

—nig2 2
by exp ( n ; kt) sin n;l:x =0n' fort > ¢, where § = :ri#

The same sort of estimate also holds for the first t-derivative and the first two
x-derivatives of the terms of the series for u, with an extra factor of n* thrown
in. Since > {° nke—on’ converges for any k, we see by the Weierstrass M -test that
these derived series converge absolutely and uniformly in the region 0 < x < /,
t > €, and we deduce that termwise differentiation of the series is permissible.
Conclusion: u is a solution of the heat equation.

As for the boundary conditions, it is evident that u(0,¢) = u(/, ) = 0, since
all the terms in the series for u vanish at x = 0,/, and u(x,0) = f(x) by the
choice of the coefficients b,. However, as we pointed out in §l.1, we really
want a bit more, namely, the continuity condition that u(x,?) should tend to
zero as x — 0,/ and to f(x) as t — 0. The preceding discussion shows that
the first of these requirements is always satisfied: for each ¢ > 0, the series for
u(x,t) converges uniformly on [0, /],s0 u(x, ) is a continuous function of x. (In
particular, as x — O or x — [, u(x, t) approaches #(0, t) or u(/, t), which are zero.)
Moreover, if f is continuous and piecewise smooth on [0, /] and f(0) = f(/) = 0,
then the odd periodic extension of f is continuous and piecewise smooth, so
5 1bn| < oo by Theorem 2.5. The Weierstrass A/-test then shows that the series
for u converges uniformly on the whole region 0 < x </, t > 0, and hence that
u is continuous there; in particular, u(x,t) — u(x,0) = f(x) as t — 0.

If f has discontinuities or is nonzero at the endpoints, it is still true that
u(x,t) — f(x) as t —» 0 provided that 0 < x < / and f is continuous at x, but the
proof is more delicate. (See Walker [53], §4.7.) We shall not concern ourselves
with such technical refinements, as we have already established the main point:
under reasonable assumptions on the initial temperature f, the function u satisfies
all the desired conditions.

One question we have not really settled is the uniqueness of the solution.
That is, we have constructed one solution; is it the only one? The answer is
yes. One can argue that any solution u(x, ) must be expandable in a Fourier
sine series in x for each ¢ and then use the differential equation to show that the
coefficients of this series must be the ones we found above. Alternatively, one
can invoke some general uniqueness theorems for solutions of the heat equation;
see John [33] or Folland [24]. Similar considerations apply to the other problems
we solve later, and we shall not worry about uniqueness from now on except in
situations where pitfalls actually exist.

Lest the reader become too complacent, however, let us briefly consider the
problem of solving the heat equation for times ¢ < 0 — that is, given the temper-
ature distribution at time ¢ = 0, to reconstruct the distribution at earlier times. If
we take ¢t < 0 in (2.25), the factors e~ kil tend rapidly to infinity rather than
zero as n — oo, with the result that the series for u(x,t) will almost certainly di-
verge unless the coefficients by of the initial function f happen to decay extremely

0<

< Ce
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rapidly as n — oc. Thus (2.25), in general, does not give a solution to the heat
equation when ¢ < 0. This is not merely a failure of mathematical technique,
however. The initial value problem for the time-reversed heat equation is simply
not well posed, a reflection of the fundamental physical fact that the direction of
time is irreversible in diffusion processes. One can mix hot water and cold water
to get warm water, but one cannot then separate the warm water back into hot
and cold components! More to the point, one cannot tell by examining the warm
water which part was initially hot and which part was initially cold, or what their
initial temperatures were.

Exactly the same considerations apply to the problem of heat flow on [0,/]
with insulated endpoints,

ur = ki, u(x,0) = f(x), Ux(0,8) = ux(l,1) =0,

whose solution is

o —n?nlk nm
u(x,t):-_‘,ao+2anexp( n; I)cos fx’
1

where

==l
o nnx
f(x)=3a0+ E] an €08 ——.

The only difference is that now we expand f in its Fourier cosine series (2.22).

FIGURE 2.6. The solution (2.25) of the heat equation with k = §, [ = 1,
by=-4,by=-} and by =0forn>2 ontheregion0<x<1,0<r<1.

Let us pause a moment to see what these solutions tell us about the physics
of the situation. In the limit as ¢ — oc, the exponential factors all vanish, so the
solution u approaches a constant — namely, 0 in the case where the endpoints
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are held at temperature 0 and }ap in the case of insulated endpoints. The first
of these is easy to understand: the interval [0,/] comes into thermal equilibrium
with its surroundings. As for the second, if we recall that

!
ap = %fo f(x)dx,

we see that the limiting temperature ay is simply the average value of the initial
temperature. In other words, no heat enters or escapes, so the various parts of
the interval simply come into thermal equilibrium with each other. Moreover, in
both cases, the high-frequency terms (i.e., the terms with » large) damp out more
quickly than the low-frequency terms: this expresses the fact that the diffusion
of heat tends to quickly smooth out local variations in temperature. A simple
illustration of these assertions can be found in Figure 2.6.

Now let us turn to the problem of the vibrating string:
up = Cuxx,  u(x,0) = f(x), wui(x,0)=g(x), u(0,2)=u(l,1)=0.

According to the discussion in §1.3, we should expand f and g in their Fourier
sine series,

flx)= Z: bn sin —= mtx g(x)= Z:B,, sin —— mtx (2.26)
and then take
u(x,t) = Zsm (b,, "’;“ £y %’Jc- sin %“) . (2.27)

Here the analysis is more delicate than for the heat equation, because there are
no exponentially decreasing factors in this series to help the convergence. The
series (2.27) for u is likely to converge about as well as the sine series for f and
g, but if we differentiate it twice with respect to x or ¢ in order to verify the wave
equation, we introduce a factor of n?; and this may well be enough to destroy
the convergence.

We can avoid this difficulty by making sufficiently strong smoothness as-
sumptions on f and g. For instance, let us suppose that f and g are of class C**
and C®@, respectively, that /"' and g” are piecewise smooth, and that f, g, /",
and g” vanish at the endpoints 0 and /. These conditions guarantee that the odd
periodic extensions of f and g will have the same smoothness properties (even
at the points n7), and hence, by Theorem 2.6, that the coefficients b, and B, will
satisfy

|bn| < Cn™4, |Baj < Cn73

Now the nth term in the series (2.27) will be dominated by n~%, and if we
differentiate it twice in either x or ¢ it is still dominated by n~2. Since 5.7°n~
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converges, the M-test guarantees the absolute and uniform convergence of the
twice-derived series, and we are in business.

This is not entirely satisfactory, however. It is physically reasonable to as-
sume that f and g are continuous and perhaps piecewise smooth, but one may —
and indeed should — have the feeling that the extra differentiability assumptions
are annoyances that reflect a failure of technique rather than a real difficulty in
the original problem.

We can obtain more insight into this problem by recalling the trigonometric
identities

sinacosh = } [sin(a +b)+sin(a— b)} . sinasinb = § [cos(a —b)—cos{a+ b)] ,

by means of which the series (2.27) can be rewritten

o o0
u(x,t) =%an sin I‘M}—"r(x +ct)+ %an sin nTx(x —-ct)
1 1

1 /B, nn 1 <~1IB, __nn

+ —;——ucos——(x—ct) - E;ECOST@-‘-“)'

The first two sums on the right are just the Fourier sine series for f, evaluated at
x +ct, and the last two are (up to constant factors) just the Fourier sine series for
g, integrated once and then evaluated at x + ¢t. To restate this: let us suppose
that / and g are piecewise smooth, so that the expansions (2.26) are valid on the
interval (0,/). We use the formulas (2.26) to extend f and g from this interval
to the whole line; that is, we extend f and g to R by requiring them to be odd
and 2/-periodic. We then have

u(x 1) = 5 [f0+et)+ fx—en)] + 5 [Gx +et) - Gl —en)],  (2.28)

where G is any antiderivative of g.
From this closed formula it is perfectly plain that if f is twice differentiable
and g is once differentiable, then u satisfies the wave equation, for

8—2f(x:i:ct)=—La—zf(x:tct)=f”(x:|:cr) (2.29)
ax? c2or? ’ ’

and likewise for G. Even here the differentiability assumptions seem a bit arti-
ficial; one would like, for example, to allow f to be a function with corners in
order to model plucked strings. Indeed, in some sense the first equation in (2.29)
should be correct, simply as a formal consequence of the chain rule, even if /" is
ill-defined. The idea that is crying to be set free here is the notion of a “weak solu-
tion” of a differential equation, which enables one to consider functions u defined
by (2.28) as solutions of the wave equation even when the requisite derivatives
of f and g do not exist. We shall say more about this in §9.5.
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Another point should be raised here. One does not have to go through
Fourier series to produce the formula (2.28) for the solution of the vibrating string
problem; an elementary derivation is sketched in Exercise 6 of §1.1, It is then
fair to ask what good the complicated-looking formula (2.27) is when the simple
(2.28) is readily available. There are two good answers. First, the trick in Exercise
6, §1.1, that quickly produces the general solution of the 1-dimensional wave
equation does not work for other equations (including the higher-dimensional
wave equation), whereas the Fourier method and its generalizations often do.
Second, although (2.28) tells you what you see if you look at a vibrating string,
(2.27) tells you what you hear when you listen to it. The ear, unlike the eye, has
a built-in Fourier analyzer that resolves sound waves into their components of
different frequencies, which are perceived as musical tones.* Typically, the first
term in the series (2.27) is the largest one, so one hears the note with frequency
2nc/l colored by the “overtones™ at the higher frequencies 2znc/! with n > 1.

The difference in the convergence properties of the series solutions (2.25) and
(2.27) of the heat and wave equations reflects a difference in the physics: diffusion
processes such as heat flow tend to smooth out any irregularities in the initial
data, whereas wave motion propagates singularities. Thus, the solution (2.25) of
the heat equation becomes smoother as ¢ increases, and this is reflected in the
exponential decay of the high-frequency terms. (See the discussion of smoothness
versus rates of convergence at the end of §2.3.) However, any sharp corners in
the initial configuration of a vibrating string will not disappear but merely move
back and forth, as is clear from (2.28); hence there is no improvement in the
rate of convergence of the solution (2.27). (Compare Figures 2.6 and 2.7, which
show solutions of the heat and wave equations with the same initial values up to
a constant factor and the same boundary conditions; the initial variations damp
out in the first case, but not in the second.)

We shall see other applications of Fourier expansions of functions on an
interval in Chapter 4. Fourier expansions are also the natural tool for analyzing
periodic functions on the line. In practice, there are two principal sources of
such functions. The first is the angular variable in polar or cylindrical coordi-
nates or the longitudinal angular variable in spherical coordinates; in this context
periodicity is an immediate consequence of the geometry of the situation. The
other is physical phenomena that vary periodically {or approximately periodi-
cally) in time, such as certain types of electrical signals, the length of a day, daily
or seasonal variations in temperature, and so forth.

As an example, let us analyze the variations in temperature beneath the
ground due to the daily and seasonal fluctuations of temperature at the surface of
the earth. We shall concern ourselves only with the temperature near a particular
spot on the surface, over distances of (say) at most 100 meters. We therefore
neglect the fact that at great depths the earth is hotter than at the surface, and
we assume that (i) the earth is of uniform composition; (ii) the temperature at
the surface is a function f(¢) of time only, not of position; (iii) f(¢) is periodic

* Of course, this is an oversimplification.
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FiGURE 2.7. The solution (2.27) of the wave equation with / = ¢ = 1,
by = -0.2, b, = -0.1, by = 0 for n > 2, and B, = 0 for all n, on the region
0<x<1,0<t<1,

of period 1 and so has a Fourier series
o n .
f(f) — Z Cnelmm‘
-0

(We may take the unit of time to be 1 year, so that the dominant terms in
the series will be n = +1, corresponding to seasonal variations, and n = +365,
corresponding to daily variations. With a bit more accuracy, we could take the
unit of time to be 4 years and the dominant terms to be n = £4 and n = £1461
(= +4x 365;1;). Or, we could take an even longer period to account for long-term
climatic changes.) The boundary value problem to be solved is therefore

U = kuxx for x>0, u(0,0) = f(1).

Since f is periodic in ¢, we expect u to have the same property, so we look for
solutions of the form

u(x, 1) = i Cn(x)e>™™,

-0

Taking on faith that this series can be differentiated termwise, we find that

= oo
e = E(Znin)Cn(x)ez’”"‘, Uxx = Z C:t’(x)ehim.

—0
Hence, taking into account the initial condition, we have

W (x) = 2rink~'Cu(x) =0,  Cn(0) = cn.
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Since the square roots of 2in are (1 +i)n/2 if n > 0 and =(1 - i){n|"/? if n < 0,
the general solution of this differential equation is

aexp((l+f),/%x)+bexp(-(1+f),/’;c—"x) if n>0,
aexp((l—i) %’”x)%—bcxp(—(l—i) E}gﬂx) if n<0,

ax+b if n=0.

In each case we must take a = 0 because of the physical requirement that the
temperature should remain bounded as x increases. (In effect we are imposing
a boundary condition at x = oo to supplement the one at x = 0.) The initial
condition then implies that b = ¢,. Hence, upon grouping together the nth and
(=n)th terms, we obtain the solution

u(x,1) =co+y_ exp (— ?';f—nx)
1

X [c,.exp (Znim - i,a‘%x) + C—p €Xp (—Zm‘m+ f,/’l—nx)] ,

It is now easy to check that this function u really does solve the problem.

The main features to be noted here are the following. First, all of the non-
constant terms in u (the ones with n # 0) die out exponentially fast as x increases,
and the high-frequency ones die out faster than the low-frequency ones. (In ac-
tual fact, the daily variations in temperature become negligible at a depth of a
few centimeters, and the seasonal ones become negligible at a depth of a few
meters, where the temperature remains essentially constant at the annual mean
¢p-) Second, the temperature variations at depth x are out of phase with those
at the surface by an amount proportional to x and /||, because the heat takes
time to penetrate. For example, if the n = 1 term, representing the main seasonal
variations, is the dominant one, at depth x = V7k the temperature is warmer in
winter and cooler in summer.

In considering the usefulness of Fourier series or any other sort of infinite
series, one should not lose sight of the fact that the partial sums of the series pro-
vide approximations to the full sum, and that such approximations may be just
what one needs to obtain a computationally manageable solution to a problem.
The questions about smoothness and rates of convergence that we have discussed
in some detail have a computational as well as a theoretical significance: rapidly
converging series such as (2.25) yield accurate answers much more readily than
slowly converging ones such as (2.27). An interesting discussion of rates of con-
vergence of infinite series, and the implications for numerical calculations, can
be found in Boas [7].

On the other hand, in many situations one knows the initial data only to a
finite degree of accuracy. For example, one may be studying a physical quantity
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f(t) that varies periodically with the time ¢, and one may know the values of f
approximately from physical measurements. In this context the point of Fourier
analysis is that it is usually appropriate to take a trigonometric polynomial of
fairly low degree, whose coefficients are determined so as to fit the data well, as
a mathematical model for f.

EXERCISES

1. Arod 100 cm long is insulated along its length and at both ends. Suppose that
its initial temperature is #(x,0) = x (x incm, # in °C, ¢ in sec, 0 < x < 100),
and that its diffusivity coefficient k is 1.1 cm?/sec (about right if the bar is
made of copper).

a. Find the temperature u(x,t) for t > 0. (It is something of the form
50 + 31 an(t) cos(nnx/100), and ax(t) = 0 when n is even.)

b. Show that the first three terms of the series (i.e., 50+a; () cos(mx/100)+
az(t)cos(3nx/100)) give the temperature accurately to within 1 unit
when ¢ = 60. Using this fact, find «(0, 60), u(10, 60), and u(40, 60).

= l ; 2 1

o n st 1 n
Hint : ;m—?, SO ;m—?—l—gﬂulz?’

c¢. Find a number T > 0 such that u(x, t) is within 1 unit of its equilibrium
value 50 for all x when ¢t > T.

2. Redo Exercises la and lc with k = .01 (a reasonable figure if the bar is
made of ceramic). Now how many terms of the series are needed to get an
accuracy of 1 unit when ¢ = 60?

3. Consider again the copper rod of Exercise 1 (k = 1.1). Suppose that the rod
is initially at temperature 100°C and that the ends are subsequently put into
a bath of ice water (at 0°C).

a. Assuming no heat loss along the length of the rod, find the temperature
u(x,t) at subsequent times.

b. Use your answer to find (50, ¢) numerically when ¢ = 30, 60, 300, 3600.

c. Prove that your answers in (b) are correct to within 1 unit. (Hint: The
series for u(50,1) is alternating.)

4. Consider a vibrating string occupying the interval 0 < x < /. Suppose the
string is plucked in the middle in such a way that its initial displacement
u(x,0) is 2mx/l for 0 < x < §/ and 2m(/ - x)/I for §| < x < [ (so the
maximum displacement, at x = :'!! , is m), and its initial velocity u,(x,0) is
zero.

a. Find the displacement u(x, ) as a Fourier series.
b. Describe u(x,?) in the closed form (2.28) and show that at times ¢ > 0,
u(x,t) (as a function of x) typically looks like the following figure:
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VAR
D

5. Consider a vibrating string as in Exercise 4. Suppose the string is plucked at
x = a instead of x = %!, so the initial displacement is mx/a for0 < x < a
and m(l — x)/(l — a) for a < x < [, and the initial velocity is zero.

a. Find the displacement u(x, ¢) as a Fourier series. (Entry 11 of Table 1,
§2.1, will be helpful.)

b. Convince yourself that the terms with large n contribute more to u(x, t)
when a becomes closer to /. (Musically: plucking near the end gives a
tone with more higher harmonics.)

6. Suppose the string in Exercise 4 is initially struck in the middle so that its
initial displacement is zero but its initial velocity u,(x, 0) is 1 for |x - }/| < &
and 0 elsewhere. Find u(x,t) for ¢t > 0.

7. Suppose that the temperature at time ¢ at a point on the surface of the earth
is given by

u(0,t) = 10 — 7Tcos 2wt — 5cos 2n(365)¢.

(Here u is measured in °C and ¢ is measured in years; the coefficients are
roughly correct for Seattle, Washington.) Suppose that the diffusivity coeffi-
cient of the earth is k = .003 cm?/sec ~ 9.46 m?/yr.
a, Find u(x,t) for x > 0.
b. At what depth x do the daily variations in temperature become less than
1 unit? What about the annual variations?

2.6 Further remarks on Fourier series

There is much more to be said about Fourier series than is contained in this
chapter. Some good references for further information on both the theoretical
aspects of the subject and its applications are the books of Dym-McKean [19],
Korner [34], and Walker [53]. Also recommended is the article of Coppel [15] on
the history of Fourier analysis and its influence on other branches of mathematics,
and the articles by Zygmund, Hunt, and Ash in [2]. Finally, the serious student
of Fourier analysis should become acquainted with the treatise of Zygmund [58],
which gives an encyclopedic account of the subject.

We conclude this chapter with a brief discussion of a few other interesting
aspects of Fourier series.

The transform point of view

Given a 2z-periodic function, its sequence {c,} of Fourier coefficients can be
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regarded as a function f whose domain is the integers:
- n -
Fn) =cn =f 7(8)e="040.
-n

The mapping f — f is thus a rransform that converts periodic functions on the
line to functions on the integers. The inverse transform is the operation which
assigns to a function ¢(n) on the integers (that decays suitably as n — oc) the
function 3°°° qﬁ(n)e””9 In principle all the information in f is also contained in

its transform f , and vice versa, but the information may be encoded in a more
convenient form on one side or the other. For example, Theorem 2.2 shows that
the transform converts differentiation into a simple algebraic operation: f'(n) =
inf(n). We shall return to this point of view in Chapter 7.

Comparison with Taylor series

Perhaps the most well known and widely used type of infinite series expansion
for functions is the Taylor series, and it is of interest to compare the features of
Taylor series and Fourier series.

In order for a function f(x) to have a Taylor expansion about a point xj,

fx)= Zﬂ 00) (o), -0l <

f must have derivatives of all orders at xy. If it does, the coefficients of the Taylor
series are determined by these derivatives, and hence by the values of f in an
arbitrarily small neighborhood of x;. The rate at which these coefficients grow
or decay as n — oo is related to the radius of convergence of the series and hence
to the distance from x; to the nearest singularity of f (in the complex plane). In
general the partial sums of the Taylor series provide excellent approximations to
[ near x but are often of little use when |x — x| is large.

In contrast, a function f need have only minimal smoothness properties in
order to have a convergent Fourier expansion

flx)= i ((2”—]faa+21f(y)e—mﬂyﬂdy) einxxf.l” x € (a, a+2D).

-

The coefficients of this series depend on the values of f over the entire interval
(a, a+2[). The rate at which they decay as n — oc is related to the differentiability
properties of f, or rather of its periodic extension. The partial sums of the Fourier
series will converge to f only rather slowly if f is not very smooth, but they tend
to provide good approximations over the whole interval (a,a + 2/).

Thus Taylor series and Fourier series are of quite different natures: the first
one is intimately connected with the local properties of f near x;, whereas the
second is related to global properties of f. There is a situation, however, in
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which the two can be seen as aspects of the same thing. Namely, suppose [ is
an analytic function of the complex variable z in some disc |z — zy| < R. If we
write z — 2, in polar coordinates as re’®, the Taylor series for f about z; turns
into a Fourier series in # for each fixed r < R:

o o0 .
Ean(z -zt = E(anr”)e‘"a.
0 0

The formula (2.5) for the Fourier coefficients, in this case, is nothing but the
Cauchy integral formula for the derivatives of f at z;. This connection between
Fourier analysis and complex function theory has many interesting consequences,
which are discussed in more advanced books such as Dym-McKean [19] and
Zygmund [58].

Convergence of Fourier series

The study of the convergence of Fourier series has a long and complex history.
The convergence theorems we have presented in §§2.2-3 are sufficient for many
purposes, but they do not give the whole picture. Here we briefly indicate a few
other highlights of the story. In the first place, the hypotheses of our Theorem 2.1
can be weakened. The same conclusion is obtained if we assume only that f is of
“bounded variation” on the interval [-n, ], which means that it can be written
as the difference of two nondecreasing functions on that interval. (It is not hard
to show that piecewise smooth functions have this property.) On the other hand,
it has been known since 1876 that there are continuous periodic functions whose
Fourier series diverge at some points, and for almost a century it was an open
question whether the Fourier series of a continuous function could be guaranteed
to converge at any point. An affirmative answer was obtained only in 1966, with
a deep theorem of L. Carleson to the effect that the Fourier series of any square-
integrable function f must converge to f at “almost every” point, in a sense that
we shall describe in §3.3. See the article by Hunt in [2].

One fundamental fact that has emerged over the years is that, in many sit-
uations, simple pointwise convergence of a series is not the appropriate thing to
look at; and there are many other notions of convergence that may be used. For
example, there is uniform convergence, which is stronger than pointwise conver-
gence, there is also “pth power mean” convergence, according to which the series
5°7° fn converges to f on the interval [a, b] if

) b
lim /
N—oc Ja

We shall say much more about the case p = 2 in the next chapter. There are also
ways of summing divergent series that can be used to advantage; we shall now
briefly discuss the simplest of these.

p

N
3" falx) - f(x)| dx=0.
1
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It is easy to see that if a sequence {an} converges to g, then the average
g Z’f an of its first k terms also converges to a as k — oo, but these averages
may converge when the original sequence does not. For example, the sequence

1,0,1,0,1,0, 1,0, ..

is divergent; but the average of its first & terms is (k + 1)/2k or 1/2 according as
k is odd or even, and this tends to 1/2 as kK — co. Now, given an infinite series
Y5° bn with partial sums sy = Y0 by, the average of its first k + 1 partial sums,

1
k—H(Sg + 8 +"‘+.S'k),
is called its kth Cesaro mean, and the series is said to be Cesaro summable to the
number s if its Cesaro means (rather than just its partial sums) converge to s.
We then have the following theorem, due to L. Fejér.

Theorem 2.8. If f is 2n-periodic and piecewise continuous on R, then the Fourier
series of f is Cesaro summable to -1,[ f8=)+ 1 (6‘+)] at every 8. Moreover, if f is
everywhere continuous, the Cesaro means of the series converge to f uniformly.

The proof of this theorem is similar in spirit to that of Theorem 2.1; it can
be found, for example, in §2 of Korner [34] or §2.7 of Walker [53]. The signif-
icance of the theorem is twofold. First, it gives a way of recovering a piecewise
continuous function f from its Fourier coefficients when the Fourier series fails
to converge. Second, even when the Fourier series of f does converge, its Cesaro
means tend to give better approximations to f than its partial sums: for example,
they converge uniformly to f whenever f is continuous, whereas the partial sums
converge uniformly only under stronger smoothness conditions (cf. Theorem 2.5).

The Gibbs phenomenon

Suppose f is a periodic function. If f has a discontinuity at xg, the Fourier
series of f cannot converge uniformly on any interval containing x;, because the
uniform limit of continuous functions is continuous. In fact, for the Fourier
series of a piecewise smooth function f, the lack of uniformity manifests itself
in a particularly dramatic way known as the Gibbs phenomenon: as one adds
on more and more terms, the partial sums overshoot and undershoot f near the
discontinuity and thus develop “spikes” that tend to zero in width but not in
height. One can see this in Figure 2.8, which shows the fortieth partial sum of
the Fourier series of the sawtooth wave function

f()=n-6for0< 8 <2m, S8+ 2nm) = f(0).

A precise statement and proof of the Gibbs phenomenon for this function is
outlined in Exercise 1. It can be shown that the same behavior occurs at any
discontinuity of any piecewise smooth function. See Kérner [34] and Hewitt-
Hewitt [28] for interesting discussions of the Gibbs phenomenon.



2.6  Further remarks on Fourier series 61

FIGURE 2.8. Graph of 2¥°{%n~"sinn6, —2n < § < 27 (an illustration of
the Gibbs phenomenon).
EXERCISE

1. Recall from Table 1, §2.1, that f(6) = 23°7° n~!sinn@ is the 2n-periodic
function that equals 7 — @ for 0 < € < 27. Let

N .
an(6) =23 2220 _ (5 _g),
1

so that g(@) is the difference between f(#) and its N'th partial sum for 0 <
6 <2n.
a. Show that gy (6) = 22Dy(6) where Dy is the Dirichlet kernel (2.10).
b. Using (2.12), show that the first critical point of gy () to the right of
zero occurs at y = /(N + i), and that

By <1 1
gn(On) =[ EnN+ 3P :)ed(? — B

1
0 sin 56

c. Show that -
lim gy(By) =2 [ LLLP P
N—oc 0 ¢

(Hint: Let ¢ = (N + i)&.) This limit is approximately equal to .562.
Thus the difference between f(6) and the Nth partial sum of its Fourier
series develops a spike of height .562 (but of increasingly narrow width)
just to the right of & = 0 as N — oc. (There is another such spike on
the left.)



CHAPTER 3
ORTHOGONAL SETS OF FUNCTIONS

Fourier series are only one of a large class of interesting and useful infinite se-
ries expansions for functions that are based on so-called orthogonal systems or
orthogonal sets of functions. This chapter is devoted to explaining the general
conceptual framework for understanding such systems, and to showing how they
arise from certain kinds of differential equations. Underlying these ideas is a
profound analogy between the algebra of Fourier series and the algebra of n-
dimensional vectors, which we now investigate.

3.1 Vectors and inner products

We recall some ideas from elementary 3-dimensional vector algebra and recast
them in a more general form. We identify 3-dimensional vectors with ordered
triples of real numbers; that is, we write

a=(a),a,a;) ratherthan  a=ga;i+ aj+ a3k
The dot product or inner product of two vectors is then defined by
a-b=a b +ayb;+asbs,

and the norm or length of a vector is defined by

lall = va-a=/a?+a}+ai

We propose to generalize these ideas in two ways: by working in an arbitrary
number k of dimensions, and by using complex numbers rather than real ones.
This generalization is not just a mathematical fantasy. Although k-dimensional
vectors do not have an immediate geometrical interpretation in physical space,
they are still useful for dealing with problems involving k independent variables.
For our purposes, the main motivation for the use of complex numbers is their
connection with the exponentials e’?; but it should be noted that the use of
complex vectors is essential in quantum physics. However, in visualizing the

62
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ideas we shall be discussing, the reader should just think of real 3-dimensional
vectors.
A (complex) k-dimensional vector is an ordered k-tuple of complex numbers:

a=(a;,a,...,a).
The vector a is called real if its components a; are all real numbers. Addition

and scalar multiplication are defined just as in the 3-dimensional case, but now
the scalars are allowed to be complex:

a+b=(q +b1,...,ak+bk),
ca=(cay,...,car) (ceC).
We denote the zero vector (0,0,...,0) by 0, and we denote the space of all com-

plex k-dimensional vectors by C.
The inner product of two vectors is defined by

(a,b) = a1b; + ayby + - - + by, (3.1)
and the norm of a vector is defined by

_ 12 1/2
lall = @& = (a@ + -+ @) = (af+-+lal?) . G2

The reason for the complex conjugates in the definition of the inner product is
to make the norm (3.2) positive, for we wish to interpret | a|| as the magnitude
or length of the vector a. (Recall that the absolute value of a complex number
z = x+1y is (x*+y?)'/2, and this is (zZ)!/? rather than (z2)'/2.) Notice, however,
that for real vectors, (3.1) and (3.2) become
(@) =ahy +- +aby,  all = (af+-+ap)',

the obvious generalization of the familiar 3-dimensional case.

A word about the notation: The inner product (a,b) is often denoted by a-b
or (a,b). Also, in the physics literature it is customary to switch the roles of a
and b, that is, to put the complex conjugates on the first variable rather than the
second. This discrepancy is regrettable, but by now it is firmly entrenched in
common usage.

The inner product (3.1) is clearly linear as a function of its first variable but
antilinear or conjugate linear as a function of its second variable; that is, for any
vectors a, b, ¢ and any complex numbers z, w,

(za+wb, ¢) = z(a,¢) + w(b,c),

_ _ (3.3)
{(a, zb+ wc) = Z(a,b) + W(a,c)
Also, the inner product is Hermitian symmetric, which means that
(b,a) = (a,b), (3.4)
and the norm satisfies the conditions
lcall = Ic|lall  (c € C), (3.5)
fla]l >0 foralla#0. (3.6)

Using these facts, we now derive some fundamental properties of inner products
and norms.
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Lemma 3.1. For any a and b in CX,

la+bf% = |la||* + 2Re(a,b) + [[b]>.

Proof: By (3.3), (3.4), and the definition of the norm,

la+bl>=(a+b,a+b)=(aa)+ (ab)+ (ba)+ (bb)
= (a,a) + (a,b) + (a,b) + (b,b) = [|a|* + 2Re(a, b) + ||b|. '

The Cauchy-Schwarz Inequality. For any a and b in C¥,

|(a,b)| < [ bl (3.7)

Proof: We may assume that b # 0, since otherwise both sides of (3.7) are 0.
Also, neither ’(a, b)r nor ||a|| ||bl| is affected if we multiply a by a scalar of absolute
value one, so we may replace a by ca, with |c| = 1, so as to make (a, b) real. (That
is, if (a,b) = re'®, we take c = e~'%.) Assuming then that (a, b) is real, by Lemma
3.1 we see that for any real number ¢,

0 < [la+ b]* = ||a]|> + 2¢(a,b) + 2|[b||%.

This last expression is a quadratic function of ¢, since ||b|| # 0, and (by elementary
calculus) it achieves its minimum value at ¢z = —(a, b)/|[b||>. If we substitute this
value for ¢, we obtain

2 _,@b? @b? o oo (ab)?
al|‘- - 20— + b
or
0 < [Jall?|[bf* - (a,b)?,
which, since (a, b} is assumed real, is equivalent to (3.7). 1
The Triangle Inequality. For any a and b in C*,
la+ b <l + [b]|. (3.8)

Proof: By Lemma 3.1, the Cauchy-Schwarz inequality, and the fact that
Rez < |z|, we have

la+ b = |la|? + 2Re(a,b) + |b|?
< {(al|% + 2}jal{ [|b]] + |[b]|?

= (s + 1) '
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a+b b

a

FIGURE 3.1. The sum of two vectors.

Geometrically, the triangle inequality just says that one side of a triangle can
be no longer than the sum of the other two sides; see Figure 3.1. This picture is
perfectly accurate, for the vectors a, b, and a + b always lie in the same plane no
matter how many dimensions they live in.

We recall that two real 3-dimensional vectors are orthogonal or perpendicular
to each other precisely when their inner product is zero. We shall take this as
a definition in the general case: two complex k-dimensional vectors a and b are
orthogonal if (a,b) = 0. The vectors a;,a,,...,a, are called mutually orthogonal
if (a;,a;) = 0 for all 7 # j. With this terminology, we have a generalization of
the classic theorem about the lengths of the sides of a right triangle:

The Pythagorean Theorem. If a;,a,,...,an are mutually orthogonal, then

oy +ay + - +an| = a2 + [ag]® + - + |an]| % (3.9)

Proof: We have
lag + - +anl? = @+ +an, 2+ +an).

If we multiply out the right side by (3.3), all the cross terms vanish because of
the orthogonality condition, and we are left with

(@1,2;) + -+ (n,8n) = [la;]2 + - + [lanl%. [

Important Remark. The proofs of the Cauchy-Schwarz and triangle inequal-
ities and the Pythagorean theorem depend only on the properties (3.3) and (3.4)
of the inner product and the definition |jaj| = (a,a)!/2, not on the specific formula
(3.1). They therefore remain valid for any other “inner product” that satisfies
(3.3) and (3.4) and the “norm” associated to it.

Some more terminology: We say that a vector u is normalized, or is a unit
vector, if |ju| = 1. Any nonzero vector a can be normalized by multiplying it by
the reciprocal of its norm: If u = ||| 'a, then ||uf = ja]~"|ja] = 1. We shall call
a collection {aj,as,...} of vectors an orthogonal set if its elements are mutually
orthogonal and nonzero, and an orthonormal set if its elements are mutually
orthogonal and normalized. (See Figure 3.2.) Of course, any orthogonal set can
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be made into an orthonormal set by normalizing each of its elements. Thus, a
set {a,,4,,...} is orthonormal if and only if

(afs aj) = 5:'}'9 (310)
where J;; is the Kronecker J-symbol:

(1 ifi=J,
5”‘{0 i1 ], 1)

FIGURE 3.2. An orthonormal set of vectors.

The vectors in any orthogonal set {a;,...,a,} are linearly independent; that
is, the equation
cia; 4+ -+ cnan=0

can hold only when all the scalars ¢; are zero. To see this, take the inner product
of both sides with a; (1 < j < n); because of the orthogonality and the fact that
a; # 0, the result is

cj(aj,a;) = c),—]l:au),—”2 =0, hence ¢;=0.

It follows that the number of vectors in any orthogonal set in C* is at most k,
since C¥ is k-dimensional.

An example of an orthonormal set of k vectors is given by the standard basis
vectors {e},...,e;}, where

e = {0ca iy 05 15 0 o s w0} (1 in the jth position, 0 elsewhere).
For any a = (a,,...,a;) € CX, we clearly have
a=aye; +- -+ a.e,

s0 a is expressed in a simple way as a linear combination of the e;’s. But some-
times it is more convenient to use other orthonormal sets that are adapted to a

particular problem, and here too there is a simple way of expressing arbitrary
vectors as linear combinations of the orthonormal vectors.
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Indeed, suppose {uy,...,u;} is an orthonormal set in C. If a vector a € C*
is expressed as a linear combination of the u;’s,

a=cu + -+ Wy,

by taking the inner product of both sides with u; and using (3.10) we find that
the coefficients ¢; are given by

cj=(au) (1<j<k). (3.12)

Conversely, if a is any vector in C", we may define the constants ¢),...,c; by
(3.12) and form the linear combination

a=cuy + -+ Gl
Then the difference b = a — a is orthogonal to all the u;’s:
(b,u;) = (a,u;) — @,u;) =c; -¢; =0.

But this means that b = 0, for otherwise {u,,...,u;, b} would be an orthogonal
set with k + 1 elements, which is impossible. In other words, a2 = a, and we have
the following result,

Theorem 3.1. Let {u,,...,u;} be an orthonormal set of k vectors in C. For any
a € Ck we have
a=(auu + -+ (8, u)uy.

Moreover, :
2 2
lall® = [(a,mp)|" + - + [(a, wg)]".

Proof: The first assertion has just been proved, and the second one follows
from it by the Pythagorean theorem. 1

EXERCISES
1. Show that ||Ja+b|2 + la—b|? = 2(l|al|2 + ||b||2) for all a,b € C*.

2. Suppose {y1,...,¥i} is an orthogonal set in Ck, not necessarily normalized.
Use Theorem 3.1 to show that for any a € C¥,

@y)yr , . @y
e T el

3. Lety, =(2,34,5) and y; = (3i,2,0).
a. Show that (y,¥,) = 0 and find a nonzero y; that is orthogonal to both
y1 and ys.
b. What are the norms of y;, y,, and y3?
¢. Use Theorem 3.1 or Exercise 2 to express the vectors (1,2,3i) and
(0, 1,0) as linear combinations of yy, ¥, and ys.
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4. Letu; = §(1,2i,-2i,0),uy = $(2-4i,-2,i,0), u3 = {5(4+2i, 5+81,4+10i,0),
and uy = (0,0,0, ).
a. Show that {uy,...,us} is an orthonormal set in C*.
b. Express the vectors (1,0,0,0) and (2, 10—, 10-94, -3) as linear combi-
nations of uy,...,u4 by using Theorem 3.1.

5. Suppose {uy,...,ux} is an orthonormal set in C* with m < k. Show that for
any a € C* there is a unique set of constants {c;,...,cm} such thata—37" c;u;
is orthogonal to all the u;’s, and determine these constants explicitly. (Hint:
Consider the proof of Theorem 3.1.)

The following problems deal with k x k complex matrices T = (T;;). We recall
that if 7 = (T};) and S = (S;;) are k x k matrices, 7'S is the matrix whose (i/)th
component is 3, 7;;S);, and if a € Ck, Ta is the vector whose ith component is
¥, Tija;. The (Hermitian) adjoint of the matrix T is the matrix 7™ obtained by
i_m_erchanging rows and columns and taking complex conjugates, that is, (T™*);; =
Tji.

6. Show that (Ta,b) = (a, T*b) for all a,b € C*.

7. Show that if T = T*, the “product” defined by (a,b)7 = (Ta,b) satisfies
properties (3.3) and (3.4).

8. Let t; = (Tyj,..., Ty;) be the vector that makes up the jth row of T. Show
that the following properties of the matrix T are equivalent. (Hint: Show
that the (ij)th component of 77 is (t;,t;).)

(i) {t,...,t} is an orthonormal basis for C*.
(i) T*T is the identity matrix, i.e., (T*T);; = d;;.
(iii) ||Ta| = ||a| for all a € CK.

9. Show that |(a,b)| = ||a]| ||b|| if and only if a and b are complex scalar multiples
of one another, and that ||a+b|| = ||aj| +|[b|| if and only if a and b are positive
scalar multiples of one another. (Examine the proofs of the Cauchy-Schwarz
and triangle inequalities to see when equality holds.)

