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Preface to the Sixth Edition 

s 

The sixth edition includes additional material in all chapters. For instance, 

Section 2.6.1 gives a simple derivation of the joint distribution of the 
sample mean and sample variance of a normal data sample. 
Section 3.6.4 presents k-record values and the surprising Ignatov's 
theorem. 
Section 4.5.3 presents an analysis, based on random walk theory, of a 
probabilistic algorithm for the satisfiability problem. 
Section 4.6 deals with the mean times spent in transient states by a 
Markov chain. 
Section 4.9 introduces Markov chain Monte Carlo methods. 
Section 5.2.4 gives a simple derivation of the convolution of exponen- 
tial random variables. 
Section 7.9 presents new results concerning the distribution of time 
until a certain pattern occurs when a sequence of independent and 
identically distributed random variables is observed. In Section 7.9.1, 
we show how renewal theory can be used to derive both the mean and 
the variance of the length of time until a specified pattern appears, as 
well as the mean time until one of a finite number of specified patterns 
appears. In Section 7.9.2, we suppose that the random variables are 
equally likely to take on any of m possible values, and compute an 
expression for the mean time until a run of m distinct values occurs. 
In Section 7.9.3, we suppose the random variables are continuous and 
derive an expression for the mean time until a run of m consecutive 
increasing values occurs. 
Section 9.6.1 illustrates a method for determining an upper bound for 
the expected life of a parallel system of not necessarily independent 
components. 
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Section 1 1.6.4 introduces the important simulation technique of impor- 
tance sampling, and indicates the usefulness of tilted distributions 
when applying this method. 

Among the new examples are ones relating to 

Random walks on circles (Example 2.52). 
The matching rounds problem (Example 3.13). 
The best prize problem (Example 3.21). 
A probabilistic characterization of e (Example 3.24). 
Ignatov's theorem (Example 3.25). 

We have added a large number of new exercises, so that there are now 
approximately 570 exercises (most consisting of multiple parts). More than 
100 of these exercises have been starred and their solutions provided at 
the end of the text. These starred problems can be used by students for 
independent study and test preparation. An Instructor's Manual, containing 
solutions to all exercises, is available free of charge to instructors who adopt 
the book for class. 

We would like to acknowledge with thanks the helpful suggestions made 
by the many reviewers of the text, including: 

Garth Isaak, Lehigh University 
Galen Shorack, University of Washington, Seattle 
Amarjot Kaur, Pennsylvania State University 
Marlin Thomas, Purdue University 
Zhenyuan Wang, State University of New York, Binghampton 

The reviewers' comments have been critical in our attempt to continue to 
improve this textbook in its sixth edition. 
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Preface to the Fifth Edition 

P 

This text is intended as an introduction to elementary probability theory 
and stochastic processes. It is particularly well suited for those wanting to 
see how probability theory can be applied to the study of phenomena in 
fields such as engineering, management science, the physical and social 
sciences, and operations research. 

It is generally felt that there are two approaches to the study of probability 
theory. One approach is heuristic and nonrigorous and attempts to develop 
in the student an intuitive feel for the subject which enables him or her to 
"think probabilistically." The other approach attempts a rigorous develop- 
ment of probability by using the tools of measure theory. It is the first 
approach that is employed in this text. However, because it is extremely 
important in both understanding and applying probability theory to be able 
to "think probabilistically," this text should also be useful to students 
interested primarily in the second approach. 

Chapters 1 and 2 deal with basic ideas of probability theory. In Chapter 1 
an axiomatic framework is presented, while in Chapter 2 the important 
concept of a random variable is introduced. 

Chapter 3 is concerned with the subject matter of conditional probability 
and conditional expectation. "Conditioning" is one of the key tools of 
probability theory, and it is stressed throughout the book. When properly 
used, conditioning often enables us to easily solve problems that at first 
glance seem quite difficult. The final section of this chapter presents 
applications to (1) a computer list problem, (2) a random graph, and (3) the 
Polya urn model and its relation to the Bose-Einstein distribution. 

In Chapter 4 we come into contact with our first random, or stochastic, 
process, known as a Markov chain, which is widely applicable to the 
study of many real-world phenomena. New applications to genetics and 
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production processes are presented. The concept of time reversibility is 
introduced and its usefulness illustrated. In the final section we consider a 
model for optimally making decisions known as a Markovian decision 
process. 

In Chapter 5 we are concerned with a type of stochastic process known as 
a counting process. In particular, we study a kind of counting process known 
as a Poisson process. The intimate relationship between this process and 
the exponential distribution is discussed. Examples relating to analyzing 
greedy algorithms, minimizing highway encounters, collecting coupons, 
and tracking the AIDS virus, as well as material on compound Poisson 
processes are included in this chapter. 

Chapter 6 considers Markov chains in continuous time with an emphasis 
on birth and death models. Time reversibility is shown to be a useful concept, 
as it is in the study of discrete-time Markov chains. The final section presents 
the computationally important technique of uniformization. 

Chapter 7, the renewal theory chapter, is concerned with a type of 
counting process more general than the Poisson. By making use of renewal 
reward processes, limiting results are obtained and applied to various fields. 

Chapter 8 deals with queueing, or waiting line, theory. After some prelim- 
inaries dealing with basic cost identities and types of limiting probabilities, 
we consider exponential queueing models and show how such models can 
be analyzed. Included in the models we study is the important class known 
as a network of queues. We then study models in which some of the 
distributions are allowed to be arbitrary. 

Chapter 9 is concerned with reliability theory. This chapter will probably 
be of greatest interest to the engineer and operations researcher. 

Chapter 10 is concerned with Brownian motion and its applications. The 
theory of options pricing is discussed. Also, the arbitrage theorem is 
presented and its relationship to the duality theorem of linear program is 
indicated. We show how the arbitrage theorem leads to the Black-Scholes 
option pricing formula. 

Ideally, this text would be used in a one-year course in probability models. 
Other possible courses would be a one-semester course in introductory 
probability theory (involving Chapters 1-3 and parts of others) or a course 
in elementary stochastic processes. It is felt that the textbook is flexible 
enough to be used in a variety of possible courses. For example, I have used 
Chapters 5 and 8, with smatterings from Chapters 4 and 6, as the basis of 
an introductory course in queueing theory. 

Many examples are worked out throughout the text, and there are also a 
large number of problems to be worked by students. 
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Chapter 1 
lntroduction to 

Probability Theory 

1 .l. lntroduction 

Any realistic model of a real-world phenomenon must take into account 
the possibility of randomness. That is, more often than not, the quantities 
we are interested in will not be predictable in advance but, rather, will 
exhibit an inherent variation that should be taken into account by the 
model. This is usually accomplished by allowing the model to be prob- 
abilistic in nature. Such a model is, naturally enough, referred to as a 
probability model. 

The majority of the chapters of this book will be concerned with different 
probability models of natural phenomena. Clearly, in order to master both 
the "model building" and the subsequent analysis of these models, we must 
have a certain knowledge of basic probability theory. The remainder of this 
chapter, as well as the next two chapters, will be concerned with a study of 
this subject. 

1.2. Sample Space and Events 

Suppose that we are about to perform an experiment whose outcome is not 
predictable in advance. However, while the outcome of the experiment will 
not be known in advance, let us suppose that the set of all possible outcomes 
is known. This set of all possible outcomes of an experiment is known as the 
sample space of the experiment and is denoted by S .  
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Some examples are the following. 
1. If the experiment consists of the flipping of a coin, then 

S = (H, T) 

where H means that the outcome of the toss is a head and T that it 
is a tail. 

2. If the experiment consists of tossing a die, then the sample space is 

where the outcome i means that i appeared on the die, i = 1,2,3, 
4,5,6. 

3. If the experiment consists of flipping two coins, then the sample space 
consists of the following four points: 

The outcome will be (H, H )  if both coins come up heads; it will be 
(H, T) if the first coin comes up heads and the second comes up tails; 
it will be (T, H )  if the first comes up tails and the second heads; and 
it will be (T, T) if both coins come up tails. 

4. If the experiment consists of tossing two dice, then the sample space 
consists of the following 36 points: 

where the outcome (i, j )  is said to occur if i appears on the first die and 
j on the second die. 

5. If the experiment consists of measuring the lifetime of a car, then the 
sample space consists of all nonnegative real numbers. That is, 

S = [0, 00)* + 
Any subset E of the sample space S is known as an event. Some examples 

of events are the following. 

1'. In Example (I ) ,  if E = (HI, then E is the event that a head appears 
on the flip of the coin. Similarly, if E = (T),  then E would be the 
event that a tail appears. 

* The set (a, b) is defined to consist of all points x such that a < x < b. The set [a, b] is 
defined to consist of all points x such that a I x I b. The sets (a, b] and [a, b) are defined, 
respectively, to consist of all points x such that a c x I b and all points x such that a I x < b. 
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2'. In Example (2), if E = (11, then E is the event that one appears on the 
toss of the die. If E = [2,4,6), then E would be the event that an 
even number appears on the toss. 

3'. In Example (3), if E = ((H, H), (H, T)), then E is the event that a 
head appears on the first coin. 

4'. In Example (4), if E = ((1,6), (2,5), (3,4), (4,3), (5,2), (6, I)), then 
E is the event that the sum of the dice equals seven. 

5'. In Example ( 9 ,  if E = (2,6), then E is the event that the car lasts 
between two and six years. 4 

For any two events E and F of a sample space S we define the new event 
E U F to consist of all points which are either in E or in F or in both E and 
F. That is, the event E U F will occur if either E or F occurs. For example, 
in (1) if E = (HI and F = (TI, then 

That is, E U F would be the whole sample space S. In (2) if E = [1,3,5] and 
F = (1,2,3), then 

E U F  = (1,2,3,5] 

and thus E U F would occur if the outcome of the die is 1 or 2 or 3 or 5. 
The event E U F is often referred to as the union of the event E and the 
event F. 

For any two events E and F,  we may also define the new event EF, 
referred to as the intersection of E and F,  as follows. EF consists of all points 
which are both in E and in F. That is, the event EF will occur only if both E 
and F occur. For example, in (2) if both E = (1,3,5] and F = [1,2,3), then 

and thus EF would occur if the outcome of the die is either 1 or 3. In 
Example (1) if E = [H) and F = IT), then the event EF would not consist 
of any points and hence could not occur. To give such an event a name 
we shall refer to it as the null event and denote it by 0.  (That is, 0 refers 
to the event consisting of no points.) If EF = (21, then E and F are said to 
be mutually exclusive. 

We also define unions and intersections of more than two events in a 
similar manner. If E l ,  E, , . . . are events, then the union of these events, 
denoted by U:,, E n ,  is defined to be that event which consists of all 
points that are in En for at least one value of n = 1,2, ... . Similarly, 
the intersection of the events En, denoted by En ,  is defined to be 
the event consisting of those points that are in all of the events En, 
n = 1,2, ... . 
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Finally, for any event E we define the new event Ec, referred to as the 
complement of E, to consist of all points in the sample space S which are 
not in E. That is Ec will occur if and only if E does not occur. In Example 
(4) if E = ((1,6), (2, 5 ) ,  (3,4), (4,3), (5,2), (6, I)), then Ec will occur if the 
sum of the dice does not equal seven. Also note that since the experiment 
must result in some outcome, it follows that Sc = 0. 

1.3. Probabilities Defined on Events 

Consider an experiment whose sample space is S. For each event E of the 
sample space S, we assume that a number P(E) is defined and satisfies the 
following three conditions: 

(i) 0 cc P(E) I 1. 
(ii) P(S) = 1. 

(iii) For any sequence of events E l ,  E, , . . . which are mutually exclusive, 
that is, events for which EnE, = 0 when n # m, then 

We refer to P(E) as the probability of the event E. 