3.2 Functions and inner products

A vector a = (ay,...,4;) in Ck can be regarded as a function on the set {1,...,k}
that assigns to the integer j the jth component a(j) = a;, and with this notation
we can write the inner product and norm as follows:

ko k 172
@by =>"a(b(y), lal= (Da(})F) , (3.13)
1 1

We now make a leap of imagination: Consider the space PC(a,b) of piecewise
continuous functions on the interval [4, b], and think of functions f € PC(a, b) as
infinite-dimensional vectors whose “components” are the values f(x) as x ranges
over the interval [a,b]. The operations of vector addition and scalar multiplica-
tion are just the usual addition of functions and multiplication of functions by
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constants, To define the inner product and the norm, we simply replace the sums
in (3.13) by their continuous versions, i.e., integrals:

5 L " 1/2
(frg) = [ £(x)20x) dx, uf||=(/a If(x)lzdx) . (3.14)

This inner product on functions evidently satisfies the linearity and symmetry
properties (3.3) and (3.4), and it is related to the norm by the equation || f| =
(f. /YY2. Hence the Cauchy-Schwarz inequality, the triangle inequality, and the
Pythagorean theorem remain valid in this context, with the same proofs. Explicitly,
in terms of integrals, they say the following:

b b
g\/ ] 1f(x)|2dx\/ f ig)2dx,  (3.15)
b b b
\/ j |f(x)+g(x)|2dx5\/ f |f(x)|2dx+\/ [ lg)Rdx,  (3.16)

/ab iﬁ(x}(zdx - i[ab (0| dx

b
when f fi(x)F X dx =0 fori#j.

b S
/a fix)g(x)dx

and

(3.17)

The homogeneity property (3.5) of the norm, i.e., |jcf] = [¢| | f], is clearly
valid in the present situation, but there is a slight problem with the positivity
property (3.6). The integral of a function is not affected by altering the value
of the function at a finite number of points, so if f is a function on [a, b] that
is zero except at a finite number of points, then || f|| = 0 although f is not the
zero function, For the class PC(a, b) with which we are working, there are two
ways out of this difficulty. One is to use the convention suggested by the Fourier
convergence theorem, that is, to consider only functions f € PC(a,b) with the
property that

fx) = §[f(x=) + f(x+)] forall x € (a,b), fla)=fla+), f(b)=f(b-).

If f € PC(a,b) satisfies this condition and f(xy) # 0, then |f(x)| > 0 on some
interval containing xg, and hence || f|| > 0. (See Exercises 6 and 7.) The other
is simply to agree to consider two functions as equal if they agree except at
finitely many points. The reader can use whichever of these devices seems most
comfortable; at any rate, we shall not worry any more about this matter.

The concepts of orthogonal and orthonormal sets of functions are defined
just as for vectors in C*, and we can ask whether there is an analogue of Theo-
rem 3.1. That is, given an orthonormal set {¢»} in PC(a,b), can we express an
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arbitrary f € PC(a,b) as 3 (f, én)@n? Here, for the first time, we have to con-
front the fact that the space PC(a,b), unlike C¥, is infinite-dimensional. This
means, in particular, that we cannot tell whether the set {¢»} contains “enough”
functions to span the whole space just by counting how many functions are in it;
after all, if one removes finitely many elements from an infinite set, there are still
infinitely many left. It also means that the sum 3 (f, #n)@» will be an infinite
series, so we have to worry about convergence. Hence there is some work to be
done; but we can see that we are on the track of something very interesting by
reconsidering the results of the previous chapter in the light of the ideas we have
just developed.
Consider the functions

dn(x) = (2n)" 2™, n=0,%1,%2,...
We regard these functions as elements of the space PC(—n, n); we then have

1 ifm=n,

_ i o imx_inx _ _1" B ilm—n)x _
(¢m’¢")‘2n/_,€ P g [ lab

-
Thus {¢a}> 1s an orthonormal set. Moreover, if the Fourier coefficients ¢, of
f € PC(—mn,n) are defined as in Chapter 2, we have
"= L/ " fleinTdx = o f " f(x)e dx = (22)72(f, 6n)
R " 2n J_, s
and hence

S ene™ = $°[@m V2 S, 6m)] [ 20n(x)] = 1 Bn)x).

Thus, the Fourier series of f is just its expansion with respect to the orthonormal
set {@n}, as one would expect from the discussion in §3.1!

Let us try this again for Fourier cosine series on the interval [0, #]. From
the trigonometric identity

cosacosh = % [cos[a + b) + cos(a - b)]

and the fact that

m _ [k 'sinkx|f =0 fork #0,
/; COSkde_{x[3=n fork = 0.

we see that for m,n > 0,

n
L \ [cos(m + n)x + cos(m — n)xldx

n
f cosmxcosnxdx = =
0 2

{n ifm=n=0,
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That is, if we define
wo(x) = (1/m)'/2, wn(x) = (2/m)/?cosnx forn >0,

then {yx}§° is an orthonormal set in PC(0, ). Moreover, if the Fourier cosine
coefficients an of f € PC(0,n) are defined as before,

_2 [ _ [2(1/m) 2(f, wo) forn=0,
B n[o e { (2/m)' 2(f,wn) forn>0,

we have o 55
Yag+ Y ancosnx =3 (f, yn)¥n(X).
0 0

The reader may verify that the trigonometric form of the Fourier series on [-7, 7]
and the Fourier sine series on [0, 7] are also instances of expansions with respect
to orthonormal sets.

Now, we have been a bit cavalier in this discussion. The reader will recall that
we proved the validity of Fourier expansions only for piecewise smooth functions;
for functions that are merely piecewise continuous there is no guarantee that the
Fourier series will converge at any given point. What this means is that we need
to take a closer look at questions of convergence in the context of the ideas from
vector geometry that we are now using.

EXERCISES
1. Show that {(2/1)”2 sin(n — %)(nx/l]}c;c is an orthonormal set in PC(0, /).

2. Show that {(2/!)”2 cos(n — %)(:rx/f)}?o is an orthonormal set in PC(0,1).

3. Show that fy(x) = 1 and fi(x) = x are orthogonal on [-1,1], and find
constants a and b so that f(x) = x* + ax + b is orthogonal to both f; and
fi on [-1,1]. What are the normalizations of fj, fi, and f,?

4. Suppose {¢,} is an orthonormal set in PC(0,/), and let ¢; and ¢; be the
even and odd extensions of ¢, to [~/,/]. Show that {2‘”24):} U {2“”24;5;}

is an orthonormal set in PC(~/,/). (Hint: First show that {2-”%:;:} and

{2‘”2¢;} are orthonormal, and then that (¢, ¢,) = O for all m, n.)

5. Let {¢n : n > 0} be an orthonormal set in PC(—/,/) such that ¢, is even
when n is even and ¢, is odd when 7 is odd. Show that {v2¢, : n even}
and {V2 ¢, : n odd} are orthonormal sets in PC(0, /).

6. Suppose [ € PC(a,b) and f(x) = 1[ Floe=) f(x+)] for all x € (a,b).
Show that if f(xg) # 0 for some xq € (a,b), then f(x) # O for all x in some
interval containing xy. (X may be an endpoint of the interval.)

7. Show that if /€ PC(a,b), f >0, and f‘f’ f(x)dx =0, then f(x) = 0 except
perhaps at finitely many points. (Hint: By redefining f at its discontinuities,
you can make f satisfy the conditions of Exercise 6.)
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3.3 Convergence and completeness

If we visualize a k-dimensional vector a as the point in k-space with coordinates
(ay,...,a;) rather than as an arrow, then |la — b|| is just the distance between the
points a and b as defined by Euclidean geometry. Accordingly, the natural notion
of convergence for vectors is that a,, — a if and only if |ja, —a|| — 0. This suggests
a new definition of convergence for functions. Namely, if {f,} is a sequence of
functions in PC(a, b), we say that f, — f in norm if || f; — f|| — O, that is,

g 2
fo— finnorm < j; |fnlx) — f(x)|*dx — 0.

Convergence of f, to f in norm thus means that the difference f; — f tends to
zero in a suitable averaged sense over the interval [a, b]. It does not guarantee
pointwise convergence, nor does pointwise convergence imply convergence in
norm. For example, let [a,b] = [0, 1]. If we define

Mix)=1 for0<x<1/n, fa(x)=0 elsewhere,

then

' 1 2 B 1/n B
Il —/0 ) dx—[o dx =1/n,

so fu — 0 in norm, but f4(0) = 1 for all n, so f; does not converge to zero
pointwise. On the other hand, if

gn(x)=n forO<x<l1/n, gn(x)=0 -elsewhere,

then gn — 0 pointwise (in fact, gn(0) = 0 for all », and for any x > 0, gx(x) =0
for n > |x|™1), but

1 1/n
1 gnll? =f0 \gn(x)*dx =f0 n*dx =n,
$0 gn #» 0 in norm. However, we have the following simple and useful result.

Theorem 3.2. If fu — [ uniformly on [a,b] (~oc < a < b < ), then f — [ in
norm.

Proof: Uniform convergence means that there is a sequence {M,} of con-
stants such that | f(x) — f(x)| < M, for all x € {a,b] and M, — 0. But then

b b
Wfo = £ =f [falx) = £(x)2 dx s[a M2dx = (b-a)M?,

50 || f» = fl| tends to zero along with M. 1
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It should be mentioned that the norm and inner product are themselves
continuous with respect to convergence in norm; that is, if f; — f in norm, then

Wfall =LA, (fn.8) —(f,8) and (g, fa)— (g, f) forallg.

The verification is left to the reader (Exercises 1 and 2).

PC(a,b) fails in one crucial respect to be a good infinite-dimensional ana-
logue of Euclidean space, namely, it is not complete. This means, intuitively,
that there are sequences that look like they ought to converge in norm, but which
fail to have a limit in the space PC(a, b). The formal definition is as follows. A
sequence {a,}{° of vectors (or functions or numbers) is called a Cauchy sequence
if ||, — an|| — 0 as m, n — oo, that is, if the terms in the sequence get closer and
closer to each other as one goes further out in the sequence. A space S of vectors
(or functions or numbers) is called complete if every Cauchy sequence in S has
a limit in S. The real and complex number systems are complete, and it follows
easily that the vector spaces C* are complete for any k. The set R of rational
numbers is not: if {rn} is a sequence of rational numbers with an irrational limit,
such as the sequence of decimal approximations to n, then {rn} is Cauchy but
has no limit in R.

One can see that PC(a, b) is not complete by the following simple example.
Take [a, b] = [0, 1], and let

falx)=x"Y* for x > 1/n, falx)=0 forx <1/n.

-1/4

If m > n, fm(x) — fu(x) equals x when m~! < x < n~! and equals 0

otherwise, so

1/n 1
U=l = [ x7V2dx=2x'2| " =272V,

iy
/m 1/m
which tends to zero as m,n — oc. Thus the sequence { f;} is Cauchy; but clearly
its limit, either pointwise or in norm, is the function

fx)=x"Y* forx>0, f(0)=0, (3.18)

and this function does not belong to PC(0, 1) because it becomes unbounded as
x—0.

It is easy enough to enlarge the space PC(a, b) to include functions such as
(3.18) with one or more infinite singularities in the interval [, b]: One simply
allows improper (but absolutely convergent) integrals in the definition of the inner
product and the norm. But even this is not enough. One can construct Cauchy
sequences { f»} in which f, acquires more and more singularities as n increases,
in such a way that the limit function f is everywhere discontinuous — and in
particular, not Riemann integrable on any interval.

Fortunately, there is a more sophisticated theory of integration, the Lebesgue
integral, which allows one to handle such highly irregular functions. The Lebesgue
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theory does require a very weak regularity condition called measurability, but
this technicality need not concern us. All functions that arise in practice are
measurable, and all functions mentioned in the remainder of this book are tacitly
assumed to be measurable. For our present purposes, we do not need to know
anything about the construction or detailed properties of the Lebesgue integral; all
we need is a couple of definitions and a couple of facts that we shall quote without
proof. Rudin [47] and Dym-McKean [19] contain brief expositions of Lebesgue
integration that include most of the results we shall use; more extensive accounts
of the theory can be found, for example, in Folland [25] and Wheeden-Zygmund
[56].

We denote by L?(a,b) the space of square-integrable functions on [a,b],
that is, the set of all functions on [a, b] whose squares are absolutely Lebesgue-
integrable over [a, b]:

Lz(a,b)={f:f:|f(x)|2dx<oo}. (3.19)

This space includes all functions for which the (possibly improper) Riemann
integral ff |f(x)|*dx converges, and one should think of it simply as the space
of all functions f such that the region between the graph of |f|> and the x-axis
has finite area. Since

st < $(s2+1%)

(because s2 + 12 — 25t = (s — t)2 > 0) for any real numbers s and ¢, we have
/()80 < (/P +18(x)1),

and thus if f and g are in L?(a, b), the integral

b -
(fig) = f F(x)g) dx

is absolutely convergent. Therefore, the definitions of the inner product and norm
extend to the space Lz(a,b), as do all their properties that we have discussed
previously.

As in the space PC(a,b), there is a slight problem with the positivity of
the norm, as the condition [ |f]> = 0 does not imply that f vanishes identically
but only that the f = 0 “almost everywhere.” The precise interpretation of this
phrase is as follows. A subset E of R is said to have measure zero if, for any
¢ > 0, E can be covered by a sequence of open intervals whose total length is
less than €, that is, if there exist open intervals [y, I5,... of lengths /}, l5,... such
that £ ¢ Ui /; and 3°{°/; < €. (For example, any countable set has measure
zero: If E = {x},Xx,,...}, let I; be the interval of length €/2/ centered at x;.) A
statement about real numbers that is true for all x except for those x in some set
of measure zero is said to be true almost everywhere, or for almost every x.
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It can be shown that if f € L?(a,b), the norm of f is zero if and only
if f(x) = 0 for almost every x € [a,b]. Accordingly, we agree to regard two
functions as equal if they are equal almost everywhere. This weakened notion of
equality then validates the statement that || f|| = 0 only when f = 0, and it turns
out also to be appropriate in many other contexts. Moreover, if two continuous
functions are equal almost everywhere then they are identically equal, so for
continuous functions the ordinary notion of equality is entirely adequate.

The crucial properties of Lz(a, b) that we shall need to state without proof
are contained in the following theorem.

Theorem 3.3. (a) L%(a,b) is complete with respect to convergence in norm. (b)
For any f € L*(a,b) there is a sequence f, of continuous functions on [a, b] such
that fn — f in norm. In fact, the functions f can be taken to be the restrictions
to [a, b] of functions on the line that possess derivatives of all orders at every point;
moreover, the latter functions can be taken to be (b — a)-periodic or to vanish
outside a bounded set.

This theorem says that Lz(a,b) is obtained by “filling in the holes” in the
space PC(a,b). The first assertion says that all the holes have been filled, and
the second one says that nothing extra, beyond the completion of PC(a,b), has
been added in. For a proof, see Rudin [47], Theorems 11.38 and 11.42. We
shall indicate how to prove the second assertion — that is, how to approximate
arbitrary L? functions by smooth ones — in §7.1.

We are now ready to discuss the convergence of expansions with respect
to orthonormal sets in PC(a, b), or more generally in L?(a,b). The first step
is to obtain the general form of Bessel’s inequality, which is a straightforward
generalization of the special case we proved in §2.1.

Bessel's Inequality. If {¢n}$° is an orthonormal set in L*(a,b) and f € L*(a,b),
then

S [ dml2 < 1R (3.20)
1

Proof: Observe that

(£ dm)¢n) = TS, ) = (f; dm)?

and that by the Pythagorean theorem,

N

=Y [(fidm)2

1

”i(f, Pn)Pn
1
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Hence, for any positive integer N, by Lemma 3.1,
2

-i N
0<|f -3t 0mn
L 1

2

= If1 - 2Re( ZTXf, Su)dn ) + Hzfj(f, bn)n

N N
= A7 =23 (s om P + X 1S, 6m)
1 1

= 1A% = 3 1(fs dm) 2.

1
Letting N — oo, we obtain the desired result. 1

We are now concerned with the following problem: given an orthonormal
set {¢n}§° in L%(a,b), is it true that

F=3"{f,6n)0n (3.21)
1

for all f € L*(a,b)? First we assure ourselves that the series on the right actually
makes sense.

Lemma 3.2, If f € L*(a,b) and {¢n} is any orthonormal set in L*(a,b), then the
series Y(f, 6n)n converges in norm, and | (£, én)én|| < II£]l.

Proof Bessel’s inequality guarantees that the series 3" |(f, @n)|* converges,
so by the Pythagorean theorem,

n 2 n
> (S bn)n

=Y (fidn)l> =0 asm,n— oo,

m

Thus the partial sums of the series 3_(f, ¢x)¢n form a Cauchy sequence, and
since L3(a,b) is complete, the series converges. Finally, another application of
the Pythagorean theorem and Bessel’s inequality gives

Hi(f, bn)
1

N
S (S 6n)n|
1

2 N
= lim 37((f.6n)"
1

= lim
N—oc

=S 1 emi? < IA11% |
1

Now, an obvious necessary condition for (3.21) to hold for arbitrary f is that
the orthonormal set {¢x} is as large as possible, that is, that there is no nonzero
f which is orthogonal to all the ¢n’s. (If {f, #») = 0 for all n, then (3.21) implies
that f = 0.) Moreover, if (3.21) holds and the Pythagorean theorem extends to
infinite sums of orthogonal vectors, Bessel’s inequality (3.20) should actually be
an equality. With these thoughts in mind, we arrive at the main theorem.
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Theorem 3.4. Let {¢n}3° be an orthonormal set in L*(a,b). The following condi-
tions are equivalent:
(@) If (f,én) =0 for all n, then f = 0.
(b) For every f € L*(a,b) we have f = S7°(f, dn)dn, where the series converges
in norm.
(c) For every f € L*(a,b), we have Parseval’s equation:

If1? = Z| (fs b}l (3.22)

Proof: We shall show that (a) implies (b), that (b) implies (c), and that (c)
implies (a).

(a) implies (b): Given f € L*(a, b), the series 3(f, ¢n)$n converges in norm,
by Lemma 3.2. We can see that its sum is f/ by showing that the difference
g=f—3{f dn)n is zero. But

(8. 0m) = (f,0m) = > _(f2 dn)(@n, Om) = (f, m) — {f,dm}) =0
n=1
for all m. Hence, if (a) holds, g = 0.
(b) implies (c): If f = S2(f, #n)@n, then by the Pythagorean theorem,

N 2 N 0
11 = Nli_‘?’mHZ(f,mwn = lim 37/, ¢nl* = 31K oml.
‘ 1 1 1

(c) implies (a): If (c) holds and (f,¢») = O for all # then || f|| = 0, and
therefore f = 0. 1

An orthonormal set that possesses the properties (a)—-(c) of Theorem 3.4 is
called a complete orthonormal set or an orthonormal basis for L%(a, b). This usage
of the word complete is different from the one discussed earlier in this section,
but it is obviously appropriate in the present context. If {¢»} is an orthonormal
basis of L2(a,b) and f € L?(a.b), the numbers (f, ¢,) are called the (generalized)
Fourier coefficients of f with respect to {¢r}, and the series 3 (f, ¢n)¢n is called
the (generalized) Fourier series of f.

Often it is more convenient not to require the elements of a basis to be
unit vectors. Accordingly, suppose {¥»} is an orthogonal set (and recall that,
according to our definition of orthogonal set, this entails y, # O for all n). Let
®n = ||wnl|~"wn; then {¢,} is an orthonormal set. We say that {y»} is a complete
orthogonal set or an orthogonal basis if {¢,} is an orthonormal basis. In this case
the expansion formula for f € L?(a, b) and the Parseval equation take the form

_ (fs wn) 2 |an)|
f=X e WM -3 ! a2 )

Now, what about the orthonormal sets derived from Fourier series that we
discussed in §3.27 We have not yet proved that they are complete, for we derived
the expansion formula f = Y(f, ¢»)¢» only when f was piecewise smooth, not
for an arbitrary f € L%(a,b). But there is actually very little work left to do.
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Theorem 3.5. The sets

. oo oo . [
{e“’"} and {cos nx} U {sm nx}
n=—oc n=0

n=

are orthogonal bases for L*(-n,n). The sets

-] . oo
{cos nx} . and {sm nx}
n=

n=

are orthogonal bases for L*(0, ).

Proof: First consider the functions wa(x) = e*. Suppose f € L*(-n,7)
and e is a (small) positive number; we wish to show that the N'th partial sum of the
Fourier series of f approximates f in norm to within € if N is sufficiently large.
By part (b) of Theorem 3.3, we can find a 27- periodic function f possessing
derivatives of all orders, such that - f|| < €/3. Letcn = (27)” Y(f, wn) and
T = (2m)7 Y f wn) be the Fourier coefficients of f and f By Theorem 2.5 of
§2.3, we know that the Fourier ssnes 3> ¢nwn converges uniformly to f hence,
by Theorem 3.3, it converges to f in norm. Thus, if we take N sufficiently large,

we have
H = N
”f == Z CnWn
Moreover, by the Pythagorean theorem and Bessel’s inequality,
N 2 N
—ZCan SZ[EH_'CHIZ
-N —N

<Y E-al<If-r<(§).

Thus, if we write
N = . N N N
f=3cavm= (f—f) + (f— ZEan) + (Z:En'ﬂn - Ewn)
—-N -N -N -N
and use the triangle inequality, we see that

N
Hf =5 cnym
-N

€ € €
<§+j+j—

This proves the completeness of the set {y»} = {¢"*} in L?*(-n,n), and the
completeness of {cos nx}uU{sin nx} is essentially a restatement of the same result.
The completeness of {cosnx} and {sinnx} in L?(0,7) is an easy corollary. (Just
consider the even or odd extension of f € L(0,7) to [-7,7].) 1
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The normalizing constants for the functions in Theorem 3.5 are, of course,
V1]2r for e, \/T]m for cosnx and sin nx on [—-7, 7] (except for n = 0), and
/2/x for cosnx and sin nx on [0, #] (except for n = 0). With this in mind, one
easily sees that the Parseval equation takes the form

n oG o0
[ irofdx=2n 3 en = Flaol + 23 (anl + nf?), € Li-mn)
o - 1
where an, by, and ¢, are the Fourier coefficients of f as defined in §2.1, and
T o o0
[ rePax =gt + 3 ml =3l feLX0m),
1 1

where an and b, are the Fourier cosine and sine coefficients of f as defined in
§2.4. For example, if we consider the Fourier sine series of f(x) = x on [0, ] as
derived in §2.1, we find that
T = 4 * 3 =1 =?
1 s e o Y-t
a result which we derived by other means in Exercise 3, §2.3.
Let us sum up our theorems about the convergence of Fourier series. If f is
a periodic function, then the Fourier series of f converges to f
(i) absolutely, uniformly, and in norm, if f is continuous and piecewise smooth;
(ii) pointwise and in norm, if f is piecewise smooth;
(iii) in norm, if f € L*(a,b).
These results are sufficient for virtually all practical purposes. However, as we
indicated in §2.6, there is more to be said on the subject. Here we shall just
mention one more result that is a natural generalization of the theorems in this
section. If 1 < p < oo, we define LP(a, b) 1o be the space of Lebesgue-integrable
functions f on [a, b] such that

b
fa If(x)P dx < oo,

If p > 1, the Fourier series of any f € L?(—x, n) converges to f in the “L? norm,’
that is, if {cx} are the Fourier coefficients of f,

/

However, this result is false for p = 1.

e

N . p
> cne™™ —f(x)| dx -0 as N — oo.
-N

EXERCISES
1. Show that if f € L*(a,b) and fy — f in norm, then (fy, g) — (f, g) for all
g € L*(a,b). (Hint: Apply the Cauchy-Schwarz inequality to (f, — f, &).)
2. Show that ||| fll-lel \ < |If - g||. (Use the triangle inequality; consider the

cases || f|| > |lg|| and ||f]} < || g| separately.) Deduce that if f» — f in norm
then || fall — || £1l.
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Show directly that any f € PC(a,b) is the limit in norm of a sequence of
continuous functions on [a, b], by the argument suggested by the following
picture.

S

Suppose {¢x} is an orthonormal basis for L*(a,b). Supposec > 0and d € R,
and let wn(x) = c'/?¢n(cx +d). Show that {yy,} is an orthonormal basis for
L2(azd b=d)
Finish the proof of Theorem 3.5. That is, from the completeness of {e/"*}
on [-n, x|, deduce the completeness of {cosnx} U {sinnx} on [-n, ] and
the completeness of {cosnx} and {sinnx} on [0, n].
Let ¢n(x) = (2/1)!/*sin(n - })(nx/l). In Exercise 1, §3.2, it was shown that
{¢n} is an orthonormal set in L2(0,/). Prove that it is actually a basis, via
the following argument.
a. Let y(x) = [7V2sin(knx/2l). Show that {y;}{° is an orthonormal
basis for L2(0,2/). (This follows from Theorem 3.5 and Exercise 4.)
b. If f € L*(0,/), extend f to [0, 2]] by making it symmetric about the line
x =/, that is, define the extension f by f(x) = f(2/ - x) = f(x) for
x € [0,/]. Show that (f, y3,) = 0 and (f, Y2,—1) = 2'/2(f, én).
¢. Conclude that if (f, ¢») = 0 for all n, then f = 0.

o0
1

. Show that {(2/!)”2 cos(n— 5)(1:)(/!)} is an orthonormal basis for L%(0,/).

(The argument is similar to that in Exercise 6, but this time you should
extend f to be skew-symmetric about x = /, that is, f(2/ - x) = —f(x) =
- f(x) for x €{0,/].)

. Find the expansions of the functions f(x) =1 and g(x) = x on [0,/] with

respect to the orthonormal bases in Exercises 6 and 7.

. Suppose {¢»} is an orthonormal basis for L?(a, b). Show that for any f, g €

L*(a,b),
<f> g) = Z(fs ‘i’ﬂ)(g,é”)
(Note that the case f = g is Parseval’s equation.)

Evaluate the following series by applying Parseval’s equation to certain of
the Fourier expansions in Table 1 of §2.1.

= 1 = 1 o p2
a- ; F b. g m C‘ ; W
=
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11. Suppose f is of class C!), 2z-periodic, and real-valued. Show that f’ is
orthogonal to f in L?(~x,7) in two ways: (a) by expanding f in a Fourier
series and using Exercise 9 and (b) directly from the fact that 21" = (f2)".

3.4 More about L’ spaces; the dominated convergence theorem

In this section we continue the general discussion of L? spaces and introduce
an extremely useful criterion for the integral of a limit to equal the limit of the
integrals.

Other types of L* spaces

The results of the previous section concerning L*(a,b) can be generalized in
various ways, and we shall need some of these generalizations later on.

First, one can replace the element dx of linear measure on [a,b] by a
weighted element of measure, w(x)dx. To be precise, suppose w is a continuous
function on [a, b] such that w(x) > 0 for all x € [a, b]; we call such a w a weight
function on [a, b]. We can then define the “weighted L? space” L2 (a, b) to be the
set of all (Lebesgue measurable) functions on [a, b] such that

b
[ Pw dx < o,

and we define an inner product and norm on L (a,b) by

b L i 12
(fs 8w =[a f(x)g(x)w(x)dx, I fllw = (fa if(x);zw(x}dx) .

This inner product and norm still satisfy the fundamental conditions (3.3)-(3.6),
so the theorems of §3.1 apply in this situation. So do Theorems 3.2, 3.3, and 3.4.
w could also be allowed to have some singularities, as long as [ ab w(x)dx < oc,
or to vanish at a few points. (If w vanishes on a whole subinterval of [a, b], one
loses the strict positivity of the norm.)

Second, one can replace the bounded interval [a, b] with a half-line or the
whole line, or by a region in the plane or in a higher-dimensional space. That is,
let D be a region in R, (A “region” can be anything reasonable: an open set, or
the closure of an open set, or indeed any Lebesgue measurable set. It does not
have to be bounded, and indeed may be the whole space.) We define L*(D) to
be the set of all functions f such that

[ F(0)2 dx < oo,
D

and we define the inner product and norm on Lz(D) by
2

(f,8) = [.9 fgXdx, 1Sl = ( fD |f(x)|2dx)” .
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Here [, is a k-tuple integral, and dx is the element of Euclidean measure in
k-space (length when k = 1, area when k = 2, volume when k = 3, etc.). If one
is working only with Riemann integrals, one has to worry a bit about improper
integrals when D is unbounded, but this problem is not serious. (The Lebesgue
theory handles integrals over unbounded regions rather more smoothly.) Again,
this inner product and norm satisfy (3.3)-(3.6), so the results of §3.1 are available,
as is Theorem 3.4. However, the analogue of Theorem 3.2 is false when D is
unbounded (or more precisely, when D has infinite measure), and a glance at its
proof should show why, (See Exercise 6.) We shall state a result shortly that can
be used in its place.
Theorem 3.3 also needs to be reformulated; here is one good version of it.

Theorem 3.6. L2(D) is complete. If f € L*(D), there is a sequence {fu} that
converges to f in norm, such that each f, is continuous on D and vanishes outside
some bounded set. The f,’s can be taken to be restrictions to D of functions defined
on all of R® that have derivatives of all orders and vanish outside bounded sets.

One can also modify L2(D) by throwing in a weight function, as before.
As a matter of fact, all one needs to develop the ideas of §3.1 are the following
ingredients:

(i) a vector space /#, that is, a collection of objects that can be added to each
other and multiplied by complex numbers, such that the usual laws of vector
addition and scalar multiplication hold;

(ii) an inner product (x4, v) on # and associated norm ||u| = (u, u)
(3.3)-(3.6).
If, in addition, the space /# is complete with respect to convergence in norm, it
is called a Hilbert space. In this case, Bessel’s inequality and Theorem 3.4 also
hold. This general setup includes, but is not limited to, the spaces C*, L?(a, b),
L% (a,b), and L*(D) discussed above.
Another example of a Hilbert space is the space /? of square-summable se-
quences. That is, the elements of /2 are sequences {cn}7° of complex numbers
such that 3°%° |¢x|?> < oc, and the inner product and norm are defined by

o oo 1/2
(i) =S, inl] = ()
1 1

We have encountered this space before without mentioning it explicitly. Indeed,
suppose {¢»}7° is an orthonormal basis for Lz(a,b). Then the mapping that

takes an f € L2(a, b) to its sequence of coefficients {( I q&n)} sets up a one-to one

1/2 that satisfy

correspondence between L?(a, b) and /2 that is linear and (by Parseval’s equation)
norm-preserving. Such a mapping is called a unitary operator.

One further comment: We suggested thinking of functions f € L?(a,b) as
vectors whose components are the values f(x), x € [a, b]. The reader who knows
about orders of infinity may be puzzled that there are uncountably many such
“components,” and yet the orthonormal bases we have displayed are countable



3.4 More about L?* spaces; the dominated convergence theorem 83

sets. The explanation is that the elements of L?(a, b) are continuous functions or
limits in norm of continuous functions, and the values of a continuous function
are not completely independent of each other. For example, if f is continuous
on [a, b], then f is completely determined by its values at the rational points in
[a, b], of which there are only countably many.

The dominated convergence theorem

We now state one other result from the Lebesgue theory of integration that is
of great utility even in the setting of Riemann integrable functions. It gives a
general condition under which the integral of a limit is the limit of the integrals,
and is an improvement on most of the theorems of this sort that one commonly
encounters in calculus texts. We shall use it frequently throughout the rest of this
book.

The Dominated Convergence Theorem. Let D be a region in R* (k = 1,2,3,...).
Suppose gn (n=1,2,3,...), g and ¢ are functions on D, such that

(a) ¢(x) > 0 and [ ¢(x)dx < o,

(b) |gn(x)| < @(x) for all n and all x € D,

(c) gn(x) — g(x) as n — oo for all x € D.

Then [, gn(x)dx — [, g(x)dx.

The proof of this theorem is beyond the scope of this book (see Rudin [47],
Folland [25], or Wheeden-Zygmund [56]), but the intuition behind it can be easily
explained. If g» — g pointwise, how can the relation [}, g» — [}, g fail? Consider
the following two examples, in which D is the real line:

falx)=1 forn<x<n+1, fa(x)=0 otherwise.
gn(x)=n forO<x<1/n, gn(x) =0 otherwise.

We have
/ fa(x)dx =f gn{x)dx =1 foralln,

but limp—oec fu(x) = limy_o gn(x) = 0 for all x. The trouble is that as n — oo,
the region under the graph of f, moves out to infinity to the right, and the region
under the graph of g, moves out to infinity upwards, so in the limit there is
nothing left. (See Figure 3.3.)

Now, the dominated convergence theorem essentially says that if this sort
of bad behavior is eliminated, then the integral of the limit is the limit of the
integrals. Hypothesis (a) says that the region under the graph of ¢ has finite area,
and hypothesis (b) says that the graphs of |gx| are trapped inside this region, so
they cannot leak out to infinity.

As a corollary, we obtain the following relation between pointwise conver-
gence and convergence in norm.
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I gn

FiGure 3.3. The examples f, and g, of sequences for which the integral of
the limit is not the limit of the integral. The arrows indicate what happens
as n increases.

Theorem 3.7. Suppose f, € L*(D) for all n and f, — f pointwise. If there exists
w € L*(D) such that |fu(x)| < |w(x)| for all n and all x € D, then f, — [ in
norm.

Proof:  We have |f(x)| = lim | fz(x)| < |y(x)|, and hence

A0~ FOOP < (101 +17001)” < 120G

Therefore, we can apply the dominated convergence theorem, with g, = |fu — f |2,
g=0,and ¢ = |2r,r/[2, to conclude that

I = f12 = fD n(x) - Fx)12dx — 0. '

Best approximations in L’

If {¢n} is an orthonormal basis for L2(D), where D is any interval in R or region
in R", we have 3(f, ¢n)¢n = f for all f € L*(D). On the other hand, suppose
{¢n} is an orthonormal set in L?(D) that is not complete. If f € L%(D), what
significance can we attach to the series 3_(f, ¢n)#»? We know that it converges
by Lemma 3.2. In general its sum will not be f, but it is the unique best approx-
imation to f in norm among all functions of the form 3" cnén. (The latter sum
converges in norm precisely when 3" |c{?> < oo, as the argument used to prove
Lemma 3.2 shows.) We state this result as a theorem.

Theorem 3.8. If {¢n} is an orthonormal set in L*(D) and f € L*(D), then

|- Sts.0mn

< ”f— > cndn

for all choices of cn with ¥ |cn|? < co. Equality holds only when cn = (f, $n) for
all n.
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Proof: We have

S =S entn = (£ = SUfbmon) + X ((f:0m) = en) .

Now, f — Y (f, &n)¢n is easily seen to be orthogonal to all ¢n; see the first part
of the proof of Theorem 3.4. Hence, by the Pythagorean theorem (and a simple
limiting argument, if there are infinitely many ¢n),

“f =Y catn

The last sum on the right is clearly nonnegative, and it is zero precisely when
cn = (f, ¢n) for all n; this establishes the theorem. 1

2

2+Z\<f,¢n>—cn

2
= |r- St omen

FIGURE 3.4. A vector f and its orthogonal projection onto a plane.

The pictorial intuition behind Theorem 3.8 is shown in Figure 3.4. The
horizontal plane represents the space of functions (or vectors) of the form 3 cn¢n;
the sum 5°(f, ¢n)@n is the closest point to f in this plane, namely, the orthogonal
projection of f onto the plane.

One situation in which Theorem 3.8 is particularly useful is when {¢n} is
simply a finite subset of an orthonormal basis.

Corollary 3.1. Suppose {¢n}i° is an orthonormal basis for LYD). If f € L}(D),
the partial sum Z{V (f, dn)bn of the series S7°(f, ¢n)bn is the best approximation
in norm to f among all linear combinations of ¢1,...,dx.

EXERCISES

1. Show that {e:’-ﬂf(mxﬂy)}
mHu=-oc

any square whose sides have length one and are parallel to the coordinate
axes.

2. Find constants a, b, 4, B, C such that fy(x) =1, fi(x) = ax+b, and fo(x) =
Ax2+ Bx+C are an orthonormal set in LZ(0, o) where w(x) = e~*. (Hint:
JoS x"e *dx = nl.)

oo

is an orthonormal set in L?(D) where D is
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3. Let D be the unit disc {x2+y2 < 1}, and let fy(x,y) = (x + iy)". Show that
{f2}& is an orthogonal set in L?(D), and compute || f»| for all . (Hint: In
polar coordinates, x + iy = re'’ and dxdy = rdrdf.)

4. Suppose {¢n} is an orthonormal set in L2 (D). Show that {w'/2¢,} is an
orthonormal set in L%(D) (with respect to the weight function 1).

5. Suppose f : [a,b] — [c,d] and f'(x) > O for x € [a, b]. Show that if {@n} is
an orthonormal basis for L*(c,d), then {¢, o f} is an orthonormal basis for
LZ(a,b) where w = f'.

6. Find an example of a sequence {f»} in L*(0, o) such that f, — 0 uniformly
but f» 4 0 in norm.

7. What is the best approximation in norm to the function f(x) = x on the
interval [0, 7] among all functions of the form (a) ay + a; cos x + a; cos 2x,
(b) by sinx + by sin2x, (¢) acosx + bsinx?

3.5 Regular Sturm-Liouville problems

In §1.3 we arrived at the orthogonal bases {cosnx}3° and {sinnx}{° for L*(0,m)
by solving the boundary value problems

u’(x) + Au(x) =0, wW(0)=du(n)=0

and
w’(x) + Au(x) =0, u(0) = u(n) = 0.

We derived the orthogonal basis {€/"*}>_ for L?(—z, 7) by considering periodic
functions, but we could also have found it by solving the boundary value problem

u"(x) + Au(x) =0, u(-n) =u(n), u'(-n)=u(n).

In fact, there is a large class of boundary value problems on an interval [a, b]
that lead to orthogonal bases for L?(a, b). These problems are the subject of the
present section.
First, a bit of conceptual background from finite-dimensional linear algebra.
We recall that a linear transformation T : C¥ — C¥ is called selfadjoint or
Hermitian if
(Ta,b) = (a, Th) for all a,b e C.

(When T is described by a matrix (7;;), this means that 7}; = 7;;.) It is one of
the basic results of linear algebra, known as the spectral theorem or the principal
axis theorem, that whenever T is self-adjoint there is an orthonormal basis of C*
consisting of eigenvectors for 7. What we are aiming for is an analogue of this
theorem for differential operators acting on the space L%(a, b).

Suppose then that S and T are linear operators that are defined on certain
subspaces Zs and 1 of L%(a,b) and map them into L3(a, b). We say that S
and T are adjoint to each other (or that T is the adjoint of S, or vice versa) if

(S(f),8) =(f,T(g)) forall fePsand geZr.
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S is called self-adjoint or Hermitian if

(S(f),8) =(f,S(g)) forall f,geZPs.

(These definitions will suffice for our purposes; in more advanced work one needs
to be more careful about specifying the domains Zg and Z7.)
Now suppose L is a second-order linear differential operator,

Lfy=rf"+af +pf,

where r, ¢, and p are real functions of class C'?) on [a, 5]. We shall assume that
the leading coefficient r is nonvanishing on [a, b], as the existence of “singular
points” where r = 0 complicates the theory considerably. (Later we shall some-
times allow r to vanish at one or both endpoints.) For the time being, we take
the domain of L to be the space of all twice continuously differentiable functions
on [a, b].

What is the adjoint of L? If we write out the integral defining (L(f), g), we
can move the derivatives from f onto g by integration by parts, thus:

[ergas=- [ rogtax+rral = [ rezyaxs[rrz- sow])
[arzax=- [ raetax+arg.