Example 1.1 In the coin tossing example, if we assume that a head is 
equally likely to appear as a tail, then we would have 

On the other hand, if we had a biased coin and felt that a head was twice 
as likely to appear as a tail, then we would have 

Example 1.2 In the die tossing example, if we supposed that all six 
numbers were equally likely to appear, then we would have 

From (iii) it would follow that the probability of getting an even number 
would equal 

p((2, 4,611 = P((21) + P((41) + P((61) 

= +  + 
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Remark We have chosen to give a rather formal definition of prob- 
abilities as being functions defined on the events of a sample space. 
However, it turns out that these probabilities have a nice intuitive property. 
Namely, if our experiment is repeated over and over again then (with 
probability 1) the proportion of time that event E occurs will just be P(E). 

Since the events E and Ec are always mutually exclusive and since 
E U EC = S we have by (ii) and (iii) that 

1 = P(S) = P(E U Ec) = P(E) + P(Ec) 

or 
P(E) + P(EC) = 1 (1.1) 

In words, Equation (1 .l) states that the probability that an event does not 
occur is one minus the probability that it does occur. 

We shall now derive a formula for P(E U F), the probability of all points 
either in E or in F. To do so, consider P(E) + P(F), which is the probability 
of all points in E plus the probability of all points in F. Since any point that 
is in both E and F will be counted twice in P(E) + P(F) and only once in 
P(E U F),  we must have 

P(E) + P(F) = P(E U F) + P(EF) 
or equivalently 

P(E U F )  = P(E) + P(F) - P(EF) (1.2) 

Note that when E and F are mutually exclusive (that is, when EF = a), 
then Equation (1.2) states that 

P(E U F )  = P(E) + P(F) - P ( 0 )  

= P(E) + P(F) 

a result which also follows from condition (iii). [Why is P ( 0 )  = O?] 

Example 1.3 Suppose that we toss two coins, and suppose that we 
assume that each of the four points in the sample space 

s = ((H, H), (H, TI, (T, H ) ,  (T, TI) 

is equally likely and hence has probability a. Let 

E = ( (H ,  N), (H, T)J and F = ((H, HI ,  (T, HI) 

That is, E is the event that the first coin falls heads, and F is the event that 
the second coin falls heads. 
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By Equation (1.2) we have that P(E U F) ,  the probability that either the 
first or the second coin falls heads, is given by 

= ) + - P((H, H ) )  
= 1 - 1 - '  

4 - 4  

This probability could, of course, have been computed directly since 

We may also calculate the probability that any one of the three events E 
or F or G occurs. This is done as follows 

P ( E U F U G )  = P ( ( E U F )  U G )  

which by Equation (1.2) equals 

Now we leave it for the reader to show that the events (E U F)G and 
EG U FG are equivalent, and hence the above equals 

= P(E) + P(F) - P(EF) + P(G) - P(EG U FG) 

In fact, it can be shown by induction that, for any n events E l ,  E,, 
4,  . - - ,En,  

In words, Equation (1.4) states that the probability of the union of n 
events equals the sum of the probabilities of these events taken one at a 
time minus the sum of the probabilities of these events taken two at a 
time plus the sum of the probabilities of these events taken three at a time, 
and so on. 
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1.4. Conditional Probabilities 

Suppose that we toss two dice and suppose that each of the 36 possible out- 
comes is equally likely to occur and hence has probability &. Suppose that 
we observe that the first die is a four. Then, given this information, what is 
the probability that the sum of the two dice equals six? To calculate this 
probability we reason as follows: Given that the initial die is a four, it 
follows that there can be at most six possible outcomes of our experiment, 
namely, (4, l), (4,2), (4,3), (4,4), (4,5), and (4,6). Since each of these 
outcomes originally had the same probability of occurring, they should still 
have equal probabilities. That is, given that the first die is a four, then the 
(conditional) probability of each of the outcomes (4, l), (4,2), (4,3), (4,4), 
(4,5), (4,6) is while the (conditional) probability of the other 30 points in 
the sample space is 0. Hence, the desired probability will be i .  

If we let E and F denote respectively the event that the sum of the dice 
is six and the event that the first die is a four, then the probability just 
obtained is called the conditional probability that E occurs given that F has 
occurred and is denoted by 

P(E I F )  

A general formula for P ( E ) F )  which is valid for all events E and F is 
derived in the same manner as above. Namely, if the event F occurs, then 
in order for E to occur it is necessary for the actual occurrence to be a point 
in both E and in F, that is, it must be in EF. Now, as we know that F has 
occurred, it follows that F becomes our new sample space and hence the 
probability that the event EF occurs will equal the probability of EF relative 
to the probability of F. That is 

Note that Equation (1.5) is only well defined when P(F) > 0 and hence 
P(E I F )  is only defined when P(F) > 0. 

Example 1.4 Suppose cards numbered one through ten are placed in a 
hat, mixed up, and then one of the cards is drawn. If we are told that the 
number on the drawn card is at least five, then what is the conditional 
probability that it is ten? 

Solution: Let E denote the event that the number of the drawn card is 
ten, and let F be the event that it is at least five. The desired probability 
is P(E I F). Now, from Equation (1.5) 



8 1 lntroductlon to Probability Theory 

However, EF = E since the number of the card will be both ten and at 
least five if and only if it is number ten. Hence, 

Example 1.5 A family has two children. What is the conditional 
probability that both are boys given that at least one of them is a boy? 
Assume that the sample space S is given by S = [(b, b), (b, g), (g, b), (g, g)], 
and all outcomes are equally likely. [(b, g) means for instance that the older 
child is a boy and the younger child a girl.] 

Solution: Letting E denote the event that both children are boys, and F 
the event that at least one of them is a boy, then the desired probability 
is given by 

Example 1.6 Bev can either take a course in computers or in chemistry. 
If Bev takes the computer course, then she will receive an A grade with 
probability i, while if she takes the chemistry course then she will receive an 
A grade with probability f .  Bev decides to base her decision on the flip of 
a fair coin. What is the probability that Bev will get an A in chemistry? 

Solution: If we let F be the event that Bev takes chemistry and E 
denote the event that she receives an A in whatever course she takes, then 
the desired probability is P(EF). This is calculated by using Equation (1.5) 
as follows: 

P(EF) = P(F)P(E ( F )  

Example 1.7 Suppose an urn contains seven black balls and five white 
balls. We draw two balls from the urn without replacement. Assuming that 
each ball in the urn is equally likely to be drawn, what is the probability that 
both drawn balls are black? 

Solution: Let F and E denote respectively the events that the first and 
second balls drawn are black. Now, given that the first ball selected is 
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black, there are six remaining black balls and five white balls, and so 
P(E 1 F) = &. As P(F) is clearly &, our desired probability is 

P(EF) = P(F)P(E IF) 

Example 1.8 Suppose that each of three men at a party throws his hat 
into the center of the room. The hats are first mixed up and then each man 
randomly selects a hat. What is the probability that none of the three men 
selects his own hat? 

Solution: We shall solve the above by first calculating the comple- 
mentary probability that at least one man selects his own hat. Let us 
denote by Ei, i = 1,2,3, the event that the ith man selects his own hat. 
To calculate the probability P(El U E2 U E3), we first note that 

To see why Equation (1.6) is correct, consider first 

Now P(Ei), the probability that the ith man selects his own hat, is clearly 
f since he is equally likely to select any of the three hats. On the other 
hand, given that the ith man has selected his own hat, then there remain 
two hats that the j th man may select, and as one of these two is 
his own hat, it follows that with probability 3 he will select it. That is, 
P(Ej ( Ei) = 3 and so 

To calculate P(ElE2E3) we write 

However, given that the first two men get their own hats it follows that 
the third man must also get his own hat (since there are no other hats 
left). That is, P(E3 I ElE2) = 1 and so 
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Now, from Equation (1.4) we have that 

= I - + + *  

= f 

Hence, the probability that none of the men selects his own hat is 
I - * = + .  4 

1.5. Independent Events 

Two events E and F are said to be independent if 

By Equation (1.5) this implies that E and F are independent if 

P(E IF) = P(E) 

[which also implies that P(F/E) = P(F)]. That, is, E and F are inde- 
pendent if knowledge that F has occurred does not affect the probability 
that E occurs. That is, the occurrence of E is independent of whether or not 
F occurs. 

Two events E and F which are not independent are said to be dependent. 

Example 1.9 Suppose we toss two fair dice. Let El denote the event that 
the sum of the dice is six and F denote the event that the first die equals 
four. Then 

P(E1F) = P((4,2)) = & 
while 

P(El)P(F) = &* = * 
and hence E, and F are not independent. Intuitively, the reason for this is 
clear for if we are interested in the possibility of throwing a six (with two 
dice), then we will be quite happy if the first die lands four (or any of the 
numbers 1, 2, 3, 4, 5) for then we still have a possibility of getting a total 
of six. On the other hand, if the first die landed six, then we would be 
unhappy as we would no longer have a chance of getting a total of six. In 
other words, our chance of getting a total of six depends on the outcome of 
the first die and hence El and F cannot be independent. 
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Let E2 be the event that the sum of the dice equals seven. Is E2 
independent of F ?  The answer is yes since 

P(EzF) = P(((4,3))) = & 
while 

P(Ez)P(F) = && = & 
We leave it for the reader to present the intuitive argument why the event 
that the sum of the dice equals seven is independent of the outcome on the 
first die. + 

The definition of independence can be extended to more than two events. 
The events E l ,  E2, . . . , En are said to be independent if for every subset 
E,, , E2#,  . . ., E,, , r r n, of these events 

Intuitively, the events El, E,, . . . , En are independent if knowledge of the 
occurrence of any of these events has no effect on the probability of any 
other event. 

Example 1.10 (Pairwise Independent Events That .Are Not Indepen- 
dent): Let a ball be drawn from an urn containing four balls, numbered 
I ,  2, 3, 4. Let E = (1,2), F = (1, 31, G = (1,4). If all four outcomes are 
assumed equally likely, then 

P(FG) = P(F)P(G) = $ 
However, 

= P(EFG) # P(E)P(F)P(G) 

Hence, even though the events E,  F, G are pairwise independent, they are 
not jointly independent. + 

Suppose that a sequence of experiments, each of which results in either a 
"success" or a "failure," is to be performed. Let Ei, i 2 1, denote the 
event that the ith experiment results in a success. If, for all i, , i2, . . . , in, 

we say that the sequence of experiments consists of independent trials. 
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Example 1.1 1 The successive flips of a coin consist of independent 
trials if we assume (as is usually done) that the outcome on any flip is not 
influenced by the outcomes on earlier flips. A "success" might consist of 
the outcome heads and a "failure" tails, or possibly the reverse. 4 

1.6. Bayes' Formula 

Let E and F be events. We may express E as 

E =  EFUEFC 

for in order for a point to be in E, it must either be in both E and F, or it 
must be in E and not in F. Since EF and EFc are obviously mutually 
exclusive, we have that 

Equation (1.7) states that the probability of the event E is a weighted 
average of the conditional probability of E given that F has occurred 
and the conditional probability of E given that F has not occurred, each 
conditional probability being given as much weight as the event it is 
conditioned on has of occurring. 

Example 1.12 Consider two urns. The first contains two white and 
seven black balls, and the second contains five white and six black balls. We 
flip a fair coin and then draw a ball from the first urn or the second 
urn depending on whether the outcome was heads or tails. What is the 
conditional probability that the outcome of the toss was heads given that a 
white ball was selected? 

Solution: Let W be the event that a white ball is drawn, and let H be 
the event that the coin comes up heads. The desired probability P ( H )  W) 
may be calculated as follows: 
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Example 1.13 In answering a question on a multiple choice test a 
student either knows the answer or he guesses. Letp be the probability that 
she knows the answer and 1 - p the probability that she guesses. Assume 
that a student who guesses at the answer will be correct with probability 
l/m, where m is the number of multiple-choice alternatives. What is the 
conditional probability that a student knew the answer to a question given 
l hat she answered it correctly? 

Solution: Let C and K denote respectively the event that the student 
answers the question correctly and the event that she actually knows the 
answer. Now 

Thus, for example, if m = 5 ,  p = i, then the probability that a student 
knew the answer to a question she correctly answered is 2. + 

Example 1.14 A laboratory blood test is 95 percent effective in 
detecting a certain disease when it is, in fact, present. However, the test also 
yields a "false positive" result for 1 percent of the healthy persons tested. 
(That is, if a healthy person is tested, then, with probability 0.01, the test 
result will imply he has the disease.) If 0.5 percent of the population actually 
has the disease, what is the probability a person has the disease given that 
his test result is positive? 

Solution: Let D be the event that the tested person has the disease, and 
E the event that his test result is positive. The desired probability P(D ( E )  
is obtained by 

Thus, only 32 percent of those persons whose test results are positive 
actually have the disease. + 
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Equation (1.7) may be generalized in the following manner. Suppose that 
4, F, , . . . , Fn are mutually exclusive events such that UI= F;: = S. In other 
words, exactly one of the events Fl , F2, . . . , F, will occur. By writing 

and using the fact that the events EF, , i = 1, . . . , n, are mutually exclusive, 
we obtain that 

n 

Thus, Equation (1.8) shows how, for given events F,, F2, . . . , Fn of which 
one and only one must occur, we can compute P(E) by first "conditioning" 
upon which one of the F, occurs. That is, it states that P(E) is equal to a 
weighted average of P(E IF,), each term being weighted by the probability 
of the event on which it is conditioned. 

Suppose now that E has occurred and we are interested in determining 
which one of the 4 also occurred. By Equation (1.8) we have that 

Equation (1.9) is known as Bayes' formula. 

Example 1.15 You know that a certain letter is equally likely to be in 
any one of three different folders. Let ai be the probability that you will 
find your letter upon making a quick examination of folder i if the letter is, 
in fact, in folder i, i = 1,2,3. (We may have ai < 1.) Suppose you look in 
folder 1 and do not find the letter. What is the probability that the letter is 
in folder l? 

Solution: Let F,, i = 1,2,3, be the event that the letter is in folder i; 
and let E be the event that a search of folder 1 does not come up with the 
letter. We desire P ( 4  1 E). From Bayes' formula we obtain 
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Exercises 

1. A box contains three marbles: one red, one green, and one blue. 
Consider an experiment that consists of taking one marble from the box 
then replacing it in the box and drawing a second marble from the box. What 
is  the sample space? If, at all times, each marble in the box is equally likely 
lo be selected, what is the probability of each point in the sample space? 

'2. Repeat 1 when the second marble is drawn without replacing the first 
marble. 

3. A coin is to be tossed until a head appears twice in a row. What is the 
sample space for this experiment? If the coin is fair, then what is the 
probability that it will be tossed exactly four times? 

4. Let E, F ,  G be three events. Find expressions for the events that of 
E,  F, G 

(a) only F occurs, 
(b) both E and F but not G occurs, 
(c) at least one event occurs, 
(d) at least two events occur, 
(e) all three events occur, 
(f) none occurs, 
(g) at most one occurs, 
(h) at most two occur. 

'5. An individual uses the following gambling system at Las Vegas. He 
bets $1 that the roulette wheel will come up red. If he wins, he quits. If he 
loses then he makes the same bet a second time only this time he bets $2; and 
I hen regardless of the outcome, quits. Assuming that he has a probability of 
4 of winning each bet, what is the probability that he goes home a winner? 
Why is this system not used by everyone? 

6. Show that E(F U G) = EF U EG. 

7. Show that (E U F)' = EcFc. 

8. If P(E) = 0.9 and P(F) = 0.8, show that P(EF) 2 0.7. In general, 
h o w  that 

P(EF) r P(E) + P(F) - 1 

' fhis is known as Bonferroni's inequality. 

'9.  We say that E C F if every point in E is also in F. Show that if E C F, 
r hen 

P(F) = P(E) + P(FEC) r P(E) 
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10. Show that 

This is known as Boole's inequality. 

Hint: Either use Equation (1.2) and mathematical induction, or else 
show that U;=, Ei = U;=, 4,  where F, = El, F, = Ei a:: Ejc, and use 
property (iii) of a probability. 

11. If two fair dice are tossed, what is the probability that the sum is i, 
i = 2,3, ..., 12? 

12. Let E and F be mutually exclusive events in the sample space of an 
experiment. Suppose that the experiment is repeated until either event E or 
event F occurs. What does the sample space of this new super experiment 
look like? Show that the probability that event E occurs before event F is 
P(E)/[P(E) + P(F)I. 

Hint: Argue that the probability that the original experiment is 
performed n times and E appears on the nth time is P(E) x (1 - p)"-', 
n = 1,2, . . . , where p = P(E) + P(F). Add these probabilities to get the 
desired answer. 

13. The dice game craps is played as follows. The player throws two dice, 
and if the sum is seven or eleven, then he wins. If the sum is two, three, or 
twelve, then he loses. If the sum is anything else, then he continues throwing 
until he either throws that number again (in which case he wins) or he 
throws a seven (in which case he loses). Calculate the probability that the 
player wins. 

14. The probability of winning on a single toss of the dice is p. A starts, 
and if he fails, he passes the dice to B, who then attempts to win on her toss. 
They continue tossing the dice back and forth until one of them wins. What 
are their respective probabilities of winning? 

15. Argue that E = E F U  EFC, E U F = E U FEC. 

16. Use Exercise 15 to show that P(E U F )  = P(E) + P(F) - P(EF). 

'17. Suppose each of three persons tosses a coin. If the outcome of one 
of the tosses differs from the other outcomes, then the game ends. If not, 
then the persons start over and retoss their coins. Assuming fair coins, what 
is the probability that the game will end with the first round of tosses? If all 
three coins are biased and have a probability of landing heads, then what 
is the probability that the game will end at the first round? 
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18. Assume that each child that is born is equally likely to be a boy or a 
girl. If a family has two children, what is the probability that both are girls 
given that (a) the eldest is a girl, (b) at least one is a girl? 

' 19. Two dice are rolled. What is the probability that at least one is a six? 
I f  the two faces are different, what is the probability that at least one is a six? 

20. Three dice are thrown. What is the probability the same number 
appears on exactly two of the three dice? 

21. Suppose that 5 percent of men and 0.25 percent of women are color- 
blind. A color-blind person is chosen at random. What is the probability of 
this person being male? Assume that there are an equal number of males 
and females. 

22. A and B play until one has 2 more points than the other. Assuming 
that each point is independently won by A with probability p, what is the 
probability they will play a total of 2n points? What is the probability that 
A will win? 

23. For events E l ,  E2, ..., En show that 

24. In an election, candidate A receives n votes and candidate B receives 
rn votes, where n > m. Assume that in the count of the votes all possible 
orderings of the n + m votes are equally likely. Let P,,, denote the 
probability that from the first vote on A is always in the lead. Find 

(a) P2,l (b) P3,1 (c) pn,l P3,2 (e) P4.2 

(f) P n , 2  (g) p 4 , 3  (h) P5.3 (0 p5,4 
(j) Make a conjecture as to the value of P,,,. 

'25. Two cards are randomly selected from a deck of 52 playing cards. 

(a) What is the probability they constitute a pair (that is, that they are of 
the same denomination)? 
(b) What is the conditional probability they constitute a pair given that 
they are of different suits? 

26. A deck of 52 playing cards, containing all 4 aces, is randomly divided 
into 4 piles of 13 cards each. Define events E l ,  E2 ,  E3,  and E4 as follows: 

El = (the first pile has exactly 1 ace), 
E, = [the second pile has exactly 1 ace), 
E3 = .[the third pile has exactly 1 ace), 
E4 = (the fourth pile has exactly 1 ace) 

Use Exercise 23 to find P(E,E2E3E4), the probability that each pile has 
an ace. 
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"27. Suppose in Exercise 26 we had defined the events Ei,  i = 1,2,3,4, by 

E, = (one of the piles contains the ace of spades), 

E, = (the ace of spaces and the ace of hearts are in different piles], 

E, = (the ace of spades, the ace of hearts, and the 
ace of diamonds are in different piles], 

E, = (all 4 aces are in different piles) 

Now use Exercise 23 to find P(E, E2E3E,), the probability that each pile has 
an ace. Compare your answer with the one you obtained in Exercise 26. 

28. If the occurrence of B makes A more likely, does the occurrence of A 
make B more likely? 

29. Suppose that P(E) = 0.6. What can you say about P(E I F )  when 

(a) E and F are mutually exclusive? 
(b) E C F ?  
(c) F c E ?  

"30. Bill and George go target shooting together. Both shoot at a target 
at the same time. Suppose Bill hits the target with probability 0.7, whereas 
George, independently, hits the target with probability 0.4. 

(a) Given that exactly one shot hit the target, what is the probability that 
it was George's shot? 
(b) Given that the target is hit, what is the probability that George hit it? 

31. What is the conditional probability that the first die is six given that 
the sum of the dice is seven? 

"32. Suppose all n men at a party throw their hats in the centcr of the 
room. Each man then randomly selects a hat. Show that the probability that 
none of the n men selects his own hat is 

1 1  1 - - -  (- + - -  + ...-, 
2! 3! 4! n! 

Note that as n -+ oo this converges to e-'. Is this surprising? 

33. In a class there are four freshman boys, six freshman girls, and six 
sophomore boys. How many sophomore girls must be present if sex and 
class are to be independent when a student is selected at random? 

34. Mr. Jones has devised a gambling system for winning at roulette. 
When he bets, he bets on red, and places a bet only when the ten previous 
spins of the roulette have landed on a black number. He reasons that his 
chance of winning is quite large since the probability of eleven consecutive 
spins resulting in black is quite small. What do you think of this system? 
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35. A fair coin is continually flipped. What is the probability that the first 
four flips are 

(a) H, H, H, H ?  
(b) T, H, H, H ?  
(c) What is the probability that the pattern T, H, H, H occurs before the 
pattern H, H, H, H ?  

36. Consider two boxes, one containing one black and one white marble, 
the other, two black and one white marble. A box is selected at random and 
a marble is drawn at random from the selected box. What is the probability 
that the marble is black? 

37. In Exercise 36, what is the probability that the first box was the one 
selected given that the marble is white? 

38. Urn 1 contains two white balls and one black ball, while urn 2 
contains one white ball and five black balls. One ball is drawn at random 
from urn 1 and placed in urn 2. A ball is then drawn from urn 2. It happens 
to be white. What is the probability that the transferred ball was white? 

39. Stores A,  B, and C have 50, 75, 100 employees, and respectively 50, 
60, and 70 percent of these are women. Resignations are equally likely 
among all employees, regardless of sex. One employee resigns and this is a 
woman. What is the probability that she works in store C? 

'40. (a) A gambler has in his pocket a fair coin and a two-headed coin. 
He selects one of the coins at random, and when he flips it, it shows heads. 
What is the probability that it is the fair coin? (b) Suppose that he flips the 
same coin a second time and again it shows heads. Now what is the prob- 
ability that it is the fair coin? (c) Suppose that he flips the same coin a third 
time and it shows tails. Now what is the probability that it is the fair coin? 

41. In a certain species of rats, black dominates over brown. Suppose that 
a black rat with two black parents has a brown sibling. 

(a) What is the probability that this rat is a pure black rat (as opposed to 
being a hybrid with one black and one brown gene)? 
(b) Suppose that when the black rat is mated with a brown rat, all five of 
their offspring are black. Now, what is the probability that the rat is a 
pure black rat? 

42. There are three coins in a box. One is a two-headed coin, another is 
a fair coin, and the third is a biased coin which comes up heads 75 percent 
of the time. When one of the three coins is selected at random and flipped, 
it shows heads. What is the probability that it was the two-headed coin? 
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43. Suppose we have ten coins which are such that if the ith one is flipped 
then heads will appear with probability i/10, i = 1,2,  . . . , 10. When one of 
the coins is randomly selected and flipped, it shows heads. What is the 
conditional probability that it was the fifth coin? 