We therefore have

b
(L(f), 8) = f (rf" +af +pf)gdx

-/ rr2) - @B+ pE]dx + [r7 - f07) +arz]] G20
= (AL @)+ [rT - 7) + (@ - r)f2].
where L” is the formal adjoint of L defined by
L*(g)=(re)" - (q8) +pg=rg" + (2" - q)¢' +(r" - q¢' +p)g.  (3.29)

(Here we have used the assumption that r, ¢, and p are real.) We say that L is
formally self-adjoint if L* = L. On comparing the coefficients of L* with L, we
see that this happens precisely when 2’ — ¢ = ¢ and r” — ¢’ = 0, that is, when
g =r’. In this case, L has the form

Lfy=rf"+Vf +pf=(f) +pf, (3.26)

and moreover, the second boundary term at the end of (3.24) vanishes. We have
therefore proved the following.
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Lagrange’s Indentity. If L is formally self-adjoint,

(L) 8) = (L@ + (3~ 1B))].. (327)

Evidently the discrepancy between formal and actual self-adjointness lies in
the endpoint terms in (3.27). They can be eliminated by restricting L to a smaller
domain, consisting of functions that satisfy suitable boundary conditions. More
precisely, for a second-order operator L it is usually appropriate to impose two
independent boundary conditions of the form

B\(f) =aif(a) + a1 f'(a) + B f(b) + B1.f (b) =0,
By(f) = a2 f(a) + a3 f'(a) + Bof () + B1.f'(b) = 0,

where the o’s and f#’s are constants. We say that the boundary conditions (3.28)
are self-adjoint (relative to the operator L) if

(3.28)

[r(f’? - f?’)]z =0 for all f, g satisfying (3.28).

Almost all the boundary conditions that arise in practice are of the form
af(a)+a'f'(a)=0,  Bf(b)+p'f'(b)=0

(e, 8.8 €R: (@0)) # (0,05 (8,8 #(0,0) ).

Boundary conditions of the form (3.29) are called separated, since each one in-
volves a condition at only one endpoint. Separated boundary conditions are
always self-adjoint (relative to any operator L). In fact, if f and g both satisfy
the boundary condition at a,

af(a)+d f'(a)=0, agla)+a'g'(a)=0, (3.30)

then the expression r(f'g - fg') vanishes at x = a; likewise at b. This is obvious
when o’ = 0, in which case (3.30) becomes f(a) = g(a) = 0; on the other hand,
if o’ # 0, we can rewrite (3.30) as

flla)y=cfla), g'(a)=cgla) (c=-a/d),

(3.29)

so that
r(a)lf'(a)g(a) - f(a)g'(@)] = cr(a)[f(a)g(a) - f(a)g(a)] = 0.

There is also one set of nonseparated boundary conditions that is commonly
used, namely, the periodic boundary conditions

flay=1®),  fla)=f(b). (3.31)

These are self-adjoint relative to L provided that r(a) = r(b), for then the end-
point evaluations at @ and b in (3.27) cancel each other out.

Now we are ready to formulate the boundary value problems that lead to
orthogonal bases for L2(a, b).
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Definition. A regular Sturm-Liouville problem on the interval [a, b] is specified by
the following data:
(i) a formally self-adjoint differential operator L defined by L(f) = (rf")' +pf,

where r, r', and p are real and continuous on [a, b] and r > 0 on [a, b];

(ii) a set of self-adjoint boundary conditions, B,(f) = 0 and B,(f) = 0, for the
operator L;

(ii1) a positive, continuous function w on [a, b].

The object is to find all solutions f of the boundary value problem

L) +awf =0, ie, [f)f' ()] +p(x)f(x)+iw(x)f(x) =0,
Bi(f) = By(f) =0,

(3.32)

where A is an arbitrary constant.

(A comment on condition (i): We have assumed from the outset that r does
not vanish on [a, b], so either r > 0 or r < 0. If r < 0, we simply replace r, p,
and A by —r, —p, and —4, which leaves (3.32) unchanged.)

For most values of 4, the only solution of (3.32) is the trivial one, f(x) =0.
If (3.32) has nontrivial solutions, 4 is called an eigenvalue for the Sturm-Liouville
problem, and the corresponding nontrivial solutions are called eigenfunctions.
(This usage of the term eigenvalue is somewhat specialized. A is an eigenvalue
in the usual sense of the word, not of the operator L but rather of the operator
M defined by M(f) = —w~'L(f).) If f and g satisfy (3.32), then so does any
linear combination ¢; f + ¢, g (this is just the superposition principle at work),
so the set of all eigenfunctions for a given eigenvalue A, together with the zero
function, is a linear space called the eigenspace for A.

We summarize the elementary properties of eigenvalues and eigenfunctions
in the following theorem, which displays the importance of eigenfunctions from
the point of view of orthogonal sets. We recall that if w > 0 is a weight function
on [a, b], the weighted inner product {f, g)w is given by

b
(s 8w = [ f)E@w(x)dx = (wf,g) = (f,wg). (3.33)

Theorem 3.9. Let a regular Sturm-Liouville problem (3.32) be given.

(a) All eigenvalues are real.

(b) Eigenfunctions corresponding to distinct eigenvalues are orthogonal with re-
spect to the weight function w; that is, if f and g are eigenfunctions with
eigenvalues A and u, A # u, then

b ——
(s 8w = / f(X)E@w(x)dx =0.

(c) The eigenspace for any eigenvalue A is at most 2-dimensional. If the boundary
conditions are separated, it is always I-dimensional.
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Proof: (a) If A is an eigenvalue, with eigenfunction f, then

MSIE = Quf, f) = ~(L(). f) = (L L) = ([, 2w f) =X f,wf) = 2| fl3.

Here we have used (3.27) and (3.33) and the fact that [ satisfies self-adjoint
boundary conditions. Since | f]2 > 0, we conclude that A = A, that is, 4 is real.

(b) Suppose L(f) + Awf = 0 and L(g) + uwg = 0, where f and g are
nonzero. We have just shown that A and ¢ must be real, and by the same sort of
argument,

M 8w = (Awf, g) = —(L(f), 8) = ([, L(g)) = (f,uwg) = u(f, &)u.

Thus, if 4 # u we must have (f, g)w = 0.

{c) The fundamental existence theorem for ordinary differential equations
(see Appendix 5) says that for any constants ¢; and ¢, thete is a unique solution
of L(f) + Awf = 0 satisfying the initial conditions f(a) = ¢;, f'(a) = ¢;. That
is, a solution is specified by two arbitrary constants ¢; and ¢,, so the space of
all solutions of L(f) + Aw f = 0 is 2-dimensional. Hence the space of solutions
satisfying the given boundary conditions is at most 2-dimensional. Moreover,
if the boundary conditions are separated, one of them has the form af(a) +
a'f'(a) = 0. This imposes the linear relation ac; + a’c; = 0 on the constants ¢;
and ¢, and hence reduces the dimension of the solution space to one. (Of course
the other boundary condition will usually reduce the dimension to zero; this is
why there are nontrivial solutions only for certain special values of 4.) 1

At this point it is not evident that a given Sturm-Liouville problem has any
eigenfunctions at all. But, in fact, there are as many as anyone could wish for,

Theorem 3.10. For every regular Sturm-Liouville problem
(rfY +pf+iwf=0, B(f)=By(f)=0

on [a, b, there is an an orthonormal basis {$»}5° of L3, (a, b) consisting of eigen-
functions. If An is the eigenvalue for ¢p, then limp—oc An = +oc. Moreover, if [
is of class C'? on [a,b] and satisfies the boundary conditions By(f) = By(f) =0,
then the series S_(f, on)dn converges uniformly to f.

In more detail, the content of Theorem 3.10 is as follows. By Theorem 3.9(c),
for each eigenvalue A there are either one or two independent eigenfunctions. In
the latter case we can choose the two eigenfunctions to be orthogonal to each other
with respect to the weight w. (If (£}, /2)uw # 0, we can replace f, by f, = o —cfi
where ¢ is chosen to make (fi, f,) = 0.) If we put all these eigenfunctions
together, by Theorem 3.9(b) we obtain an orthogonal set; and Theorem 3.10
says that this set is actually a basis. This implies, in particular, that the set of
eigenvalues is countably infinite,

We shall take Theorem 3.10 on faith for the present, but we shall prove it in
the case of separated boundary conditions in §10.3. A proof of the general case,
as well as its generalization to higher-order differential equations, can be found
in Naimark [40], Chapter II.
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Example. Consider the problem
f'+4f=0,  fO)=af(0), f)=8S1). (3.34)

First let us dispose of the case A = 0. The general solution of [ =01s f(x) =
¢, + ¢3x. The boundary condition at 0 says that ¢; = ac;, and the boundary
condition at / says that ¢; = f(¢;+c3/). The only solution of this pair of equations
is ¢; = ¢; = Q unless g = a/(1+la), in which case we may take ¢; = 1 and ¢; = a.

Now for 4 # 0, let us set A = v, where v is positive real or positive imaginary
according as 4 > 0 or A < 0. (By Theorem 3.9(a), we need only consider real 1.)
The general solution of the differential equation /" +Af =0is

f(x)=¢ cosvx +cysinvx (,1=p2),

Since f(0) = ¢; and f'(0) = vc,, the boundary condition at O says that ¢; =
(a/v)c;. Since a constant multiple of a solution is a solution, we may choose
¢ =V, 03 = q, $0 that

f(x)=vcosvx + asinvx. (3.35)

Now the boundary condition at / says that

—v¥sinvl + av cosvl = B(v cosvl + asinvl),

or
(a — B)vcosvl = (af + v?)sinvl,
or finally @-f)
o — v
tan V! = W' (3.36)

For the case of imaginary v (i.e.,, 4 < 0) we set v = [y and use the fact that
tan ix = i{tanh x to rewrite (3.36) as

_ (o= Bu
tanh,uf = W (33?}
In both cases we need only consider positive values of v and y, since the actual
eigenvalue is v% or —u?.

If v satisfies (3.36), then the function f defined by (3.35) is an eigenfunction
for the problem (3.34). In general it is not normalized, but finding the normal-
ization is a simple matter of calculus, and the equation (3.36) can often be used
to simplify the result. As an illustration, let us work out the case f = —a. (Other
cases are considered in Exercises S and 6.) If f is given by (3.35), then

!
l[f||2=f (v? cos? vx + 2av sinvx cosvx + o’ sin® vx) dx
0

I
= [%vz(x +v ' cosvxsinvx) + asin? vx + Yo’ (x - v ™! cosvxsin ux)}
0

T _ 3
= %(.v2 +a?)l + (v_z_ch_) cosvisinvl + asin®vl.
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But if § = —a, (3.36) gives

wr-a®) a _ acosvl
v tanvl = sinul’
S0
1£1% = 3(w? + o)l + a(cos? vi +sin’ vl) = (% + &%) + o (3.38)

There is no way to describe the values of v and u that solve the transcendental
equations (3.36) and (3.37) in closed form (except when « = ), but it is easy to
find them graphically. Namely, they are the values at which the curves y = tanv/
and y = (a—B)v/(af+v?) in the vy-plane, or y = tanh u/ and y = (a—f)u/(af—
,uz) in the uy-plane, intersect. The relative configuration of these curves depends
on a and f; we shall display a couple of representative cases here and let the
reader work out some others as exercises.

Casel. a =1, f = -1, = n. Here the situation is as depicted in Figure 3.5.
There is an infinite sequence of positive solutions to (3.36), say v < vy < -+,
and vy is approximately n — 1 when » is large. There are no positive solutions
to (3.37). Hence, there is an infinite sequence of positive eigenvalues i, = v?
for (3.34), with A, ~ (n — 1)? for n large, and no negative eigenvalues. (Zero is
not an eigenvalue since —1 # 1/(1 + #).) The (unnormalized) eigenfunctions are
given by (3.35):

Jn(x) = vy cosvnx + sinvpX.

‘‘‘‘‘

FIGURE 3.5. Left: the graphs of tannv (solid) and 2v/(v? — 1) (dashed);
the numbers vy are the values of v at which the graphs intersect. Right: the
graphs of tanh mu (solid) and —2u/(u? + 1) (dashed).

Case Il. « = 1, f = 4, ] = n. Here the situation is as depicted in Figure
3.6. Again there is an infinite sequence {v»}7° of positive solutions to (3.36),
this time with v, = n for large n; and zero is not an eigenvalue of (3.34) since
4 # 1/(1 + m). But now there is also one positive solution gy to (3.37). Hence,
there is an infinite sequence of positive eigenvalues A, = v for (3.34) and one
negative eigenvalue 4y = —u3. The (unnormalized) eigenfunction for A, = v? is

Jn(X) = v cOSURX + SiN VX,
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FIGURE 3.6. Left: the graphs of tanzv (solid) and —3v/(v? + 4) (dashed).
Right: the graphs of tanh mu (solid) and 3u/(u? - 4) (dashed). The numbers
vn and pg are the values of v and u at which the graphs intersect.

and the eigenfunction for g = —u? is

Jo(x) = ug cosh upx + sinh pyx.

EXERCISES

1.

Under what condition on the constants ¢ and ¢’ are the boundary conditions
f(b)=cf(a)and f'(b) = ¢’ f'(a) self-adjoint for the operator L(f) = (rf")'+
pf on [a,b]? (Assume as usual that r and p are real.)

. Show that the problem (3.34) has no negative eigenvalues if @ > 0 > f and

exactly one negative eigenvalue if § >a>00r0> 8 > a.

. Find the eigenvalues and normalized eigenfunctions for the problem f” +

Af =0, £(0)=0, /(1) =0 on [0,/]. (Cf. Exercise 6, §3.3.)

. Find the eigenvalues and normalized eigenfunctions for the problem f” +

Af=0, f'(0)=0, f(I)=0on [0,/]. (Cf. Exercise 7, §3.3.)

. Find the normalized eigenfunctions for the problem (3.34) in the case a = 0.

(The answer is a bit different in the cases § >0, f# =0, and § <0.)

. Find the normalized eigenfunctions for the problem (3.34) in the case § = 0.

(Hint: The change of variable x — / — x essentially reduces this to Exercise
5.)

. Find the eigenvalues and normalized eigenfunctions for the problem f” +

Af=0, f(0)=0, f/(1) = -f(1).

. The Sturm-Liouville theory can be generalized to higher-order equations. As

an example, consider the operator L(f) = /') on the interval [0, /].
a. Prove the analogue of Lagrange’s identity for L:

/0; (/O - f0FO)dx = ["8- 18"+ 1'Z" - 1'Z],.

b. For the fourth-order equation L(f) — Af = 0 one needs four bound-
ary conditions involving f, f’, f, and f"’. Such a set of boundary
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conditions is called self-adjoint for L if the right side of (+) vanishes
whenever f and g both satisfy the conditions. Show that one obtains a
self-adjoint set of boundary conditions by imposing any of the following
pairs of conditions at x = 0 and any one of them at x = [:

f=f"=0’ f=f”=0, f’=fm=0, f”=fm=0.

¢. Show that the eigenvalues for the equation L(f)—Aif = 0, subject to any
self-adjoint set of boundary conditions, are all real, and that eigenfunc-
tions corresponding to different eigenvalues are orthogonal in L%(0,/).

d. One can show that the analogue of Theorem 3.10 holds here, i.e., there
is an orthonormal basis of eigenfunctions. For example, consider the
boundary conditions f(0) = f”(0) = 0, f(I) = f"(l) = 0. Show that
fu(x) = sin(nzx/l) is an eigenfunction. What is its eigenvalue? Why
can you guarantee immediately that there are no other independent
eigenfunctions?

9. Suppose p, ¢, and r are real functions of class C® and that r > 0. The
differential equation rf" + g f + pf + Af = 0 can be written in the form
L(f)+ Awf = 0 where w is an arbitrary positive function and L(f) =
wrf” +wqf' +wpf. Show that w can be always be chosen so that L is
formally self-adjoint.

The following two problems use the fact that the general solution of the Euler
equation
') +axf(X)+bf(x)=0  (x>0)

is c;x™ + c;x™ where r; and r; are the zeros of the polynomial r(r — 1) + ar + b.
(If the two zeros coincide, the general solution is ¢;x™ + ¢;x" log x.) In case ry
and r, are complex, it is useful to recall that x* = e'slogx,

10. Find the eigenvalues and normalized eigenfunctions for the problem

(xfY+ix7'f=0, f()y=fb)=0 (b>1).

Expand the function g(x) = | in terms of these eigenfunctions. (Hint; in
computing integrals, make the substitution y = logx. Orthonormality here
is with respect to the weight w(x) = x~1.)

11. Find the eigenvalues and normalized eigenfunctions for the problem

C2fY +2f=0,  f()=f(b)=0 (b>1).
12. Consider the Sturm-Liouville problem
(rfY +pf+Af=0,  fla)=f(b)=0. (xx)
a. Show that if f satisfies (x*), then

i f " fPdx = f P dx [ ’ plfdx.

(Hint: Use the fact that Af = —(rf')’ — pf and integrate by parts.)
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b. Deduce that if p(x) < C for all x, then all the eigenvalues A of (xx)
satisfy A > - C.

c. Show that the conclusion of (b) still holds if the boundary conditions
fla) = f(b) = 0 are replaced by f'(a)—af(a) = f'(b)-Bf(b) = 0 where
a <0 and f > 0. (Hint: The analogue of part (a) in this situation is

b b b
A [ \ffdx = [TnrPax- [ ol dx+pro)so)P-ar@) s (@)

3.6 Singular Sturm-Liouville problems

In §3.5 we considered the differential equation
rf"+rf +pf+iwf=0 (3.39)

on a closed, bounded interval [4, ], in which r, ¥/, p, and w were assumed con-
tinuous on [a, b] and r and w were assumed strictly positive on [a, b]. However, it
often turns out in practice that one or more of these assumptions must be weak-
ened, leading to the so-called singular Sturm-Liouville problems. Specifically, we
allow the following modifications of the basic setup:

(i) The leading coefficient r may vanish at one or both endpoints of [a, b]. In ad-
dition, the weight w may vanish or tend to infinity at one or both endpoints,
and the function |p| may tend to infinity at one or both endpoints.

(ii) The interval [a, b] may be unbounded, that is, a = —oc and/or b = oc.
There is an extensive theory of these more general boundary value problems,
but it is beyond the scope of this book. (Complete treatments can be found
in Dunford-Schwartz [18] and Naimark [40]; see also Titchmarsh [52].) We
shall merely sketch a few of the main features here, and we shall discuss specific
examples in Chapters 5 and 6 and Sections 7.4 and 10.4.

The first problem is to decide what sort of boundary conditions to impose.
Since we wish to use the machinery of inner products and orthogonality, we
wish to use only solutions of (3.39) that are square-integrable. Now, in the reg-
ular case, all solutions of (3.39) are continuous on [a, b] and hence belong to
Lﬁ,(a, b). However, under condition (i), the solutions to (3.39) may fail to be
square-integrable because they blow up at one or both endpoints; whereas un-
der condition (ii), solutions may fail to be square-integrable because they do not
decay at infinity. Thus, we distinguish two cases concerning the behavior of
solutions at each endpoint; to be definite, we consider the endpoint a.

Case I. All solutions of (3.39) belong to L2 (a,c) for a < ¢ < b. (It turns
out that if this condition is satisfied for one value of A, then it is satisfied for all
values of A.) In this case, we impose a boundary condition at a. In some cases it
may be of the form af(a)+a’ f'(a) = 0, as before, but it may also be a condition
on the limiting behavior of f and f’ at a — for example, the condition that f(x)
should remain bounded as x — a.
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Case II. Not all solutions of (3.39) belong to L% (a,c). In this case we impose
no boundary condition at ¢ beyond the one that automatically comes with the
problem, namely, that the solution should belong to L2 (a, b).

In any event, we require the boundary conditions to be self-adjoint, i.e., if
f and g satisfy the boundary conditions then the boundary term in Lagrange’s
identity should vanish. Precisely, since f and g may have singularities at 2 and
b, or a and/or b may be infinite, this requirement should be formulated as

. s 10€ _
52_,0[r(fg —J/& )]a+5 =0. 240
(3.40) implies that

(L(f)>g}=(f=L(§)) where L(f)=(?'f1)f+Pfa

for any smooth functions f and g that satisfy the boundary conditions, and
once this equation is established, the proof of Theorem 3.9 goes through without
change. Therefore, the eigenvalues are all real and the eigenfunctions with distinct
eigenvalues are orthogonal to each other.

However, the situation with Theorem 3.10 is different: in general, there is no
guarantee that there will be enough eigenfunctions to make an orthonormal basis.
Sometimes there are, sometimes there aren’t. In the latter case, it is still possible
to expand arbitrary functions in L2(a, ) in terms of solutions of the differential
equation (3.39) that satisfy the given boundary conditions, but the expansion will
involve an integral rather than (or in addition to) an infinite series.

For example, consider the differential equation

f"+4f=0 on (-oc,00).
The general solution is
c1cosvx +cysinvx or et +ce¥ (A=v?).
None of these functions, for any value of A, belongs to L?(—oc, ), except for
the trivial case ¢; = ¢; = 0. However, any f € L?(~cc,00) can be written as
a “continuous superposition” (i.e., integral) of the functions e'** as v ranges

over all real numbers, by means of the Fourier transform. This is the subject of
Chapter 7.



CHAPTER 4
SOME BOUNDARY VALUE PROBLEMS

This chapter is devoted to the solution of various boundary value problems by
the techniques we have developed so far, namely,

(i) separation of variables,

(i1) the superposition principle, and
(iii) expansion of functions in series of eigenfunctions.
This subject was begun in §2.5. All the major ideas we need are already in
place, and it is just a question of learning how to combine them efficiently and
developing a feeling for the connection between the mathematics and the physics.
In the first section we discuss a few useful general techniques; the remainder of
the chapter is largely devoted to working out a variety of examples.

Our methods generally lead to solutions in the form of infinite series. In
this chapter we shall not worry much about technical questions of convergence,
termwise differentiation, and such things. In some cases, one can verify that the
series converge in a sufficiently strong sense to justify all the formal manipula-
tions according to the principles of classical analysis; even when this is not the
case, one can usually establish the validity of the solution by interpreting things
properly — for example, by abandoning pointwise convergence in favor of norm
convergence or the notion of weak convergence that we shall develop in Chapter
9. These issues were discussed in some detail in §2.5 for the boundary value
problems solved there, and similar remarks apply to the problems considered in
this chapter. At any rate, our concern here is with finding the solutions rather
than with a rigorous justification of the calculations.

We shall also not worry about questions of uniqueness. That is, our methods
will produce one solution to the boundary value problem, and we shall not try to
prove rigorously that it is the only solution. In general, a problem that is properly
posed from a physical point of view will indeed have a unique solution; or at least
any non-uniqueness will be easily visible in the physical setup. (See John [33] or
Folland [24] for further discussion of these matters.)

We shall point out here and there how Sturm-Liouville problems of a rather
general sort turn up in applications. However, when we perform specific calcu-
lations, we must limit ourselves to the differential equations that we can solve
explicitly — and at this point, this means mainly the equation f”’ +4f = 0 or
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98 Chapter 4. Some Boundary Value Problems

its close relative x2f" + 2x f' + Af = 0 (discussed in §4.3). We shall solve some
problems involving more complicated equations in Chapters 5 and 6.

4.1 Some useful techniques

We begin this chapter by discussing the sort of problems we shall be considering
and assembling a bag of tricks for them. To put the discussion on a concrete
level, let us think of the boundary value problems for the heat and wave equa-
tions that we solved in §2.5. In these problems we were solving a homogeneous
linear differential equation L(u) = 0 (either the heat or the wave equation) for a
function u(x,¢) on the region a < x < b, t > 0. We imposed some homogeneous
linear boundary conditions on u at x = a and x = b, and some linear initial con-
ditions on u at ¢t = 0. Let us write the boundary conditions as B(«) = 0 and the
initial conditions as I(u) = h(x), with the understanding that each of these single
equations may stand for several equations grouped together. (For example, for
the vibrating string problem, “B(u) = 0” stands for “u(0,¢) = 0 and u(/,¢) = 0,”
and “I(u) = h(x)” stands for “u(x,0) = A;(x) and u;(x,0) = hy(x).”) Thus the
boundary value problem has the form

Lu)=0, Bu)=0, I(u)=h(x). (4.1)

The technique for solving (4.1) was to use separation of variables to produce an
infinite family of functions u(x,t) = ¥ cadpn(t) wn(x) that satisfy L(u) = 0 and
B(u) = 0, and then to choose the constants ¢, appropriately to obtain [{u) = A(x).

In the examples we considered in §2.5, the boundary conditions were such
as to lead to Fourier sine or cosine series. In this chapter we shall consider
other homogeneous boundary conditions. These will yield other Sturm-Liouville
problems and hence lead to infinite series involving the eigenfunctions for these
problems. The particular eigenfunctions will differ from problem to problem, but
the method of solution is the same in all cases.

We shall also generalize (4.1) by considering inhomogeneous equations and
inhomogeneous boundary conditions:

L(u) = F(x,t), B(u) =g(1), I(u) = h(x). (4.2)

There are several techniques for reducing such problems to more manageable
ones. We now discuss these techniques on the general level; specific examples
will be found in subsequent sections. The reader may find it helpful to read
this material in conjunction with the examples, rather than trying to absorb it
completely before reading further.

Technique 1: Use the superposition principle to deal with inhomogeneous terms
one at a time.
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In problem (4.2) there are three inhomogeneous terms: F, g, and h. Sup-
pose we can solve the three problems obtained by replacing all but one of these
functions by zero:

L{u) =0, B(u) =0, Hu) = h(x), (4.3)
L(u) =0, B(u) = g(1), I{u) =0, (4.4)
Lu) = F(x,t), B(u)=0, I(u)=0. (4.5)

If u;, uy, and u; are the solutions to (4.3), (4.4), and (4.5), respectively, then
u = uy + u; + uz will be the solution of (4.2). In particular, (4.3) is just (4.1),
which we already know how to deal with, so it suffices to solve (4.4) and (4.5).

We remark that this method can sometimes be used to break down the prob-
lem still further. For example, if we are working on the interval a < x < b,
the boundary condition B(u) = g(f) generally stands for two conditions, one at
x = a and one at x = b, say Bs(u) = ga(t) and By(u) = g,(t). If we can solve
the (probably simpler) problems obtained by replacing one or the other of the
functions g; and g, by zero, we can solve the original problem by adding the
solutions to the two simpler problems.

Let us now turn to the inhomogeneous differential equation L(u) = F(x,1).
Suppose the homogeneous equation L{u) = 0 with homogeneous boundary con-
ditions B(u) = 0 can be handled by separation of variables, leading to solutions
u(x,t) = Y. cndn(X)wa(t) where the ¢n’s are the eigenfunctions for a Sturm-
Liouville problem. Then the same sort of eigenfunction expansion can be used
to produce solutions of the inhomogeneous equation L{u) = F(x, ) subject to the
same boundary conditions B(u) = 0. Namely, for each ¢ we expand the function
F(x,t) in terms of the eigenfunctions ¢n(x),

F(x,t) = cn(t)on(x),

and we try to find a solution u in the form

u(x,1)= 3 on(t)én(x),

where the functions wx(7) are to be determined. If we plug these series into the
differential equation L(u) = F, the result will be a sequence of ordinary differen-
tial equations for the unknown functions wx(#) in terms of the known functions
¢n(t). These equations can be solved subject to whatever initial conditions at
t = 0 one may require. The resulting function u(x, #) then satisfies the differen-
tial equation L(u) = F and the desired initial conditions; it satisfies the boundary
conditions B(u) = 0 because they are built into the eigenfunctions ¢,. In short,
we have:

Technique 2: The Sturm-Liouville expansions used to solve L(u) = 0 with homo-
geneous boundary conditions B(u) = 0 can also be used to solve the inhomogeneous
equation L(u) = F(x,t) with the same boundary conditions.
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Another useful device is available for solving (4.2) when the inhomogeneous
terms F and g are independent of ¢:

L(u) = F(x), B(u) =c, I{(u) = h(x). (4.6)

(We have written ¢ instead of g to remind ourselves that it is constant.) In this
case, the differential equation L(u) = F with boundary conditions B(u) = ¢ may
admit steady-state solutions, that is, solutions that are independent of ¢. The
superposition principle (Technique 1) can be used to break (4.6) down into the
problem of finding a steady-state solution and solving the homogeneous equation
with given initial conditions: If ug(x) and v(x, ) satisfy

L(ug) = F(x),  B(ug) =c, (4.7)
L(U) = 0! B(U) — 0! I(U) = k(X) - HO(X)’ (48)

then u(x,t) = ug(x)+v(x,t) satisfies (4.6). (4.7) is relatively easy to solve because
it is only an ordinary differential equation for uy, and (4.8) is just (4.1) again (with
different initial conditions). To summarize:

Technique 3: To solve an inhomogeneous problem with time-independent data,
reduce to the homogeneous case by finding a steady-state solution.

Technique 3 is not infallible. Sometimes there is no steady-state solution;
that is, the boundary conditions B(ug) = ¢ are incompatible with the differential
equation L(ug) = F(x) when ug is independent of ¢. (When this happens, there
is usually a good physical reason for it.) We also observe that in the case of
homogeneous boundary conditions B(u) = 0, Techniques 2 and 3 can both be
used to solve the equation L(u) = F(x). The solutions may differ in appearance
(the first one involves a series expansion for F'), but they are actually the same.

There remains the question of solving problems with inhomogeneous bound-
ary conditions B(u) = g(t) that are time-dependent. Often the most efficient tool
for handling such problems is the Laplace transform; see §8.4. However, it is
worth noting that the superposition principle can be used to trade off inhomoge-
neous boundary conditions for inhomogeneous equations. Namely, suppose we
wish to solve

L(u)=0, B(u)=g(1), I{u)=0. (4.9)

Let w(x, t) be any smooth function that satisfies the boundary conditions B(w) =
g(t) and the initial conditions /(w) = 0; such functions are relatively easy to
construct because no differential equation needs to be solved. But then u satisfies
(4.9) if and only if v = u — w satisfies

L(v) = F(x,t), B(v) =0, I{v) =0,

where F(x,t) = —L(w). In this way, problem (4.4) can be reduced to problem
(4.5), which we have already discussed.
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The preceding discussion has been phrased in terms of time-dependent prob-
lems for ease of exposition, but the techniques we have presented apply equally
well to problems not involving time, such as the Laplace equation in two space
variables x and y, with one of these variables playing the role of 7, Here there are
no “initial conditions™ as opposed to “boundary conditions” but rather boundary
conditions pertaining to different parts of the boundary; and “steady-state solu-
tions™ are to be interpreted as solutions that depend on only one of the variables.
But the same ideas still work.

4.2 One-dimensional heat flow

In §2.5 we solved the problem of finding the temperature u(x,?) in a rod that
is insulated along its length and occupies the interval 0 < x < /, given that the
ends of the rod are either (a) insulated or (b) held at temperature zero. (The
reader may prefer to think instead of a slab occupying the region 0 < x </ of
xyz-space, where conditions are such that variations in temperature in the yz-
directions are insignificant. The mathematics is the same.) Here we play some
more complicated variations on the same theme.

Newton’s law of cooling

Consider the same rod as before, and suppose the ends of the rod are in contact
with a medium at temperature zero, but now suppose that the boundary con-
ditions are given by Newton’s law of cooling: the temperature gradient across
the ends is proportional to the temperature difference between the ends and the
surrounding medium. That is, we have the boundary value problem

U = Klxx, ux(0,t) = au(0,1), ux(l,t) = —au(l, t), (4.10)

subject of course to an initial condition #(x,0) = f(x). Here a is a positive
constant; the fact that the coefficient is @ at x = 0 and —a at x = [ expresses
the fact that, if u(x,t) > 0, the temperature will be increasing as one crosses the
boundary at x = 0 from left to right and decreasing as one crosses the boundary
at x = [ from left to right (and vice versa if u(x,t) < 0). The cases of insulated
boundary, or boundary held at temperature zero, are the limiting cases o — 0
and a — oo of this setup.

We apply separation of variables. As before, if we set u(x,t) = X(x)T(t) in
(4.10) and call the separation constant —kv?, we obtain the differential equation
T’ = —kv?T for T and the Sturm-Liouville problem

X" +2X =0, X'(0)=aX(0), X'()=-aX(l) (4.11)

for X. We solved this problem in §3.5, and the analysis there shows the following:
(1) Zero is not an eigenvalue.
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(ii) The positive eigenvalues are the numbers v2 such that v satisfies

2av
tanvl = ———,
and there is an infinite sequence v| < v; < --- of such v’s. (See Figure 3.5
for the case @ = 1.) The normalized eigenfunction corresponding to the
eigenvalue v? is

dn(x) = dy (vn cOSVRX + a sinvpX)

where
dr = (v + )l +a.

(iii) The negative eigenvalues are the numbers —u? such that u satisfies

-2a

tanh/u = P ‘ul,
but there are no solutions of this equation since the left and right sides always
have opposite signs.

Now we can solve the boundary value problem (4.10) subject to the initial
condition u(x,0) = f(x). Namely, we expand f in terms of the functions ¢,
which we know to be an orthonormal basis for L2(0,/): f = S(f, ¢n)®n. Then we
solve the differential equation 7" = —kv2T w1th mmal value {f, ¢n), Obtaining

t) = {f, ¢n) exp(—kvit). Finally, we put it all together, obtaining

u(x,1) = Z(f, én) exp(—kvat)gn(x)

2t .
= E T az"f e exp(—kv2t)(vn cos vnx + asinvpx)

where r
Cn = f S(x)(vncosvnx + asinvyx)dx.
0

Since all the eigenvalues are positive, the solution approaches zero exponentially
fast as t — oo: this is just what one would expect physically.
Suppose we replace (4.10) by

Uy = Kuxx, ux(0,2) = u(0,1), wux(l,t)=4u(l,1). (4.12)

Here the left boundary condition is just as before with @ = 1, but the right
boundary condition is physically unreasonable: It says that heat is being pumped
into the rod at the right end when the temperature of the rod is already greater
than that of the surroundings, and sucked out when the temperature of the rod is
less. Nonetheless, we can still solve the mathematical problem and see what we
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get. We solved the relevant Sturm-Liouville problem in §3.5, and we found that
in addition to the sequence {L»-,,}l of posmve eigenvalues, with eigenfunctions
{¢n}7°, there is one negative eigenvalue ,uo, with eigenfur ction ¢g. The solution
of (4.12) with initial data f is then

u(x,t) = (f, ¢o) exp(kudt)do(x) + I (f, on) exp(~kviit)pn(x).
1

Here the term involving the negative eigenvalue grows exponentially as t — oo,
unless by some chance (f,¢) = 0. But this is to be expected: If the rod is
initially hot, it keeps getting hotter because heat is being pumped in at the right
end. So the mathematics still makes some physical sense even when the physics
is unrealistic!

Inhomogeneous boundary conditions

So far we have always assumed that both ends of the rod or slab are exposed to
the same outside temperature. But perhaps the rod goes through a wall (or the
slab is a wall) between two rooms at different temperatures: The temperature on
the left is zero, for instance, and the temperature on the right is 4 # 0. Then we
should impose the boundary conditions

u(0,6)=0, u(l,t)y=A (4.13)
or, for Newton’s law of cooling,
ux(0,t) = au(0,1), ux(l,t) = —efu(l, 1) — A]. (4.14)

These are inhomogeneous boundary conditions that do not depend on time, so
we apply Technique 3 of §4.1 to find a solution. That is, we begin by finding
the steady-state solution ug(x) of the heat equation that satisfies (4.13) or (4.14).
This is easy: For a function ug that does not depend on ¢, the heat equation
simply becomes uj = 0. The general solution of this equation is up(x) = cx +d,
and we have merely to determine the coefficients ¢ and d so that u satisfies (4.13)
or (4.14). For (4.13) the solution is

= (4/)x,
and for (4.14) the solution is
A
Up(x) = m(a}: + 1)
Now we can solve the heat equation with initial data u(x,0) = f(x), subject
to the boundary conditions (4.13) or (4.14) — let us say (4.13), to be definite.

Namely, we set

u(x,t) = up(x) + v(x,t) = (A/h)x + v(x,1).
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Then u satisfies
ur=Kkuxx, u(0,6)=0, u(l,t)=4, u(x,0)= f(x)

if and only if v satisfies

vy = kvxx, v(0,0) =v(l,t) =0, v(x,0) = f(x) - (4/D)x.
Thus we now have homogeneous boundary conditions for v, with slightly different
initial data. As we know from §2.5, we can solve this problem by expanding
f(x) = (A/D)x in a Fourier sine series; and we have essentially computed the

Fourier sine series for (4//)x in §2.1:

. AmX
sin .
nm !

23y _1yn+1
A _ 3 24(-1)

! 1

The result is

= _1yh+l " -
v(x,t) = Z (b,, - %) o=k P G m;x’
1

!
by = Zf f{x)sin BRX dx,
[ Jo 7
and hence

X

~f

ulx,t)= v(x,t)

+
_1yn+l 23,2 . NTX &= 22002
2A(ni) (1_e—ﬂ?£ktﬂ' )Sll'lnl +ane kel smnnx
1

Il
-8

The first sum here represents the solution that starts at 0 at time ¢/ = 0 and rises
to the steady state (4//)x because of the influx of heat from the right, whereas
the second sum represents the transient effects of the initial temperature f(x).

The inhomogeneous heat equation

Having considered inhomogeneous boundary conditions, we now consider the
inhomogeneous differential equation #; = kuyxx + F(x,t). Here F(x,t) models
the effect of some mechanism that adds or subtracts heat from the rod — perhaps
some heat sources along the length of the rod, or a chemical or nuclear reaction
within the rod itself. (F is measured in degrees per unit time; it represents the
rate at which heat is being produced.) To be definite, let us suppose that the rod
is initially at temperature zero and is held at temperature zero at both ends; thus,
we wish to solve

e = kitxx + F(x,1),  u(x,0)=0,  u(0,t)=u(l,t)=0. (4.15)
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If the inhomogeneous term is independent of ¢, i.e., F(x,t) = F(x), we
can use the same device as in the previous example. That is, we first solve the
steady-state problem

kug+F(x)=0, up(0)=up(l)=0

which is easily accomplished by integrating —F(x)/k twice and choosing the
constants of integration appropriately. Then the substitution u(x, ) = ug(x) +
v(x,t) turns (4.15) into

v = KUxx, v(x,0) = —ug(x), v(0,1) =v(l,1) =0,

which we have already solved by means of Fourier sine series.

For the general case, we can use Technique 2 of §4.1. The eigenfunction
expansion that solves the homogeneous case F = 0 is the Fourier sine series.
Hence, we begin by expanding everything in sight in a Fourier sine series:

u(x,1) —an(t sm—x F(x,t)= iﬂn( sm“—:}EE (4.16)
1

Here the coefficients 8, are computed from the known function F in the usual
way, and the coefficients by are to be determined. If we plug these series into the
differential equation (4.15), we obtain

i t)mnm:i( n(t) + fn(t )smg,

1

and equating the coefficients of sin(nzx//) on both sides yields

Bt + ™ ,’; K bn(t) = Balt).

This is a first-order ordinary differential equation for b,, and it is easily solved
by multiplying through by the integrating factor " 7 ¥//’;

2.2 2.2
j! !:bn(!) exp (%)] = Bn(t) exp (%2“) :

Integrating both sides and remembering that b,(0) = 0 (from the initial condition
in (4.15)), we find that

bn(t) = exp (—"27;;“) '/: Br(s)exp (nzz;;ks) ds, (4.17)

and the solution u is obtained by substituting this formula for b, into (4.16).
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The sharp-eyed reader will have noticed that this line of argument needs
some justification. We differentiated the series u = 3" bn(¢) sin(nnx/l) termwise
with respect to ¢ and “x without really knowing what we were doing, since the
coefficients b, (and hence the convergence properties of the series) were as yet
unknown. Only after we have found formula (4.17) and substituted it into (4.16)
can we see that the function u thus defined really solves the problem. (It always
does so in the weak sense discussed in §9.5. Moreover, if the function F(x,t)
is such that its Fourier sine coefficients f, tend to zero reasonably rapidly as
n — oo, the same will be true of the coefficients b, of u in view of (4.17), and
one can then show that u satisfies (4.15) in the ordinary pointwise sense.)

Example. Suppose the rod is radioactive and produces heat at a constant rate
R. Thus the problem to be solved is

ur = kuxx + R, u(x,0) =0, u(0,t) =u(l,t)=0.
Employing Technique 3, we first solve
ug(x)=-R/k,  uy(0) = ug(l) =0,

to obtain
ug(x) = (R/2k)x(l - x).

Next we solve
vy = kxx, v(x,0) = —up(x), v(0,t) =v(l,)=0

by expanding u in its Fourier sine series (cf. Exercise 10, §2.4)

2
%x(J_x)=4!R > 1 gin BEX 0O<x<])

3 3
k5" !
to obtain 2 -
4/‘R | —-n“nekt . nmax
n=1,35,..
and hence
u(x,t) = ug(x) +v(x,1)
41°R 1 ~n?nkt\ . nmx (4.18)
= W gﬁ -3 (]. — EXp ;Q sin 7 "
h=1,3,0,...

(See Figure 4.1.)
Employing Technique 2, we expand u(x,?) and the constant function R in
Fourier sine series (cf. Exercise 1, §2.4):

s . nmx 4R I . nnx
u(x,t) = E bn(t) sin 5 R=— E 5 Sin——
1

(O<x <)
& n=1,3,5,..
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FIGURE 4.1. The temperature function u(x,t) given by (4.18) with k = 0.5,
R=13,and/=1,ontheregion0<x<1,0<t< 1.

The differential equation for u then gives

n2n2kb (1) = {4R/mt, n odd,
AL} n even.

The solution to this equation with initial value 0 is

4/°R —n’nlkt
bn(l] = m (1 — eXp —!2—)

bn(t) +

for n odd and ba(#) = O for n even, which again gives the solution (4.18).

Heat flow in nonuniform materials

One can also consider heat flow in rods or slabs of nonuniform composition,
where the specific heat density ¢ and the thermal conductivity K vary from
point to point. In this case the (homogeneous) heat equation becomes o (x)u; =
(K(x)ux)x (see Appendix 1). All of what we have done works in principle for
this more general situation; the difference is that one must solve boundary value
problems for the Sturm-Liouville equation (K(x)f")’ + Ag(x)f = 0 rather than
kf" +Af =0 (with k constant).

EXERCISES

All these problems concern heat flow in a rod on the interval [0,/]; in all except
the last one, it is assumed that heat can enter or leave the rod only at the ends.
1. Suppose the end x = 0 is held at temperature zero while the end x =/ is
insulated.
a. Find a series expansion for the temperature u(x, t) given the initial tem-
perature f(x).
b. What is u(x, t) when f(x) = 50?
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2.

B

10.

Repeat Exercise la, replacing the assumption #(0,¢) = 0 by the assumption
u(0,t)=C #0.

Repeat Exercise la, replacing the assumption that ux(/,f) = O by the as-
sumption ux(/,t) = A (i.e., heat is being supplied at a constant rate at the
right end).

Repeat Exercise la, assuming that the rod generates heat within itself at a
constant rate R, so the heat equation is replaced by u; = Kuxx + R.

Take [ = 7 and solve: u; = kuxx + e~ sinx, u(x,0) = u(0,1) = u(n,t) = 0.
In the example of the radioactive rod, suppose that the reaction that produces
the heat inside the rod dies out over time, so that the differential equation
is Uy = Kixx + Re~°'. What is the solution?

. Suppose that a rod is insulated at both ends, has initial temperature zero,

and generates heat within itself at the constant rate R; thus, #; = kttxx + R
and u(x,0) = ux(0,¢) = ux(l,t) = 0.

a. Show that Technique 3 doesn’t work here; that is, there is no steady-
state solution of u; = kuxx + R, ux(0,t) = ux(/,t) = 0. Why is this to
be expected physically?

b. Solve the problem by Technique 2 (or by making a clever guess).

c. Solve the problem with the constant R replaced by Re™“.

Solve: u = kuxx, ux(0,¢) =0, ux(l,t) + bu(l,t) =0 (b > 0), u(x,0) = 100.
(Cf. Exercise 5, §3.5. What is the physical interpretation?)

Let k(x) be a smooth positive function on [0,/]. Solve the boundary value
problem u; = (Kux)x + f(x,1), u(0,t) = u(l,t) = u(x,0) = 0, in terms of the
eigenvalues {4, } and the eigenfunctions {¢,} of the Sturm-Liouville problem
(kf"Y +4f =0, f(0)= f(/) = 0.

We have always supposed that the rod is insulated along its length. Suppose
instead that the surroundings are at temperature zero, and that heat transfer
takes place at a rate proportional to the temperature difference (Newton’s
law). A reasonable model for this situation is the modified heat equation
u; = kuxx — hu, where h is a positive constant,

a. Show that u satisfies this equation if and only if u(x,t) = e "v(x, 1)
where v satisfies the ordinary heat equation. Show also how this result
could be discovered by separation of variables.

b. Suppose that both ends are insulated and that the initial temperature is
f(x) = x. Solve for u(x,1).

¢. Suppose instead that one end is held at temperature 0 and the other is
held at temperature 100, and that the initial temperature is zero. Solve
for u(x,t). (Use Technique 3, and cf. entry 20 in Table 1, §2.1.)

4.3 One-dimensional wave motion

In §2.5 we analyzed the vibrating string problem,

Ui = CPUx, w0,y =u(l,t) =0, u(x,0)=f(x), wu(x,0)=g(x)
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by means of Fourier sine series. We now consider some related boundary value
problems.

The inhomogeneous wave equation

We can add an inhomogeneous term to the vibrating string problem to represent
an external force that affects the vibrations:

Uy = uxx + F(x,1), (4.19)

u0,) =u(l,t) =0, u(x,0)=f(x), u/(x,0)=gi(x). '
For example, if the string is an electrically charged wire, F could result from a
surrounding electromagnetic field.

The techniques that we developed in §4.1 and used in §4.2 to solve the
inhomogeneous heat equation work equally well here. If F is independent of ¢,
one can first find a steady-state solution ug{x) by integrating F twice and then
solve the homogeneous wave equation for v = u— g with the initial displacement
S replaced by f — ug. Or, for the general case, one can expand u(x,!) and F(x,?)
in Fourier sine series in x for each 1,

an(t)smm, F(x,1) Zﬁn(t smw

yielding a sequence of ordinary differential equations for the Fourier coefficients
of u in terms of those of F, namely,

H?IC

b (t) + —5—"bn(t) = pn(t) (4.20)

These equations can be solved by standard techniques such as variation of pa-
rameters or Laplace transforms (see §8.3 or Boyce-diPrima [10]); the solution
with initial conditions b,(0) = b;(0) =0 is

{
Bl =—— [ gin PR —5) ’"“

-3)

% Bn(s)d (4.21)
This formula leads to the solution of (4.19) with initial conditions f = g = 0.
But then to solve (4.19) with arbitrary initial data f and g, by the superposition
principle (Technique 1) one is reduced to solving the homogeneous wave equation
with these initial data; and this we have already done. (As with the heat equation,
these calculations show only that u = 3 ba(f) sin(nnx/I), with bx(t) defined by
(4.21), is a reasonable candidate for a solution; further arguments are needed for
a rigorous establishment of the fact that it really works.)
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Vibrations with free ends

Another boundary value problem of interest for the wave equation is obtained
by requiring that the spatial derivative ux rather than u itself should vanish at
the endpoints:

e = i, (4.22)

Ux(0,) = ux(l,t) =0, u(x,0)= f(x), wu(x,0)=g(x).
If one thinks of a vibrating string, this represents a string whose ends are free
to move on frictionless tracks along the lines x = 0 and x =/ in the xu-plane.
The condition that u, = 0 at the endpoints expresses the fact that there are
no forces directed along the tracks to oppose the tension in the string. This
may seem a rather artifical situation, but more natural interpretations of (4.22)
are available. For one, (4.22) is a model for the longitudinal vibrations of an
elastic rod or a spring that is free at both ends. (“Longitudinal” means that the
vibrations involve displacements of the material along the x-axis by compression
and extension of the rod or spring, rather than displacements perpendicular to
the x-axis as in the vibrating string.) An even better interpretation of (4.22) is
as the longitudinal vibrations of a column of air that is open at both ends, such
as a flute or organ pipe. In the case of the flute, for example, musical notes are
produced by vibrations of the air within the flute; these vibrations are largely
confined to the interval between the hole where the moving air is introduced by
the player and the first open finger-hole.

The mathematics of (4.22) is very similar to the vibrating string problem,
except that one uses Fourier cosine series rather than sine series. Indeed, we
can solve the problem by expanding everything in Fourier cosine series from the
outset: If we substitute

i oa
| nnx 1 HALX
flx)= zag+;an cos ==,  g(x)=jao+ El an COS —=,
I - nmx
u(x»t)= ZA()(!)"I' E AH(I)COS T,
1

into (4.22), we obtain the ordinary differential equations

nznzcz
12

An(t) = - An(t), An(0) = an, An(0) = an.

The solution to this, for n > 0, is

nrct  lap . nmct
An(t) = an cos —— + —= sin ——
n{t) = an I nmc ]

¥

whereas for n = 0 it is
Ag(t) = ag + agt.
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Hence, the solution # of (4.22) is given by

oo
u(x,t) = ¥(ap + agt) + 21: cos 1’_’}2 (an cos %ﬂ + %’é sin %Ct) . (4.23)
(As usual, the formal differentiations used in arriving at this formula need to be
justified after the fact. Alternatively, one could arrive at (4.23) by separation of
variables.)

Here there is a bit of a surprise. The terms with n > 0 describe the vibratory
motion of the string (or rod, or spring, or whatever; let us call it the “device”),
and the term }a, is just a constant displacement, of no importance; but if ag #
0, the term %QDI says that the device as a whole is moving with velocity jag
— perpendicular to the x-axis in the case of a string, and along the x-axis in
the other cases. Indeed, there is nothing in the setups we have described to
prevent this, since the ends of the device are free to move. The constant {ao =

! fo" g(x)dx is the average initial velocity of the device; and in the absence of
any countervailing forces the device will continue to move with this velocity, If
the device as a whole stays put, it simply means that oy = 0.

Mixed boundary conditions

Another problem of interest is the one with mixed boundary conditions:

2
Ut = C Uxx,

(4.24)
w(0,) =ux(l,t) =0, u(x,0)=f(x), wulx,0)=glx).

Here the left endpoint is fixed and the right endpoint is free. One can think of a
string or elastic rod with one fixed end and one free end, or a column of air that
is closed at one end and open at the other, such as a clarinet or a stopped organ
pipe.
After separation of variables, the Sturm-Liouville problem to be solved in
this case is
X"+AX =0, X(0)=X'(/)=0.

This was the subject of Exercise 3, §3.5, but we shall briefly derive the solution
here. If we set A = 12, the general solution of the differential equation is a linear
combination of sinvx and cosvx. The condition X(0) = 0 implies that X(x) =
csinvx, and the condition X'(/) = 0 then becomes cos v/ = 0. This means that
vl must be a half-integer multiple of 7, so the (unnormalized) eigenfunctions are
| _
Xn(x) = sin B — g = sin (24 l)ﬂx, n=1273,...
[ 21

We leave to the reader to work out the details, but it should be pretty clear now
that the solution u(x, t) of (4.22) will have the form

Zsin (2n - mx [an - (2n = rct n 2lap . (2n - Dmct .

3] 37 Zn-Dme 0 21 23)

1
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There is an interesting difference between the frequency spectra of the waves
(4.23) and (4.25). The nth term of the series in (4.23) represents a vibration with
period 2//ne, or frequency nc/2l; so the allowable frequencies are the integer
multiples of the “fundamental” frequency ¢/2/. The nth term in (4.25), on the
other hand, has frequency (2n — 1)c/4/; so the allowable frequencies are the odd
integer multiples of the fundamental frequency ¢/4/. In particular, the funda-
mental frequency in the former case is twice as great as in the latter. In musical
terms, this means that an air column open at only one end produces notes an
octave lower than a column of the same length open at both ends, and that its
odd harmonics are missing. (See Figure 4.2.)

O LXK

FIGURE 4.2. Profiles of the vibrations corresponding to the three lowest
eigenvalues in a pipe open at one end (left) and a pipe open at both ends

(right).

These remarks apply to clarinets but not to oboes, saxophones, or any of
the brass instruments. Oboes and saxophones have conical bores (their interior
diameter increases steadily from mouthpiece to bell) rather than the cylindrical
bore of the clarinet (whose interior diameter is essentially constant). The effect
of this, as we shall see in §5.6, is that the frequencies they produce are about the
same as the frequencies of a cylindrical column of the same length that is open
at both ends. In particular, they produce all integer multiples of the fundamental
frequency. The physics of the brass instruments is considerably more complex,
and we shall not discuss it here. For further information on the physics of musical
instruments, we refer the reader to Hutchins [31] and Taylor [51].

Other problems in wave motion

A number of other variations on these themes are possible. For example, one
can add an inhomogeneous term to the wave equation in (4.22) and (4.24), just
as in (4.19), and the same techniques of solution are applicable. One can also
consider inhomogeneous boundary conditions, such as

uy = Cuxx,  u(0,6)=0, u(l,t) = h(2).

This might represent a string that is fixed at the left end and is being shaken at
the right end, or an electromagnetic signal being sent down a wire from the end
x = [. We shall solve this problem in §8.4 by using the Laplace transform; for
the time being, we leave it to the reader to work out a special case in Exercise 7,
using the trick mentioned at the end of §4.1.
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One can also consider waves in nonuniform media — for example, a vibrat-
ing string whose linear mass density p varies from point to point. (Perhaps the
string is thicker in some places than in others.) In this case the wave equation
becomes

Uy = Tp(x)™ uxx (4.26)

where T is the tension of the string (see Appendix 1). The Sturm-Liouville
equation that results from separation of variables is then f” +Ap(x)f = 0, which
produces eigenfunctions that are orthogonal with respect to the weight p(x). One
can then solve the wave equation (4.26) by using these eigenfunctions in place of
sines and cosines.

EXERCISES

1. Verify that the function b, (t) defined by (4.21) satisfies the differential equa-
tion (4.20) and the initial conditions b,(0) = b,(0) = 0.

2. One end of an elastic bar of length / is held at x = 0, and the other end is
stretched from its natural position x =/ to x = (1 + b)/. Thus, an arbitrary
point x in the bar is moved to (1 +b)x, so its displacement from equilibrium
is bx. At time t = 0 the ends of the bar are released; thus, u(x,0) = bx and
u(x,0) = 0.

a. Find the displacement u(x,¢) at times ¢ > 0.

b. Show that the velocity at the left end of the bar alternately takes the
values bc and —bc on time intervals of length //c. (That is, u;(0, {) = be
for 2mlj/c <t < (2m + 1)l /c and u((0,1) = —bc for 2m + 1)lj/c <t <
(2m+2)l/c, m=0,1,2,.... Hint: Entry 6 of Table 1, §2.1.)

3. Suppose a horizontally stretched string is heavy enough for the effects of
gravity to be significant, so that the wave equation must be replaced by uy; =
c*uyx — g where g is the acceleration of gravity. (The boundary conditions
are still u(0,¢) = u(l,t) =0.)

a. Find the steady-state solution @(x).

b. Suppose that initially #(x,0) = u,(x,0) = 0. Find the solution u(x,?)
as a Fourier series, and show that

u(x, 1) = $(x) -  [@(x + ct) + D(x - o))

where @ is the odd 2/-periodic extension of ¢. (Cf. the discussion in
§2.5.)
4, In problem (4.22) discussed in the text, assume that fé g(x)dx = 0 (average
initial velocity is zero), and let A(x) = [ g(¢)d¢. Show that the solution
(4.23) can be written as

u(x, 1) = 5 [F(x +ct) + F(x - e)] + o [HOx +¢t) = Hix — co)]

where F and H are the even 2/-periodic extensions of f and h. (Cf. the
discussion in §2.5.)
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5. Find the general solution of u; = c2uxx — a®u, u(0,t) = u(l,t) = 0, with
arbitrary initial conditions. This is a model for a string vibrating in an elastic
medium; the term —a’u represents the force of reaction of the medium
on the string. (Hint: The differential equation is homogeneous; start from
scratch with separation of variables.)

6. In real-life vibrating strings, the vibrations damp out because the strings are
not perfectly elastic. This situation can be modeled by the modified wave
equation uy = cZuxx — 2ku,; the term —2ku, represents the frictional forces
that cause the damping. (The factor of 2 is purely for convenience.) Find
the general solution, subject to the boundary conditions u(0,¢) = u(/,t) = 0.
Assume at first that k < nc//. What happens if k > n¢/!? (See the hint for
Exercise 5.)

7. A string of length / = = (for simplicity) is fixed at one end and attached
to an oscillator at the other, so that »(0,¢) = 0 and u(n,t) = sinkt. If the
string is initially at rest (u(x,0) = u,(x,0) = 0), find u(x,t). (Hints: (1) Let
u(x,t) =v(x,t) + (x/n)sinkt and solve for v. (2) When k # « the general
solution of " + a?f = Bsinkt is ¢, cosat + ¢y sinat + (fsinkt)/(a? — k?).)
The typical case is when k/c is not an integer; if it is, the answer will have
a different form due to resonance between the imposed oscillations and one
of the natural frequencies of the string.

8. The total energy of a vibrating string at time ¢, up to a constant factor, is

E(r) = /: [u;(x,t)2 + ux(x, t)z] dx.

(The first term is the kinetic energy and the second term is the potential
energy. u is assumed to be real here.)
a. If the string has fixed ends and u(x,¢) is written as a Fourier series as
in equation (2.24), show that

2.2 o ] 0
E(f) = % > (nba) + 5> Bi.
1 1

(In particular, we have conservation of energy: E(t} is independent of
t. This also suggests that a natural physical requirement is that the
series 3" (nbn)? and Y B2 be convergent. This is the case if u(x,0) is
continuous and piecewise smooth and u,(x, 0) is piecewise continuous.
Why?)

b. Derive a similar result for a vibrating string (or bar or air column) with
free ends, with the same formula for E(¢).

4.4 The Dirichlet problem

The Dirichlet problem is to find a solution of Laplace’s equation in a region D
that assumes given values on the boundary D of D:

Viu=0inD, u(x)= f(x) forxedD.
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This can be interpreted physically as finding the steady-state temperature in D
when the temperature on 9D is known, or as finding the electrostatic potential
in the charge-free region D when the potential on 4D is known. This problem
can be studied in any number of dimensions; here we consider the 2-dimensional
case for certain simple regions in which the method of separation of variables
is effective. Some other boundary value problems for the equation v2y =0 are
considered in the exercises.

The Dirichlet problem in a rectangle

The simplest situation is that of a rectangle. We take the sides of the rectangle to
have length / and L, and we take the origin to be at the lower left corner. Thus,

D=[0,1x[0,L]={(x,y):0<x <l 0<y< L},
and the boundary value problem to be solved is

Uxx + uyy = 0,
u(x,0) = fi(x), wu(x,L)= fo(x), u0,y)=g(y), ull.y)=gy).

By the superposition principle (Technique 1} it will suffice to solve this problem in
the special cases g, = g, = 0 and f] = f; = 0, as the solution in the general case is
obtained by adding together the solutions for these two special cases. Moreover,
the cases g; = g; = 0 and f; = f5 = 0 are equivalent, just by interchanging the
roles of x and y, so we work out only the first one:

Uxx + Uyy = 0,

(4.27)
u(O,y) = u(z&y) =0, u(x,O) =f|(X), H(X,L) =f2(JC].

We apply separation of variables. Neglecting the inhomogeneous boundary
conditions for the moment, we search for solutions u that satisfy the homo-
geneous boundary conditions. Taking u(x,y) = X(x)Y(y), we find from the
differential equation that X"Y + Y”"X =0, or Y"/Y = —X"/X. Setting Y"/Y
and — X" /X equal to a constant v, we obtain

X'+02X =0, X(0)=X()=0,
Y" - 12Y =0,

The Sturm-Licuville problem for X is a familiar one that we have seen many
times before: The eigenvalues are 2 = (n7/l)*> where n is a positive integer, and
the corresponding eigenfunctions are sin(nzx//). In other words, we are working
once again with Fourier sine series in x. (Readers who foresaw this outcome
immediately upon looking at (4.27) are to be congratulated on their instincts.)
As for Y, the general solution of the equation Y” — »?Y = 0 with v? = (nn/l)?
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is a linear combination of cosh(nzy/l) and sinh(nzy/!), so we are looking at
solutions u of the form

ux,y) = Z sin m;rx (an cosh 12 4 Bnsinh m;y) (4.28)
]

and we must determine the coefficients a, and Sy to get the right boundary
conditions at y = 0 and y = L (“initial” and “final” conditions, if you like). We
expand the functions f; and f; in (4.27) in their Fourier sine series:

fl(x)=iansin%£, frlx) = ansnnnx
I

On setting y =0 or y = L in (4.28) and comparing coefﬁments we find that
nrL

an = an, ancosh l +,8,,s nh—!—m_ -
or I L
on = dn, Bn = bycsch % — ap coth %

The solution is obtained by substituting these formulas into (4.28). It can be
expressed more symmetrically by taking sinh[nn(L — y)/I] and sinh(nny/l) as a
basis for solutions to Y” — (nn/1)*Y = 0 instead of cosh(nny/l) and sinh(nny/I);
the result is

[s <]
u(x,y) = sin # (A,, sinh m’}_—_y_) + By sinh @) ,
1

An = an csch 1’;—‘&, Bp = by csch g

The Dirichlet problem in polar coordinates
We next solve the Dirichlet problem in a “polar-coordinate rectangle”
= {(rcos&,rsinfi) trp<r<r, a<f< ,8}.
(See Figure 4.3.) For this we need the formula for the Laplacian in polar coor-

dinates:
VU = usx + Uyy = thrr + 1y + 1 2ugg.

This formula is derived in Appendix 4.

FIGURE 4.3. A “rectangular” region in polar coordinates,
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In order to solve the Dirichlet problem on the region S, as in the rectangular
case it will suffice to do the special cases when the solution is to vanish on the two
radial pieces of the boundary or on the two circular pieces of the boundary. We
shall work out the first of these cases here and leave the second one as Exercise
7. By rotating the coordinates suitably we may assume that the initial angle « is
0, so the problem we are to solve is

urr+r_'ur+r“2u33 =0 inS,
u(r,0) =u(r,) =0, u(r,0)=1(6), u(ro,6)=2g(0).
As usual, we begin by looking for product solutions u(r,8) = R(r)©(8) that

satisfy the homogeneous boundary conditions. For such a u, Laplace’s equation
becomes

(4.29)

r2R'(r)+rR'(r) _ ©"(0)
R(r) CGIOK

so upon setting both these expressions equal to a constant v* we obtain

0"(6)+v*0(0)=0, ©(0)=6(B) =0, (4.30)
r2R"(r) + rR'(r) = v2R(r) = 0. (4.31)

The Sturm-Liouville problem (4.30) is our old friend that leads to the eigen-
values »2 = (nn/f)? and eigenfunctions sin(nnf/f). The equation (4.31) for R
is a special case of the Euler equation

r2f"(r) + arf'(r)+ bf(r) =0, (4.32)

which is one of the few types of equations with variable coefficients that can be
solved in an elementary way. Namely, just as one uses exponential functions to
solve constant-coefficient equations, one uses power functions to solve the Euler
equation. Substituting f(r) = r* in (4.32) yields

[z(z- 1)+a,1+b]r*=o,

so if A; and A, are the roots of the quadratic polynomial A% + (@ — 1)A + b, the
functions r* and r*2 satisfy (4.32). The general solution of (4.32) is then a linear
combination of these two except when 4; = 4,, in which case the general solution
is a linear combination of *! and r* logr.

In the case (4.31) with which we are concerned, we have @ = 1 and b =
v? = (nm/B)?, so the quadratic polynomial becomes 4% — (nm/B)?, whose roots
are A = xnn/B. Therefore, we have found the following sort of solutions to
Laplace’s equation in the region S:

o0
u(f, 0) = ZSin ﬂ‘%e (anr’mi{.& o bnr—nﬂjﬁ) )
1
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It remains only to choose a, and b, to satisfy the remaining boundary conditions
in (4.29). But this is easy: If we expand f and g in their Fourier sine series,

f(8)=icﬂ3innfzﬂs g(9)=ia‘nsm%§.,
1 1

we see that
an™ " 4 bar7"™P = cp,  anrg™P 4 bary "™ = 4,

and it is a simple matter to solve these equations simultaneously for a, and by.
In a similar way we can solve the Dirichlet problem in an annulus

A= {(rcos O,rsinf):rp<r<r, 0 arbitrary},
namely,
B 4 ?'_Zugg =0 in A, u(r;,0) = f(0), u(rg,0)=g(6).

The boundary conditions at # = 0 and # = § are now replaced by the requirement
that u be 2z-periodic in 6. Thus, instead of (4.30) we ask for periodic solutions
of ©” 4+ 12@ = 0; this forces v to be an integer and gives the eigenfunctions e**"?
or cos nf and sin nf, with the result that

u(r,8) =(ag+bologr)+ > €™ (anr" +bar™"). (4.33)
n==x1,+2,...

Now the coefficients a, and by are found by expanding the periodic functions f
and g in their full Fourier series rather than a Fourier sine series.

Finally, we can let the inner radius ry tend to zero and consider the Dirichlet
problem on a disc

D= {(x,y} 13 3 o rz} = {(rcosﬂ, rsinf):r< rl},

that is,
Urr +r Ur +r"*ugyg =0 in D, u(ry,8) = f(6). (4.34)

Here the inner boundary condition has disappeared, but there is still a condition
to be satisfied at r = 0. Functions of the form (4.33) will satisfy Laplace’s
equation in the punctured disc {0 < r < r{}, but they will blow up at r = 0 unless
all the terms involving logr or negative powers of r vanish. In other words, we
impose the “boundary condition” on the product solutions ¥ = RO obtained
from (4.30) and (4.31) that they should be continuous at » = 0. The result is that
(4.33) must be replaced by

20
u(r,6) =" car'"e™,
—0C
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and the condition u(r, 8) = f(#) means that the numbers ¢, r{”' are the Fourier
coefficients of f.

From this we can derive a useful formula for the solution to (4.34) as an
integral rather than a series. To simplify the calculation a bit, we shall take r; = 1;
the reader may verify that for the general case one merely replaces r by r/r; in
the following formulas. We recall that the Fourier coefficients of f are given by

&n =3 [ ()™ dg.

If we substitute this into the formula for u, we obtain

ur6) = 35 e [ fore"eds = o [* 1(0)P(r0-4)do

where P(r, #) is the Poisson kernel:

0 _ o0 ) o0 .
Proy)=%" ritle™V = §” etV 4§ eV,
0 1

—DC

The series on the right are geometric series that converge nicely for r < 1. This
fact justifies the interchange of integration and summation we have just per-
formed, and it also allows one to sum the series in closed form:

1 i gV 1 —r?
—retv " 1—re-v (1 —reiv)(l —re-iv)
2

Pry) =5

- 1-r
14+r2=2rcosy’

In short, we have the Poisson integral formula for the solution of (4.34) (with
rp=1)
1 /" 1-r2

Al = a1l +r2- 2;005(6 - ¢)f(¢>) ag. WhES)

EXERCISES

Exercises 1-3 deal with the equation V2« = 0 in the square
|
D={(xy):0<x<0<y<l}.

1. Solve V2u = 0 in D subject to the boundary conditions u(x,0) = u(0,y) =
u(l,y) =0, u{x,l) = x(I - x). (Cf. Exercise 10, §2.4.)

2. Find the steady-state temperature in D if the sides x = 0 and x = [ are
insulated, the side y = 0 is held at temperature zero, and the side y =/ is
held at temperature u(x,/) = x.
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3. Consider the Neumann problem
Vzu =0in D, ux(0,y) = Ux(l,y) = u}'(xyo) =0, uy(x, f) = f(x)

(Thus the normal derivative of u on the boundary is prescribed.) Use Fourier
cosine series to find a solution, if possible. Show that a solution exists only
if f(‘; f(x)dx =0, in which case it contains an arbitrary constant.

4, Find the steady-state temperature in the semi-infinite strip 0 < x </, 0 €
y < oo if u(0,¥) = u(l,y) = 0 and u(x,0) = f(x). (Hint: On physical
grounds, #(x,y) must be bounded in the strip.)

Exercises 5-8 deal with the equation V2 = 0 in polar coordinates.

5. Suppose the inner side of the annulus {(r,d) : ro < r < 1} is insulated and
the outer side is held at temperature u(1,8) = f(6).

a. Find the steady-state temperature.

b. What is the solution if f(#) =1+ 2sin8?

6. Let D be the unit disc {(r,8) : 0 < r < 1}. Let P(r,8) be the Poisson
kernel, and let u(r,8) be the solution of the Dirichlet problem Viu =0in
D, u(1,8) = f(6).

a. Show that the value of u at the origin is (27)~! [T, f(6)d6. (Thisis the
mean value theorem for harmonic functions: the value of a harmonic
function at the center of a circle is the average of its values on the circle.)

b. Show that P(r,6) > 0 and that [* P(r,8)d0 =2x forall r < 1.

c. Use part (b) to show that if f(8) < M for all 8, then u(r,8) < M for all
@ and all r < 1. (This is the maximum principle for harmonic functions
in a disc.)

7. Solve the following Dirichlet problem:

v2u=0 inSz{(r,f?):0<rogr5 1, 05653},
u(rO) 9) = H(I,G) =03 u(?’,O) = g(f), H[r,ﬁ) =h(r)

(Cf. Exercise 10, §3.5.)
8. Consider the Dirichlet problem on the limiting case

So={(rn0):0<r<1,0<8<8}

of the region S in Exercise 7.

a. Solve: V2u = 0in Sy, u(r,0) = u(r, f) = 0 for r < 1, u(1,8) = £(6).
(This is problem (4.29) in the limiting case ry = 0, and the method used
to solve (4.29) can be adapted. Note that the piece of the boundary
r = rp has collapsed to a point, at which f has already been prescribed
to be zero.)

b. Try to solve the limiting case of Exercise 7: VZu = 0 in Sy, u(1,8) =0,
u(r,0) = g(r), u(r,8) = h(r). (You won’t succeed with the present
methods. Separation of variables leads to the problem (rf") +(4/r)f =
0, f(1) = 0, which has no eigenfunctions in Li,,(O, 1). This is a singular
Sturm-Liouville problem whose solution requires integrals rather than
infinite series; see Exercise 9, §7.4.)
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4.5 Multiple Fourier series and applications
We have seen how Sturm-Liouville problems give rise to orthonormal bases for
L?(a, b), but we have not yet seen any examples of orthonormal bases for L?(D)
where D is a region in R” with n > 1. However, for rectangular regions — that
is, regions that are products of intervals — there is a simple way of building

orthonormal bases out of the one-dimensional ones. Specifically, we have the
following theorem.

Theorem 4.1. Suppose {¢n}5° is an orthonormal basis for L*(a,b) and {yn}$° is
an orthonormal basis for L*(c,d). Let

Xmn(X,¥) = Gm{X)¥n(y).

Then {Xmn}osn, is an orthonormal basis for L*(D), where

D =[a,b] x[c,d] = {(x,¥):a<x <b, c<y<d}.

Proof: Orthonormality is easy:
(Xmn, Xm'n'} = /-[D Xmn(X, Y Xment (X, ) dx dy

d pb —
. f [ Sm(X)Un(9) B (X)W ) dx dy

b d
= (]a ¢m(x)¢m'(x}dx) (/; WH(Y)Wn'(YJd}')

={1 ifm=m"and n=n',
0 otherwise.

To prove completeness, we shall show that if f € L2(D) and (f, xmns) = 0 for all
m and n then f = 0. (The argument that follows is the truth but not quite the
whole truth; we are glossing over some technical points about the workings of the
Lebesgue integral. See Folland [25], §2.5, or Wheeden-Zygmund [56], Chapter
6.) Let

gn(x) =fc S, y)wn(y)dy.

Then g, € Lz(a,b), for by the Schwarz inequality and the fact that |\wx| = 1,

/j |gn(x)2dx < /: (j;d if(x,y)ﬁdy) (/cd]%(y)lzdy) dx

= /:/Cdu(x,ynza‘ydx < 00.



122 Chapter 4. Some Boundary Value Problems

Moreover,

b pd
(gn, dm) = / ] £ O Bmx) dy dx = (f, xmn) = 0

for all m, so since {¢m} is complete, we have gn(x) = 0 for all #» and (almost) all
x. But gx(x) = (f(x,-), wn), so the completeness of {,} implies that f(x,y) =0
for (almost) all x and y, that is, f = 0 as an element of L2(D). ]

This theorem is valid (with essentially the same proof) in much greater gen-
erality than our statement of it. Here are four useful extensions of it:
(i) One can replace the intervals [a, b] and [c,d] by sets 4 C R/ and B c R, in
which case .
D=Ax3=ﬂmwenﬁhxemye3}

(i) One can introduce weight functions. If {¢»} is an orthonormal basis for
Li(a,b) and {w,} is an orthonormal basis for LZ(c,d), then {xmn} is an
orthonormal basis for L2 (D), where w(x,y) = u(x)v(p).

(iii) One can consider products with more than two factors. For example, suppose
that in addition to the data in the theorem we have an orthonormal basis
{6} for L?(a, B). Then the products é;(x)Wm(y)0x(z) form an orthonormal
basis for L?(D), where

D={(xy,z):a<x<b c<y<d a<z<p}.

(iv) One can start with an orthonormal basis {yx};2, for L%(c,d), and for each
n a different orthonormal basis {¢mn}s_; for L*(a,b). Then {mn}3,_,
is an orthonormal basis for LZ(D), where ymn(x,y) = Smn(x)wn(y). This
situation will turn up in Chapters 5 and 6; in particular, see Theorem 5.4 of
§5.5.

One more comment about the theorem should be made. The assertion that
{xmn} is a basis should mean that if f € L2(D) then f = So{S, Xmn) Y mn, but one
must assign a precise meaning to such a double infinite series. In fact, there is no
problem. One arranges the terms (f, %m,n}¥mn Int0 a single sequence in any way
one wishes, and the resulting ordinary infinite series always converges in norm to

f.

With this bit of machinery in hand, we can find useful series expansions
for functions of two or more variables. The most basic example is the multiple
Fourier series for periodic functions. Suppose, to be specific, that we wish to
study functions f(x,y) that are 1-periodic in each variable: f(x+1, ¥) = f(x,¥)
and f(x,y + 1) = f(x,y). (Functions of this sort arise, for example, in the
theory of crystal lattices in solid-state physics.) Such doubly periodic functions
are competely determined by their restrictions to the unit square

S=[0.11x[0,1]= {(x,»): 0<x,y < 1}.
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We already know that {e**""*}>_ is an orthonormal basis for L2(0,1), so it
follows that

2ri(mx+ny) .

{xm(x,y)=e —oc<m,n<oo}

is an orthonormal basis for L2(S). Thus we can expand any doubly periodic f
that is square-integrable on S in a double Fourier series:

=]

1 pl .
f = Z: CmnXmn, Cmn = (f, an) = -/; A f(x,y)e'z’“(m“"y) dx dy,

mn=—oc

where the series converges (at least) in norm. (The reader should be warned that
the question of pointwise convergence of multiple Fourier series is even more
delicate than in the one-dimensional case, but norm convergence works equally
easily in any number of dimensions.)

Similarly, we can form multiple Fourier cosine or sine series, or combine
other orthonormal bases arising from Sturm-Liouville problems, to construct
bases for functions on rectangular regions; and this procedure can be used to
solve boundary value problems in dimensions » > 1. We illustrate this with
some examples,

Example 1. We analyze the vibrations of an elastic membrane stretched across
a rectangular frame. That is, we study the following boundary value problem for
the wave equation in two space dimensions:

uu=cz(uxx+uyy)for0<x<f, O<y<lL,

u(x,,0)= f(x,y), ux,y,0)=g(x,y),
u(0,y,t) =u(l,y,t) = u(x,0,t) = u(x,L,t) = 0.

It is pretty clear that we shall want to use a double Fourier sine series to solve this
problem, but let us see explicitly how separation of variables leads to this con-
struction. Neglecting the initial conditions for the moment, we look for product
solutions X (x)Y(y)T(t) of the wave equation in the rectangle with zero boundary
values. The wave equation for such functions is -

TH' 4 XH Yﬂ
" Aale ghas &
The quantities on either side of the last equation must equal some constant, which
we shall call —v2, so 7" + v2¢2T = 0 and
" "
X __r_ .

X Y

Now the quantities on either side of this equation must equal another constant,
which we call —u?. Taking the boundary conditions into account, we therefore
have

XYT'=c*X"YT+XY"T), or

X"+ulX =0, X0)=XxX()=0,
Y'+ @ -p>)Y =0, Y(0)=Y(L)=0,
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and hence
may2 . mux
ﬂZ:(T) , X(x}:Sln—T-, (m=1,2,3,...),
. nm -
Vo= (M5, ¥e)=snf,  (1=123.)

Finally, since 7" + v2¢2T = 0, we have

2 2
T(t) = ay cosvct + by sinvct  where vi= ,u2 + (u2 - ,uz) = (g) + (%) ;

Thus we have the following solutions of the wave equation in the rectangle with
zero boundary values:

u(x,y,t)

e { 1442 2 7] 2
. MAX . HnAy m n , m n
= z n—=sin —=— OSTICI| = + — + b SinACH | — + — | .
o Sl 7 st T (amn cosmc 2 12 mn 12 L2)

The coefficients amn and by, are determined by the initial conditions in the
usual way: One expands f and g in their double Fourier sine series and matches
coefficients with those of u(x,y,0) and w(x,y,0). Specifically,

= . max . nmy
u[Xsy,O) = f(x,y) = mz]amn Sln —f_"' Sll‘l —L—-,
n=

so that

4 ¢ b . mMARXxX . RAY
am—E/(;/(;f(x,y)sm 7 sdeydx.