44. Urn 1 has five white and seven black balls. Urn 2 has three white and 
twelve black balls. We flip a fair coin. If the outcome is heads, then a ball 
from urn 1 is selected, while if the outcome is tails, then a ball from urn 2 
is selected. Suppose that a white ball is selected. What is the probability that 
the coin landed tails? 

*45. An urn contains b black balls and r red balls. One of the balls is 
drawn at random, but when it is put back in the urn c additional balls of the 
same color are put in with it. Now suppose that we draw another ball. Show 
that the probability that the first ball drawn was black given that the second 
ball drawn was red is b/(b  + r + c). 

46. Three prisoners are informed by their jailer that one of them has been 
chosen at random to be executed, and the other two are to be freed. 
Prisoner A asks the jailer to tell him privately which of his fellow prisoners 
will be set free, claiming that there would be no harm in divulging this 
information, since he already knows that at least one will go free. The jailer 
refuses to answer this question, pointing out that if A knew which of his 
fellows were to be set free, then his own probability of being executed would 
rise from 3 to $, since he would then be one of two prisoners. What do you 
think of the jailer's reasoning? 
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Chapter 2 
Random Variables 

2.1. Random Variables 

I t  frequently occurs that in performing an experiment we are mainly 
interested in some function of the outcome as opposed to the outcome 
itself. For instance, in tossing dice we are often interested in the sum of the 
two dice and are not really concerned about the actual outcome. That is, we 
may be interested in knowing that the sum is seven and not be concerned 
over whether the actual outcome was (1,6) or (2,5) or (3,4) or (4,3) or  (5,2) 
or (6,l). These quantities of interest, or more formally, these real-valued 
functions defined on the sample space, are known as random variables. 

Since the value of a random variable is determined by the outcome of 
the experiment, we may assign probabilities to the possible values of the 
random variable. 

Example 2.1 Letting X denote the random variable that is defined as 
the sum of two fair dice; then 

P(X = 2) = P((1,  1)) = &, 
P(X = 3) = P((1,2),  (2, 1)) = 5, 
P(X = 41 = P((1, 3), (2,2), (3, 111 = &, 
PIX = 51 = P((1,4),  (2,3), (3,2), (4, 111 = $, 
PIX = 61 = P((1,  51, (2,4), (3,3), (4,2), (5, 111 = &, 
PIX = 71 = P((1,6),  (2, 51, (3,4), (4,3), (5,2), (6, 1)) = a, 
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P ( X  = 81 = P((2,6), (3,5), (4,4), (5,3), (6,211 = &, 
PIX = 91 = P[(3,6), (4,5), (5,4), (6,311 = &, 
P ( X  = 101 = PK4,6), ( 5 , 5 ) ,  (6,411 = $, 

In other words, the random variable X can take on any integral value 
between two and twelve, and the probability that it takes on each value is 
given by Equation (2.1). Since X must take on one of the values two 
through twelve, we must have that 

which may be checked from Equation (2.1). + 
Example 2.2 For a second example, suppose that our experiment 
consists of tossing two fair coins. Letting Y denote the number of heads 
appearing, then Y is a random variable taking on one of the values 0, 1, 2 
with respective probabilities 

P(Y = 1) = P((T, H), (H, T)) = $, 

Of course, P(Y = 0) + P(Y = 1) + P(Y = 2) = 1. + 
Example 2.3 Suppose that we toss a coin having a probability p of 
coming up heads, until the first head appears. Letting N denote the number 
of flips required, then assuming that the outcome of successive flips are 
independent, N is a random variable taking on one of the values 1,2, 3, . . . , 
with respective probabilities 

P ( N  = I]  = P(HJ = p, 

P ( N  = 2) = P((T, H)) = (1 - p)p, 

P ( N  = 3) = P((T, T, H ) ]  = (1 - p12p, 

P ( N  = n] = P((T, T, ..., T, H ) )  = (1 - p)"-lp, n r 1 

n -  1 
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As a check, note that 

Example 2.4 Suppose that our experiment consists of seeing how long 
a battery can operate before wearing down. Suppose also that we are not 
primarily interested in the actual lifetime of the battery but are only 
concerned about whether or not the battery lasts at least two years. In this 
case, we may define the random variable I by 

1, if the lifetime of the battery is two or more years 
I =  [ 

0, otherwise 

I f  E denotes the event that the battery lasts two or more years, then the 
random variable I is known as the indicator random variable for event E. 
(Note that I equals 1 or 0 depending on whether or not E occurs.) + 
Example 2.5 Suppose that independent trials, each of which results 
in any of m possible outcomes with respective probabilities pl , . . . , pm , 
Cr= f l i  = 1, are continually performed. Let X denote the number of trials 
needed until each outcome has occurred at least once. 

Rather than directly considering P [ X  = n] we will first determine 
PIX > n], the probability that at least one of the outcomes has not yet 
occurred after n trials. Letting A; denote the event that outcome i has not 
yet occurred after the first n trials, i = 1, . . . , m, then 

= C P(Ai> - C C P(AiAj) 
i =  1 icj 

+ C C C P ( A ~ A ~ A ~ )  - ... + (- I ) ~ + ~ P ( A ,  ... A,) 
i < j < k  

Now, P(A;) is the probability that each of the first n trials all result in a 
non-i outcome, and so by independence 
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Similarly, P(AiAj) is the probability that the first n trials all result in a 
non-i and non-j outcome, and so 

As all of the other probabilities are similar, we see that 

Since P ( X  = n) = P ( X  > n - 1) - P ( X  > n), we see, upon using the 
algebraic identity (1 - a)"-' - (1 - a)" = a(l - a)"-', that 

In all of the preceding examples, the random variables of interest took on 
either a finite or a countable number of possible values. Such random 
variables are called discrete. However, there also exist random variables 
that take on a continuum of possible values. These are known as continuous 
random variables. One example is the random variable denoting the lifetime 
of a car, when the car's lifetime is assumed to take on any value in some 
interval (a, b). 

The cumulative distribution function (cdf) (or more simply the distribu- 
tion function) F(.) of the random variable X  is defined for any real number 
b, -a, < b <  co, by 

F(b) = P ( X  r b) 

In words, F(b) denotes the probability that the random variable X takes on 
a value which will be less than or equal to b. Some properties of the cdf F are 

(i) F(b) is a nondecreasing function of b, 
(ii) limb,, F(b) = F(co) = 1, 

(iii) limb,-,F(b) = F ( - a )  = 0. 

Property (i) follows since for a < b the event ( X  I a] is contained in the 
event {X I b), and so it must have a smaller probability. Properties (ii) and 
(iii) follow since X  must take on some finite value. 

All probability questions about X  can be answered in terms of the cdf 
F(. ) .  For example, 

P (a  < X  5 b) = F(b) - F(a) for all a < b 
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I'his follows since we may calculate P ( a  < X I b) by first computing the 
probability that X I  b [that is, F(b)] and then subtracting from this the 
probability that X I a [that is, F(a)]. 

If we desire the probability that X is strictly smaller than b, we may 
calculate this probability by 

P [ X  c b] = lim P ( X I  b - h] 
h+O+ 

= lim F(b - h) 
h-0' 

where limb,,+ means that we are taking the limit as h decreases to 0. Note 
[tiat P ( X  c bJ does not necessarily equal F(b) since F(b) also includes the 
probability that X includes b. 

2.2. Discrete Random Variables 

As was previously mentioned, a random variable that can take on at 
most a countable number of possible values is said to be discrete. For 
n discrete random variable X, we define the probability mass function p(a) 
or x by 

p(a) = P ( X  = a] 

'The probability mass function p(a) is positive for at most a countable 
number of values of a. That is, if X must assume one of the values 
s, , x,, . .., then 

p(xi)>O, i = l , 2 ,  ... 

p(x) = 0, all other values of x 

Since X must take on one of the values xi, we have 

The cumulative distribution function F can be expressed in terms of 
14a) by 

F(a) = C  xi) 
a U x i s a  

For instance, suppose X has a probability mass function given by 
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I 
X 

1 2 3 

Figure 2.1. Graph of F(x). 

then, the cumulative distribution function F of X is given by 

(0, a < 1 

This is graphically presented in Figure 2.1. 
Discrete random variables are often classified according to their prob- 

ability mass function. We now consider some of these random variables. 

2.2.1. The Bernoulli Random Variable 

Suppose that a trial, or an experiment, whose outcome can be classified as 
either a "success" or as a "failure" is performed. If we let X equal 1 if the 
outcome is a success and 0 if it is a failure, then the probability mass 
function of X is given by 

where p ,  0 s p s 1, is the probability that the trial is a "success." 
A random variable X is said to be a Bernoulli random variable if its 

probability mass function is given by Equation (2.2) for some p E (0, 1). 

2.2.2. The Binomial Random Variable 

Suppose that n independent trials, each of which results in a "success" with 
probability p and in a "failure" with probability 1 - p ,  are to be per- 
formed. If X represents the number of successes that occur in the n trials, 
then X is said to be a binomial random variable with parameters (n,p). 
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The probability mass function of a binomial random variable having 
parameters (n,p) is given by 

where 
n! (Y) = (n - i)!i! 

equals the number of different groups of i objects that can be chosen from 
a set of n objects. The validity of Equation (2.3) may be verified by first 
noting that the probability of any particular sequence of the n outcomes 
containing i successes and n - i failures is, by the assumed independence 

of trials, pi(l - p)"-'. Equation (2.3) then follows since there are 

different sequences of the n outcomes leading to i successes and n - i 

failures. For instance, if n = 3, i = 2, then there are (i) = 3 ways in 

which the three trials can result in two successes.  ame el;, i n y  one of the 
three outcomes (s, s,  f) ,  (s, f, s), (f, s, s), where the outcome (s, s,  f )  means 
that the first two trials are successes and the third a failure. Since each of the 
three outcomes (s, s,  f) ,  (s, f, s), (f, s,  s) has a probability pZ(l - p) of 

occurring the desired probability is thus pZ(l - p). (3 
Note that, by the binomial theorem, the 'probabilities sum to one, that is, 

Example 2.6 Four fair coins are flipped. If the outcomes are assumed 
independent, what is the probability that two heads and two tails are 
obtained? 

Solution: Letting X equal the number of heads ("successes") that 
appear, then X is a binomial random variable with parameters (n = 4, 
p = 3). Hence, by Equation (2.3), 

Example 2.7 It is known that all items produced by a certain machine will 
be defective with probability 0.1, independently of each other. What is the 
probability that in a sample of three items, at most one will be defective? 
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Solution: If X is the number of defective items in the sample, then X 
is a binomial random variable with parameters (3,O.l). Hence, the 
desired probability is given by 

Example 2.8 Suppose that an airplane engine will fail, when in flight, 
with probability 1 - p independently from engine to engine; suppose that 
the airplane will make a successful flight if at least 50 percent of its engines 
remain operative. For what values of p is a four-engine plane preferable to 
a two-engine plane? 

Solution: Because each engine is assumed to fail or function indepen- 
dently of what happens with the other engines, it follows that the number 
of engines remaining operative is a binomial random variable. Hence, the 
probability that a four-engine plane makes a successful flight is 

whereas the corresponding probability for a two-engine plane is 

Hence the four-engine plane is safer if 

sp2(1 - p12 + 4 ~ ~ ( 1  - p) + p4 2 2p(l - p) + p2 

or equivalently if 

6p(l - p)' + 4p2(1 - p) + p3 2 2 - p 

which simplifies to 

3p3 - 8p2 + 7p - 2 r 0 or ( p  - 1 ) ' ( 3 ~  - 2) 2 0 

which is equivalent to 

Hence, the four-engine plane is safer when the engine success prob- 
ability is at least as large as t ,  whereas the two-engine plane is safer when 
this probability falls below 3 .  + 
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Example 2.9 Suppose that a particular trait of a person (such as eye 
color or left handedness) is classified on the basis of one pair of genes and 
suppose that d represents a dominant gene and r a recessive gene. Thus a 
person with dd genes is pure dominance, one with rr is pure recessive, and 
one with rd is hybrid. The pure dominance and the hybrid are alike in 
appearance. Children receive one gene from each parent. If, with respect to 
:I particular trait, two hybrid parents have a total of four children, what is 
the probability that exactly three of the four children have the outward 
appearance of the dominant gene? 

Solution: If we assume that each child is equally likely to inherit either 
of two genes from each parent, the probabilities that the child of two 
hybrid parents will have dd, rr, or rd pairs of genes are, respectively, a ,  
$, 3. Hence, as an offspring will have the outward appearance of the 
dominant gene if its gene pair is either dd or rd, it follows that the 
number of such children is binomially distributed with parameters (4, a). 
Thus the desired probability is 

Remark on Terminology If X is a binomial random variable with 
parameters (n,p), then we say that X has a binomial distribution with 
parameters (n, p). 

2.2.3. The Geometric Random Variable 

Suppose that independent trials, each having a probability p of being a 
success, are performed until a success occurs. If we let X be the number of 
trials required until the first success, then X is said to be a geometric random 
variable with parameter p. Its probability mass function is given by 

Equation (2.4) follows since in order for X to equal n it is necessary and 
sufficient that the first n - 1 trials be failures and the nth trial a success. 
Equation (2.4) follows since the outcomes of the successive trials are assumed 
to be independent. 

To check that p(n) is a probability mass function, we note that 
m m 
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2.2.4. The Poisson Random Variable 

A random variable X, taking on one of the values 0, 1,2, . . . , is said to be 
a Poisson random variable with parameter 1 ,  if for some 1 > 0, 

Equation (2.5) defines a probability mass function since 

The Poisson random variable has a wide range of applications in a diverse 
number of areas, as will be seen in Chapter 5. 

An important property of the Poisson random variable is that it may 
be used to approximate a binomial random variable when the binomial 
parameter n is large and p is small. To see this, suppose that X is a 
binomial random variable with parameters (n,p),  and let L = np. Then 

- n! - 
(n - i)!! n 

Now, for n large and p small 

Hence, for n large and p small, 

Example 2.10 Suppose that the number of typographical errors on a 
single page of this book has a Poisson distribution with parameter L = 1. 
Calculate the probability that there is at least one error on this page. 

Solution: 
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Example 2.11 If the number of accidents occurring on a highway 
cach day is a Poisson random variable with parameter A = 3, what is the 
probability that no accidents occur today? 

Solution: 
P [ X  = 0)  = e-3 1: 0.05 + 

Example 2.12 Consider an experiment that consists of counting the 
number of a-particles given off in a one-second interval by one gram of 
radioactive material. If we know from past experience that, on the average, 
3.2 such a-particles are given off, what is a good approximation to the 
probability that no more than 2 a-particles will appear? 

Solution: If we think of the gram of radioactive material as consisting 
of a large number n of atoms each of which has probability 3.2/n of 
disintegrating and sending off an a-particle during the second considered, 
then we see that, to a very close approximation, the number of a-particles 
given off will be a Poisson random variable with parameter A = 3.2. 
Hence the desired probability is 

2.3. Continuous Random Variables 

In this section, we shall concern ourselves with random variables whose set 
of possible values is uncountable. Let X  be such a random variable. We 
say that X  is a continuous random variable if there exists a nonnegative 
function f(x), defined for all real x E (-a, w), having the property that for 
any set B  of real numbers 

P ( X E B ) =  f(x)dx S. (2.6) 

The function f(x) is called the probability density function of the random 
variable X .  

In words, Equation (2.6) states that the probability that X  will be in B  
may be obtained by integrating the probability density function over the set 
B. Since X must assume some value, f(x) must satisfy 

1 = PIX E ( - a ,  w)) = 
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All probability statements about X can be answered in terms of f(x). 
For instance, letting B = [a, b], we obtain from Equation (2.6) that 

P ( a s X s b J =  

If we let a = b in the preceding, then 

In words, this equation states that the probability that a continuous random 
variable will assume any particular value is zero. 

The relationship between the cumulative distribution F(.) and the 
probability density f(-)  is expressed by 

F ( a ) = P { X € ( - - , a ) ) =  

Differentiating both sides of the preceding yields 

That is, the density is the derivative of the cumulative distribution function. 
A somewhat more intuitive interpretation of the density function may be 
obtained from Equation (2.7) as follows: 

when E is small. In other words, the probability that X will be contained in 
an interval of length E around the point a is approximately ef(a). From this, 
we see that f(a) is a measure of how likely it is that the random variable will 
be near a. 

There are several important continuous random variables that appear 
frequently in probability theory. The remainder of this section is devoted to 
a study of certain of these random variables. 

2.3.1. The Uniform Random Variable 

A random variable is said to be uniformly distributed over the interval (0, 1) 
if its probability density function is given by 

O < x < l  
( )  = [ otherwise 
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Note that the preceding is a density function since f(x) r 0 and 

Since f(x) > 0 only when x E (0, I), it follows that X must assume a value 
in (0, 1). Also, since f(x) is constant for x E (0, I), X is just as likely to be 
"near" any value in (0, 1) as any other value. To check this, note that, for 
a n y O < a < b <  1, 

P ( a s X s b ) =  

In other words, the probability that X is in any particular subinterval of 
(0, 1) equals the length of that subinterval. 

In general, we say that X is a uniform random variable on the interval 
(a, p) if its probability density function is given by 

1 
, i f a < x < p  

(2.8) 
otherwise 

Example 2.13 Calculate the cumulative distribution function of a 
random variable uniformly distributed over (a, P). 

Solution: Since F(a) = S"_, f(x) dx, we obtain from Equation (2.8) that 

Example 2.14 If X is uniformly distributed over (0, lo), calculate the 
probability that (a) X < 3, (b) X > 7, (c) 1 < X < 6 .  

Solution: 
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2.3.2. Exponential Random Variables 

A continuous random variable whose probability density function is given, 
for some 1 > 0, by 

is said to be an exponential random variable with parameter 1. These 
random variables will be extensively studied in Chapter 5, so we will content 
ourselves here with just calculating the cumulative distribution function F: 

Note that F(m) = 1; 1e+ dx = 1, as, of course, it must. 

2.3.3. Gamma Random Variables 

A continuous random variable whose density is given by 

for some 1 > 0, a > 0 is said to be a gamma random variable with 
parameters a ,  A. The quantity T(a) is called the gamma function and is 
defined by 

dx 

It is easy to show by induction that for integral a, say cr = n, 

2.3.4. Normal Random Variables 

We say that X is a normal random variable (or simply that X is normally 
distributed) with parameters p and a2 if the density of X is given by 

This density function is a bell-shaped curve that is symmetric around p 
(see Figure 2.2). 
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Figure 2.2. Normal density function. 

An important fact about normal random variables is that if X is normally 
distributed with parameters p and C? then Y = orX + /3 is normally 
distributed with parameters ap + /3 and a2a2. To prove this, suppose first 
that a > 0 and note that Fy(.)* the cumulative distribution function of the 
random variable Y is given by 

= P  XI- [ "27 

where the last equality is obtained by the change in variables v = ax + 8. 
However, since Fy(a) = Sa_, fy (v)  dv,  it follows from Equation (2.9) that 
the probability density function f,(.) is given by 

* When there is more than one random variable under consideration, we shall denote the 
cumulative distribution function of a random variable Z by F,(.). Similarly, we shall denote the 
density of Z by f,..). 
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Hence, Y is normally distributed with parameters up + /3 and ( a ~ ) ~ .  
A similar result is also true when a < 0. 

One implication of the preceding result is that if X is normally distributed 
with parameters p and o2 then Y = ( X  - p ) / a  is normally distributed with 
parameters 0 and 1. Such a random variable Y is said to have the standard 
or unit normal distribution. 

2.4. Expectation of a Random Variable 

2.4.1. The Discrete Case 

I f  X  is a discrete random variable having a probability mass function p(x), 
then the expected value of X is defined by 

In other words, the expected value of X  is a weighted average of the 
possible values that X can take on, each value being weighted by the 
probability that X assumes that value. For example, if the probability mass 
function of X  is given by 

~ ( 1 )  = t = ~ ( 2 )  
then 

ax1 = + 2 ( t )  = t 
is just an ordinary average of the two possible values 1 and 2 that X  can 
assume. On the other hand, if 

then 

is a weighted average of the two possible values 1 and 2 where the value 2 
is given twice as much weight as the value 1 since p(2) = 2p(l).  

Example 2.15 Find E [ X ]  where X is the outcome when we roll a 
fair die. 

Solution: Since p(1) = p(2) = p(3) = p(4) = p(5) = p(6) = *, we obtain 

E [ X ]  = I (* )  + 2(&) + 3(*) + 4(*) + 5(*) + 6(*) = 3 + 
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Example 2.16 (Expectation of a Bernoulli Random Variable): Calculate 
/ :[XI when X is a Bernoulli random variable with parameter p. 

Solution: Since p(0) = 1 - p ,  p(1) = p, we have 

E [XI = O(1 - p) + I (p) = p 

Thus, the expected number of successes in a single trial is just the 
probability that the trial will be a success. + 

Example 2.17 (Expectation of a Binomial Random Variable): Calculate 
E [ X ]  when X is binomially distributed with parameters n and p. 

Solution: 
n 

E [ X ]  = C ip(i) 
i = 0 

where the second from the last equality follows by letting k = i - 1. 
Thus, the expected number of successes in n independent trials is n 
multiplied by the probability that a trial results in a success. + 

Example 2.1 8 (Expectation of a Geometric Random Variable): Calcu- 
late the expectation of a geometric random variable having parameterp. 
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Solution: By Equation (2.4), we have 
m 

E  [XI = C np(1 - p)"-' 
n = l  

m 

= p C nqn-' 
n = l  

where q = 1 - p, 

In words, the expected number of independent trials we need to perform 
until we attain our first success equals the reciprocal of the probability 
that any one trial results in a success. + 

Example 2.1 9 (Expectation of a Poisson Random Variable): Calculate 
E [ X ]  if X  is a Poisson random variable with parameter A. 

Solution: From Equation (2.5), we have 

= Ae-'eX 

= A 

where we have used the identity CF,, l k / k !  = e" + 
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2.4.2. The Continuous Case 

We may also define the expected value of a continuous random variable. 
I'his is done as follows. If X is a continuous random variable having a 
probability density function f(x), then the expected value of X is defined by 

Example 2.20 (Expectation of a Uniform Random Variable): Calculate 
I tie expectation of a random variable uniformly distributed over (a, P). 

Solution: From Equation (2.8) we have 

In other words, the expected value of a random variable uniformly 
distributed over the interval (a, /3) is just the midpoint of the interval. + 

Example 2.21 (Expectation of an Exponential Random Variable): Let 
X be exponentially distributed with parameter A. Calculate E [XI. 

Solution: 

E [XI = x ~ e - ~  dx 

lntegrating by parts yields 
So 

OD (0 

E [ X ]  = -xe-klo + 1 e-hdx 
0 

Example 2.22 (Expectation of a Normal Random Variable): Calculate 
/:'[XI when X is normally distributed with parameters ,u and a2. 
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Solution: 

Writing x as (x - p) + p yields 

Letting y = x - p leads to 

where f(x) is the normal density. By symmetry, the first integral must be 
0, and so 

2.4.3. Expectation of a Function of a Random Variable 

Suppose now that we are given a random variable X and its probability 
. distribution (that is, its probability mass function in the discrete case or its 

probability density function in the continuous case). Suppose also that we 
are interested in calculating, not the expected value of X, but the expected 
value of some function of X,  say, g(X). How do we go about doing this? 
One way is as follows. Since g(X) is itself a random variable, it must have 
a probability distribution, which should be computable from a knowledge 
of the distribution of X. Once we have obtained the distribution of g(X), we 
can then compute E[g(X)] by the definition of the expectation. 