Qualitatively, the interesting feature here is the set of allowable frequencies
of vibration, namely,

{nc\/(m/!)z +(n/L)2:mon=1,2, 3}

In contrast to the case of 1-dimensional vibrations, these are not integer multiples
of a fundamental frequency. For example, if [ = L = nc, the lowest frequencies
are v2, V5, V8, V10, V13, V17, and so forth. For this reason a rectangular
membrane does not usually produce a musical sound as it vibrates. (The more
commonly encountered case of a circular membrane will be studied in Chapter
5)

Example 2. We consider heat flow in a rectangular solid

D={(xsysz):0£xsils 05.}’3"29 OSZS"B};
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where the top and bottom faces are held at temperature zero and the other four
faces are insulated. Thus, if the initial temperature is f(x,y, z), the problem to
be solved is

Ur = k(txx + uyy + zz), u(x,y,2,0) = f(x,y,2),
u(x,y,0,t) =u(x,p,5,t) =0,
HX{OBJ)’ Z,t) = ux(lhyszst) = uy(.x,o, Z,f) - “y(x,fzsz,f) = 0

The process of separation of variables works here just as in the previous example,
except that there is one more step (because there is one more variable), and the
boundary conditions lead to Fourier cosine series in x and y rather than Fourier
sine series. We leave it to the reader to work through the details; the upshot is
that

00 o o0 n% n% ng 2

ux,y,z,t) = E Z: E Er iy ymyns CRI = | T 43 I + 2 nkt
ny=0n;=0n3=1 1 2 3

nnx

naty .
I s1

h

nymz
X COS .
ly

cos n

Here €n,4, equals 1 when n; and n, are both nonzero, % when one of n; and n,
is zero but not both, and § when n; = n, = 0 (this is to account for the usual
factor of } in the constant term of a Fourier cosine series), and the coefficients
@n nyn; are the Fourier coefficients of the initial temperature:

hophopl
Anynyny = -—-s—fl /2 " f(x, v, z) cos TAIX o MY i MRZ 42 4y dx.
hhly Jo Jo Jo h b hy
Example 3. Suppose the rectangular box D of Example 2 is filled with a dis-
tribution of electric charge with density p(x,y, z), and the faces of the box are
grounded so that their electrostatic potential is zero. What is the potential inside
the box? What we want is the solution of

Uxx + Upy + Uzz = —4np(X,y,2) in D,
u(0,,2) = u(l,y,z) = u(x,0,z) = u(x, b, z) = u(x,y,0) = u(x,y,l3) = 0.

Here Technique 2 of §4.1 is effective. Namely, the zero boundary conditions
suggest the use of Fourier sine series in each variable, so we expand « in such a
series:

o0
. MAX . Mmy . mymz
u(x,y,2)= 3 bangnysin === sin zzzysm 313 .
1

ninzna=1

Computing V2u by termwise differentiation, we find

V2u(x,y, z)

=] 2 2 2
n? n: n . MAX . MWy . N3mZ
=— 5 2L+ 724+ 33) n2bnnym, sin L sin 2V i B3TZ
I Iy l3
ny,nz,n3=1
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This must be the multiple sine series for —47p, so we can solve immediately for
the coefficients bn,nyny:

]
32 (n? nd n}

& ol pli
xf f p(x,y, z) sin TLEX gin P27V Gin P72 4> dy dx.
0 Jo Jo h b ly

This formal procedure for solving the problem can be justified easily if we impose
conditions on p so that its Fourier coefficients tend rapidly to zero (e.g., p and
its first few derivatives should vanish on the boundary of the box). It can also be
justified by more sophisticated methods just under the condition that p € L?(D).

EXERCISES

1. Show that if v(x, ) and w(y, t) are solutions of the 1-dimensional heat equa-
tion (v; = kvxx and w; = kw,y), then u(x,y,t) = v(x, Hw(y,t) satisfies the
2-dimensional heat equation. Can you generalize to 3 dimensions? Is the
same result true for solutions of the wave equation?

2. Redo Example 1 in the text for the damped wave equation u; + 2ku, =
c(uxx + tyy). (Cf. Exercise 6, §4.2.)

3. Solve the wave equation (with general initial conditions) for a rectangular
membrane if one pair of opposite edges is held fixed (u(0,y,t) = u(l,y,t) =
0) and the other pair is free (uy(x,0,f) = uy(x,L,t) = 0). How do the
frequencies compare with those of Example 1?

4. Let D be the rectangular box of Example 2. Suppose the faces z = 0 and
z = [3 are insulated, and the other four faces are kept at temperature zero.
Find the temperature u(x,y,z,t) given that u(x,y, z,0) = f(x,y). (Hint:
Since f is independent of z and the z-faces are insulated, you can treat this
as a 2-dimensional problem.)

5. In Example 3, suppose /; = l, = 3 = n and p(x,y,z) = x. What is the
potential «?

6. Consider a cubic crystal lattice in which the charge density p(x, y, z) is 2/-
periodic in each variable. (We suppose that the lattice extends infinitely in
all directions; this is reasonable if its actual size is very large in comparison
with the length scale being studied.) Use Fourier series to find a periodic
solution of V2u = —47p, assuming that the net charge in any cube of side
2/ is zero. (This assumption is generally valid in practice. Why is it needed
mathematically?)
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The 2-dimensional wave equation in polar coordinates is
Uy = Cz(urr + r"ur + F_zugg).

(See Appendix 4 for the calculation of the Laplace operator in polar coordinates.)
If we apply separation of variables by taking u = R(r)©(6)T (t), the wave equation
becomes

T.H' Rh‘ Ri eﬂ'

T~ RTIRTre
Both sides must equal a constant, which we shall call —u2. Setting the expression
on the right equal to —u? and multiplying through by r?, we obtain

2 pht ' '
PR’ rR 5,52 ©
R TRTHTE

Here both sides must equal another constant, which we call v2, so we arrive at
the ordinary differential equations

T"+cu?T =0 and ©”+v%©=0,
which are familiar enough, and
r2R"(r) + rR(r) + (4*r? - v¥)R(r) = 0, (5.1)

which is new. Equation (5.1) can be simplified a bit by the change of variable
x = ur. (It is not yet clear whether we want u to be real or imaginary, but at
this point it doesn’t matter; there is no harm in letting x be a complex variable.)
That is, we substitute

R(r)= flur), R'(r)=pf'(ur), R'(r)=p*f"(ur), and r=x/u

into (5.1), obtaining

2
(3) B0 + 2l () + (2 = 1) 1) =0,

127
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or
X2 "(x)+xf1(x) + (x% =3 f(x) = 0. (5.2)

This is Bessel’s equation of order v. It and its variants arise in many problems
in physics and engineering, particularly where some sort of circular symmetry is
involved. For this reason, its solutions are sometimes called cylinder functions,
but we shall use the more common term Bessel functions. This chapter is an
exposition of the basic properties of Bessel functions and some of their applica-
tions. Further information on Bessel functions can be found in Erdélyi et al. [21],
Hochstadt [30], Lebedev [36], and especially the classic treatise of Watson [55].

5.1 Solutions of Bessel’s equation

In this section we construct solutions of Bessel’s equation (5.2) by means of
power series. For the time being, the variable x and the parameter v can be
arbitrary complex numbers, although for most applications they will both be real
and nonnegative. We shall make occasional references to the complex-variable
properties of Bessel functions, but the reader who wishes to ignore them will not
miss much as far as the material in this chapter is concerned.

At the outset, we note that (5.2) is unchanged if v is replaced by —v, so we
can take Re(») > O (in particular, v > 0 when v is real) whenever it is convenient.

The differential equation (5.2) has a regular singular point at x = 0, so we
expect to find solutions of the form

fx) =3 ax** (g #0), (5.3)
0

where the exponent b and the coefficients a; are to be determined. If we substitute
(5.3) into (5.2), we obtain

S a;[(+ b)Y +b = D/ 4 (4 )t 4 xI 042 Vit =0, (54)
0

We separate out the terms x/*%*2 and relabel the index of summation,

00 ) oo .
Zajx;+b+2 = aox2+b + a1x3+b 3 a2x4+b b= Zaj—zxﬁba
0 2

thus transforming (5.4) into

i[(j +b)? - vz] a;x/* 4 iaj_zxf*'b =0.
0 2



5.1 Solutions of Bessel’s equation 129

Now, a power series can vanish identically only when all of its coefficients are
zero, so we obtain the following sequence of equations:

for j=0, (b*-v?)ag=0, (5.5)
forj=1, [(1+6)-v*|a;=0, (5.6)
for j>2, [(j+b)-v?]a;+a;=0. (5.7)

Since we assumed that ay # 0, equation (5.5) forces b = +v, and for the time
being we take b = v. Then equation (5.6) becomes (2v + 1)a; = 0, so we must
have a; = 0 except when v = —}; even when v = —J it is consistent to take
a, =0, and we do so. Next, equation (5.7) with b = v says that

I L ___4-
S VR A (VES D)) g

From this recursion formula we can solve for all the even-numbered coefficients
in terms of ay:

Ay = — 2l s o R o
S ¢ E T T TAE+ ) 2 a2+ 2w)(Ed+2w)

and in general,

— (-¥ag
=T A 2+ 2w @+ 2w) - 2k + ) (5.9)
(=Day ‘

T 2ZK(I+v)2+v)(k+v)

In the same way, we obtain all of the odd-numbered coefficients in terms of a,;
but a; =0, and hence
Ay+1 = 0.

The only time when this procedure runs into difficulties is when v is a neg-
ative integer or half-integer. If v = —n, the numbers ay; in (5.9) are ill-defined
for k > n because of a zero factor in the denominator, so in this case we do not
obtain a solution. If » = —n/2 with n odd, the recursion formula (5.8) has a
zero in the denominator for j = n, so our derivation of the string of equations
0 = a, = a3 = --- breaks down at this point. However, if we rewrite (5.8) in the
original form (5.7), then for j = n it says that 0. a, = a,_;. Since we already
have a,_, = 0, it is still consistent to take a, = 0, and we do so. (We could take
an to be something else; then we would get a different solution of the differential
equation.)

In short, except when v is a negative integer we have the solutions

f ~ o0 (_l)kx2k+v
(x) = aﬁ; 2%k (1 +v)2+v) - (k+v)
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to Bessel’s equation. It remains to pick the constant ap, and the standard choice
is
B 1
0T T +1)

(See Appendix 3 for a discussion of the gamma function.} Since the functional
equation I'(z + 1) = zI'(z) implies that

INk+v+1)=(k+v)---(14+v)'(v+1),

this choice of ay; makes f(x) equal to

{—IT" X\ 2k+v

A simple application of the ratio test shows that this series is absolutely convergent
for all x # 0 (and also for x = 0 when Re(v) > 0 or v = 0). The function J,(x)
thus defined is called the Bessel function (of the first kind) of order v.

Ju(x) is real when x > 0 and v is real (the case we shall mainly be interested
in). It tends to 0 as x — 0 whenever Re(r) > 0 and blows up as x — 0 whenever
Re(r) < 0 and v is not an integer. If we consider x as a complex variable, J,(x)
is multivalued when v is not an integer; to make a well-defined function we shall
always take the principal branch of (x/2)¥ in (5.10). (Thatis, (x/2)" = e"'o8x/2)
where —7n < Imlog(x/2) < n.) However, x~%J,(x) is an entire analytic function
of x for any v.

When v is a nonnegative integer n, we can use the fact that j! =TI'(j + 1) to
write

2k+n
Jn(x) = Zk'n+k (3) (n=0,1,2,...).

Also, it is to be observed that the definition (5.10) makes sense when v is a
negative integer, even though the formulas leading to it do not! Indeed, we recall
that 1/I'(z) =0whenz =0,-1,-2,...; henceif » = —n, we have 1 /T'(k+v+1) =
0fork =0,1,...,n— 1. Thus, the first n terms in the series (5.10) vanish, and
by setting k = j + n in (5.10) we find that

o — 1)k 2%k-n X j+n 2j+n
Lﬂx}:Z%( ) Z; j-)l-n)'( )J 1

k=n o

or
J-n(x) = (=1)"Jn(x). (5.11)

(In effect, we have compensated for the zero in the denominators of (5.9) by
taking the leading coefficient a equal to 0.)

We arrived at (5.10) by taking b = v in the recursion formula (5.7). It is
easily checked that if we take b = —v instead, we get the same results with v
replaced by —v throughout; in other words, we end up with J_,(x). Thus, we
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have two solutions J, and J-, of Bessel's equation (5.2). When v is not an
integer they are clearly linearly independent, since

X
hail T+

Jop(x) = for x near 0.

xb‘
2T (v + 1)’
In this case the general solution of (5.2) is a linear combination of J, and J_,.

However, if v is an integer then J_; = (—1)*Jy by (5.11), so in this case
we are still lacking a second independent solution. The standard way out of this
difficulty is as follows. For v not an integer, we define the Weber function or
Bessel function of the second kind Y, by

_cos{vm)Jy(x) — J-,(x)

Yoo = sin(vm) )

Y, is a linear combination of J, and J_,, so it satisfies Bessel’s equation (5.2).
Also, since the coefficient of J_,(x) in (5.12) is nonzero, J, and Y, are linearly
independent, and we may use them (rather than J, and J_,) as a basis for solu-
tions of (5.2). Now if we take v to be an integer in (5.12), the expression on the
right turns into the indeterminate 0/0, by (5.11) and the fact that cosnm = (-1)",
However, it can be shown that the limit as v approaches an integer of Y., (x} exists
and is finite for all x # 0, and that the function

Ya(x) = lim ¥, (x)

thus defined is a solution of Bessel’s equation. (See, for example, Lebedev [36],
§5.4.) In fact, one can calculate Y,(x) from (5.12), (5.10), and I’'Hépital’s rule.
We shall not present the details since the explicit formula for ¥, will be of no
particular use to us. (However, see Exercises 3-5.) The most important feature
of ¥, is its asymptotic behavior as x — 0, which for n > 0 is given by

Yn(x}z—ﬁn—;—l)—g (%)_n asx —0 (B= 152 35m00)s

Yolx) = %log% as x — 0.

(It follows from (5.11) and (5.12) that Y_, = (—1)"Ya, so the case n < 0 is
also covered.) In particular, Y,(x) blows up as x — 0, whereas J,(x) remains
bounded; so Y, and J, are linearly independent and form a basis for all solutions
of Bessel’s equation of order n. See Figure 5.1.

One may wonder why Y, was chosen as the particular linear combination
(5.12) of J, and J_,. If the only object had been to find an expression that
gives a second solution for integer values of v, many other formulas would have
worked equally well; indeed, several variants of Y, are found in the literature.
(See Watson [55], §3.5.) The answer has to do with the behavior of J,(x) and
Y, (x) as x — oo, a matter that will be discussed in §5.3.
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FiGUrE 5.1. Graphs of some Bessel functions on the interval 0 < x < 10.
Top: Jy (solid), J; (short dashes), and J; (long dashes). Bottom: Y, (solid),
Y; (short dashes), and Y, (long dashes).

EXERCISES

1. Let f; and f be solutions of Bessel’s equation of order v, and let W denote
their Wronskian f f; — f{ f>.

a. Use Bessel’s equation to show that W’(x) = — W (x)/x and hence show
that W (x) = C/x for some constant C.

b. Show that if f; = J, and f, = J_,, then W{(x) = -2sinva/nx. (Hint:
Consider the limiting behavior of J,(x) and J_,(x) as x — 0, and use
the fact that I'(»)['(1 —v) =/ sinvn.)

c. Show that if f; = J, and f3 = Y, then W(x) = 2/nx.

2. Deduce from (5.11) and (5.12) that Y_, = (—1)"Y, when 7 is an integer.
3. When » > 0 and v is not an integer, Y, (x) is given by a power series whose
lowest-order term is ¢, (x/2)™%. What is the constant ¢,? Show that if n is a
positive integer, limy, .nc, = —(n - 1)!/n. (Hint: I'(v)I'(1 —v) = n/sinvn.)
4. Show that when » is an integer,

_L[ad 8o
Ya(x)= 2 [Bv +(=)" =7 L:n.

5. Let w(z) =TI"(z)/T(z). Use Exercise 4 to show that

- 2 X (=YY + 1) (x\Y
Yo(x)=5.f0(x)log§+§;((j+(g) .

(For the ambitious reader: Find the analogous formula for ¥Y,, n > 0. The
answer can be found in Lebedev [36], §5.5.)
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5.2 Bessel function identities

There is a vast assortment of formulas relating Bessel functions to one another
and to various other special functions; some are algebraic relations, and others
involve integrals or infinite series. In this section we discuss a few of the most
elementary and useful of them.

To begin with, there is a nice set of algebraic identities relating J, and its
derivative to the “adjacent” functions J,_ and J,,;:

The Recurrence Formulas. For all x and v,

L b @) = -5 (@), (5.13)
%[x”;,,(x)] = x"J,_1(x), (5.14)
xJp(x) = vJp(x) = =xJ, 41 (X), (5.15)
XJh(x) + vdu(x) = xJ,_ 1 (x), (5.16)
xdy_ (%) + xJ, 1 (xX) = 200, (x), (5.17)
Jy—1(x) = Jy 1 (x) = 2J,(x). (5.18)

Proof: To prove (5.13) we use the power series (5.10) for J, (x):

d - 3 i_ oo (__kaﬂc a oc (-l)k(2k)x2k"
ﬂ[x Tx)] = x ZO: kT (v + k+1) Zl: 2k kT (v + k + 1)

20 (-1 )kak— 1
- Zl: U+v=1(k - DT (v +k+1)
We relabel the index k in the last sum as k + 1, thus obtaining

(__ l)k+lx2k+l

o0 o - k 2k+v+1
> =Y s -
i 22k+v+1EI (v + k +2) 5 U+ (v + k + 2)

% v+l(x)-

The proof of (5.14) is similar:

d v _ _d'_ o0 (_1)kx2k+2u B o0 (-l)k(2k+2b')x2k+2”‘1
ﬂ[x Jv(x)} T dx ; 22k+uk!r(k +v+1) - ; 2+ kTk +v + 1)

. o (_l)kx2k+u—l
e ZD: 2%+ =Tk (k + v)

=% Tl

Next, performing the indicated differentiations in (5. 13*)"a'nd (5.14), we obtain
(=)~ L () + x VI (x) = = x0T, (%),

= L) 4 2 Bix) = F Bl

v+l

(5.15) and (5.16) are obtained by multiplying these equations through by x
and x~“*!, respectively. Finally, (5.17) and (5.18) follow by subtracting and
adding (5.15) and (5.16). 1
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As a first application of these formulas, we shall show that the Bessel func-
tions of half-integer order can be expressed in terms of familiar elementary func-
tions. To start with, consider J_; ,(x). Since

2Kk =2k(1.2.3--k)=2-4-6---(2k)
and

2Tk + §) =2k - H)(k - 3) - ()T )
=(2k - 1)(2k = 3)---(1)v/7,

we have

J_ijp(x) = g 2 ARk [k + ]\ TR

o3 (_l)kak—(]fl) ( ) )l,-"2 o0 (_l)kx2k
)

But the last series is just the Taylor series of cosx. This, together with a similar

calculation for J;;(x) (see Exercise 1), shows that

2\'? 2\
J_m(x)=(ﬁ) COos X, .I]ﬂ(x)=(ﬁ) sin x. (5.19)

It now follows by repeated application of the recurrence formula (5.17) that
whenever v — 1 is an integer,

Jy(x)=x"12 [Pp(x) cosx + Qu(x) sinx]

where P, and Q. are rational functions. For example, taking v = % in (5.17), we
find that

2 sin x

Fpx) = 5" a6) = L_ial) = () " (222 - cosx).

It is to be emphasized that the Bessel functions of half-integer order are the only
ones that are elementary functions.

Our next group of results concerns the Bessel functions of integer order. We
recall that if {@,} is a sequence of numbers, the generating function for an is the
power series 3 anz".

The Generating Function for J,(x). For all x and all z # 0,

3 Ju(x)2" = exp [% (z g é)} . (5.20)

—o0
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Proof: We begin by observing that
xz w=2z! rx\/ — (=D* 1)k
e"pT‘gﬁ(i) » BT ; 2k K] (z) :

Since these series are absolutely convergent, they can be multiplied together and
the terms in the resulting double series summed in any order:

exp [% (z - %)] ___j,:()%k_ (2)1+k‘

We sum this series by first adding up all the terms involving a given power z" of
z and then summing over n. That is, we set j —k = n or j = k + n and obtain
(with the understanding that 1/(k +n)! = 1/T'(k+n+1) =0 when k + 1 <0)

k 2k+n
exp [% (z = -;—)] n;m Lz% k'(k :_) ) ( ) | o
= ZJ,,(x)z”. 1

In (5.20), z can be any nonzero complex number. In particular, we can take
z = ¢'%, in which case (z —z!) = isin6, so that

ixsm& ZJ (x)eiﬂﬂ (5.21)

But the expression on the left is a 27-periodic function of 6, and the expression
on the right is visibly a Fourier series! Hence, the coefficients J,(x) in the series
must be given by the usual formula for Fourier coefficients, namely,

" ., 3
()= zl’r/ pixsind—inf gg (5.22)

Here is a new formula for J,, quite different from its original definition as a power
series and in some respects more useful. For instance, it shows immediately, what
is not at all evident from the power series, that |J;(x)| < 1 for all real x:

Jn(x)] —2::/ pixsind=ind) 4g _ lf d6=1 (xeR)
-

In fact, the same is true of all the derivatives of Ju(x), for differentiation of
(5.22) yields

b4 sios. ol :
J9(x) = ﬁ f_x(fsinﬁ)ke‘”me""g de.

There are several other formulas for J, that are equivalent to (5.22). We
collect them in a theorem.
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Bessel’s Integral Formulas. For any x € C and any integer n,

T .. ; 4
Jn(x) = -215] pixsind~ind go _ %f cos(x sin 6 — n6) d. (5.23)
- 0

Moreover, B
n
Jn(x) = Ef cos(xsin@)cosnfdl if n is even;
%0 (5.24)
2 ("2 . . o )
Jn(x) = E/(; sin(xsin@)sinnfd6 ifn is odd.

Proof: The change of variable 8 — —8 in (5.22) leads to

n _ r
Jn(x) — EIE e~ i* sin 8+inf de.
-n

Adding this equation to (5.22) and dividing by 2, we obtain

l n

2n 4y

Here the integrand is an even function of 8, so the integral from —x to 7 is twice
the integral from O to 7; hence (5.23) follows.

Next, in (5.23) we make the change of variable § — n — 6 and use the fact
that sin(z — @) = sin @ and cos(¢ — nxn) = (—1)" cos ¢ to obtain

Jn(x) = cos(xsinf — n6)dé.

b/
(=1)" Jn(x) = %fo cos(x sin 0 + n6) do.

We now add or subtract this equation to (5.23), depending on whether » is even
or odd, and use the identities

cos(a — b) + cos{a + b) = 2cosacos b,

cos(a — b) — cos(a + b) = 2sinasinb,

with the result that

T

Jn(x) = %/ cos(x sin ) cos n6 d6 (n even),
0
b4

Jn(x) = %f sin{x sin f)sin nf d@ (n odd).
0

The integrands in these equations are invariant under the substitution 8 — 7 — 8,
i.e., symmetric about § = 7/2, so the integrals from 0 to 7 are twice the integrals
from 0 to n/2. This proves (5.24). ]

If one is interested in calculating Jx(x) numerically, the power series (5.10)
is effective for small values of x. However, Bessel’s integrals (evaluated by a
numerical integration scheme such as Simpson’s rule) are much more efficient
when x is reasonably large. Similar but more complicated formulas exist for
Ju(x) when v is not an integer,
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EXERCISES

1. Show that J;;(x) = /2/7x sinx.
Use the recurrence formulas to prove the identities in Exercises 2-7.

2. J_3plx) = \KZ/Rx(x ! cosx + sinx)
8. xE 20T =ifp® - )Jv +x.}'v+](x)

a. /0 sJy(s)ds = xJy(x) and / Jy(s)ds = 1= Jo(x)

5. foxszj,(s)a's:ml( ) = x2Jy(x)

6. /x Ji(s)ds =1 - J(x)-2x" " (x) (Hint: J5(s) = s2-s~2J5(s).)

7. (3 + 32T (x)+2(v +2) [.x2 2+ (v+ 3)] a2 () + (v + Dx2 T, 4(x) =
(Hint: Use (5.17) to express J, ., in terms of J,,; and J,,3; then use (5.17)

on the latter functions.)
8. Prove the reduction formula

f: " Jo(s) ds = X"y (x) + (n = 1)x" () = (n - 1)2fox "2 Jo(s) ds.

(Hint: Integrate by parts, using the facts that (xJ;)’ = xJg and Jj = -J,.)
Use this formula to show that

fx S Jo(s)ds = (x? = 4x)Jy(x) + 2x2Jp(x),
0

fo g s Jo(s)ds = x(x? - 8)2J;(x) + 4x3(x? - 8)Jp(x).

Exercises 9-11 are applications of formulas (5.11) and (5.21).
9. Show that for all x,

)42 Bax) =1, 3 @n- D) =3,
1 I

(Hint: To obtain the second formula, differentiate both sides of (5.21).) '
10. Show that for each fixed x, limy—oo n%J,(x) = 0 for all k. (Hint: Theorem
2.6,§2.3.)
11. Show that for all real x,

i 2§:Jn(x)2 =
1

(Hint: Parseval’s equation.) Deduce that |Jy(x)| < 1 and [Jx(x)| < 274/ for
n>0.
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12. Verify directly from the formula Jy(x) = (2/n) fé‘” cos(xsinf)d6f that J,
satisfies Bessel’s equation of order zero.

13. Deduce from (5.24) that forn =0,1,2,...,

nf2
Joa(x) = (—1)”%/ cos(x cos #) cos 2nf dé,
0

n/2
Joner(x) = (—l)"%f sin(x cos 0) cos(2n — 1)8d86.
0
14. (Poisson’s integral for J,) Show that if Re(v) > —%,

B s L 2yw-172) ixt
Jy[x)—m—lﬂm‘f_l(l t ) (4 df.

(Hint: Write ' = Y8°(ixt)//j! and integrate the series term by term.
The resulting integrals can be evaluated in terms of the beta function; see
Appendix 3.) Deduce that

xV n/2 . @ 2
J(x)s ————— S0 gV 0 d0.
v(x) 27 2T (v + 1) J-n2

5.3 Asymptotics and zeros of Bessel functions

The power series (5.10) that defines Ji, (x) readily yields precise information about
Ju(x) when x is near O but is of little value when x is large. The integral for-
mulas of §5.2 are somewhat more helpful in this regard, but we still have only
a rather vague idea of how J,(x) behaves as x — oc. One good reason to be
concerned about this comes from the applications of Bessel functions to partial
differential equations that were sketched in the introduction to this chapter and
will be discussed more fully in §5.5. The solutions of these equations involve
the functions J,(ux) where 4 may be very large; and the boundary conditions
generally turn into equations such as J,(u) = 0 or ¢J,, (u) + pJ,(u) = 0. Hence,
we are particularly interested in locating the zeros of functions such as J,(x) or
cu(x) + xJy(x).

In this section we shall assume throughout that v is real and x is positive. The
results can, however, be extended to complex v and x with suitable modifications.

We can obtain a clue as to the behavior of Bessel functions for large x by
the following device. Suppose f(x) is a solution of Bessel’s equation

X2 f"(x) + xf'(x) + (x* = v?) f(x) = 0.
Let us set g(x) = x'/2f(x), so that

fxy= 89 iy o 8) _ 8) oy 87X g'(x) | 3g(x)

= X2 X172~ 2372’ STXIZ 32 T axsi
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If we substitute these formulas into Bessel’s equation and multiply through by

x~3/2_ it reduces to
2

1
g"(x)+g(x) + 1 g(x) = 0.

Now, when x is very large the coefficient (§ — v?)/x? is very small, so it is
reasonable to expect solutions of this equation to behave for large x like solutions
of g"”(x) + g(x) = 0. But the latter are just the linear combinations of sin x and
cos x or, equivalently, functions of the form acos(x + b) or asin(x + b). Hence,
the solutions f(x) of Bessel’s equation should look like ax~'/2cos(x + b) or
ax~ 2 sin(x + b).

These intuitive ideas turn out to be completely correct, and there are various
ways of justifying them rigorously. It is a somewhat more arduous task to identify
the particular function ax /2 cos(x + ) that corresponds to a particular solution
of Bessel's equation such as J,(x). Nonetheless, the answer is known, and here
it is.

Theorem 5.1. For each v € R there is a constant C, such that if x > 1,

2 :
Jo(x) = \/H cos (x - % - %) +E,(x) where |E,(x) < ;Cm (5.25)

Thus, J,(x) ~ ax~2cos(x + b) where a = \/2]x and b = (2v — 1)/4n,
with an error term that tends to zero like x~%/2, that is, one order faster than the
x~Y2 in the main term. It is important to note that the constant C, in the error
estimate grows with |v|. (5.25) is a useful formula for J,(x) only when x > |v|.

The proof of this result requires some rather sophisticated techniques in-
volving Laplace transforms and contour integrals. We shall give it in §8.6. The
method discussed there actually gives much more precise information about the
error terms E, (x), and it also gives results for nonreal x and v, but the theorem
as stated here is all we shall need. Further results on the asymptotics of Bessel
functions can be found in Watson [55], Chapters VII and VIII.

At this point we can explain the significance of the second solution Y, (x)
introduced in §5.1. Replacing v by —v in (5.25), we have

J_,,,(x)aq/i?‘;cos (x+%—%) (x>0),

and

vm vn = : .
cos (x + > - E) = cos(vm) cos (x -5 - Z) — sin(vm) sin (x ~>5 "3
Hence, if v is not an integer, by combining these formulas with (5.12) and (5.25)

we find that

_cos(vm)Jy(x) - Jp(x) 2 n
Yo(x) = ol D ~ \/—;—;sm (x - VT - %) (5.26)

v TE)
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for x > 0, where the error term is again bounded by some constant times x /2.
That is, if we think of J, as approximately a damped cosine wave, then ¥, is
the corresponding damped sine wave. One can show that the relation (5.26)
continues to hold in the limiting cases when v is an integer.

By combining (5.25) with the recurrence formula (5.16), we also obtain an
asymptotic formula for J;,. Indeed, we have

T (x) = Jyo1 (%) = ().
But by (5.25),

Jy_i(x) = x/gcos (x- (u~2l)n —%) +E,_i(x)
= —\/gsin (x-%-%) +E,_(x),

v 3% 12 [v] |v|Cy
| 0)] < (E) 32T e

For x > 1 we have x~%/2 < x=3/2, and hence

and

g = = c!
J(x) = =/ = sin (x - % - %) +E(x),  EB()I< S5 (5.27)

Of course this is the result we would get by differentiating (5.25) if we knew that
the derivative E}(x) of the error term is also dominated by x~%/2. But since
the derivative of a small function need not be small, this is not automatic; the
recurrence formula saves us the trouble of calculating E},.

We now turn to the problem of describing the positive solutions of the equa-
tions
alu(x)+bxJ)(x)=0 (5.28)

where v > 0, a,b € R, and (a, b) # (0,0). As we have indicated, these will be of
importance in solving boundary value problems.

In the first place, the function x™“[aJ,(x) + bJ;(x)] is an entire analytic
function of the complex variable x, so its zeros are all isolated; that is, there are
only finitely many zeros in any bounded region of the complex plane. It follows
that the positive solutions of the equation (5.28) can be arranged in an increasing
sequence,

O<ij<da<iz< -,

with lim 4; = oo. The main features of interest in this sequence are (i) the location
of the first few terms 4,, 4,, etc., and (ii) the asymptotic behavior of 4, as k — occ.
(There is a sort of “grey area” in between where not much precise information is
known.) To investigate the second aspect, we must distinguish between the cases
b =0 and b # 0; that is, we consider separately the equations

J(x)=0 and cl(x)+xJy(x)=0 (c=a/b).
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First, the case b = 0. We can read off the asymptotics of the sequence 4; of
positive zeros of J, immediately from the preceding results on the asymptotics of
the functions Jr..r and J/.. Indeed, from (5.25) we know that J, (x) is approximately

x~12cos(x — vm ~ }n) for large x, so its zeros should occur at approximately
the same places as those of cos(x — Evn - zn) namely, (j + I” + z)n for large
positive integers j. This can be made precise by the following lemma.

Lemma 5.1. Suppose f(x) is a differentiable real-valued function that satisfies
[f(x)-cosx|<e and |f'(x)+sinx|<e for x>Mn,

where € < 1. Then for all integers m > M, f has exactly one zero zm in each
interval [mn, (m+1)n), and it satisfies |zm — (m + §7)| < 2€.

Proof: We shall sketch the ideas and leave it to the reader to make the
details precise. First, we have cosmn = (—1)™ and cos(m + 3)n = 0. Since
|f(x) — cosx| < €, f has opposite signs at mn and (m + 1)n, so it must have
at least one zero in between, and all such zeros must occur near (m + 3)7. But
sin(m + §7) = (-1)", so the condition |f*(x) + sinx| < € implies that fl(x)#0
for x near (m + z)n Hence f is strictly increasing or decreasing near (m + 3)7:,
so it can have at most one zero there. 1

We can apply Lemma 5.1 to the function
fx)=¥"20,(%), X=x+jva+in

Since f'(x) = X'/2J)(X) + $XV/2J,(X),the estimates (5.25) and (5.27) show

that f(x) and f'(x) differ from cosx and —sinx by errors that are bounded

by a constant times x~! and so can be made as small as we please by taking x

large enough. The conclusion is that for large M, the solutions of the equation

Ju(x) = 0 such that x > M= are approximately at the points (m+ 2" +3 3)m where

m is an integer. Moreover, the approximation gets better the larger we take M.
A similar argument applies to the function

fx)=cx V20X + 320X, X=x+ijvn-in

Indeed, the second term in f(x) is approximately sin(x + %1:) = cos x by (5.27)
(note that we defined ¥ so as to make this shift of 17!), whereas the first term is
dominated by x~! by (5.25). Moreover,

fx) = —4ex7320,3%) + X V2R (X) + $7TV2IR) + xR (R).
The first three terms are all dominated by X!, and Bessel’s equation says that
B(®) = -%"RE) - (- EF L),
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SO
f'(x) =x"2J,(%) + (terms of order x~!).

(5.25) then implies that f'(x) is approximately cos(x + -}n) = —sinx. Therefore,
Lemma 5.1 can be applied to f(x) to conclude that the function ¢Jy, (X)+XJ,(X) =
x!/2 f(x) has zeros approximately at the points (m + ¥)n for large integers m. In
other words, ¢Ji (x) + xJ,(x) has zeros approximately at (m + iu + §)x for large
integers m.

There remains the question of locating the small positive zeros of aJ,(x) +
bxJ}(x). We shall content ourselves with deriving a simple lower bound for the
smallest positive zeros of these functions under the conditions » > 0 and a,b > 0.
(The cases when v < 0, a < 0, or b < 0 arise only infrequently in applications.)

Lemma 5.2. Suppose v > 0, a,b > 0, and (a,b) # (0,0). If w, is the smallest
positive zero of aJy(x) + bxJy(x), then wy > v.

Proof: The case v = 0 is trivial, so we assume v > 0. Jy(x) and L (26
are clearly positive for small x > 0, since the leading terms of their power series
(namely, x¥/2"T'(v + 1) and x*~1/2"T'(v)) are positive. Now, Bessel's equation
can be written as d

' — el .
xa[x.lp(x)] = (2 - x2)Jy(x).

If the first zero £, of J, were < v, the expression on the right would be positive
on the interval (0, {,); hence xJ/(x) would be increasing on this interval; hence
J would be positive on this interval, which is impossible by Rolle’s theorem.
Therefore {, > v; the expression on the right is positive on the interval (0,v);
hence xJ)(x) is increasing on (0,v], so J, > 0 on (0,r]). We have now shown
that J,(x) and J;(x) are positive on (0,r]; but then so is aJy, (x) + bxJy(x), s0
Wy > V. [ ]

Lemma 5.2 will suffice for our purposes, but more precise estimates on these
zeros are available. In particular, one can show that

v<wy <42+ 1) (v +3). (5.29)

(See Watson [55], §15.3.) Thus w, is of the same order of magnitude as v.
We sum up our results in a theorem.

Theorem 5.2. Suppose v € R, a,b > 0, and (a,b) # (0,0). Let Ay,4,,... be the

positive zeros of aJ,(x) + bxJ,,(x), arranged in increasing order. Then:

(@) Ay >v.

(b) If b = 0, there is an integer M = M(v) such that
Ag~(k+M+3v+Hn as k- oo,

(c) If b > 0, there is an integer M = M(v,a/b) such that
Ag~k+M+3v+pn as k— oo

Here “~” means that the difference between the quantities on the left and on the

right tends to zero as k — oo.
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EXERCISES

1. Fill in the details of the proof of Lemma 5.1.

2. In the text and exercises of §5.2, J, was computed explicitly for v = £, +3.
Verify Theorem 5.1 in these cases.

3. Use Exercise 2 and the recurrence formulas to prove Theorem 5.1 when v
is a half-integer. (Proceed by induction on n, where v = £n + %.)

4. Let {4;} be the positive zeros of J, (v € R). Show that J,;(4;) =~ £+/2/74;
for large k. (In view of Theorem 5.3(a) below, this is of interest in estimating
the coefficients in Fourier-Bessel series.)

5. (The interlacing theorem) Suppose v € R. Prove that between every two
positive zeros of J, there is a zero of J,,, and between every two positive
zeros of J,, there is a zero of J,. (Hint: Use Rolle’s theorem and the
recurrence formulas (5.13) and (5.14).)

6. Let f(x) = x"2J,(x). Then, as shown in the text, f satisfies f” + f =
(v? - Hx=2f.

a. Use this differential equation to show that for n =1,2,3,...,

(2Zn+1)m
/ ( —vH)x"2f(x)sinxdx = —[f((2n+ l):r) +f(2nn)}.
nm
b. Suppose -4 < v < }. Show that / must vanish somewhere in the
interval [2n7, (2n+1)x]. (Hint: By comparing signs on the two sides of
the equation in part (a), show that it is impossible for f to be everywhere
positive or everywhere negative on this interval.) Note that Theorem
5.1 yields a sharper result when # is large, but this elementary argument
is valid for all n > 1.

7. Exercise 6 shows that J, has infinitely many positive zeros when —{; <v< -1;,
and the same is obviously true of J,,(x) = \/2/mx sinx. Use this fact
together with Exercise 5 (but without invoking Theorem 5.1) to show that
J, has infinitely many positive zeros for all real v.

8. Let j, denote the smallest positive zero of J,. Show that j,_, < j, for all
v > 1. (Hint: Use formula (5.14) and Rolle’s theorem.)

5.4 Orthogonal sets of Bessel functions

We recall that the differential equation (5.1) from which we derived Bessel’s
equation is
X2f(x) + X /(%) + (2% - v?) f(x) = 0, (5.30)

and that the solutions of this equation are the functions f(x) = g(ux) where
g satisfies Bessel’s equation (i.e., equation (5.30) with 4 = 1). Upon dividing
through by x, (5.30) can be rewritten as

2 ' 2
X" () + LX) = = X+ xS (x) = [xf'(x)] = f0)+#2xf(x) = 0. (5.31)
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This is a Sturm-Liouville equation of the sort studied in §3.5, that is,

2
(rfY +pf +p*wf =0 where r(x)=x, p(x)= _v?, w(x) = x.

If we consider this equation on an interval [a,b] with 0 < a < b < o 31d impose
suitable boundary conditions, say

af(a)+a'f'(a)=0, Bf(b)+p'f(b)=0,

we obtain a regular Sturm-Liouville problem. The eigenfunctions will be of the
form

f(x) = cudv(ux) + duYo(ux) (5.32)

where u, ¢, and d, must be chosen so that the boundary conditions hold. In this
way we obtain an orthonormal basis of L2 (a,b) consisting of functions of the
form (5.32), where w(x) = x. In general the determination of the eigenvalues u?
and the coefficients ¢, and d, is a rather messy business, and we shall not pursue
the matter further.