Example 2.23 Suppose X has the following probability mass function: 

p(0) = 0.2, p(1) = 0.5, p(2) = 0.3 

Calculate E [x2]. 

Solution: Letting Y = x 2 ,  we have that Y is a random variable that 
can take on one of the values 02, 12, 22 with respective probabilities 
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py(0) = P(Y = 02) = 0.2, 

py(l)  = P(Y = 1') = 0.5, 

py(4) = P(Y = 2*) = 0.3 

Hence, 

E[x~] = E[Y] = O(0.2) + l(0.5) + 4(0.3) = 1.7 

Note that 

1.7 = E[x~] # ( ~ 1 x 1 ) ~  = 1.21 + 
Example 2.24 Let X be uniformly distributed over (0, 1). Calculate 
11x31. 

Solution: Letting Y = x 3 ,  we calculate the distribution of Y as follows. 
1 ; o r O s a s  1, 

Fy(a) = P(Y a a) 

where the last equality follows since X is uniformly distributed over 
(0, 1). By differentiating Fy(a), we obtain the density of Y, namely, 

Hence, 
m 

E [ x ~ ] = E [ Y ] =  

While the foregoing procedure will, in theory, always enable us to compute 
the expectation of any function of X from a knowledge of the distribution of 
X ,  there is, fortunately, an easier way to do this. The following proposition 
shows how we can calculate the expectation of g(X) without first determining 
its distribution. 
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Proposition 2.1 (a) If X is a discrete random variable with probability 
mass function p(x), then for any real-valued function g, 

(b) If X is a continuous random variable with probability density function 
f(x),  then for any real-valued function g, 

-w 

Example 2.25 Applying the proposition to Example 2.23 yields 

E[x'] = e ( 0 . 2 )  + (12)(0.5) + (22)(0.3) = 1.7 

which, of course, checks with the result derived in Example 2.23. + 
Example 2.26 Applying the proposition to Example 2.24 yields 

A simple corollary of Proposition 2.1 is the following. 

Corollary 2.2 If a and b are constants, then 

E [ a x  + b] = aE [XI + b 

Proof In the discrete case, 

E[aX + b] = (ax + b)p(x) 
x : p ( x )  > 0 

= a C XP(X) + b C P(X) 
x : p ( x )  > 0 x: p (x )  > 0 

= aE [XI + b 
In the continuous case, 

m 

E [ a x  + b] = (ax + b )  f (x) dx S-w m 

w 

= U S  --OD x f ( x ) d x + b !  - 00 f (x)dx 

= aE [XI + b 4 
The expected value of a random variable X, E [XI, is also referred to as the 
mean or the first moment of X. The quantity E [ X n ] ,  n r 1 ,  is called the nth 
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rtioment of X. By Proposition 2.1, we note that 

C xnp(x), if X is discrete 
x: p(x) > 0 

E[Xn] = 

xnf(x) dx, if X is continuous 
-m 

Another quantity of interest is the variance of a random variable X, 
denoted by Var(X), which is defined by 

Var(X) = E [(X - E [x])~] 

Thus, the variance of X measures the expected square of the deviation of X 
from its expected value. 

Example 2.27 (Variance of the Normal Random Variable): Let X be 
normally distributed with parameters p and 2. Find Var(X). 

Solution: Recalling (see Example 2.22) that E[X] = p, we have that 

Var(X) = E[(X - p)2] 

Substituting y = (x - p)/o yields 

We now employ an identity that can be found in many integration tables, 
namely, j> y2e-y2/2 dy = a. Hence, 

Another derivation of Var(X) will be given in Example 2.42. + 
Suppose that X is continuous with density f, and let E[X] = p. Then, 
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A similar proof holds in the discrete case, and so we obtain the useful 
identity 

Var(X) = E [x2]  - (E[x])~ 

Example 2.28 Calculate Var(X) when X represents the outcome when 
a fair die is rolled. 

Solution: As previously noted in Example 2.15, E [XI = I. Also, 

E[x2]  = I(+) + 22(i) + 32(i) + 42(i) + 52(i5) + 62(i) = (i)(91) 

Hence, 
2 - "  + Var(X) = - ($1 - l2  

2.5. Jointly Distributed Random Variables 

2.5.1. Joint Distribution Functions 

Thus far, we have concerned ourselves with the probability distribution of 
a single random variable. However, we are often interested in probability 
statements concerning two or more random variables. To deal with such 
probabilities, we define, for any two random variables X and Y, the joint 
cumulative probability distribution function of X and Y by 

The distribution of X can be obtained from the joint distribution of X and 
Y as follows: 

Fx (a) = P[X 5 a) 

Similarly, the cumulative distribution function of Y is given by 

In the case where X and Y are both discrete random variables, it is 
convenient to define the joint probability mass function of X and Y by 
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The probability mass function of X may be obtained from p(x, y)  by 

Similarly, 

We say that X and Y are jointly continuous if there exists a function 
.f(x, y), defined for all real x and y ,  having the property that for all sets A 
and B of real numbers 

The function f(x, y)  is called the jointprobability density function of X and 
Y. The probability density of X can be obtained from a knowledge of 

.f(x, y)  by the following reasoning: 

P ( X E A ]  = P ( X E A ,  Y E  ( -a ,  a)) 

where 

is thus the probability density function o f  X .  Similarly, the probability 
density function of Y is given by 

A variation of Proposition 2.1 states that if X and Y are random 
variables and g is a function of two variables, then 

E[g(X, Y)] = C C g(x, Y)P(x, Y )  in the discrete case 
Y x 

= 1: j: g(x, y )  f(x, y)  dx dy in the continuous case 
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For example, if g(X, Y) = X + Y, then, in the continuous case, 

The same result holds in the discrete case and, combined with the corollary 
in Section 2.4.3, yields that for any constants a, b 

Joint probability distributions may also be defined for n random 
variables. The details are exactly the same as when n = 2 and are left 
as an exercise. The corresponding result to Equation (2.10) states that 
if XI ,  X,, . . . , X,, are n random variables, then for any n constants 
a1,a29 ---,  a,,, 

E[alXl + a2X2 + + anXn] 

= a,E[X,] + a2E[X2] + ... + anE[X,,] (2.1 1) 

Example 2.29 Calculate the expected sum obtained when three fair dice 
are rolled. 

Solution: Let X denote the sum obtained. Then X = XI + X2 + X, 
where Xi represents the value of the ith die. Thus, 

Example 2.30 As another example of the usefulness of Equation 
(2.1 I), let us use it to obtain the expectation of a binomial random variable 
having parameters n and p. Recalling that such a random variable X 
represents the number of successes in n trials when each trial has probability 
p of being a success, we have that 

x= XI + x, + ... + x,, 
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1, if the ith trial is a success xi = 
0, if the ith trial is a failure 

I icnce, Xi is a Bernoulli random variable having expectation E[Xi]  = 
I(/>) + O(1 - p) = p. Thus, 

'I'his derivation should be compared with the one presented in Example 
2.17. + 
Example 2.31 At a party N men throw their hats into the center of a 
room. The hats are mixed up and each man randomly selects one. Find the 
cxpected number of men that select their own hats. 

Solution: Letting X denote the number of men that select their own 
hats, we can best compute E [ X ]  by noting that 

where 

if the ith man selects his own hat 
0, otherwise 

Now, as the ith man is equally likely to select any of the N hats, it follows 
that 

1 
P{Xi  = 1) = P(ith man selects his own hat] = - 

N 
and so 

Hence, from Equation (2.11) we obtain that 

Hence, no matter how many people are at the party, on the average 
exactly one of the men will select his own hat. + 

Example 2.32 Suppose there are 25 different types of coupons and 
*uppose that each time one obtains a coupon, it is equally likely to be any 
one of the 25 types. Compute the expected number of different types that 
:ire contained in a set of 10 coupons. 
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Solution: Let X denote the number of different types in the set of 10 
coupons. We compute E[X] by using the representation 

x =  XI + + x*, 
where 

1, if at least one type i coupon is in the set of 10 
0, otherwise 

Now, 
E[Xi] = P(Xi = 1) 

= P(at  least one type i coupon is in the set of 10) 

= 1 - P(no type i coupons are in the set of 10) 

= 1 - (%)lo 

when the last equality follows since each of the 10 coupons will 
(independently) not be a type i with probability g. Hence, 

2.5.2. Independent Random Variables 

The random variables X and Y are said to be independent if, for all a, b, 

In other words, X and Y are independent if, for all a and b, the events 
E, = (X I a) and Fb = (Y I b) are independent. 

In terms of the joint distribution function F of X and Y, we have that X 
and Y are independent if 

F(a, b) = Fx(a)Fy(b) for all a, b 

When X and Y are discrete, the condition of independence reduces to 

P(X, Y) = PX (X~PY (Y) (2.13) 

while if X and Y are jointly continuous, independence reduces to 

f(x, Y )  = fx(x)f~(Y) (2.14) 

To prove this statement, consider first the discrete version, and suppose 
that the joint probability mass function p(x, y) satisfies Equation (2.13). 
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Then 
P(X5 a, YI  b] = p(x,y) 

y s b  x s a  

= C C PX(X)PY(Y) 
y s b  x s a  

= C PY(Y) C px(x) 
Y S ~  x s a  

= P[Y I b]P(X I a) 

and so X and Y are independent. That Equation (2.14) implies independence 
in the continuous case is proven in the same manner, and is left as an exercise. 

An important result concerning independence is the following. 

Proposition 2.3 If X and Y are independent, then for any functions h 
and g 

E [~(X)h(Y)I = E k(X)IE[h(Y)I 

Proof Suppose that X and Y are jointly continuous. Then 

E[g(X)h(Y)I = 1: 1- g(x)h(ylf(x, Y) dx dy 
-OD 

= j; 1- g(x)h(u)fx (xlfy (Y) dx dy 
-OD 

m 

-m -m 

The proof in the discrete case is similar. + 
2.5.3. Covariance and Variance of Sums of Random Variables 

The covariance of any two random variables X and Y, denoted by 
Cov(X, Y), is defined by 

COV(X, Y) = E [(X - E [X])(Y - E [Y])] 

= E[XY - YE[X] - XE[Y] + E[X]E[Y]] 

= E[XY] - E[Y]E[X] - E[X]E[Y] + E[X]E[Y] 

= E[XY] - E[X]E[Y] 

Note that if X and Y are independent, then by Proposition 2.3 it follows 
that Cov(X, Y) = 0. 
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Let us consider now the special case where X and Y are indicator 
variables for whether or not the events A and B occur. That is, for events 
A and B, define 

1, if A occurs 
x =  

1, if B occurs 
0, otherwise ' Y =  

0, otherwise 
Then, 

COV(X, Y) = E[XY] - E[X]E[Y] 

and, as XY will equal 1 or 0 depending on whether or not both X and Y 
equal 1, we see that 

From this we see that 

That is, the covariance of X and Y is positive if the outcome X = 1 makes 
it more likely that Y = 1 (which, as is easily seen by symmetry, also implies 
the reverse). 

In general it can be shown that a positive value of Cov(X, Y) is an 
indication that Y tends to increase as X does, whereas a negative value 
indicates that Y tends to decrease as X increases. 

The following are important properties of covariance. 

Properties of Covariance 

For any random variables X, Y, Z and constant c, 

1. Cov(X, X)  = Var(X), 
2. Cov(X, Y) = Cov(Y, X), 
3. Cov(cX, Y) = c Cov(X, Y), 
4. Cov(X, Y + 2) = Cov(X, Y) + Cov(X, 2). 

Whereas the first three properties are immediate, the final one is easily 
proven as follows: 

Cov(X, Y + Z) = E[X(Y + Z)] - E[X]E[Y + Z] 

= E[XY] - E[X]E[Y] + E[XZ] - E[X]E[Z] 
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' f l ~e  fourth property listed easily generalizes to give the following result: 

A useful expression for the variance of the random variables can be 
obtained from Equation (2.15) as follows: 

Var C Xi = Cov C Xi, 
( 1 )  (i:l j = l  

I I' Xi, i = 1, . . . , n are independent random variables, then Equation (2.16) 
reduces to 

Var C Xi = C Var(Xi) 
i ) i:1 

Definition 2.1 If XI ,  . . . , Xn are independent and identically distributed 
then the random variable 8 = C:=, Xi/n is called the sample mean. 

The following proposition shows that the covariance between the sample 
mean and a deviation from that sample mean is zero. It will be needed in 
Section 2.6.1. 

Proposition 2.4 Suppose that XI ,  . . . , Xn are independent and identi- 
cally distributed with expected value p and variance 02. Then, 

(a) E[XI-= P .  
(b) Var(X) = 02/n. 
(c) C Q V ( ~ , X ~ - ~ > : O ,  i = l ,  ..., n. 

Proof Parts (a) and (b) are easily established as follows: 

1 rn 
E[Z] = - C E[Xi] = p 

n i = 1  
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To establish part (c) we reason as follows: 

where the final equality used the fact that Xi and E j g i  Xj are independent 
and thus have covariance 0. + 

Equation (2.16) is often useful when computing variances. 

Example 2.33 (Variance of a Binomial Random Variable): Compute 
the variance of a binomial random variable X with parameters n and p. 

Solution: Since such a random variable represents the number of 
successes in n independent trials when each trial has a common prob- 
ability p of being a success, we may write 

where the Xi are independent Bernoulli random variables such that 

xi = 1, if the ith trial is a success 
0, otherwise 

Hence, from Equation (2.16) we obtain 

Var(X) = Var(X,) + + Var(X,) 
But 

Var(Xi) = E[x,'] - (E[x,])~ 

= E[Xi] - (E[x~])~ since x,' = Xi 

= p - p 2  

and thus 
Var(X) = np(1 - P) 
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Example 2.34 (Sampling from a Finite Population: The Hypergeo- 
nwtric): Consider a population of N individuals, some of whom are in favor 
ol a certain proposition. In particular suppose that Np of them are in favor 
,111d N - Np are opposed, where p is assumed to be unknown, We are 
~tr~erested in estimating p, the fraction of the population that is for the 
111 oposition, by randomly choosing and then determining the positions of n 
rnembers of the population. 

In such situations as described in the preceding, it is common to use the 
I raction of the sampled population that is in favor of the proposition as an 
estimator of p. Hence, if we let 

1, if the ith person chosen is in favor xi = 
0, otherwise 

then the usual estimator of p is , Xi/n. Let us now compute its mean 
and variance. Now 

where the final equality follows since the ith person chosen is equally likely 
ro be any of the N individuals in the population and so has probability 
N p / N  of being in favor. 

Now, since Xi is a Bernoulli random variable with mean p ,  it follows that 

Var(Xi) = p(1 - p) 
Also, for i # j ,  

where the last equality follows since if the ith person to be chosen is in 
favor, then the jth person chosen is equally likely to be any of the other 
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N - 1 of which Np - 1 are in'favor. Thus, we see that 

and so the mean and variance of our estimator are given by 

Some remarks are in order: As the mean of the estimator is the unknown 
valuep, we would like its variance to be as small as possible (why is this?), 
and we see by the preceding that, as a function of the population size N, the 
variance increases as N increases. The limiting value, as N -, 00, of the 
variance is p(l - p)/n, which is not surprising since for N large each of the 
Xi will be (approximately) independent random variables, and thus C: Xi 
will have an (approximately) binomial distribution with parameters n 
and p. 

The random variable C: Xi can be thought of as representing the number 
of white balls obtained when n balls are randomly selected from a 
population consisting of Np white and N - Np black balls. (Identify a 
person who favors the proposition with a white ball and one against with a 
black ball.) Such a random variable is called hypergeometric and has a 
probability mass function given by 

It is often important to be able to calculate the distribution of X + Y from 
thedistributionsof X and Y when X and Y areindependent. Suppose first that 
X and Y are continuous, X having probability density f and Y having 
probability density g. Then, letting F,+,(a) be the cumulative distribution 
function of X + Y, we have 
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The cumulative distribution function FX+y is called the convolution of the 
distributions Fx and Fy (the cumulative distribution functions of X and Y, 
respectively). 

By differentiating Equation (2.17), we obtain that the probability density 
function fx+y(a) of X + Y is given by 

Example 2.35 (Sum of Two Independent Uniform Random Variables): 
If X and Y are independent random variables both uniformly distributed 
on (0, I), then calculate the probability density of X + Y. 

Solution: From Equation (2.18), since 

we obtain 
r l  

For 0 s a I 1, this yields 

fx+r(a) = dy = a t 
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For 1 < a < 2, we get 

Hence, 
O s a s l  

fx+r (~)  = 2 - a, 1 < a < 2 [ 1 : otherwise 4 

Rather than deriving a general expression for the distribution of X + Y 
in the discrete case, we shall consider an example. 

Example 2.36 (Sums of Independent Poisson Random Variables): Let 
X and Y be independent Poisson random variables with respective means 
1, and A,. Calculate the distribution of X + Y. 

Solution: Since the event [ X  + Y = n) may be written as the union of 
the disjoint events ( X  = k, Y = n - k), 0 s k s n, we have 

~ n - k  
= - 1  3 -  2 

k10 k! (n -k ) !  

= e - ( X ~ + A 3  

k = O  k!(n - k)! 
e - ( X ~ + A 3  n 

-- C 
n! - 

n! ,=,  k!(n - k)! 
n:A;-k 

In words, Xl + X, has a Poisson distribution with mean 1, + A,. 4 

The concept of independence may, of course, be defined for more than 
two random variables. In general, the n random variables X I ,  X, , . . . , Xn 
are said to be independent if, for all values a , ,  a2, ..., a,, 

PIXl I a I , X 2  s a,, ..., X, I a,] 

= PIXl I a,)P(X2 l a , )  - - .  P(Xn I a,) 
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Example 2.37 Let XI ,  . . . , Xn be independent and identically distributed 
continuous random variables with probability distribution F and density 
function F' = f. If we let XCi) denote the ith smallest of these random 
variables, then X(,) , . . . , X(n) are called the order statistics. To obtain the 
distribution of X(,, , note that X(i, will be less than or equal to x if and only 
if at least i of the n random variables X,, . . . , Xn are less than or equal to x. 
Hence, 

Differentiation yields that the density function of X(i, is as follows: 

The preceding density is quite intuitive, since in order for Xci, to equal x, 
i - 1 of the n values XI ,  . . . , Xn must be less than x ;  n - i of them must be 
greater than x; and one must be equal to x. Now, the probability density 
that every member of a specified set of i - 1 of the Xj is less than x, every 
member of another specified set of n - i is greater than x, and the remaining 
value is equal to x is (F(x))'-'(1 - F(x))"-'f(x). Therefore, since there are 
n!/[(i - l)! (n - i)!] different partitions of the n random variables into the 
three groups, we obtain the preceding density function. + 
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2.5.4. Joint Probability Distribution of Functions of 
Random Variables 

Let XI and X2 be jointly continuous random variables with joint probability 
density function f(x,, x2). It is sometimes necessary to obtain the joint 
distribution of the random variables Y, and Y, which arise as functions of 
XI and X 2 .  Specifically, suppose that Y,  = g,(X, , X2) and Y, = g2(X1, X2) 
for some functions g, and g2. 

Assume that the functions g, and g2 satisfy the following conditions. 

1. The equations y, = g,(x, , x2) and y2 = g2(x,, x2) can be uniquely 
solved for x, and x2 in terms of y, and y2 with solutions given by, say, 
XI = hl(Y1, Y,), x2 = h2(~,9 ~2). 

2. The functions g, and g2 have continuous partial derivatives at all 
points (x,, x2) and are such that the following 2 x 2 determinant 

at all points (x, , xz). 

Under these two conditions it can be shown that the random variables Y,  
and Y ,  are jointly continuous with joint density function given by 

where XI = h,(Y, 9 Y,), x2 = h2(Y, , ~2). 
A proof of Equation (2.19) would proceed along the following lines: 

The joint density function can now be obtained by differentiating Equation 
(2.20) with respect to y, and y2. That the result of this differentiation will 
be equal to the right-hand side of Equation (2.19) is an exercise in advanced 
calculus whose proof will not be presented in the present text. 

Example 2.38 If X and Y are independent gamma random variables 
with parameters (a, A) and (p,  A), respectively, compute the joint density of 
U = X + Y and V = X/(X + Y). 
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Solution: The joint density of X and Y is given by 

Now, if gl(x, y) = x + y, g2(x, y) = X/(X + y), then 

and so 

Finally, because the equations u = x + y, v = x/(x + y) have as their 
solutions x = uv, y = u(1 - v), we see that 

fu, v(u, v> = fx, r [uv, ~ ( 1  - v)Iu 

Hence X + Y and X/(X + Y) are independent, with X + Y having a 
gamma distribution with parameters (a + P, 1)  and X/(X + Y) having 
density function 

This is called the beta density with parameters (a, /3). 
The above result is quite interesting. For suppose there are n + m jobs 

to be performed, with each (independently) taking an exponential 
amount of time with rate A for performance, and suppose that we have 
two workers to perform these jobs. Worker I will do jobs 1,2, . . . , n, and 
worker I1 will do the remaining m jobs. If we let X and Y denote the total 
working times of workers I and 11, respectively, then upon using the 
above result it follows that X and Y will be independent gamma random 
variables having parameters (n, 1) and (m, A), respectively. Then the 
above result yields that independently of the working time needed to com- 
plete all n + m jobs (that is, of X + Y), the proportion of this work that 
will be performed by worker I has a beta distribution with parameters 

+ 
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When the joint density function of the n random variables XI ,  X,, 
..., X, is given and we want to compute the joint density function of 
&, &, ..., Y,, where 

the approach is the same. Namely, we assume that the functions gi 
have continuous partial derivatives and that the Jacobian determinant 
J(xl , . .., x,) # 0 at all points (x,, ..., x,), where 

Furthermore, we suppose that the equations yl = gl(x,, . . . , x,), y2 = 
g2(x1, . . . , x,), . . . , y,, = g,(x,, . . ., x,) have a unique solution, say, xl = 
hl(yl, ..., y,), .. ., x, = h,(y,, .. ., y,). Under these assumptions the joint 
density function of the random variables is given by 

where xi = hi(yl, .. . , y,), i = 1,2, .. ., n. 

2.6. Moment Generating Functions 

The moment generating function 4(t) of the random variable X is defined 
for all values t by 

if X is discrete 

etxf(x) dx, if X is continuous 
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We call $(t) the moment generating function because all of the moments of 
X can be obtained by successively differentiating r$(t). For example, 

Hence, 

Similarly, 

and so 

In general, the nth derivative of +(t) evaluated at t = 0 equals E[Xn], 
that is, 

dn(0) = E [Xn], n 2 1 

We now compute d(t) for some common distributions. 