More important and more interesting, however, is to consider the equation
(5.31) on an interval [0, b] under the assumption » > 0. Here the Sturm-Liouville
problem is singular, because the leading coefficient r vanishes at x = 0 and the
coefficient p blows up there. As a result, it is inappropriate to impose the usual
sort of boundary condition at x = 0 such as af(0) + o’ f'(0) = 0. Indeed, we
know that the solutions are of the form (5.32), and such functions (and their
derivatives) become infinite at x = 0 unless d,, = 0. Instead, the natural boundary
condition at x = 0 is simply that the solution should be continuous there, i.e.,
that d, = 0. We can still impose a boundary condition at x = b, so the Sturm-
Liouville problem we propose to consider is

X100+ 160 = L f) + 1S (x) =0 (v 20),
f(0+) exists and is finite,  Bf(b)+ B'f'(b) =0.

The results of §3.5 concerning the reality of the eigenvalues and the orthog-
onality of the eigenfunctions for regular Sturm-Liouville problems are still valid
in the present situation. What needs to be checked is that if f and g are eigen-
functions of (5.33), that is,

fx)=Ju(uix),  &(x)=Ju(ux),

(5.33)

then
2
(L(f), &) = (f,L(g)) where L(f)=(xf") - I%f- (5-34)

However, if we apply Lagrange’s identity to this operator L on the interval [e, b],
we find that

[ [N F - 1T dx = [x )T - 2/ 0T,
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The boundary condition at x = b causes the endpoint evaluation at x = b
to vanish. As for x = e: If v > 0, then f(x), g(x), xf'(x), and xg’(x) are
asymptotic to constant multiples of x* as x — 0, so

lef'(e)g(€) —ef(e)g'(€)| < Ce* -0 ase — 0.

If v = 0, then f(0) = g(0) =1 and f'(0) = ¢'(0) = 0, so again the contribution
at x = € vanishes as € — 0. In either case, we have verified (5.34).

Once this is known, the proof of Theorem 3.9 in §3.5 goes through to show
that the eigenvalues of (5.33) are real, the eigenfunctions are orthogonal with
respect to the weight function w(x) = x, and the eigenspaces are 1-dimensional.

Now, if f(x) = Ju(ux), then f'(x) = uJ)(ux). Hence, the solutions of
(5.33) are the functions J,(ux) such that

B (ub) + B’ udy(ub) = 0.

It will now be convenient to set 2 = ub, so that u = A/b. We distinguish between
B’ =0, in which case we have

Ju(4) =0, (5.35)

and B’ # 0, in which case we set ¢ = b/’ and obtain
cedv(A) + A, (A) = 0. (5.36)

Equations (5.35) and (5.36) are of the sort we analyzed in §5.3. In either case
there is an infinite sequence {4;}{° of positive solutions, and the corresponding
eigenvalues of problem (5.33) are the numbers A2 /7.

Thus we have identified the positive eigenvalues of the problem (5.33). There
remains the question of zero or negative eigenvalues, concerning which we have
the following result.

Lemma 5.3. Zero is an eigenvalue of (5.33) if and only if /B’ = —v /b, in which
case the eigenfunction is f(x) = x". If ' =0 or if B/B’ > -v/b, there are no
negative eigenvalues.

Proof: When u = 0, the differential equation in (5.33) becomes the Euler
equation

x2f"(x) + xf'(x) - v2f(x) =0,

which we analyzed in §4.3. The general solution is ¢;x” + c;x™ if v > 0, or
¢; + ¢alogx if v = 0. The boundary condition at x = 0 forces ¢; = 0, and then
the boundary condition at x = b becomes b + v’ = 0. This proves the first
assertion.

To investigate negative eigenvalues, L.e., the case u? < 0in (5.33), we set
u = ix. The general solution of (5.33) is then ¢;Ju (ikx) + ¢, Y, (ikx), and again
the boundary condition at x = 0 forces ¢; = 0. (The behavior of Y, (x) that we
described in §5.1 still holds when x is imaginary; in particular, Y, (x) blows up
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as x — 0.) Hence the boundary condition at x = b is still (5.35) or (5.36), with
A = ixb, so we must investigate solutions of the equations

L(iy)=0 or ch(iy)+iyJ,(iy)=0, (c=bB/B', y>0). (5.37)
Now, from the defining formula (5.10) for J, we have

j id J- 1 v+2k
Jo(iy) = i"I,(y), where I,(y)=3_ TN (J%) _
5 k!

Moreover, the recurrence formula (5.15), which is valid for all complex x, shows

that
I'V+2

iyJy(iy) = vy (iy) = iy Jy 1 (iy) = vi' L(y) = iyl 11 (y)
=i [vfu(y) +J’fu+l(}’)],
50 (5.37) can be written as
L(y)=0 or (c+v)L(y)+yL(¥y)=0 (y>0).

But it is obvious from the above definition of I, that I,(y) > 0 (and likewise
I,.1(y) > 0) for all y # 0. Hence the first equation has no solutions, and neither
does the second one when ¢ + v = (bB/8')} + v > 0. This completes the proof.
(A slightly more careful analysis would show that when /8’ < —v /b, there
is exactly one negative eigenvalue; the situation is similar to the one analyzed in
the examples of §3.5. However, this case arises only rarely in applications.) 1

We have therefore constructed a whole family (depending on the parameters
v, B, and B') of orthogonal sets of functions on [0, b], with respect to the weight
w(x) = x, of the form f, (x) = Ju (A, x/b). In order to make this a useful tool for
solving concrete problems, we need also to identify the norms of these functions,
namely,

b
Ifeld = [0 (%)% dx.

Actually, all these eigenfunctions are real, so we can omit the absolute values
here, and we have the following result.

Lemma 54, If u>0,b>0,andv >0,

b 2 232 2
e dx = S by + 2 by (5.38)

Proof: Let f(x) = J.(ux). The differential equation satisfied by f is
X xf +Wxr-vf=0, or x(xf) =@-u’x?f.
If we multiply this through by 2/, it becomes

2xfY(xf) = (2= 2x)2f 1), or [(xf)] = WP - wixDsY).
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We integrate from 0 to b and use integration by parts on the right side:

(xS = w2x?) A8 + u? f f(x)*(2x)dx.

The endpoint evaluations at x = 0 all vanish. Indeed, this is obvious for (x f’)?
and u2x?f2; and it is true for v2f? because either » = 0 or v > 0, and in the
latter case f(0) = J,(0) = 0. Therefore, we have

2u? jo ’ flx)ixdx = B2/ (b)? + (u*b? - v?) f(b)?,

and since f’(x) = uJy,(ux), this proves (5.38). 1

Equation (5.38) can be simplified in the cases where 4 = 4/b and the bound-
ary condition (5.35) or (5.36) is satisfied, namely,

b 2
ifjp(z)=o,/0 J (%") xdx—bz.!,i().) (5.39)

232 _ 2
Wﬁ(xﬁ (5.40)

It is customary to restate (5.39) by using the recurrence formula (5.15), which
implies that J,, (1) = —J,,(4) whenever J, (1) = 0, thus:

b ix 2
if ¢y (A) + AJL(A) = 0, fo J (T) xdx =

/] 2 2
if J,(4) = 0, /0 7 (%") xdx = 50,02 (5.41)

We can now write down a number of orthonormal sets of Bessel functions
on [0, b] obtained from the Sturm-Liouville problems (5.33). One last, crucial
question remains: Are these sets orthonormal bases? The theorems of §3.5 do not
apply since these Sturm-Liouville problems are singular. Nonetheless, the answer
is yes, and we shall explain a method for proving this in §10.4; a complete proof
can be found in Watson [55], Chapter X VIII. We sum up the results in a theorem.

Theorem 5.3. Supposev >0, b > 0, and w(x) =
(a) Let {A}° be the positive zeros of Jp [x; and let ¢p(x) = Ju(Agx/b). Then
{#x}3° is an orthogonal basis for L%(0,b), and

bZ
16kl = 5-Jos1(Z)?

(b) Suppose ¢ > —v. Let {Ak}l be the positive zeros of ¢Ju(x) + xJy(x), and
let y.(x) = Jy(ikx/b If ¢ > —v, then {w}{° is an orthogonai basis for
L%(0,b). If ¢ = —v, then {y, }§ is an orthogonal basis for L% (0, b), where
wo(x) = x". Moreover,

b2 12 _ 2+C‘2 . pv+2
PRI mr? k2, Iwlb =2 5.

2
lwlle = 222 L
k
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In practice, the constant ¢ in part (b) is almost always nonnegative. Under
this condition the Bessel functions {;}$° form an orthogonal basis for L (0, b)
except in the single case ¢ = v = 0, when one must add in the constant function
wo(x) = 1. The latter case is an important one, however, and one must not forget
its exceptional character.,

From Theorem 5.3 we know that any f € L2(0,5) can be expanded in a
Fourier-Bessel series

f= ka¢k, Cp =
or f= Z:dkoyk, dy =

||¢ 2 ff(")%(x)xdx

nwm/f””x””

(The second of these expansions is also called a Dini series.) These series con-
verge in the norm of L2 (0, b), but under suitable conditions one can also prove
pointwise or uniform convergence. In fact, except perhaps at the endpoints 0 and
b, the behavior of these series is much like ordinary Fourier series. For exam-
ple, if f is piecewise smooth on [0, 5] then Y"¢;¢;(x) and 3" d;y;(x) converge
to %[f(x-) + f(x+)] for all x € (0,b). Of course, ¢;(b) = 0 for all j because of
the boundary condition, and ¢;(x) and y;(x) vanish to order v as x — 0 for all
J; thus one cannot expect the series to converge well near the endpoints unless
[ satisfies similar conditions. However, if f does satisfy such conditions and is
suitably smooth, one can prove absolute and uniform convergence. See Watson
[55], Chapter XVIII.

Example. Let {4} be the positive zeros of Jy(x), and let f(x)=1for0< x <

b. According to Theorem 5.3(a), we have f(x) = 37° ¢, Jo(4xx/b) (the series
converging at least in the norm of L2 (0, 5) with w(x) = x), where

2 Akf
th?/%(b)xh'

Since xJy(x) is the derivative of xJ,(x) by the recurrence formula (5.14), we
make the substitution x = b#/4; and obtain

Cp =

2 X 2
%= Fr e ,1?-[ Jo(t)tdt = ).2.! @ )[111(;)}0 -

Other examples will be found in the exercises; the evaluations of the integrals are
usually applications of the recurrence formulas.

EXERCISES

In Exercises 1-4, expand the given function on the interval [0, 5] in a Fourier-
Bessel series ) ¢, Jo(Apx/b) where {4, }7° are the positive zeros of Jj.
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. f(x) = x%. (Hint: Exercise 8, §5.2.)

. f(x) = b? — x*. (Hint: Exercise 1.)

. f(x) = x. (Hint: Exercise 8, §5.2.)

. f(x)=1for0< x < b, f(x)=0for 3b < x <b.

. Expand f(x) = 1 on the interval [0, b] in a series 3_ ¢, Jo(4,x/b) where {A;}
are the positive zeros of ¢Jy(x) + xJy(x), ¢ > 0. What about the case ¢ = 0?
(Be careful!)

6. Expand f(x) = x on the interval [0, 1] in a series 3" ¢, J) (4, x) where {4;}

are the positive zeros of J.

7. Expand f(x) = x” on the interval [0, 1] in a series 3 ¢; Ju(4;x) where v > 0
and {4;} are the positive zeros of J;.

8. Let f(x)=xfor0<x <1, f(x)=0for 1 <x <2. Expand f(x) on the
interval [0,2] in a series 3 ¢z J) (A x/2) where {4, } are the positive zeros of
¥

9. Let {4;} be the positive zeros of Jy, and let ¢ (x) = Jo(Ax+/x/I). Show that

{¢x} is an orthogonal basis for L?(0,/) (with weight function 1). What is

the norm of ¢ in L*(0,/)?

wn e W b

5.5 Applications of Bessel functions

In the introduction to this chapter we showed that if one applies separation of
variables to the two-dimensional wave equation in polar coordinates,

U = 2t + 1~ "ty + 1 2ugg),
one obtains the ordinary differential equations

T'(1)+ 2uT() =0, ©"(8)+v*6(0) =0,

r2R"(r) + rR (r) + (u*r* = v*)R(r) = 0. (342
The heat equation works similarly, except that the equation for T is T'(¢) +
ku? T(t) = 0. Let us sketch the procedure for solving these equations.

Suppose we are interested in solving the partial differential equation in the
disc of radius b about the origin, with some boundary conditions at r = b. In the
first place, by the nature of polar coordinates, © must be 2z-periodic. Hence v
must be an integer n, which we can take to be nonnegative, and () = ccos nf +
dsinnf. The equation for R is now the Bessel equation of order n. Since we
want a solution of the partial differential equation in the whole disc including
the origin, we forbid R(r) to blow up at r = 0; hence R(r) must be a constant
multiple of J,(ur). Moreover, there will be a sequence of positive numbers u;
for which Jy(u,r) satisfies the boundary conditions at r = b. Finally, we plug
these numbers into the equation for T and solve it.
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The problem of finding a solution with given initial conditions now reduces
to the problem of expanding the initial data in a series involving the functions ©
and R derived above, that is, a series of the form

Y (Cuk €08 16 + dyy sin nO) Ju (1 ). (5.43)
nk

This is a doubly infinite series, involving the two indices # and k. However, we
point out that if the f-dependence of the initial data involves only finitely many
of the functions cos n8 and sin nf, then only the terms in (5.43) involving those
particular functions will be nonzero, so (5.43) will reduce to a finite sum of singly
infinite series. For example, if the initial data are radial, i.e., independent of 6,
then only the terms with »n = 0 survive, and (5.43) reduces to 3 a; Jo(ui 7).

Similar remarks apply to boundary value problems in “polar-coordinate rect-
angles” bounded by circles r = a, r = b and rays 6 = o, 8 = B, except that the
indices v and eigenfunctions © will generally be different.

We now turn to some specific applications, in which these ideas will be
explained more fully.

Vibrations of a circular membrane

Let us now solve the problem of the vibrations of a circular membrane fixed
along its boundary, such as a drum, that occupies the disc of radius b centered at
the origin. According to the preceding discussion, we need to solve (5.42) subject
to the conditions that © should be 2z-periodic, that R should be continuous at
r =0, and that R({b) = 0, and we obtain

©(0) = ¢y cosnb + dp sin né,
R(r)=Jn ('“'

F) where Jy(4) = 0.
In particular 4 = /b in (5.42), so

et
b »

T(t) = a, cos ib‘:f + a; sin
where again A satisfies J,(4) = 0.

Let 4y, A2.ns43,,... be the positive zeros of Ju(x). By Theorem 5.3 we
know that {Jn(4y ,r/b)}$2, is an orthogonal basis for L2,(0,b) where w(r) =
r. Moreover, {cosnf}3° U {sinn#}$° is an orthogonal basis for L2(-x,n). It
follows that the products Jn (4 ,r/b) cosné and Ju(Ay ,r/b)sinn@ will form an

orthogonal set in LZ (D), where
D= {(r,&):Ogrgb, —n<h< n}, w(r, ) =r.

But if we interpret r and 6§ as polar coordinates in the xy-plane, D is nothing but
the disc of radius b about the origin, and the weighted measure w(r, 8) drdé is
Euclidean area measure:

w(r,0)drd8 =rdrd@ =dxdy.
In fact, we have the following result.
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Theorem 5.4. Let Ay, A3 . A3 p, ... be the positive zeros of Jn(x). Then

{Jn (Akg’r) cosnf:n>0, k> 1} U{J,, (i"—‘er) sinnf:n k> l}

is an orthogonal basis for L*(D), where D is the disc of radius b about the origin.

Proof' This is not an instance of Theorem 4.1 of §4.4 because we are using
a different basis for functions of r for each choice of the index »; nonetheless, the
argument we used to prove that theorem also proves this one. That is, one checks
orthogonality by evaluating the double integrals that define the inner products as
iterated integrals. To prove completeness, suppose that f € L2(D) is orthogonal
to all the functions Jn (4 ,r/b)cosnf and Ju(4y ,r/b)sinné. Then the functions

gn(r) = ff(r@)cosn&d@ and An(r /f(r,f?)smnﬂdﬁ

are orthogonal to all the functions Ju (4 ,r/b) (k = 1,2,...) and hence are zero.
But this says that for (almost) every r, f(r,8) is orthogonal to all the functions
cos n6 and sin nf; hence f = 0. i

Now we can solve the vibrating membrane problem with initial conditions.
For simplicity, let us take them to be

u(r,8,0) = f(r,6), u(r,8,0)=0.

The initial condition u;, = O means that we must drop the sine term in 7(¢).
Hence, taking u to be a general superposition of the solutions we have constructed,

2 . Ak al j-k G
u(r,0,0) =3 3" (cui cOs 18 + dyy sin n6).Jy (—b—-) cos . (5.44)
n=0k=1

To solve the problem we have merely to determine the coefficients ¢, and d,,;
so that u(r, 8,0) = f(r,8), and this means expanding f in terms of the basis of
Theorem 5.4, In view of the normalizations for the Bessel functions presented
in Theorem 5.3, we have

00 00 _ Ay ot
f(?", 0) = ZZ(C‘”;( COS?‘IQ-{-d,,k sin nf)Jy ( f,? ) 5
n=0k=1

where i
_ 1
O = T, Gl /., f 10.0)% (% ) rardo,
and for n > 1,

_ 2 . bf( 0)J, (Ak'“r) cos(nf)rdrdf
Cnk = nb2Jy 1 (A p)? ]_x/o i W ’

_ 2 L b jnlc,M”‘) .
dﬂk = m\/‘_ﬁ[) f(.", S)Jn( b Slﬂ(na)rd?’d&.
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Example 1. Suppose the initial displacement is f(r,#) = b% — r%. Since f is
independent of 6, so is u; hence the only nonzero terms in (5.44) are the ones
with n = 0. That is,

=)
u(r, f) = Z:CkJO (%{) cos A%CI (Ak = j’k,l})s
1

where 3¢ Jo(A,7/b) is the Fourier-Bessel expansion of the function 5% —
Therefore, by Exercise 2 of §5.4,

The most interesting aspect of the solution (5.44) is the set of allowable
frequencies, namely, the zeros of the Bessel functions,

{E%&ﬁ:nzo,kzl}.

An important feature of this set is that there are only finitely many frequencies
less than a preassigned number M. Indeed, from Theorem 5.3 we know that all
zeros of Ju(4) satisfy A > n, L.e., i, > n for all kK and n. Consequently, if we
are to have mciy ,/b < M, we must have n < bM/nc. That is, for each n J, has
only finitely many zeros A, satisfying nciy ,/b < M, and if n > bM/nc it has
none at all; hence there are only finitely many altogether.

OO

D
POBEE

FIGURE 5.2. Diagrams of the eigenfunctions Ju(4 ,7) cos nfl of the vibrating
membrane for the eight smallest 4; ,’s. The plus or minus signs indicate the
regions where the eigenfunctions are positive or negative. Top: 4,9, 41,1,
412, and 4. Bottom: Ay 3, 431, 414, and 4.
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The smallest numbers 4; ,, are as follows, correct to two decimal places.

‘ll,O = 240, /1],1 = 383, ;\1,2 = 514, 3.2,0 = 552, /{]’3 = 638,
).2,] = ?02, 111.4 = ?59, 12‘2 = 842, ;‘1.3‘0 = 865, A],s — 8?7

The eigenfunctions corresponding to the first eight of these are drawn schemat-
ically in Figure 5.2. Observe that the frequencies are not integer multiples of
a fundamental frequency, even approximately; hence drums have poorer tone
quality than strings or wind instruments. In practice, drums that are designed
to have a definite pitch possess structural features that make our simple math-
ematical model rather inaccurate. (For example, the vibrating membranes of
Indian drums such as the tabla or mridangam are of nonuniform thickness.) It
should also be mentioned that the pitch of a drum depends on how the drum is
struck. If it is struck at the center, only the frequencies nci, o/b (corresponding
to the circularly symmetric vibrations with n = 0 in (5.44)) are significant. But
if it is struck near the edge, as kettledrums normally are, the predominant fre-
quency is likely to be mc4, ;/b. See Rossing [46] for a discussion of the physics
of kettledrums.

The heat equation in polar coordinates

The heat equation in polar coordinates is
ur = K(upr + r-lu + P’_zugg).

(We call the diffusivity coefficient K, since we are using k as an index for the
zeros of Bessel functions.) We may imagine a solid body occupying some region
in cylindrical coordinates,

R {(r,ﬂ,z):(r,t’?)eD, zy 5z§z;}

(D being a region in the plane), in which the temperature, for one reason or
another, is independent of z. Suppose D is the disc of radius b about the origin,
If we impose the condition that ¥ = 0 on the boundary of D, then exactly the
same analysis as before leads to a solution that looks like (5.44) except that
cos Ay ,ct/b is replaced by exp[—).i‘nKI/bz]. If instead we impose the “Newton’s
law of cooling” boundary condition ur + cu = 0 (¢ > 0), the results are similar
except that the numbers 4, , should be the positive zeros of beJn(x) + xJp(x).

Rather than work out these problems in detail, let us do a problem with
some new features. Suppose D is the wedge-shaped region

D:{(r,ﬂ):@grgb, Ogega},

where 0 < @ < 27, and let us suppose that the boundary is insulated. This means
that the normal derivative of u on the boundary must vanish, that is,

ug(r,0) = ug(r,a) = ur(b,0) = 0.
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If we take u(r,0,t) = R(r)©(8)T(¢t), then, separation of variables leads to the
following 1-dimensional problems:

PR'(r)+ rR(r) + (W*r* —=v»R(r)=0, R'(b)=0;
0"(0)+v%0(0)=0, ©'(0)=6(a)=0;
T'(t) + u*KT(1) = 0.

(There is also an implied boundary condition at r = 0, namely, that R should not
blow up there.) The differential equation for © together with the boundary con-
dition at 0 imply that (up to a constant factor) ©(8) = cosv 8, and the boundary
condition at a then forces v = nm/a. In short, we obtain Fourier cosine series
in 6, Bessel functions of order nz/a in r, and, of course, exponential functions
in ¢. More precisely, let {4; ,} now denote the positive zeros of J, , (x). Then
{unja(Arnr/b)}72 1s @ set of eigenfunctions for the Sturm-Liouville problem
in r with eigenvalues u° = ().k,,,/b)z. Also, by Theorem 5.3 it is an orthogonal
basis for L%(O, b) with w(r) = r, except in the case n = 0, For n = 0 one must
augment this set by including the constant function 1 (corresponding to the eigen-
value 4 = 0) in order to make it complete; and constant functions are solutions
of our boundary value problem. We therefore arrive at the following general
solution:

oc oo /12 Kt
u(r, 0,1) = agy + Z: Zaﬂk.}m;a (lkg’r) cos(nzg) exp (— kgz ) .

n=0k=1

If we wish to satisfy an initial condition u(r, 8,0) = f(r, #), we must have
= — Akl nmné
f(r,0) = “00"'2{”;%“”;‘: (an) cos (T) (5.45)
n= =

But the obvious analogue of Theorem 5.4 holds here, so such an expansion is
possible. In fact, taking account of the normalizations in Theorem 5.3, we find
that

B 2 b ra
“m"@/u /0 f(r,6)rdrdé,

23%,0 v ra Ak of
ok = abz(zk,o)%uk,wfo L (”9”"(—5 )’d"‘“’ (e 2 1),

and for n,k > 1,
_ 457
ab? [/‘.i,n — (Hﬂlﬂf)z] Jnx,r‘cr(’?’k,n)z

b pa
x / f S(r0)nz/a (Rkb_,,r) cos mrdrdﬁ.
0 Jo a

Ank
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Example 2. Suppose that o = 37 and the initial temperature is f(r, ) = rZcos 26.
Then (5.45) becomes

2 o Aen?
r c0526=a00+22a,,klz,1( b )cosZnﬂ‘
n=0k=1

But the left side involves cos2n6 only for n = 1; so it is clear by inspection, or
from the orthogonality relations for cos 2n6 on [0, %1:], that only the terms with
n = 1 on the right will be nonzero. Hence, after canceling the cos26 on both
sides, we are reduced to finding the coefficients a; = a; in the expansion

el Apr
r2=ZakJ2 (%), Ak=j~k,l‘
k=1
By Theorem 5.3, these are given by

_ 23 by (ar
R R T g (T) a

and by the recurrence formula (5.14),

b A AN b\*
for:‘h(%’) dr=(ﬂ) fo x3J2(x)dx=(—k) FENATRY

Combining these results, we obtain the solution:

_9p2 o MJa(A) (}k_f) Akt
u(r,8,1)=2b 00526;__—_(3i J 5 ) exp b |-

= 4)J5(Ae)?

We can also solve the heat equation in an annulus 0 < g < r < b with
boundary conditions at r = g and r = b. Here the eigenfunctions in 6 are linear
combinations of cosnf and sinnf with »n an integer, just as in the disc. But in
the variable r we obtain a regular Sturm-Liouville problem on the interval [a, b]
involving the Bessel equation of order n, and the eigenfunctions will be linear
combinations of Ju(Ar/b) and Y.(Ar/b) chosen so as to satisfy the boundary
conditions. See Exercise 8.

The Dirichlet problem in a cylinder

As a final application, let us consider the Dirichlet problem in the cylinder
D={(r,6‘,z):05r5b, 0<z<l!}
That is, we wish to solve

Urr+r 'ty + 1 *ugg +uz2 =0 in D,

(5.46)
u(r,0,0) = f(r,0), u(r,0,l) = g(r,0), u(b,8,z)=h(#,z).
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Here we shall work out the special case where f = A = 0 and g is independent
of 8.
u(r,8,0) =0, u(r, 8,0y = g(r), u(b,8,z)=0. (5.47)

The generalization to arbitrary g(r,8) is left as Exercise 5. The case g =h =0
is entirely similar to this one, and the case /' = g = 0 will be discussed in §5.6.
Of course the general case (5.46) can be solved by superposing the solutions to
these three special cases.

Since our boundary conditions are independent of #, we expect the solution
to be independent of # too (but see Exercise 5), so we apply separation of variables
to u(r,z) = R(r)Z(z) and find that

PR"(r)+rR(r)+ u??R(r)=0, R(b) =
Z"(z)-u*Z(2)=0, Z(0)=

The Sturm-Liouville problem for R has the eigenfunctions Jy(4,r/b) where {4, }{°
are the positive zeros of Jy, with eigenvalues u? = (4, /b)%. The corresponding
solutions for Z are sinh(4;z/b). Hence, we obtain

o
/T.k." ) P /{kZ
u(r, z) gak.}’g ( sinh =3=.
To satisfy the boundary condition at z = /, we expand g in its Fourier-Bessel

series,
s0= Yo ().

and take il
aj = ¢ csch %
Thus the Dirichlet problem with the special boundary conditions (5.47) is solved.

Example 3. If g(r) = 1, the coefficient ¢;, was found at the end of §5.4 to be
2/ Jy(Ag). Therefore,

.fg(/lkr/b) smh(ﬂ.k Z/b]
22 A di () smh(l/B)"

EXERCISES

Exercises 1-4 deal with the heat equation in polar or cylindrical coordinates, in
which we take the diffusivity coefficient k equal to 1.
1. A cylinder of radius b is initially at the constant temperature 4. Find the
temperatures in it at subsequent times if its ends are insulated and its circular
surface obeys Newton’s law of cooling, u; + cu = 0 (¢ > 0).
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2. A circular cylinder of radius p initially is at the constant temperature A.
At time ¢ = 0 it is tightly wrapped in a sheath of the same material of
thickness 4, thus forming a cylinder of radius p + 4. The sheath is initially
at temperature B, and its outside surface is maintained at temperature B.
If the ends of the new, enlarged cylinder are insulated, find the temperature
inside at subsequent times.

3. A cylindrical core of radius 1 is removed from a block of material whose
temperature increases linearly from left to right. (Thus, if the cylinder oc-
cupies the region x2 + y? < 1, the initial temperature is ax + b for some
constants g and b.) Find the subsequent temperatures in the core if

a. it is completely insulated;

b. its ends are insulated and its circular surface is maintained at tempera-
ture zero.

4. A cylindrical uranium rod of radius 1 generates heat within itself at a con-
stant rate a. Its ends are insulated and its circular surface is immersed in a
cooling bath at temperature zero. (Thus, #; = tyr +r 'ty + r~*ugg + a and
u(l,t})=0.)

a. Find the steady-state temperature v(r) in the rod. (Hint: By symmetry,
the steady-state temperature is independent of 6. Since v, + r~'v, =
r~!(rv,),, the steady-state equation can be solved by integrating twice.)

b. Find the temperature in the rod if its initial temperature is zero. (Hint:
Again, u is independent of 6. Let ¥ = v + w with v as in part (a) and
solve for w. Exercise 2, §5.4, is helpful.)

5. Solve problem (5.46) for a general g(r,8) when f = h = 0. Prove that if g
is independent of @, your solution reduces to the one in the text.

6. Find the steady-state temperature in the cylinder 0 <r < 1,0 < z < 1 when
the circular surface is insulated, the bottom is kept at temperature 0, and
the top is kept at temperature f(r).

7. Analyze the vibrations of an elastic solid cylinder occupying the region 0 <
r< 1,0 < z <1 in cylindrical coordinates if its top and bottom are held
fixed, its circular surface is free, and the initial velocity u, is zero. That is,
find the general solution of

Uy = cz(un 3 F a4 r—zugg +Uzz),
u(r,0,0,¢) = u(r,0,1,t) = ur(1,0,2,t) = us(r,6,2,0) = 0.

8. Show that the eigenvalues of the Sturm-Liouville problem
xf' ()] -0 %7 f(x)+22xf(x) =0 (0<a<x<b), fla)=f(b)=0

are the numbers A2 such that Ju(Aa)Y, (Ab) = J,(Ab)Y,(Aa). What are the
corresponding eigenfunctions?
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5.6 Variants of Bessel functions

Bessel functions arise in very diverse ways in physics and engineering, and it is
often more convenient to work with certain functions related to J, and Y, rather
than with J, and Y, themselves. In this section we discuss some of these related
functions and the differential equations from which they arise.

Hankel functions

We saw in §5.3 that J,(x) behaves like a damped cosine when x is large and
positive, and Y, (x) behaves like the corresponding damped sine:

Ju(x) = \f% cos(x ~ Jvm - in), Yu(x) ~ 4/ ;—xsin(x - jvm — ym).

As it is often better to use e¢'* and e~** instead of cosx and sin x, we are led to
consider the linear combinations

HV(x) = L(x)+iYu(x), HP(x)=J(x)-iYy(x).

H'" and H'* are called the first and second Hankel functions or Bessel functions
of the third kind. Their asymptotic behavior for large x is given by

H(x) = \/g [expitx— fpr—jo] 1+ B, IE@I< S,

G
=

HP(x) = \/g[expi(—x + jvm+ %n)] [l - Eg(x)}, |Ey(x)| <

When stated in this form, with the error terms E;(x) and E;(x) multiplied by
e*™* these formulas continue to hold for all complex x = re'® withr > 1 and || <
. (See Exercise 6, §8.6. There is a significant difference between e'* + E; (x) and
e'*[1+ E;(x)] when x has an imaginary part, since then ¢’* may be exponentially
growing or decreasing.)

Modified Bessel functions
The modified Bessel equation is

x2f"(x) + xf'(x) - (x2 + v f(x) = 0. (5.48)

It differs from the ordinary Bessel equation only in that x? is replaced by —x2.
In fact, it is the special case of the generalized Bessel equation

x2f"(x) + xf(x) + (ux? =) f(x) =0
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in which 4 = 7, so it can be reduced to Bessel’s equation by the change of variable
x — ix. One solution of (5.48) is therefore f(x) = J, (ix), but it is more common
use the constant multiple

L(x)=1i""Q(ix),

called the modified Bessel function. The reason is that, since i¥72K = /*(— l)k ;

= 1 X v+2k
X = ; KT(w+k+1) (7) *

which has the obvious advantage of being real when x and v are real.

For a second independent solution of (5.48), one could use /_,(x) when v
is not an integer, or Y, (ix) for arbitrary v. However, the standard choice is the
function
nI_y(x) - L(x)

Ky(x)= 2 sinvm

Just as with Y,, this formula is well-defined whenever v is not an integer and can
be evaluated by I’'Hopital’s rule when v is an integer, and it defines a solution of
(5.48), independent of I,, for all v. See Lebedev [36], §5.7, or Watson [55], §3.7.

'
1
[
'
1
[l
"

.......

FiGure 5.3. Graphs of some modified Bessel functions on the interval 0 <
x < 3. Left: I (solid) and K (dashed). Right: I, (solid) and K, (dashed).

The reason for choosing K, as the second independent solution of (5.48),
like the reason for choosing Y, as the second solution of Bessel’s equation, has
to do with its asymptotic behavior for large x. Indeed, if we make the change of
variable f(x) = x~'/2g(x) in (5.48), as we did with Bessel’s equation in §5.3, we
obtain L

g"(x) - 8(x) + I-g(x) = 0.

When x > 1 we expect the last term in this equation to be negligibly small in
comparison to the other two, so the solutions should look like the solutions of
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g" — g = 0, namely, ae* + be™*. Now, all the latter functions grow exponentially
as x — +oo except for the ones with @ = 0, which decay exponentially; so we
expect something similar to happen with solutions of (5.48). This is indeed the
case, and K, is singled out as the only solution of (5.48) that tends to O rather
than oo as x — +oo. More precisely, we have the following asymptotic formulas:

\/;r_xe"[l +E (x)], Ko (x) = \/%e"‘[l + Ez(x]] (x> 1),
where, as usual, E(x) and E;(x) are bounded by a constant, depending on v,
times x~!. See Exercise 7, §8.6.

The asymptotic behavior of the modified Bessel functions as x — 0 is just
like that of the ordinary Bessel functions, except for constant factors. That is, if
v >0, I(x)~cyx” and K, (x) ~ ¢, x™¥, whereas Iy(x) ~ 1 and Ky(x) ~ clogx.
Thus, when v > 0, 7, and its constant multiples are the only solutions of (5.48)
that do not blow up as x — 0. See Figure 5.3 on the previous page.

We met [, briefly in §5.4 when we were showing that certain Sturm-Liouville
problems had no negative eigenvalues. Let us now display a situation where I,
enters the solution in a positive way, namely, the Dirichlet problem in a right
circular cylinder. We solved part of this problem in §5.5, and we now deal with
the remaining case:

L(x)=

urr+r"ur+r'2u93+uzz=0 forO<r<b, 0<z<l,

(5.49)
u(r,6,0)=u(r,8,) =0, u(b,8,z)=nh(0,z).

For simplicity we shall assume that / is independent of § and leave the general
case as Exercise 1. When the boundary conditions are independent of 6, the
solution u will be too; so just as before, we try u(r, z) = R(r)Z(z) and arrive at
r2R"(r) + rR(r) + 1*r*R(r) = 0,
Z"(z)-u*Z(z)=0, Z(0)=2Z()=0.
The boundary conditions on Z now force —u? = (nn/1)? and Z(z) = sin(nn z /1),
so the equation for R becomes
r*R"(r)+ rR'(r) = (nmr/1)*R(r) = 0,

which reduces under that change of variable x = nzr// to the modified Bessel
equation of order zero. Of course R(r) cannot blow up as r — 0, so R(r) =
Io(nmr/l). Hence, by superposition we arrive at

u(r,z) = ianfg (Eg) sin n_:;z_
1

To satisfy the boundary condition u(b, z) = h(z), we have merely to expand 4 in
its Fourier sine series on [0,/] and match up coefficients:

an = [Io (ﬂ-?—b)]—l %]:f(z) sin #dz.
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Equations reducible to Bessel’s equation

A large number of ordinary differential equations can be transformed into Bessel’s
equation by appropriate changes of independent and dependent variables. Here
is one class of such equations.

Theorem 5.5. Consider the equation
xP f"(x) + pxP~ f'(x) + (ax? + bx?~2) f(x) = 0, (5.50)
where (1 —-p)* —4b>0andq-p+2>0. Let

_1-p _g-p+2 ,_ 2/ _ Yl —gF-4h
assge IS ASgurw P ppEr
If a > 0, the general solution of (5.50) is

£x) = x*[e1 Ju (3x*) + e Y, (3xF)]
whereas if a < 0, the general solution of (5.50) is

f(x) = x° [clfy(zxﬁ ) + 2Ky (AxE )].

The proof, simple in principle but tedious to write out, consists merely of
substituting f(x) = x®g(x) and x = (y/4)'/# into (5.50) and using the chain
rule to reduce the resulting equation to the Bessel equation or modified Bessel
equation relating g and y. Instead of presenting the messy details, let us look at
some examples.

Example 1. Ifp=g=a=1and b= -v? (5.50) is just Bessel’s equation of
order v {after multiplying through by x).

Example 2. If p = q =b =0 and a = 1, (5.50) is the equation "' + f = 0,
whose solutions are linear combinations of cos x and sin x. The solutions given
by Theorem 5.5 are linear combinations of x'/2J; ;5(x) and x'/2Y; ;5(x); by (5.19)
and the fact that Yy, = —J_, 5, these are just what they should be.

Example 3. If p=b =0and a = -1, and ¢ = 1, (5.50) becomes the Airy
equation /" (x) — xf(x) = 0, which arises in the study of diffraction and related
phenomena in optics. In Theorem 5.5 we havea = §, =3, A=%,andv =},
so the solutions are

1) = x"2 el 335 + 02Ky 3(x)]. (5.51)

On the other hand, it is not hard to solve the Airy equation directly by assuming
the solution to be of the form f(x) = 5 anx" and determining the coefficients
an. We leave it as an exercise for the reader to do this and compare the results
with the formula (5.51).
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Example 4. As a final example, let us consider spherically symmetric waves in
three dimensions, that is, solutions of the wave equation u; = c2V2u of the form

u(x,y,z,t) =v(r,t), wherer=4/x2+y2+ z2,

From the formula for the Laplacian in spherical coordinates (see Appendix 4),
we have V2u = v,y + 2r~'vy, so the wave equation becomes

Vi = X (vpr + 2r 7 0p). (5.52)
Separation of variables, with v(r, ¢} = R(r)}T(?), leads to the equations
T'(t)+ 222T(t) =0,  R"(r)+2r 'R(r) + 2*R(r) = 0.

After being multiplied through by r2, the equation for R is of the form (5.50)
with p = g = 2, a = 42, and b = 0. Hence, by Theorem 5.5, the solutions are

ay sinAr + a; cos Ar

R(r) = cyr 20y p(Ar) + car 'Y,y (Ar) = -

We therefore obtain as solutions of the spherical wave equation (5.52) the func-
tions

a, sin Ar + a, cos Ar

- (
and their superpositions obtained from taking different values of A. Of course, if
we want solutions that are nonsingular at the origin we must take a; = 0. This
result can be generalized to arbitrary waves in spherical coordinates (without
special symmetry properties), and the answer turns out to involve the Bessel
functions J, where v is an arbitrary half-integer. We shall work this out in
Chapter 6.

We can now construct a model for vibrations of air in a conical pipe such
as an oboe or saxophone. We place the vertex of the cone at the origin and
take the length of the pipe, measured along the slanting side, to be /. We also
assume that the vibrations depend only on the distance from the vertex, so that
equation (5.52) applies. Here the simplest interpretation of v is as the so-called
condensation, which is the change in the air pressure p relative to the ambient
pressure pg: v = (p — pg)/pPo. (In analyzing the vibrations of a cylindrical pipe
by the 1-dimensional wave equation in §4.2, we took the solution u to represent
the displacement of the air. At least for small vibrations, the condensation in
this situation is given by v = —ux. If u satisfies the wave equation then so does
ux; so these descriptions are equivalent, although the boundary conditions look
different. In higher dimensions the displacement is a vector quantity and so is
more complicated to study. See Ingard {32] or Taylor [51].) The pressure must
be equal to the ambient pressure at the open end of the pipe, so v(/,1) = 0, and
it must be finite at the vertex. Therefore, a; = 0 and A = nn/! in (5.53), where
n is a positive integer, and we obtain the general solution

v(rt) = by cos Act + b sin Act) (5.53)

[s ]
nnet mrct)l . nmr (5.54)

v(r,t) =E (an cos—i,—+b,1 sinT— -

1
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Initial conditions v(r,0) = f(r) and v;(r,0) = g(r) can be satisfied by expanding
rf(r) and rg(r) in their Fourier sine series on [0,/]; see Exercise 3. Note that
the allowable frequencies are the integer multiples of the fundamental frequency
1/2c, just as in an open cylindrical pipe.

EXERCISES

i
2.

T

Solve (5.49) for a general A(6, z).

Find the general solution of the Airy equation f*'(x)—x f(x) = 0 by assuming
that f(x) = >"§° anx™ and determining the coefficients a,. Since x = 0 is a
regular point of the differential equation, gy and 4, can be chosen arbitrarily;
show that the solution f) with ay = 1, @; = 0 and the solution f; with g = 0,
a, = 1 are given by

A =T3P 536, f(x) =T($)3x121 5372,

. Determine the coefficients a, and by, in (5.54) if v(r,0) = Oand v,(r,0) = [/ -r.
. A flexible cable hangs from a hook. {Assume the cable is on the z-axis, with

bottom at z = 0 and top at z = [.) Since the tension at the point z on the
cable is proportional to the weight of the portion of the cable below z, i.e.,
proportional to z, the appropriate wave equation to describe oscillations of
the cable is u; = cz(zuz)z where u is the displacement. Since the top of
the cable is fixed, u(/,t) = 0; and obviously the displacement u(0, t) at the
bottom must be finite. Find the general solution of this boundary value
problem. (Hint: Use Theorem 5.5 and Exercise 9, §5.4.)



CHAPTER 6
ORTHOGONAL POLYNOMIALS

Some of the most useful orthogonal bases for L? spaces consist of polynomial
functions. This chapter is a brief introduction to the most important of these
orthogonal systems of polynomials; the last section also contains a discussion of
some other interesting orthogonal bases.

6.1 Introduction

Let (a,b) be any open interval in R, finite or infinite, and let w(x) be a positive
function on (a, b) such that the integrals fab x"w(x)dx (n =0,1,2,...) are all
absolutely convergent. Then there is a unique sequence {pn}3° of polynomials of
the form

pU(x)‘-:l! pl(x)=x+a0:
pr(x)=x*+bx+by,  p3(x)=x>+cx? +cyx +co,. .

which is orthogonal with respect to the weight function w on (a,b). Indeed, the
constant ag is fixed by the requirement that p, should be orthogonal to py:

fabxw(x)dx

b
0=rru= [ xtauds = a=- .

a J, w(x)dx
Once agy, and hence p;, is known, the orthogonality conditions (p;,pj)w = 0
and (ps,po)w = O give two linear equations that can be solved for the two
constants by and b; in p,. Once these have been found, the three equations
(p3,p2)w = (D3, P1)w = (P3,Po)w = 0 can be solved for the constants cy,¢;,¢; in
p3. Continuing in this way, we see that the coefficients of all the polynomials
pn are determined by the orthogonality conditions. (It is not difficult to show
by induction that the systems of linear equations determining the coefficients all
have unique solutions, and to construct a recursive formula for the solutions.)

In short, associated to each weight function w on an interval (4, b) as above,

there is a unique sequence {p»}§° of polynomials determined by the requirements
that

154
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(i} pn is a polynomial of degree n,

(i1) {pn,Pm)w = 0 for all n # m,
(iii) the coefficient of x" in pn is 1.
If we keep conditions (i) and (ii) but drop condition (iii), we have the freedom
to multiply each p, by an arbitrary nonzero constant ¢», and ¢, can be chosen to
make p, satisfy another auxiliary condition in place of (iii). For example, it can
be chosen so as to make ||ps|lw = 1 or to fix the value of p, at some point.

Before proceeding, let us point out one simple fact that will be used repeat-

edly in this chapter.

Lemma 6.1. Suppose {pn}§° is a sequence of polynomials such that pn is of (exact)
degree n for all n. Then every polynomial of degree k (k =0,1,2,...) is a linear
combination of py, ..., Dk-

Proof- If f is a polynomial of degree k, choose the constant ¢, so that f
and ¢, p; have the same coefficient of x*. Then f - pyc; is a polynomial of
degree k — 1, so we can choose ¢;_; so that f —c,p; and ¢, _p;_ have the same
coefficient of x¥~1. Then f — ¢ pi — Ck_1Pk—; is a polynomial of degree k — 2,
and we can proceed inductively to choose ¢, _»,...,cy so that f — 2‘5 cnpn=0.1

The classical orthogonal polynomials we shall be studying in this chapter are
eigenfunctions for certain singular Sturm-Liouville problems. We could proceed
as we did in the case of Bessel functions, by first writing down the differential
equation to be solved, finding its complete solution by the method of power series,
and then singling out the polynomial solutions for special attention. However,
since our aim here is to develop the basic properties of these polynomials as
quickly and cleanly as possible, we have chosen to relegate these calculations to
the exercises and to adopt a more direct approach. In each of the classical systems
the polynomials p, can be defined by a formula of the form

palx) = oA w(x) P (6.1)

where C, is a constant, w(x) is the weight function with respect to which the
pn’s are orthogonal, and P(x) is a certain fixed polynomial. These formulas
are known as Rodrigues formulas (the original formula of Rodrigues being the
one pertaining to Legendre polynomials). From (6.1) it is easy to prove the
orthogonality relations for the p»’s, to derive the differential equation that they
satisfy, and to find their normalization constants. (The constants Cy in (6.1) are
firmly fixed by tradition in each case, and they usually are not chosen to make
llpnllw = 1. Hence, in order to expand general functions in terms of the basis
{pn}, it is necessary to know ||pn|w.)

Since the Sturm-Liouville problems leading to the classical orthogonal poly-
nomials are all singular, the general Sturm-Liouville theory does not guarantee
that these orthogonal systems are complete. However, they are complete, and we
shall establish this by invoking some theorems from Chapter 7. (The results in
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Chapter 7 do not depend on the material in Chapter 6, so the reader is free to
skip ahead and read them at any time,) We shall also derive generating functions
for these polynomials and sketch some of their applications. Much more can
be said, but for a more complete discussion we refer the reader to the books of
Erdélyi et al. [21], Hochstadt [30], Lebedev [36], Rainville [44], and Szegé [50].

EXERCISE

1. Let {pn}§° be an orthogonal set in L%(a,b), where p, is a polynomial of
degree n.
a. Fix a value of n. Let x|, X1, ...X; be the points in (a, b) where pn changes
sign, i.e., where its graph crosses the x-axis, and let g(x) = H’f(x - X;j).
Show that png never changes sign on (a, b) and hence that (pn, g¢)w # 0.
b. Show that the number k of sign changes in part (a) is at least n. (Hint:
If k < n then (ps,q)w = 0. Why?)
¢. Conclude that p, has exactly »n distinct zeros, all of which lie in (a, b).
(Geometrically, this indicates that p, becomes more and more oscilla-
tory on (a, b) as n — oo, rather like sinnx.)

6.2 Legendre polynomials

The nth Legendre polynomial, denoted By Py, is defined by

1 4"

Falx) = a1 g

oy (6.2)

The function (x2 — 1)" is a polynomial of degree 2n with leading term x*", so P,
is a polynomial of degree n. For the first few values of n we have

Pix)=1, Px)=x, Py(x)=33x2-1),
Py(x) = §(5x3 = 3x),  Py(x) = §(35x* - 30x% + 3).

See Figure 6.1. The coefficients of P, can be calculated by using the binomial
theorem (Exercise 1), but all we shall need is the leading one:

1 d*, s 1
g™t = T
_ _(2n)!
= I(® T

Pn(x) =

[(@m@n 1) (n+ )x"+ -
(6.3)

where the dots denote terms of lower degree.

We begin by establishing the orthogonality properties of the Legendre poly-
nomials. In what follows we shall be working in the space L3(—1, 1) (with weight
function w(x) = 1), and {, ) will denote the inner product in this space.
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FIGURE 6.1. Graphs of some Legendre polynomials on the interval —1 <
x < 1. Left: P, (long dashes), P4 (short dashes), and Py (solid). Right: Py
(long dashes), Ps (short dashes), and P; (solid).

Theorem 6.1. The Legendre polynomials {P,}§ are orthogonal in L*(—1,1), and

2

2 _
WEnl™ = 1

(6.4)

Proof: The key observation is that if f is any function of class C'™)
[—1,1], we have

2n(f, Pa) ff dxnx—n dx = ( 1)*/ M) = 1) dx. (6.5)

The second of these equations follows by an n-fold integration by parts; the
endpoint terms are all zero because the function (x? — 1)" = (x = 1)"*(x + 1)"
vanishes to #nth order at x = £1 and hence its first # — 1 derivatives all vanish at
x = +1. If f is a polynomial of degree less than n then /") = 0, so (f, Px) =0
In particular, this is true of Py,..., Py_1, 80 {Pm, Ps) = 0 for m < n. By the same
reasoning with m and »n interchanged, we also have (Pp, Py) = 0 for m > n, so
the P,’s are mutually orthogonal.
On the other hand, if we take f = Py, by (6.3) we have

@2n)! .-(2n)

M) = g = 2 o

=1-3.5---(2n-1),

so by (6.5),

1.8:5::2n—1) "
1Pl = m(! = l)f_l(l—xz) dx.
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But by the substitution x = /7 and the formula for the beta integral (Appendix
3),

b g o [ 2 [ owm—1y24. _ D+ HI3)
[_](1 x}dxu.Z/O(l x)dx—/o(l ¥y dy——%-—l_(n_l_%)
_ T n! _ 2"+ g
_F(n+§)h(é)(§)m(n+%) 1:3.5...2n+1)
which proves (6.4). 1

We next derive the differential equation satisfied by the Legendre polynomi-
als.

Theorem 6.2. For all n > 0 we have

[t —xz)P,;(x)]'+n(n+ 1)Pa(x) = 0. (6.6)

Proof: Let g(x) = [(1 - xZ)P,i(x)] f. Since P, is a polynomial of degree

n -1, x*P}, is of degree n + 1, and hence g is of degree n. In fact, by (6.3), its
leading term is
(2n)! d [ a2 iy
(a2 dx [(=x?)(nx""h)] = ~n(n+1)
Thus, in view of (6.3), g + n(n + 1)P, is a polynomial of degree n — 1, so by
Lemma 6.1 it is a linear combination of Py,..., P,_;:

(2n)!
S ICHE

; n—1
g(x) +n(n+ 1Pa(x) = [(1 = x)P4(x)] +n(n+ 1)Pa(x) = 3 ¢;Pj(x).
0

By orthogonality, the coefficients ¢; can be calculated in terms of inner products:

e (8 +n(n+1)Py, Pj) _ (&, Pj) + n(n + 1)(Py, P;)
’ 12512 1| P12 '

Now (Pn, P;) = 0 for j < n, and

W Bl = jjl [(1 - xz)P,’,[x]]’Pj(x) dx.

After two integrations by parts, in which the boundary terms vanish since x2 -1 =
0 when x = =1,

(8, P)) = [_l] Pa(x)[(1 - xz)P;-(x)]'dx.

But [(l - xz)JE’J‘f(x)]r is a polynomial of degree j, hence is a linear combination
of Py,..., P;, hence is orthogonal to P,. Therefore, ¢; = 0 for all j < n, and we
are done. 1
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Theorem 6.2 says that the Lf:gendre polynomials are eigenfunctions for the
Legendre equation

[(1-x2y] +ay =0, (6.7)

the eigenvalue for P, being n(n + 1). This is an equation of Sturm-Liouville
type on the interval (-1, 1), but it is singular since the leading coefficient 1 - K2
vanishes at both endpoints. To arrive at the appropriate boundary conditions to
define a Sturm-Liouville problem, one must examine the behavior of the solutions
of (6.7) near x = +1.

Briefly, the situation is as follows. The points x = +1 are regular singular
points for equation (6.7), and it is easily verified that the characteristic exponents
at each of these singular points are both zero. Hence, for any 4, equation (6.7)
will have one nontrivial solution that is analytic at x = 1, whereas any second
independent solution will have a logarithmic singularity there; the same is true at
x = —1. We may therefore impose boundary conditions on (6.7) by requiring that
the solutions have no singularity at x = %1, a requirement that can be phrased
as follows:

lim] y(x) and lim] y{x) exist. (6.8)
X— X—t—

The Legendre polynomials are then eigenfunctions for the Sturm-Liouville prob-
lem defined by (6.7) and (6.8). We shall now establish the completeness of the
Legendre polynomials, which implies in particular that there are no other eigen-
functions for (6.7) and (6.8).

Theorem 6.3. {P4}3 is an orthogonal basis for L*(—1,1).

Proof- Suppose f € L*(—1,1) is orthogonal to all the P,’s, and hence (by
Lemma 6.1) orthogonal to every polynomial. Given a small positive number €,
there is a continuous function g on [—1, 1] such that || f - g|| < %e (Theorem
3.3, §3.3). By the Weierstrass approximation theorem, which we shall prove in
§7.1, there is a polynomial P such that |[P(x) — g(x)| < 1e for all x € [-1,1], and
hence such that

1/2

1
1P-gl=( [ 1P - g(oPdx)  <deva <ie.

But then
I =N=(-8N+{g-P N+ (L[,

and since (P, ) = 0 by hypothesis, the Cauchy-Schwarz inequality yields

A2 < 1S - gl A1+ g = PIILAN < el A1,

so that || ]| < €. Since € is arbitrary, f =0. 1
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In view of Theorem 6.1, the expansion of a function f € L?(—1,1) in terms
of Legendre polynomials is given by

2n+1 2n+1

=S cuPy, where cn = (f, P} = /_11 fX)Pa(x)dx.  (6.9)

The series 5 ¢n Py converges in norm; it can also be shown to converge pointwise
provided that f is piecewise smooth, just as in the case of Fourier series.

A related type of expansion is sometimes useful. We observe that (x2 — 1)"
is an even function of x, so that its nth derivative 2"n!P,(x) is even or odd
according as n is even or odd. Therefore, just as we passed from Fourier series
on [, 7] to Fourier cosine and sine series on [0, 7], we can pass from series of
Legendre polynomials on [—1, 1] to series of even or odd Legendre polynomials
on [0, 1]. The result is the following.

Theorem 6.4. {P;,}>%, and {Py,,,}22, are orthogonal bases for L*(0,1). The
norm of P, in L2(0,1) is (2k + 1)7!

The details of the proof are left to the reader (Exercise 11). The functions
P,, and P, are the eigenfunctions of the Sturm-Liouville problems on (0, 1)
defined by the Legendre equation (6.7) and the boundary conditions

Hm y(x) exists,  1/(0) =0 (for Py),
chiml y(x) exists, p(0)=0 (for Pyyyy).

The following identity gives the generating function for the Legendre poly-
nomials. We shall derive it by means of contour integrals. Another approach
(see Rainville [44] and Walker [53]) is to take this identity as a definition of the
Legendre polynomials and develop the theory from there; in fact, this is what
Legendre did originally.

Theorem 6.5. For -1 < x <1 and |z| < 1 we have
o0
S Pa(x)z" =(1-2xz+2%)" 12 (6.10)
0

(Here z may be complex, and the principal branch of the square root function is
used on the right.)

Proof: Given x € [—1, 1], let y denote the circle of radius 1 about x in the
complex plane. Applying the Cauchy formula for derivatives (Appendix 2) to the
formula (6.2), we have

1 dan " I (gZ n

Pa(x) = iy o " = 2m ) 2n(L — x)n+1

dg.
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Thus, if |z| is small enough so that the geometric series E[Z(Cz -1)/2(§ - )c)}’1
converges uniformly for { € 7 (|z| < £ is good enough),

]
|- 8]
P n e
bt
-:"*"-
y
| f v
=
e ]
o
|
[l
~l
|
‘\-—/_‘:
| I
o
e

f 2d¢
271 Jy z - 2x + 2{ - z{%°
The zeros of z — 2x + 2{ — z{?, as a function of {, occur at

e 2 ol T — 2
1 1-2xz+z - Cz=1+ 1 2xz+z'

z z

Q=

When |z| is small, v/1 — 2xz + z2 is approximately 1 — xz (by the tangent line
approximation), so {; is close to x while {; is very large. In particular, {; is inside
the circle y and {; is outside, so a simple calculation with the residue theorem
gives

ZPﬂ(x)zu=ReSC=cl P 2 _(1_2xz+22)-h’2l
0

2x+20-z202

Thus (6.10) is proved assuming that |z| is sufficiently small. But then the series
on the left of (6.10) is the Taylor series of the analytic function on the right, and
its radius of convergence is the distance from the origin to the singularities of the
latter function at z = x + iv/1 — x2, namely, 1. The formula is therefore valid
for all z such that |z| < 1. |

Corollary 6.1. For all n we have Py(1) =1 and Py(-1) = (-1)".
Proof: On setting x = =1 in (6.10) we have

. 1 = 1
n_ _ J'l=
}D:P,.(l)z == §O:P,.( 2" = 4

But the Taylor series of the functions (1-z)~! and (14-z)~" are just the geometric
series 3~ z" and $°(-1)"z". The result follows by comparing coefficients of z". 1

Formula (6.10) has an interesting physical interpretation. If a charge (or
mass) is located at the point a in R3, the induced electrostatic (or gravitational)
potential at the point x is, up to a constant multiple, |x —a|~!. Suppose that a is
at a unit distance from the origin; let r = |x|, and let  be the angle between the
vectors x and a. Then by the geometric interpretation of the dot product,

[x — al" — [[x— a)-(x- a}r}_]'r2 = (r2 - 2rcosf + 1)'”2.
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Therefore, by (6.10), if r < 1 we have
o0
Ix—a]~!= E Pn(cos0)r".
0

That is, the Legendre polynomials give the expansion of the potential about the
origin in powers of r = |x|. Other applications of Legendre polynomials will be
given in §6.2.

We conclude this section with a formula relating the Legendre polynomials
and their derivatives.
Theorem 6.6, For all n > 1 we have

Pry1(x) = Py (x) = (2n + 1)Pa ().

Proof The second derivative of (x* — 1)"*! is
% [20n 4+ Dx(e? = 1] = 200+ D[(x? - 1" + 20262 - 177,
and by writing x2 = (x2 — 1) + 1 on the right we see that
%(x2 ~ 1M =2(n+ D2r+ 1)(x2 = 1) + 4(n + Dn(x? - 1)L,

Therefore, by formula (6.2),

1 dn—l dz

2 1
Prt¥) = st i de T a2~ n™
_@nt+ 1) dt 1 L B R
B RIS T ey P
_@n+1) am!

Mt gt — 1R+ By ()

Differentiating both sides and applying formula (6.2) once more, we are done. 1

Theorem 6.6 can also be stated as
1
[&(x)dx:Em[P,,H(x)-P,,_,(x)] +C  (n>1), (6.11)

a useful integration formula. (This formula holds also for n = 0 if we set
P_1(x)=0.)
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EXERCISES
1. Show that )
1 (=1Y@2n-2j)! -2
Pu(x) =5 z - . =X
2n P Jin = jn-2j)!
2. Deduce from Exercise 1 that

10,
11,

(=Dk2k)!

Py_1(0)=0,  Py(0)= T2

. Find the general solution of the Legendre equation

[(l—xz)y']f+/ly=0 (-l<x<1)

where A is an arbitrary complex number. To do this, rewrite the equation in
the form
(1=x¥p" =2xy' +v(v + 1)y =0

where v is again an arbitrary complex number, set y = 3% a»x", and deter-
mine the coefficients a, recursively in terms of @y and g;. Use the ratio test
to verify that the resulting series converge on (—1,1).

. With reference to Exercise 3, show that the Legendre equation has a poly-

nomial solution precisely when v is an integer, and that this solution is a
constant multiple of P, if v >0or P_,_; if v < 0.

. Show that the generating function F(x, z) = (1 — 2xz + z%)~!/2 of Theorem

6.5 satisfies (1 — 2xz + z2)(8F /8z) = (x — z)F, and deduce the recursion
formula
(n+ D)Py(x) = 2n+ D)xPu(Xx) + nPy_1(x)=0

. Expand x?, x3, and x* in series of Legendre polynomials. (Hint: No calculus

is needed. Cf. the proof of Lemma 6.1.)

.Let fix)=1for0<x<1and f(x)=-1for -1 < x <0. Expand f is a

series of Legendre polynomials. (Hint: Use equation (6.11) and Exercise 2.)

. Let f(x)=xfor0<x<1and f(x)=0for -1 <x <0. Expand f in a

series of Legendre polynomials. (Hint: Use equation (6.11); you can leave
the answer in terms of the numbers P,(0) or evaluate the latter by Exercise
2

. As in the proof of Theorem 6.5, write

-
21{1 2!1((;’ x)n+l 8

For -1 < x < 1, take y to be the circle of radius /1 — x2 about x, and
deduce Laplace’s integral formula

Pa(x) = %fon(x+ iv1—x2 cosG)ndG

Deduce from Exercise 9 that |P(x)| <1 for -1 <x < 1.
Deduce Theorem 6.4 from Theorem 6.3.
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6.3 Spherical coordinates and Legendre functions

In this section we shall solve some boundary value problems involving the Lapla-
cian in spherical coordinates. We recall (see Appendix 4) that the spherical co-
ordinates of a point x = {x,y,z) € R3 are given by

X = rcosfsing, y =rsinfsing, Z = rcos ¢,

and that the Laplacian in spherical coordinates is given by

1

6.12
sintg 08 (6.12)

2 2 1
VU= + S+ e ¢(u¢s ¢)¢+

To begin with, we consider the Dirichlet problem for the unit ball in R*:
2u(r,0,¢)=0 forr<1,  u(1,8,¢)=1(8,¢). (6.13)

Applying the method of separation of variables, we look for solutions of Viu=0
in the form u = R(r)©(0)d(¢$). Substituting this expression into the equation
V2u = 0 and rearranging the terms, we obtain

RH ZRJ

{ L ! i
2 sin? ¢ [— + —] +sin¢—(¢ s;,né) =2

5 (6.14)

R rR
Both sides must equal a constant m2. Thus ©” + m?© = 0 and hence
0(0) = ae'™? + be™ "7,
Since @ represents the longitude in spherical coordinates, © must be 27z-periodic;
hence m must be an integer, which we may take to be nonnegative.

We now set the left side of (6.14) equal to m? and separate r and ¢:

PR'+2rR _ m?  (@sing)
R sinf¢p  Psing

Here both sides must equal a constant A, and the equations for ® and R can be
written

(@'sing)  m*®

sin ¢ sin’ ¢

r’R" + 2rR' = AR = 0. (6.16)

+iD =0, (6.15)

Equation (6.13) can be transformed into a close relative of the Legendre equation
(6.7) by the substitution s = cos ¢. (Recall that ¢, the co-latitude, ranges over the
interval {0, 7). The transformation ¢ — s = cos ¢ is a one-to-one correspondence
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between [0, 7] and {-1, 1].) Indeed, if ¢ is a quantity depending on s and hence
on ¢, we have

dg dgds _ _. ,dq 1 dq _ dg

%—E%——Smtf)%, or W%— d.S'

Hence, if we set
§ =cosd, S(s) = S(cos p) = D)

and note that sin’ ¢ = 1 — 52, we have

mwads (¢78) = &5 (1%

Therefore, ®(¢) satisfies (6.15) if and only if S(s) = ®(arccoss) satisfies
[ 2 v m S
)S] T+ =0. (6.17)

When m = 0 this is just the Legendre equation (6.7). In general, (6.17) is called
the associated Legendre equation of order m.

When m is a positive integer, as it is in our case, it is easy to find solutions
of (6.17) in terms of the solutions of the ordinary Legendre equation

(1= + 2w =o. (6.18)

Indeed, let w be a solution of (6.18). If we apply the product rule for (m + 1)th
order derivatives,

m 1! m
(fg)m+D Z: k'(fnm:l )k)'ﬂk}g( +1—k)

to f(s) =1—s? and g(s) = w'(s), we obtain

1
[(1 - D] D 1 w2 2(m + Dsw Y Z m(m + D™

so by differentiating (6.18) m times we obtain
(1= sHw™ 2 _2(m + Dsw™ Y —m(m + Dw'™ + Aw"™ =0.  (6.19)

Now let
S =(1-s53)™2im,

We have

(l _SZ)SJ = —mS(l _ SZ)mIZw(m) o (] _ Sz)(mf2)+]w{m+l)’
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and hence, after a straightforward calculation,

[(1-52)8] = (1 - 52"

2,,1(m)
x [(1 — swm™D _ 2(m + Dsw™ 4 ”: iﬂsz —m(m + yw™| .
But in view of (6.19), this means that
2
2er]' oM S _
[(1-s)s8] = 73 - 38,

In other words, if w satisfies (6.18), then S = (1 — s2)™/2 (") satisfies (6.17).
In particular, if we take A = n(n + 1) and take w to be the Legendre polyno-
mial P, we obtain the associated Legendre function P;":

m;zden(S) _ (1 _SZ)m,FZ dntm

2 n
dsm it ggrrm s~ D% (6.20)

PP(s)=(1-5%)

(Note: Some authors insert an extra factor of (—1)™ into the definition of P;*(s).)
We observe that P*(s) = 0 when m > n, since P, is a polynomial of degree n,
so P is of interest only for n > m. Butform =1,2,3,...and n > m, P" isa
solution of the boundary value problem

2
(=] + L +nn+ 1y =0,

y(=1)=y(1)=0.

(6.21)

Theorem 6.7. For each positive integer m, {P'}Z, is an orthogonal basis for
L*(-1,1), and
(n+m) 2

m2 _
W = =i Zn s 1

Proof: The orthogonality of P;" and P, for n # n’ follows by the usual in-
tegration by parts from the fact that P}" satisfies (6.21); cf. the proof of Theorem
3.9 in §3.5. Also, from (6.20) we see that

Pl i(s) = (1 = s2)™ gy (s)

where g is a polynomial of degree k (we have set n = m + k since n > m), and

1
(P Py) = /_ (5)gp(s)(1 -~ )" ds.

That is, the polynomials ¢, are orthogonal with respect to the weight function
w(s) = (1 —s%)™ on (-1,1). The completeness of the set {g;}$° in L& (—1,1)
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follows from the Weierstrass approximation theorem, just as in the proof of
Theorem 6.3. But then if f € L?(—1, 1) is orthogonal to all the B in L3(~1,1),

the function g(s) = (1—s%)~™/2 f(s) will be orthogonal to all the g; in L (-1, 1)

1 1
0= [_ S(5)Byi(s)ds = [_ £(5)a(s)(1 - 52" ds.

It follows that g = 0 and hence f = 0, so the set {P}} i Hewo 1 complete.
Finally, we compute the norm of PJ". To sm'lphfy the notation we fix n and
set
ym=P}(s) (m=1,2,...,n), yg=Pyls).

First, from (6.20) we have

] d IP 5"
Fy=i = "= [l = 2)(m lfz—dsmnl( )
—3)2d™ " Pa(s) 2 (m—1)728" Pn(5)
= —fm — Dt — F-NAL_Zud L p ) L
dsm-1 dsm
= =(m=1)s(1 = )yt + (1= 55"y,
In other words,
— 1)s
1= 52ym 1+ \/1_—)J’m 1-
Square both sides and integrate from -1 to 1:
llymll? =
(6.22)

1 242
/. [(1 = 5301+ 20 = D5yt + L ) ]

Now integrate the first two terms on the right by parts. For the first one, by (6.21)
(with m replaced by m — 1) we obtain

f(l—s Y Im—1)? fyml 1—s)ym_]ds
/

whereas for the second one, we have

m

n(n+1) - (__:,___] (1) ds,

1 1
/]sym-lyin_lds = —f}ym_llsym_ll’ds

1 1
=—f S.Vm—ly:n—lds_/ (Ym—1)? ds,
-1 -1
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which implies that
1 ) 1 ;
2/_]Sym-1ym—ld5= "/_](}’m-l) ds.
Substituting these results into (6.22), we find that
1
lym|? = [n(n + 1) = m(m - l)]j:](ym-l)2 ds = (n+m)(n-m+1)|[ym_i|*

It therefore follows by induction that
yml* = (n+m)- - (n+2)(n+ 1)(n = m+ 1)+ (n = Dnlyo|1%,

or, in other words,

my2_ (n+m)! 2_(n+m)! 2
"P?t “ —(n_m)!“Pﬂ” _(n—m)!2n+l’
where we have used Theorem 6.1 for the last equation. 1

We now return to the Dirichlet problem (6.13). What we have found so far
is that in the separated solution u = R(r)©(8)®(¢) of Laplace’s equation, ©(6)
has the form ae’™? + be~'"% with m a nonnegative integer, and ®(¢) has the
form y(cos¢) where y is a solution of the associated Legendre equation (6.17).
Moreover, since we wish u to be a continuous function on the unit ball, y(+1)
must be finite, and when m > 0, y(+1) must actually be zero. The reason is that
the longitude @ is not well-defined along the z-axis, where cos¢ = %1, so the
function y(cos ¢)(ae’™? + be~™?) will be discontinuous there unless y(+1) = 0.
The Legendre polynomials P, (for m = 0) and the associated Legendre func-
tions P} (for m > 0) are solutions of these boundary value problems, and since
they form complete orthogonal sets in L2(—1, 1), there are no other independent
solutions.

In particular, the eigenvalue 4 in the Legendre equation must be of the form
n(n+ 1) where n is a nonnegative integer, so the equation (6.16) for R becomes

rR" +2rR — n(n+ 1)R = 0. (6.23)
This is an Euler equation, and its general solution is
R(r) = ar" + br "1,
Since we want the solution to be continuous at the origin, we must take b = 0.
In short, we have found the following family of solutions of Laplace’s equa-

tion:
Umn(r, 0, ¢) = r"e"”“’P},’”'(cosé} (n=0,1,2,...; |m| < n).
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Here it is understood that P{ = P,, and we are using the letter m in a slightly
different way than we did before in order to list ¢/% and e =" separately. We
therefore hope to solve our original problem (6.13) by taking a superposition of
these solutions:

o0 n
u(r,0,0)=5" 3" cmnr"e™ P™ (cos ¢), (6.24)
n=0m=—n
for which the boundary condition u(1, 8, ¢) = f(8, ¢) becomes
s <] n
[6,0)=3" 3 cmne™ Py (cos ¢). (6.25)
n=0m=—n
Now, {¢™0}%__ _ is a complete orthogonal set on (-7, 7), and since the
substitution s = cos ¢ gives

f] F(s)ds = /ﬂ F(cos¢)sin pd¢
-1 0

for any F, Theorems 6.1 and 6.7 show that for each m, {P,!ml(cosé)};ﬁlm' is a
complete orthogonal set on (0, ) with respect to the weight function sin¢. It
follows that the functions

Ymn(6,9) = ™ P™(¢)  (n=0,1,2,...; Im| < n),

considered as functions on the unit sphere S in R?, form an orthogonal basis of
L%(S) with respect to the surface measure do (6, ) = sin ¢ df dé. Moreover, the
normalization constants can be read off from Theorems 6.1 and 6.7:
||Ymn||2 — (n+|m|)t 2 _ 47 (n+ |m|)!
(n=my2n+1" 2n+1(n—|m)!"

The functions Yy are called spherical harmonics.

The series (6.25) is just the expansion of f with respect to the basis of
spherical harmonics, so the coefficients ¢;zn in (6.25) are given by

c =(f9Ymn}
" [ Ymnl2 -
_ | pmopm _ >
= (2"4;21" im:;’”‘ fo /_ _[8.9)e” ™ B (@) sing d6 do.

We have therefore proved the following result.

Theorem 6.8. The solution of the Dirichlet problem (6.13) is the series (6.24) in
which the coefficients cmn are given by (6.26).

This is not the end of the story, however. There are two additional important
facts about the solution (6.24) that should be pointed out. The first, a significant
feature that is obscured by the use of spherical coordinates, is that each term of
the series in (6.24) is a homogeneous polynomial in the Cartesian coordinates
(x,¥,z). The second is that the infinite series in (6.24) can be re-expressed as
an integral that is in some respects more useful; it is the 3-dimensional analogue
of the Poisson integral formula that we presented in §4.4. We now discuss these
two facts in the form of theorems.
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Theorem 6.9. For each m and n, the (m,n)th term in (6.24) is a homogeneous
polynomial of degree n in the Cartesian coordinates (x,y, z).

Proof:  First consider the case m > 0. As in the proof of Theorem 6.7, we
observe that P"(s) = (1 — s2)™/2g,_n(s) where gn—m is a polynomial of degree
n — m that is even or odd according as n — m is even or odd. Thus we can write
An-m(S) = X2j<n-m ajs"_’”‘zf, and hence

Pl'(cos¢) =sin™¢ > a; cos"~Mm=2 g,

2j<n—m
Therefore,

re'™0 P (cos @) = [re'’ sin o)™ S a;rzj(rcosqﬁ)""”'zf
2j<n—m
=(x+i)" Y a;xP+yP+ 22y,
2j<n—m

which is a homogeneous polynomial of degree n. The same calculation shows
that for m < 0,

e'™0 pimlicos @) = (x — iy)I™! 3 ai(x? 4y + 2%y o iml=, 1
2jén=Im|

Theorem 6.9 implies that the series (6.24), when rewritten in Cartesian co-
ordinates, is just the Taylor series of the solution u about the origin. It also
implies that the spherical harmonics Y,n, are the restrictions of homogeneous
harmonic polynomials to the unit sphere. The theory of spherical harmonics can
also be developed from the beginning from this point of view; see Folland [24],
Stein-Weiss [49], or Walker [53].

Theorem 6.10. If f is a continuous function on the unit sphere |x| = 1, the solution
of the Dirichlet problem

Viux)=0for x| <1,  u(x)=f(x)for|x| =1

is given by

2|x| cosa + |x|2)3/2

_ L 1- |J¢|2
w0 =7z ff = fdot),  (627)

where « is the angle between the vectors x and y and o is the surfuce measure on
the unit sphere.
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Proof: First suppose x is on the positive z-axis, so that the spherical coor-
dinates of x are (r,=,0) (the 6 coordinate is undefined along the z-axis). Since
P"(1) = 0 for m # 0 (obvious from the definition) and PY(1) = Pa(1) = 1
(Corollary 6.1), by Theorem 6.8 we have

u(r, %, 0) = Ecnr g e 20E 'f / £(8, $)Pa(cos &) sin ¢ d6 do.
In other words,
sl = 211}]; [_’; [g(zw 1)P,,(cos¢)r"]f(9,¢) singdfdé  (6.28)

But since d
n o i n
2n+ 1) = (Zrdr+l)r 8
by Theorem 6.5 we have

1
(1 —2rcos¢ + r2)t/2

Z[Zn + 1)Py(cos )" = (21’% + l)

0
_ 1-r2
(1 = 2rcos¢ + r2)3/2°

If we substitute this into (6.28) and write y for the point whose spherical coordi-
nates are (1,6, @), we obtain (6.27) for the special case that x is on the positive
z-axis. But (6.27) is expressed in a way that is independent of the particular
Cartesian coordinate system used. Thus, given any vector x, we can choose the
positive z-axis to be in the same direction as x, and the same reasoning then
shows that (6.27) is valid at x. 1

A number of other boundary value problems involving the Laplacian in
spherical coordinates can be solved by modifying the calculations leading up
to Theorem 6.8. Some of these problems are examined in Exercises 3-6. We
shall conclude this discussion by showing how to handle problems that lead to
the equation V2u = —u?u rather than V2u = 0,

Suppose, for example, that we wish to calculate the temperature u(x,7) in a
solid ball of radius 1 given that the initial temperature is f(x) and the surface of
the ball is held at temperature zero:

ur = kv*u for x| < 1, u(x,0) = f(x), ux,t)=0for |x| =1. (6.29)
We first separate out the ¢ dependence by taking # = X (x)7'(¢), which gives

T’ VX g

% i Sl
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so that T(f) = Ce~*k and
VX =-u*X for|x|<1, X(x)=0 forlx|=1. (6.30)

We now express x in spherical coordinates and proceed just as we did for the
Dirichlet problem (6.13). The reader may verify without difficulty that if we
take X = R(r)©(6)®(¢) in (6.30), we obtain exactly the same equations for ©
and ® as we did before, so that () = ™% and ®(¢) = P,‘,ml(cosw where m
and »n are integers with |m| < n. The only change is that instead of the Euler
equation (6.23) for R, we obtain

r*R" +2rR + [1*r* = n(n + 1)]R = 0. (6.31)
This is almost, but not quite, a Bessel equation. In fact, if we set
R(r)=r~""g(r),

a simple calculation shows that (6.31) turns into

rPg"(r)+rg'(n) + [’ - (n+ H)1g(r) = 0.
As we observed at the beginning of Chapter 5, the change of variable r — r/u
transforms this into Bessel’s equation of order n + ’]2 Therefore, the solutions of
(6.31) that are finite at r = 0 are constant multiples of

R(r) = r" 20 1y (ur).

(Recall that the power series expansion of Jn(1/2)(ur) about r = 0 involves the
powers r"(1/2+2] with j > 0, so the expansion of R involves the powers "2/
These exponents are positive integers, so R is analytic at the origin.) The bound-
ary condition in (6.30) becomes R(1) = 0, so x4 must be one of the positive zeros
of Jy4(1/2)- Denoting these zeros by uf, uj, ..., we arrive at the following family
of solutions of the heat equation that vanish on the unit sphere:

u(r,0,6,0) = 3 Comnr ™ P nsia 2y (W)™ B (cos )= HI.(6.32)

Lm,n

Since the spherical harmonics e*"”&P,l,m(cos ¢) form a complete orthogonal
set with respect to the surface measure sin¢dfd¢ on the unit sphere, and the
Bessel functions J,,(;2)(u]'r) form (for each fixed n) a complete orthogonal set
with respect to the measure rdr on (0, 1), it follows that the functions

Fymn(r,6,0) = ™2 T 1 ) (4] )™ Py (cos 6)
in (6.32) form a complete orthogonal set with respect to the volume measure

dvir,0,¢) = r*sinedrdodo
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on the unit ball. The normalizations are given by Theorem 6.7 and Theorem 5.3:

27t(n + [m)yy 372 (4])?

2
WEtmnl™ = T Tytn =

To solve problem (6.29) we merely have to expand f with respect to this basis
and plug the resulting coefficients ¢y, into (6.32).

The Legendre polynomials P, and associated Legendre functions P} are spe-
cial solutions of the Legendre equations (6.18) and (6.17). For other applications
— for example, the solution of the Dirichlet problem in a conical region — it
is important to study the general solutions of these equations and to allow the
parameters A and m to be arbitrary complex numbers. These solutions go un-
der the general name of Legendre functions. Accounts of the theory of Legendre
functions can be found in Erdélyi et al. [21], Hochstadt [30], and Lebedev [36].

There are several other coordinate systems in R? in which the technique of
separation of variables can be applied to the Laplace operator, including the so-
called spheroidal, toroidal, and bipolar coordinates. Separation of variables in
these coordinates can be used to solve, for example, the Dirichlet problem in the
interior of an ellipsoid of revolution, the interior of a torus, or the region between
two intersecting spheres; the solutions all involve the Legendre functions. For a
detailed account of these matters, we refer the reader to Lebedev [36].

EXERCISES

1. Solve the following Dirichlet problem: Vzu(r, 8,¢)=0forr<1,u(l,6,¢)=
cos¢ for 0 < ¢ < §m, u(1,0,¢) =0 for 7 < ¢ < n. (Hint: Exercise 8, §6.2.)

2. Solve the following Dirichlet problem: Vzu(r, 0,6)=0forr<1,u(l,0,9) =
cos? 6 sin® ¢. Express the answer both in spherical coordinates and in Carte-
sian coordinates.

3. Solve the Dirichlet problem for the exterior of a sphere: Vzu(r, 8,¢) =0 for
r>1,u(l,8,¢)= f(6,¢), and u(r,8,¢) — 0 as r — oc.

4, Solve the following Dirichlet problem in the upper hemisphere r < 1, ¢ < {;n:
V2u(r,0,¢) = 0 for r < 1 and ¢ < m, u(1,8,9) = f(¢) for ¢ < in,
u(r, 6, %n) = 0. (Hint: Theorem 6.4.) What is the answer, explicitly, when
fl¢) = 1? (Use Exercise 7, §6.2.)

5. Suppose the base of the hemispherical solid r < 1, ¢ < ‘lz:r is insulated while
its spherical surface r = 1 is held at a steady temperature f(¢). Find the
steady-state temperature in the solid. (Hint: Theorem 6.4.)

6. Solve the Dirichlet problem in a spherical shell a < r < b: V2u(r,8,¢) =0
fora<r<b,ulab,¢)= f(0,0), ulb,0,¢9) = g(6,¢). (Hint: Do the cases
f =0 and g = 0 separately; then use superposition.)

7. Solve the wave equation for the vibrations in a spherical cavity when the
boundary is held fixed: uy; = ¢*V?u for r < 1, u(1,6,6,t) = 0. (Find the
general solution for arbitrary initial conditions.)
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8. Solve the initial value problem u; = k [(1-x?)ux] for -1 <x < 1, u(x,0)=

f(x). (This could be a model for the diffusion of a liquid through a gel whose
diffusivity at position x is proportional to 1 — x2.)

6.4 Hermite polynomials

The nth Hermite polynomial H,(x) is defined by
2 dt _ 2
Ha(x) =(-1)"* T = (6.33)
Simple calculations show that
Ho(x)=1, Hi(x)=2x, Hy(x)=4x>-2,
Hy(x)=8x>—12x,  Hy(x)=16x*—48x? + 12.

In general, we have

ﬁe'xz = d
dxn T dx
= e P [2xHy-1(x) = Hioy (X)),

e~ Hy(x) = (=1)"

or
Hy(x) = 2xH,_(x) - H,_,(x), (6.34)

which allows one to compute H, by induction on # (see Exercise 1). In particular,
it follows from this formula that the leading term of Hx(x) is 2x times the leading
term of H,_(x), and hence that H, is a polynomial of degree n whose leading

term is (2x)". Moreover, since e~*" is an even function, H, is even or odd
according as # is even or odd.

We now investigate the orthogonality properties of the Hermite polynomials.
We shall be working with the spaces L*(R) and LZ(R) where
x2

wix)=e"

The symbol w will always have this meaning throughout this section. For future
reference we note that

o0 2 o 2 o
f e a’x=2[ g dxz[ y e Vdy =T(}) = vr.
-00 0 0

Theorem 6.11. The Hermite polynomials { Hn}3® are orthogonal on R with respect
to the weight function w(x) = e, and

| Hnll = 2"n!V/T.



6.4 Hermite polynomials 185

Proof: If f is any polynomial we have

= [m ™ (x)e= dx.

For the last equation we have integrated by parts n times; the boundary terms
vanish because F[Jr)e'"2 — 0 as x — =oo for any polynomial P. If f is a
polynomial of degree less than n, and in particular if f = H,; with m < n, then
/" =0 and hence (f, Hn)w = 0. This proves the orthogonality of the Hermite

polynomials. On the other hand, if /= H, we have f(x) = (2x)" +-.. and hence
M =2%p1, 5o

|Hall3, = 2"n! f e~Fdx = 2"nlVR. '

-0
We next establish the completeness of the orthogonal set {H,}¥ in L2 (R).
Actually we shall prove a slightly stronger statement, for use in the next section.

Theorem 6.12. Suppose f is a function on R such that | f (x)|¢=3“"|.€""‘2 is integrable
onR forallteR. If

/m f(x}P(x)e"‘zdx =0 for all polynomials P,

then f =0 (almost everywhere).
Proof:  Since e‘”‘ S (itx)"/n! and

n
nx) ’ < z I!xl =™ forall N >0,
' 0
the dominated convergence theorern (applied to the partial sums of the series)
implies that

> itx —x? (”) ﬂ &t
e f(x)e " dx = 2 T f(x)e ™™ dx.
o0 5 -
The hypothesis on f implies that all the integrals on the right vanish. By the

Fourier inversion theorem, which we shall prove in §7.2, it follows that f(x)e'_Jrz E
0, and hence f(x) = 0, almost everywhere. 1

Corollary 6.2. The set {Hy} is an orthogonal basis for L% (R).

Proof If f € L% (R) and (f, Hn)w = O for all n, then (f, P)y, = 0 for all
polynomials P by Lemma 6.1, §6.1, and

) ’ 0 : 1/2 ; poo 2 12
f If(x)le!™le~*"dx < (/ 1f(x)|%e™* dx) (f A a'x) < 00

b); the Cauchy-Schwarz inequality. It follows from Theorem 6.12 that f = 0 in
Li(R). 1

Our next step in investigating the Hermite functions is to derive their gen-
erating function,
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Theorem 6.13. For any x € R and z € C we have

ZH»:(X)—— g (6.35)

Proof: This formula can be proved by the same method as Theorem 6.5 (see
Exercise 7), but we shall adopt a different approach here. We begin by observing
that if ¥ = x — z (where x is fixed) we have d/du = —d/d z, and hence

a" —(x=z)? nd" —uz —u? -x?
el 4 = =e " Hy(u = e~ Hu(x).
dzn z=0 (=) du" u=x 3 )u=x ")

Therefore, by Taylor’s formula,

—[r—"z =
Ze Hn(x
0

]'I

Multiplying through by e, we obtain (6.35). 1
Differentiation of (6.35) with respect to x yields

iH’(x)i = 2z 2xs- _ _22}1 z
= ! n-1(X n—l]

where for the last equation we have made the substltuuon n — n—1, If we equate
coefficients of z" on the left and right, we find that

Hy=0, H,=2nH,_, forn>0. (6.36)
Combining (6.36) with (6.34) yields the recursion formula
Hp(x)=2xH,_(x)-2(n - 1)H,_>(x) (6.37)

and also the differential equation

Hn(x) = Hé( xX)— Hf{(

or

Hy (x) = 2xHy(x) + 2nHp(x) =
This equation can be written in Sturm-Liouville form by multiplying through by
&= :

[e_x'H,’,(x)] +2ne™" Hpy(x)=0
In short, the Hermite polynomials are the eigenfunctions for the singular Sturm-
Liouville problem

!

{e"‘zy’] +ieFy=0, —o0<x<o0, (6.38)
the only “boundary condition” being that the solutions are required to be in
L2 (R).

For many purposes it is preferable to replace the Hermite polynomials by
the Hermite functions 4, defined by
hn(x) = e_xz"an(x).
See Figure 6.2. We summarize their properties in a theorem.
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FIGURE 6.2. Graphs of some normalized Hermite functions /, = hn/lhn| =
hn/V/2771/2n! on the interval -4 < x < 4. Top: ko (long dashes), 7, (short

dashes), and h; (solid). Bottom: h; (long dashes), h4 (short dashes), and s
(solid).

Theorem 6.14. The Hermite functions {hn}{ are an orthogonal basis for L*(R)
(with weight function 1). They satisfy

xXhu(x) + (x) 2nh,_,(x), (6.39)
Xhn(x) — hp(x) = h 1(x), (6.40)
hil (x) — x2hn(x) + 2n~r1)h,, (x) = (6.41)

Proof: The orthogonality of the A,’s follows from Theorem 6.11, since
(hn, hm} =/ Hn(x)Hm(x)e_x:dx = {Hn,Hm)u:.
Similarly, their completeness follows from Theorem 6.12. If we write Hy(x) =
e 2hy(x) in (6.36), we have
2ne* 2k, _ 1 (x) = [ Pha(x)] = €5 [xhn(x) + hy(x)],
which is (6.39). In view of this result, (6.37) (with n replaced by n + 1) becomes
Pni1(X) = 2xhn(x) = 2nhy 1 (x) = 2Xhn(x) = [Xhn(X) + hn(X)] = Xhn(X) = hp(X),

which is (6.40). Finally, if we combine (6.40) (with n replaced by n — 1) and
(6.39), we obtain

2nhn(X) = 2n[xhy_y (x) — By (X)] = X[xhn(x) + hp(x)] = [Xha(x) + hp(x)]
= xha(x )—h::(x)-hn(x),
which is (6.41). i
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Equation (6.41) shows that the Hermite functions are the L? eigenfunctions
for the Sturm-Liouville equation

y' =x’y+iy=0. (6.42)

(6.42) and (6.38) are both referred to in the literature as the Hermite equation.

The Hermite equation (6.42) arises in the study of the classical boundary
value problems in parabolic regions, through the use of parabolic coordinates,
These are coordinates (s, f) in the plane related to the Cartesian coordinates (x, y)
by

x=sz—32, y = 2st (—xc<§s<oo, t>0).

The curves s = ¢ and ¢ = ¢ (¢ constant) are the parabolas x = ¢? - (y/2¢)? and
X = (y/ZC}2 - ¢? opening to the left or the right, with focus at the origin. See
Figure 6.3.

s=2
s=1
s =10
s=-1 t =1
s= -2 =2
s=-3 t=3

FIGURE 6.3. The parabolic coordinate system. This system is singular along
the ray ¢ = 0 (indicated by a heavy line), where the coordinates (s,0) and
(-s5,0) define the same point.

Let us consider the Laplace’s equation in R, in which we convert to parabolic
coordinates in the xy-plane. A routine calculation with the chain rule shows that

1

Vo = i Uy - M = e
XX vy zz 4(52+f2)

(Uss + Unt) + Uzz.

As the reader may readily verify, if we substitute 4 = S(s)7T(¢)Z(z) into the
equation V2 = 0 and separate out Z first, we obtain the ordinary differential
equations
Z"(z)+ u*Z(2) =0,
§"(s) — 4u>s*S(s) + AS(s) = 0,
T"(t) - 4ut*T(x) - AT(t) = 0.
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Moreover, the substitutions S(s) = f(y/2us) and T'(t) = g(i\/2ut) convert the
equations for § and 7 into the Hermite equation (6.42); more precisely, with

o =+/2us and 1 = i/2ut we have
1"(0) - 02 f(0) + 5= f(0) = 8"(x) - t2g(1) + 2-g(z) =0
2u 2u '
Hence, by taking A = 2u(2n + 1) we obtain the solutions

u = e*H by (\/2US)hn(in/2U 1) = €542~ Hy (/2 s)Hn(i/2H 1),

Of course, a complete analysis of the Laplacian in parabolic coordinates requires
a study of all solutions of the Hermite equation (6.42) for arbitrary values of 4;
these solutions are known as parabolic cylinder functions. This analysis is beyond
the scope of this book, and we refer the reader to Erdélyi et al. [21] and Lebedev
[36]; however, see Exercise 9.

The Hermite functions are also of importance in quantum mechanics, as
they are the wave functions for the stationary states of the quantum harmonic
oscillator. To be more precise, the wave functions for the stationary states of a
quantum particle moving along a line in a potential ¥ (x) are the L? solutions of
the equation )

%u"(x) - V(x)u(x) + Eu(x) =0,
where# is Planck’s constant, m is the mass of the particle, and the eigenvalue E is
the energy level. For a harmonic oscillator the potential is ¥ (x) = ax? (a > 0), so
the substitutions u(x) = f([lam/hz]”"'x), & = [2am/h*]"*x turn this equation
into the Hermite equation

’ 2
Q) - 1@+ 32 =0,
Thus the stationary wave functions are the Hermite functions 4y ([Zam /Y 4x),

and the corresponding energy levels are (2n + 1)i\/a/2m.
EXERCISES
1. Show by induction on n that

_ (=1))2x)*-¥
Hn(x) =n! 152 j'(n — 2]),

2. Find the general solution of the Hermite equation y” — 2xy’ + Ay = 0, where
A is an arbitrary complex number, by taking y = 3°3° a,x" and solving for
an in terms of @y and a;. Show that the resulting series converge for all x.
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3. Show that the Hermite equation in Exercise 2 has a polynomial solution of
degree n precisely when A = 2n, and that this solution is (a constant multiple
of) Hy.

4. Expand the function f(x) = x™ (m a positive integer) in a series of Hermite
polynomials. (Hint: Apply the formula used in the proof of Theorem 6.11.)

5. Expand the function f(x) = ¢%* in a series of Hermite polynomials, (Hint;
Either proceed as in Exercise 4 or use Theorem 6.13.)

6. Let f(x)=1forx >0, f(x)=0for x <0. Expand f in a series of Hermite
polynomials. (Hint: e Hy = —[e')‘2 w—1]". Use Exercise 1 to evaluate
Hx(0).)

7. Prove formula (6.35) by the method used to prove Theorem 6.5 — namely,
plug definition (6.33) into the series 3 Hy(x)z"/n!, apply the Cauchy integral
formula for derivatives, sum the resulting geometric series, and finally apply
the residue theorem.

8. Show that if ¢n(x) = hn(ax) where a > 0, then {¢»}§" is an orthogonal basis
for L2(R), and that ||¢n))2 = a~!12"n!V/7.

9. Let (s,¢, z) denote parabolic coordinates in R? as in the text. Consider the
following Dirichlet problem in the parabolicslab0<t<1,0<z< I:

Vzu(s,!,z)=0 fort<1,0<z<1;
u(s,t,0) =u(s,t,1) =0, ufs,1,z)= f(s,2z).

Assume that fol 2 1 fGs, 2)?dsdz < ~ and find a solution in terms of
Hermite functions.

6.5 Laguerre polynomials

Let o be a real number such that @ > —1. The nth Laguerre polynomial L%
corresponding to the parameter « is defined by
ey, X 22t d" gy i

Ly(x) = Tm(xa e~ ). (6.43)
(This formula makes perfectly good sense for any complex number a. However, it
defines a polynomial of degree » only when a is not a negative integer, and these
polynomials satisfy orthogonality relations only when o > —~1.) Some authors
reserve the term Laguerre polynomial for the case @ = 0 and call the L%’s for
a # 0 generalized Laguerre polynomials.

By the product formula for nth derivatives, we have

o —a X - 1 a’ke"‘ dn—kxaH!
Ln(x)=x""e kz_%k!(n—k)! dxk  dxn—k

(6.44)

n

=Z(n+a}(n—l+a)---(k+]—a)

%i(n = %)) (="

k=0
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Thus L§ is indeed a polynomial of degree n, and its leading term is (—1)"x"/n!.
We shall now develop the basic properties of the polynomials L. The techniques
will be very similar to those used for Legendre polynomials in §6.2, so we shall
be brief.

Theorem 6.15. The Laguerre polynomials {L3}55 , are a complete orthogonal set
on (0,oc) with respect to the weight function

w(x) = x%e™*,
and their norms are given by
egid = et D,

Proof: 1If f is any polynomial, an n-fold integration by parts shows that

jo " fLixte ™ dx = 1 fo " S0 B e ) dx

_ (—nl!)n [)x f(n)(x)xa-l-ne—x dx.

If f is of degree less than n, in particular if f = L§ with m < n, then [ = 0;
this proves that (L%, L%)w = 0 for n # m. On the other hand, if f = L§ then
1" = (~1)" by (6.44), so

, | Y e T Tn+a+1
[1L2||EU=E[0 xte*dxm TR ED,

To prove completeness, we assume that g € L2,(0,0c) satisfies (g, L§) = 0
for all n and show that g = 0. To do this, we transfer the problem from (0, oc)
10 (—ooc, o0) by using the formula

[m F(x)dx = fm F(y¥)2ydy = fm F(y*)yldy, (6.45)
0 0 -0

valid for any integrable function F on (0,0c). To begin with, since every polyno-
mial, and in particular every monomial x", is a linear combination of L§’s (by
Lemma 6.1, §6.1), the conditions (g, L3 )» = 0 together with (6.45) imply that

o - T TR 2
0 =f glx)x"x%e "  dx =f gy ty* e dy
0 —0o

for all n. But also
oo 3
0= f g0y y* e dy
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for all n, simply because the integrand is an odd function. Therefore,
% v\ [y2at] -y
0= [ sAP P dy
-0

for every polynomial P. But then the function f(y) = g(y?)[y[***! satisfies the
hypotheses of Theorem 6.12, for by the Cauchy-Schwarz inequality and (6.45),

f 12Oy tele= ay
5] N 2 1/2 oo N 2 1/2
< (f 18D *ly[*etle a'y) (f y|2e+leditylg=y a'y)
- -
o0 ' 1/2
=|gllw (/ |y!2°“e2'”'ie-y2dy) < o0.
-00

Therefore, by Theorem 6.12, g = 0. ]

Remark. The assumption a > -1 is necessary in Theorem 6.15. If a < -1
then the function w(x) = x®e™" is not integrable at the origin, so the integrals
defining (L3, L{)w and || L3||% all diverge.

We next show that the Laguerre polynomials satisfy the Laguerre equation
[x**le™*y'T + nx%e %y =0, (6.46)
which can also be written in the form
xy"+(a+1-x)y +ny=0 (6.47)
in view of the fact that
[x**e™*y') = x**1e™ " + (a + 1 - x)x"e™ Y/ (6.48)
Theorem 6.16. The Laguerre polvnomial L satisfies equation (6.46).
Proof: Let yn = L3. By (6.48),
[x** e ppY = X% [~xyh + xy7 + (a+ )yi).

The expression in square brackets on the right is a polynomial of degree n whose
leading term is the leading term of —xyp;. By (6.44), this is the same as the
leading term of —nyy,, namely, (—1)"~!x"/(n - 1)!. In other words,

[xc*le=*yn] = x%~*(=nyn + P) (6.49)

where P is a polynomial of degree less than n. By Lemma 6.1, §6.1, P must be
a linear combination of the Laguerre polynomials y, = L{ with k < n. We shall
show that P is orthogonal to all these polynomials with respect to the weight
w(x) = x%~*, from which it follows that P = 0 and hence that y, satisfies
(6.46).
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Indeed, by (6.49),

fooo P(x)yp(x)x*e ¥ dx

= f - nyn(x)yg(x)x“e " dx + f x[xc'“e""yi,(x}]’yk(x) dx.
0 1]

The first term on the right vanishes since (y», ¥i }w = 0, and after two integrations
by parts and another use of (6.48), the second term becomes

[ e te gy dx = [T yatn@unxte™ dx
’ 0

where Q is a polynomial of degree k. But y, is orthogonal to all such polynomials,
so the integral vanishes. i

Theorem 6.16 implies that the Laguerre polynomials L§ are the eigenfunc-
tions for a Sturm-Liouville problem on the interval (0, cc) associated to the dif-
ferential equation

[x*le™*y'Y + Ax%e™*y = 0. (6.50)

This problem is singular both because (0,oc) is an infinite interval and because
(6.50) has a regular singular point at x = 0. The boundary conditions for this
problem are as follows. At infinity the only condition is that the solution should
be square-integrable with respect to the weight w(x) = x%¢~*. On the other
hand, from the theory of regular singular points, one knows that (6.50) has one
solution that is analytic at x = 0 and another that is asymptotic to x~¢ (or log x
when a = 0) as x — 0. For a > 0 the analytic solution is singled out by requiring
it to remain finite as x — 0, whereas for —1 < a < 0 it is singled out by requiring
that its first derivative remain finite as x — 0.
We now derive the generating function for the Laguerre polynomials.

Theorem 6.17. For x > 0 and |z| < 1,

(6.51)

Proof: The idea is the same as the proof of Theorem 6.5. Namely, if x > 0,
let 7 denote a circle in the right half-plane centered at x. We successively apply
the defninion (6.43), the Cauchy integral formula for derivatives, the formula for
the sum of a geometric series, the substitution ¢ = (1 - z){ (which transforms 7
into another circle 7'), and the Cauchy integral formula once again to obtain
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These formal calculations are valid for |z| sufficiently small and prove (6.51) for
such z; but then (6.51) is valid for |z| < 1 since the right side is analytic there.
We leave the details of the justification to the reader. i

Perhaps the most striking application of Laguerre polynomials is in the
quantum-mechanical analysis of the hydrogen atom. We shall sketch the ideas
very briefly and refer the reader to Landau-Lifshitz [35] (whose notation for La-
guerre polynomials, however, differs from ours) for a complete treatment.

Consider a system consisting of an electron and a proton. Since the proton
is about 2,000 times more massive than the electron, we shall neglect its motion
and consider it to be fixed at the origin. The electron is then moving in an
electrostatic force field with potential —e?/r where € is the charge of the proton
and r is the distance from the origin. According to quantum mechanics, if the
electron is in a stationary state at the energy level E € R, its wave function u is
a function in L?(R?) satisfying the equation

k2

2m
where /1 is Planck’s constant and m is the mass of the electron. By an appropriate
choice of units we may, and shall, assume thath =m =€ = 1.

We apply the method of separation of variables to solve (6.52), using spher-
ical coordinates and taking u = R(r)©(6)®(¢). By the same calculations as in
§6.3 we find that ©(6) = "™ and ®(¢) = P}™!(cos ¢) where m and n are integers
with n > |m|, and R satisfies

r2R" + 2rR' + [2Er* + 2r — n(n + 1)]R = 0. (6.53)
We are primarily interested in the states where the energy level E is negative,

that is, where the electron and proton are bound together in an atom. Assuming
E < 0, then, we make the substitutions

v=(=2E)"Y2,  s=w"lr, R@I)=SQ2v ') =S8(),

2
V2u+6?u+Eu=0, (6.52)
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which (by a routine calculation) turn (6.53) into
s28" + 258" +[vs - 4 —n(n+1)]S = 0. (6.54)

Finally, we set S = s"e™*/2Z in (6.54), and after some more computation we
obtain
s+ 2n4+2-5Z +(v-n-1Z=0.

This is the Laguerre equation (6.47) with @ = 2n+ 1 and »n replaced by v —n — 1.
The only solutions of this equation that lead to solutions u = RO® of (6.52) that
are in L?'(R3) are the Laguerre polynomials. Hence v must be an integer > n+ 1,
and after reversing these substitutions we end up with the solution

Ru(r)= v~ 'r)te™ VL2 (2~ 1) (6.55)

v—n—1

of (6.53). The eigenfunctions for the original problem (6.52) are

Umny = Ruw(P)e'™0 P (cos @) (Im| < n <v), (6.56)

and the eigenvalue E of umnv 1s —%v—z.

We conclude with two important points concerning the physical interpreta-
tion of these results. First, when an electron jumps from one energy level — %V—z
to a lower one —4x~2, it emits a photon of frequency (h/2)(u~% - v~ 2). The
fact that these frequencies are (up to a constant factor) differences of reciprocal
squares of integers was known experimentally before the invention of quantum
mechanics, and it provided one of the decisive early confirmations of the quan-
tum theory.

Second, for each eigenvalue —%u‘z with ¥ > 1 there are several different
eigenfunctions in the list (6.56). In fact, there are v allowable values of n (namely,
0,...,v—1), and for each such » there are 2n + 1 allowable values of m (namely,
-n,...,n). Hence for each v there are

v—1
SS(@n+1) =02
n=0

independent eigenfunctions. Actually, one must also take into account the spin of
the electron, which has two eigenstates (“up”and “down”); this effectively doubles
the number of independent eigenfunctions at each energy level. The collections
of eigenfunctions at the various energy levels constitute the “electron shells” that
form the basis for the periodic table of elements.

One final remark: The eigenfunctions {6.55) for the Sturm-Liouville prob-
lem (6.53) do not form a complete orthogonal set. Problem (6.53) has both a
discrete and a continuous spectrum; this means that the expansion of a general
function in terms of the eigenfunctions of (6.53) involves not only a sum over the
eigenfunctions with eigenvalues — %v*z that we found above, but also an integral
over a collection of (non-L?) eigenfunctions corresponding to eigenvalues E > 0.
Physically this means that an electron-proton system has not only bound states
but also unbound states in which the electron has enough energy to escape from
the electrostatic potential well. An analysis of the unbound states can be found
in Landau-Lifshitz [35].
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EXERCISES

1. Consider the Laguerre equation xy” + (e + 1 — x)y' + Ay = 0 where 4 and o
are arbitrary complex numbers.
a. Assuming that o is not a negative integer, find a solution in the form
y = > anx" with gy = 1, and show that this solution is a constant
multiple of Ly when A is a nonnegative integer ».
b. Assuming that o is not a positive integer, find a solution in the form
¥ =30 bax""" with by = 1.
2. By differentiating formula (6.51) with respect to z, show that

ad
(1- 22— 3 La(x)z" = [x +(1+a)(z - 1)] ¥ Dgfw)?,
and hence derive the recursion formula
(n+ 1Ly (x)+(x—a-2n-1)L3(x)+(n+a)Lly_;(x) =0,

3. By differentiating formula (6.51) with respect to x as in Exercise 2, show
that
(L)' (x) = (Ly_1)'(x) + Ly_y(x) = 0.

4. Use formula (6.44) and Exercise 1, §6.4, to show that

L) = Gl v, L) = g Hz"f/lém'

5. Expand the function f(x) = x” (v > 0) in a series of Laguerre polynomials,
(Hint: To compute (f, L%)w, use formula (6.43) and integrate by parts n
times.)

6. Expand the function f(x) = e~?* (b > 0) in a series of Laguerre polynomials.
(Hint: Either proceed as in Exercise 5 or use Theorem 6.17.)

6.6 Other orthogonal bases
In this section we give a brief introduction to the other classical orthogonal sets of
polynomials and to a few other orthonormal bases for L? spaces, not connected

with differential equations, that have proved to be of importance.

Chebyshev* polynomials
The nth Chebyshev polynomial 7}, is defined by the formula

Tn(cos @) =cosnb. (6.57)

* The number of ways of transliterating the Russian name Chebyshev is almost infinite: Tcheby-
shev, Tchebichef, Tschebyschev, Cebysev, etc.
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Explicitly, we have

cosnf = Ree™® = Re(cos 6 + isin 6)" = Rez W

(cos8)"/(isin6)/.
The real terms in the sum are those with j even, say j = 2k, and (isin )% =
(cos? 8 — 1)¥, so

n!

cosnfl = Z — —cos" 2% § (cos® § - 1)¥,
oo, R = 2R

Therefore, 4

= 5 2k - 2k)!

k<n/2

n-—2k(x2 _ l)k.

Since {cosn6}g° is an orthogonal basis for L*(0,n), the substitution 6
arccosx shows that {T,}3" is an orthogonal basis for Lw(—l 1) where w(x)
(1= x2)~12_ Indeed, if m # n,

U T (%) Tm(x)
o1 (1= X272

" T
=[0 Tﬂ(cose)Tm(cosﬂ)dL‘J:f cos n6 cos m d = 0,
0

which gives the orthogonality. Likewise, if f is orthogonal to all 7,

B fl(Jlx)Tn(ﬁzdx -/(;Rf(cosﬂ)cosnﬂdﬁ,

whence f = 0; this gives the completeness. The same substitution shows that the
differential equation y” + n%y = 0 for cos n6 turns into the Chebyshev equation

(1-x2)y" —xy' —n?y=0, or [(l—xz)lf’zy’}!+n2(l—xz)“”y:(},

satisfied by 7.
The generating function for the Chebyshev polynomials is given by

1-22
1 -2xz+ 22"

o
14+2) Tu(x)z" =
1
This formula is easily proved by substituting x = cos #, writing

l+2ZTn (cos8)z" —1+2Z: (cosnf)z" —Ze’”9 &

-0

and summing the geometric series. We actually performed this calculation in
§4.4, where this generating function (with x = cos# and z = r) turned out to be
the Poisson kernel.

Chebyshev polynomials are of great importance in the theory of polyno-
mial interpolation and approximation. We refer the reader to Rivlin [45] for a
comprehensive account; see also Korner [34], §§43-45.



198 Chapter 6. Orthogonal Polynomials

Jacobi polynomials

Let o and B be real numbers greater than —1, The nth Jacobi polynomial P,E““? )
associated to the parameters o and f is defined by

PR = G e+ L [0 (658)

When a = § = 0, P,E“‘ﬁ ) is the Legendre polynomial P,. The techniques we
used in §6.2 to investigate the Legendre polynomials can be generalized to yield
analogous results for the Jacobi polynomials:
(i) For each a and B, {P*#}2°, is an orthogonal basis for L2(~1,1) where
w(x) = (1-x)%(1 +x)#, and

2%+ M (n 4 a+ DI(n+ B+ 1)
n+a+f+nTn+a+B+1)

1P =
(ii) Pi?) satisfies the Jacobi equation
(1-x2y" + [B-a=(a+ B+2)x]y' +n(n+a+ f+1)y=0.
(iii) The generating function for the Jacobi polynomials P{*# is

oc a+f
> PR (x)z" = o % W=v1-2xz+72
n=>0 (

l—z+We(l +z+W)E

For more details, see Erdélyi et al. [21], Hochstadt [30], and Szegé [50].

We have observed that Legendre polynomials are the special case of Jacobi
polynomials with @ = # = 0. Chebyshev polynomials are also essentially a
special case of Jacobi polynomials, with o = f = — % Indeed, from the fact that
{P,E‘”z"”z)} and {7} are both orthogonal bases for L2 (—1, 1) where w(x) =
(1-x%)~172_ or from the fact that the Jacobi differential equation reduces to the
Chebyshev equation when a = § = —%, it follows that 7, must be a constant

multiple of P{™Y/%712) In fact, it turns out that

7. = 22)? pc12-1)
"= Tan fn :

In the cases a = f > —3, the Jacobi polynomials are sometimes given a dif-
ferent normalization and called Gegenbauer polynomials or ultraspherical polyno-
mials. Precisely, the nth Gegenbauer polynomial C} associated to the parameter
A > 0 is defined by

[(24+ n)[(A+ %)P{a-(uz),a—mzn(x)‘

A o
) = raTaane )
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The reason for the new normalization is that the Gegenbauer polynomials have
the simple generating function
o0
CHx)z" = (1 - 2xz + 22~
n=>0

The Jacobi polynomials P,S“"W o Lo 2}, or equivalently the Gegenbauer

polynomials C,(fk_z)’( 2, play the same role in the theory of spherical harmonics in
RX as the Legendre polynomials do in R?; see Erdélyi et al. [21] and Stein-Weiss
[49]. For some of the deeper properties and uses of Jacobi polynomials, see Askey

[31.
Haar and Walsh functions

There are two interesting orthonormal bases for L2(0, 1) consisting of step func-
tions, The first one is the system of Haar functions

{h)}U{hjn:j >0, 0<n<2}
constructed as follows:

_J1 ifo<x<],
hoy(x) = {0 otherwise,

and for j >0and 0 < n < 2/,

217 if27in<x <27 (n+1),
hin(x)={ -2/2 if27i(n+4)<x <27/ (n+1),
0 otherwise.

See Figure 6.4.
It is customary to parametrize the Haar functions by a single index m rather
than the two indices j and n by defining

Himy = hjn for m =2/ + n.

However, the use of two indices makes the geometry clearer; namely, j indi-
cates the length of the interval on which A, is nonzero (to wit, 27J), whereas n
indicates the position of that interval within [0, 1].

It is an easy exercise to see that the Haar functions are orthonormal. Indeed,
the product A, (x)hj, (x) vanishes identically if j = j' and n # n', whereas if
j > j' it either vanishes identically or equals £2/'/2h;,(x). This is obvious if
you think about the graphs of the 4;,’s for a minute; and it is equally obvious
that fol hjn(x)dx = 0. Thus the kj,’s are orthogonal to one another; similarly,
hjn(x)hi)(x) = hjn(x), s0 h;, is orthogonal to k(). Moreover,

27 (n+1}

l 5 -
sl = fo hin(x)?dx = | 2dx = 1.

-in
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FIGURE 6.4. Graphs of the first eight Haar functions.

It is also easy to see that the Haar functions are complete in L2(0,1). The
key observation is that the space of linear combinations of /4y, and the 4 ;,’s with
J < J equals the space of functions on [0, 1] that are constant on each interval
(2-%,2-»’ (k + 1)) (0 < k < 27). (The former space is evidently contained in

the latter one, and they both have dimension 27, so they coincide.) It follows
that the set of all finite linear combinations of the Haar functions is the space of
all step functions on [0, 1] whose discontinuities occur among the dyadic rational
numbers 2=’k (j,k > 0), and this space is dense in L?(0, 1),

In short, the Haar functions form an orthonormal basis for L2(0, 1).

To construct our second orthonormal basis consisting of step functions, we
begin with the Rademacher functions r,(x). For n > 0, one divides the interval
[0, 1] into 2" equal subintervals; r»(x) is the function which alternately takes the
values +1 and —1 on these subintervals, beginning with +1 on the first subinterval.
In other words, ra(x) = (~1)%) where du(x) is the nth digit in the binary
decimal expansion of x. See Figure 6.5.

A Walsh function is a finite product of Rademacher functions. More pre-
cisely, if n is a nonnegative integer, let b,...,b; be the digits in the binary
decimal for » (i.e., n = by --- by in base 2); then the nth Walsh function wn(x) is
defined to be

wn(x) = 1 (x)% - ()

See Figure 6.6.
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FIGURE 6.5. Graphs of the first four Rademacher functions.
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FIGURE 6.6. Graphs of the first eight Walsh functions.

The set {wn}§° of Walsh functions is an orthonormal basis for L*(0,1).
Indeed, since the product of two Walsh functions is again a Walsh function, the
orthogonality follows from the fact that f wy(x)dx = 0 for n > 0; this, in turn,
is true because the total length of the intervals on which wy(x) = 1, and of the
intervals on which wa({x) = -1, is % Also, wn(x)? = 1 (except at a finite number
of points), so clearly ||wx||*> = 1. The completeness follows by the same argument
as for the Haar functions.

The property of the Haar functions that was emphasized by Haar in the 1910
paper where he introduced them is the fact that the expansion of any continuous
function f on [0, 1] in a series of Haar functions converges uniformly to f —
a feature that is conspicuously false for Fourier series and other orthogonal se-
ries arising from Sturm-Liouville problems. Walsh subsequently introduced his
functions wy in 1923 as an orthonormal set of step functions that qualitatively
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resemble the trigonometric functions more than the Haar functions, in that they
live on the whole interval [0, 1] rather than on small subintervals and become
more and more oscillatory as n increases. Haar and Walsh functions have since
been found to be interesting for various other theoretical reasons. They have also
found a lot of practical applications due to their simplicity from the point of view
of numerical calculations. In particular, the fact the the Walsh functions assume
only the two values =1 makes them particularly handy to use with digital pro-
cessing equipment. An account of the applications of Haar and Walsh functions
in signal and image processing and related fields can be found in Beauchamp [4].

Wavelets

The Haar functions A, are generated from a single function by dilations and
translations. Indeed, if

I if0<x<i,
x(x)=4¢ -1 iff<x<l,
0  otherwise,

we have
hin(x) =22 5(2/x - n). (6.59)

Since we were interested in functions on [0, 1], we assumed that 0 < n < 2/, but
(6.59) makes sense for any integers j and n, and a modification of the arguments
we gave above shows that {/;,}7;,__., is an orthonormal basis for L*(R). Like
the Haar basis for L2(0, 1), this basis has both good and bad features. One of its
main advantages is that it is “localized™ The term (f,A;,)A;, in the expansion
of a function f affects, and is affected by, the behavior of f orly in the interval
where 4, # 0, and as j — +oo this interval becomes smaller and smaller. Hence,
in order to study the behavior of f in a small interval, one needs to look only at
the terms in the series >_(f, &;,)h;, such that &, “lives” on that interval. On the
other hand, there is a disadvantage: When f is a smooth function the expansion
S (f.hjn)hj, is only slowly convergent, and of course the partial sums are not
smooth functions but step functions.

One of the exciting discoveries of recent years (1986-88, to be precise) is
that this defect can be remedied while still preserving the localization property.
In fact, we have the following result.

Theorem 6.18. For any positive integer k there exist functions y of class C*) on
R that vanish outside a finite interval, such that the functions

Win(x) =22y (2/x =n)  (j,n=0,%1,%£2,%3,...)

constitute an orthonormal basis for L*(R).



6.6 Other orthogonal bases 203

The functions y;, in this theorem are called wavelets; the basic function y
is called the mother wavelet. The mother wavelets are not given by any simple
formula but rather by a computationally effective recursive algorithm. Other con-
structions, involving spline (piecewise polynomial) functions or Fourier integrals,
lead to variants of this theorem in which the mother wavelets y(x) do not van-
ish outside a finite interval but do decay rapidly as x — +oc. (Theorem 6.18, as
stated, is due to I. Daubechies; the variants just mentioned, which came a little
earlier, are due to G. Battle, P. G. Lemarié¢, and Y. Meyer.)

Wavelet expansions share with Fourier series the property of being rapidly
convergent when the function in question is smooth, but since wavelets (unlike
trigonometric functions) are localized, one can use them to study /ocal smooth-
ness properties of functions. In fact, there is a close relationship between the
smoothness properties of f near a point x; and the decay properties of the coef-
ficients (f, ;n) as j — +oc for those j, n such that y;,(xg) # 0. (Of course this
relationship holds only for properties involving only derivatives of order < k, k
being the order of smoothness of the wavelets themselves.)

From a practical point of view, this has the following consequence. To be
definite, let us consider a function f € L2(R) that vanishes outside an interval
[-1,1]. We can expand f in a Fourier series 3 cxe™*/! or a wavelet series
Yo win)Win. If f is everywhere smooth, these two representations of f are
comparably efficient, that is, one has to take about the same number of terms
in both cases to approximate f to a given accuracy. However, suppose [ is
smooth except for a small number of singularities such as jump discontinuities.
The presence of even one singularity ruins the rapid convergence of the whole
Fourier series, but the presence of a singularity at xg has little effect on the
terms in the wavelet series except for the ones with y;,(xy) # 0. Hence, for
functions with a small number of singularities the wavelet series is a much more
efficient representation than the Fourier series. This makes wavelet series (and
their higher-dimensional analogues) particularly useful in problems in signal and
image processing having to do with edge detection and related phenomena.

The subject of wavelets and their applications (both in engineering and in
pure mathematics) underwent an explosive development in the late 1980s. A
more detailed discussion of these matters is beyond the scope of this book; we
refer the reader to Daubechies [16], Mallat [38], and the articles by Daubechies
and Meyer in [13].