Example 2.39 (The Binomial Distribution with Parameters n and p): 

9(t) = E[em1 
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Hence, 
4'(t) = n@et + 1 - p)"-'pet 

and so 
E[X] = d'(0) = np 

which checks with the result obtained in Example 2.17. Differentiating a 
second time yields 

and so 
E[x2]  = 4"(O) = n(n - l)p2 + np 

Thus, the variance of X is given 

Var(X) = E [x2]  - (E[x])~ 

= n(n - l)p2 + np - n2p2 

= np(l - p )  + 
Example 2.40 (The Poisson Distribution with Mean A): 

$40 = E[eal 

-A Xe' = e  e 

= exp(A(et - 1)) 
Differentiation yields 

dr(t) = Aetexp(A(et - I)), 

d"(t) = exp(A(et - 1)) + Aetexp(A(et - 1)) 
and so 

E[X] = 4'(0) = A, 

E[x~] = q5"(O) = A2 +A,  

Var(X) = E[x2]  - (E[x])~ 

= A 

Thus, both the mean and the variance of the Poisson equal A. + 
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Example 2.41 (The Exponential Distribution with Parameter A):  

We note by the preceding derivation that, for the exponential distribution, 
+ ( t )  is only defined for values of t  less than I .  Differentiation of +( t )  yields 

Hence, 

The variance of X is thus given by 

Example 2.42 (The Normal Distribution with Parameters p  and a2): 

+( t )  = E[etY1 

Now writing 

= ( X  - ( p  + 02t))2 - 04t2 - 2pa2t 
we have 

1 
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However, 

where X is a normally distributed random variable having parameters 
ji = p + d t  and ii2 = d .  Thus, we have shown that 

4( t )  = exp - + pt [T2 1 
By differentiating we obtain 

4' ( t )  = ( p  + t d )  exp - + pt IT 1 
9"( t )  = ( P  + t d 2  exp 1 - + pt + 2 exp 1 - + pt 

and so 

ax1 = 4'(0) = p, 

E [ x ~ ]  = +"(O) = p2 + d 
implying that 

Var(X) = E [x2] - E ( [ x ] ) ~  

Tables 2.1 and 2.2 give the moment generating function for some 
common distributions. 

An important property of moment generating functions is that the < moment generating function of the sum of independent random variables is 

just theproduct of the individual moment generating functions. To see this, 
suppose that X and Y are independent and have moment generating 
functions &(t) and 4,( t) ,  respectively. Then 4,+,(t), the moment 
generating function of X + Y, is given by 
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Table 2.1 

Discrete probability Probability mass Moment generating 
distribution function, p(x) function, &(I) Mean Variance 

Binomial with 
parameters n, p 
O s p s l  x = 0, 1, ..., n 

Poisson with 1" e-x 
parameter exp[l(ef - 1)) 

x!' 
1 1 

1 > 0  x = 0,1,2,  ... 

Geometric with p(1 - P ) ~ - ~ .  Pet 1 - - 1 - P  
parameter 0 s p s 1 x = 1,2, ... 1 - (1 - p)ef P pZ 

where the next to the last equality follows from Proposition 2.3 since X and 
Y are independent. 

Another important result is that the moment generating function uniquely 
determines the distribution. That is, there exists a one-to-one correspondence 
between the moment generating function and the distribution function of a 
random variable. 

Table 2.2 

Continuous Moment 
probability Probability density generating 
distribution function, f(x) function, &(t) Mean Variance 

Uniform over 1 etb - eta a + b (b - a)' 
a < x < b  -- 

(a, b) b - a '  t(b - a) 2 12 

otherwise 

Exponential with .x) = x >  o L 1 - - 1 - 
parameter 1 > 0 x < O  1 - t 1 ,Iz 

Gamma with e ( )  n - 
parameters (n, 1)  f (x)  = L~ 
1 > 0  

Normal with 1 .  
parameters f (XI = - a. - 
(I(* 2) - m < x < w  
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Example 2.43 Suppose the moment generating function of a random 
variable X is given by +(t) = e3(er-1). What is P(X = O)? 

Solution: We see from Table 2.1 that +(t) = e3(er-1) is the moment 
generating function of a Poisson random variable with mean 3. Hence, 
by the one-to-one correspondence between moment generating functions 
and distribution functions, it follows that X must be a Poisson random 
variable with mean 3. Thus, P(X = 0) = e-3. + 

Example 2.44 (Sums of Independent Binomial Random Variables): 
If X and Y are independent binomial random variables with parameters 
(n,p) and (m,p), respectively, then what is the distribution of X + Y? 

Solution: The moment generating function of X + Y is given by 

But (pet + (1 - P ) ) ~ + "  is just the moment generating function of a 
binomial random variable having parameters m + n and p. Thus, this 
must be the distribution of X + Y. + 

Example 2.45 (Sums of Independent Poisson Random Variables): 
Calculate the distribution of X + Y when X and Y are independent Poisson 
random variables with means A, and A,, respectively. 

Solution: 
+x+y(t) = +x(f)+y(f) 

- - eAl(er- 1) e A2(er-1) 

Hence, X + Y is Poisson distributed with mean A, + A2, verifying the 
result given in Example 2.36. + 

Example 2.46 (Sums of Independent Normal Random Variables): 
Show that if X and Y are independent normal random variables with 
parameters (p ly  of) and (p,, a:), respectively, then X + Y is normal with 
mean p1 + p2 and variance 4 + 4. 
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Solution: 

= exp + P , t j  exp + p 2 t j  

which is the moment generating function of a normal random variable with 
mean p1 + p2 and variance a: + &. Hence, the result follows since the 
moment generating function uniquely determines the distribution. 

It is also possible to define the joint moment generating function of two 
or more random variables. This is done as follows. For any n random 
variables X I ,  ..., Xn,  the joint moment generating function, b,(t,, ..., t,), 
is defined for all real values of t,, . . ., t, by 

It can be shown that +(t,, . . . , t,) uniquely determines the joint distribution 
of X I ,  ..., X,. 

Example 2.47 (The Multivariate Normal Distribution): Let Z, , . . . , Z, 
be a set of n independent unit normal random variables. If, for some 
constantsau, 1 s is m, 1 s j s  n, andp, ,  1s i s  m, 

XI  = al lZl  + + al,Zn + p , ,  

X2 = azlZl + + a2,Z, + p 2 ,  

then the random variables XI, . . . , X, are said to have a multivariate 
normal distribution. 

It follows from the fact that the sum of independent normal random 
variables is itself a normal random variable that each Xi is a normal random 
variable with mean and variance given by 

EWiI = Pi, 
n 

Var(Xi) = C a$ 
j =  1 
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Let us now determine 

the joint moment generating function of XI, . . . , Xm . The first thing to note 
is that since Cy= tiXi is itself a linear combination of the independent 
normal random variables Z, , . . . , Z,, it is also normally distributed. Its 
mean and variance are respectively 

and 
m 

Var 1 tiXi = Cov C t ix i ,  C 
i ) (i:l j = l  

Now, if Y is a normal random variable with mean p and variance a2, then 

- e"+u=/2 a e Y 1  = 4y(t)l*=, - 
Thus, we see that 

m m 

+(tl, . . . , tm) = exp tipi + 3 C C titj Cov(Xi, Xj) 
i =  1 i =  1 j= 1 I 

which shows that the joint distribution of XI, ..., Xm is completely 
determined from a knowledge of the values of E[Xi ]  and Cov(Xi, Xj), 
i , j = l ,  ..., m. + 

2.6.1. The Joint Distribution of the Sample Mean and 
Sample Variance from a Normal Population 

Let XI ,  . . . , X,, be independent and identically distributed random variables, 
each with mean p and variance 02. The random variable S' defined by 

is called the sample variance of these data. To compute E [s2] we use the 
identity 
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which is proven as follows: 

n 

= C (Xi - ,u12 + n(p - X12 + 2(p - X)(nX - np) 
i =  1 

and identity (2.21) follows. 
Using identity (2.21) gives 

n 

E[(n - 1)s2] = C E[(Xi - p)?] - nE[(Z - P ) ~ ]  
i =  1 

= (n  - 1)02 from Proposition 2.4(b) 

Thus, we obtain from the preceding that 

We will now determine the joint distribution of the sample mean 
X = I;= Xi /n  and the sample variance s2 when the Xi have a normal 
distribution. To begin we need the concept of a chi-squared random variable. 

Definition 2.2 If Z, , . . . , Zn are independent standard normal random 
variables, then the random variable C y = ,  2: is said to be a chi-squared 
random variable with n degrees of freedom. 

We shall now compute the moment generating function of Cy=, 2;. TO 
begin, note that 

1 " = e -x2'2a2 dx where a2  = ( 1  - 2t)-' 
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Hence, 

E exp t 2; = n ~ [ e x p ( t ~ ; ] ]  = (1 - 2t)-"I2 [ I i:1 11 i:l 

Now, let X, , . . . , Xn be independent normal random variables, each with 
mean p and variance a2,  and let = C7=, Xi/n and s2 denote their sample 
mean and sample variance. Since the sum of independent normal random 
variables is also a normal random variable, it follows that 8 is a normal 
random variable with expected value p and variance a2/n. In addition, 
from Proposition 2.4, 

Also, since z ,  X, - x ,  X, - x, . . . , Xn - x are all linear combinations of 
the independent standard normal random variables (Xi - p)/a, i = 1, . . . , n, 
it follows that the random variables X, X, - X, X, - 8, . . . , Xn - R have 
a joint distribution that is multivariate normal. However, if we let Y be a 
normal random variable with mean p and variance a2/n that is independent 
of X,, . . ., X,,, then the random variables Y, X, - X, X2 - X, . . . , Xn - 8 
also have a multivariate normal distribution, and by Equation (2.22), 
they have the same expected values and covariances as the random variables 
2 ,  Xi - R, i = 1, . . . , n. Thus, since a multivariate normal distribution is 
completely determined by its expected values and covariances, we can 
conclude that the random vectors Y, X, - 3, X2 - X, ..., Xn - 3 and 
x ,  XI - 2 ,  X2 - x ,  . . . , Xn - x have the same joint distribution; thus 
showing that is independent of the sequence of deviations Xi - x ,  
i = 1, ..., n. 

Since x is independent of the sequence of deviations Xi - x ,  
i = 1, . . . , n, it follows that it is also independent of the sample variance 

To determine the distribution of s 2 ,  use the identity (2.21) to obtain 

Dividing both sides of this equation by a2 yields 
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Now, C:=, (Xi - p12/a2 is the sum of the squares of n independent 
standard normal random variables, and so is a chi-squared random variable 
with n degrees of freedom; it thus has moment generating function 
( 1  - 2t)-"I2. Also [(Z - , ~ ) / ( a / f i ) ] ~  is the square of a standard normal 
random variable and so is a chi-squared random variable with one degree 
of freedom; and thus has moment generating function (1 - 2t)-'I2. 
In addition, we have previously seen that the two random variables on the 
left side of Equation (2.23) are independent. Therefore, because the 
moment generating function of the sum of independent random variables is 
equal to the product of their individual moment generating functions, we 
obtain that 

But as (1 - 2t)-(n-1)'2 is the moment generating function of a chi-squared 
random variable with n - 1 degrees of freedom, we can conclude, since the 
moment generating function uniquely determines the distribution of the 
random variable, that this is the distribution of (n - 1)s2/a2. 

Summing up, we have shown the following. 

Proposition 2.5 If XI, . . . , X, are independent and identically distri- 
buted normal random variables with mean p and variance a2,  then the 
sample mean and the sample variance s2 are independent. x i s  a normal 
random variable with mean ,u and variance a2/n;  (n - 1)s2/a2 is a 
chi-squared random variable with n - 1 degrees of freedom. 

2.7. Limit Theorems 

We start this section by proving a result known as Markov's inequality. 

Proposition 2.6 (Markov's Inequality). If X is a random variable that 
takes only nonnegative values, then for any value a > 0 
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Proof We give a proof for the case where X is continuous with density f: 

and the result is proven. 4 

As a corollary, we obtain the following. 

Proposition 2.7 (Chebyshev's Inequality). If X is a random variable 
with mean p and variance 2, then, for any value k > 0, 

Proof Since (X  - p12 is a nonnegative random variable, we can apply 
Markov's inequality (with a = R) to obtain 

P((X - y)2 r k?) i E[(X  - pl21 
k2 

But since (X - p)2 r k? if and only if IX - yl r k, the preceding is 
equivalent to 

and the proof is complete. + 
The importance of Markov's and Chebyshev's inequalities is that they 

enable us to derive bounds on probabilities when only the mean, or both 
the mean and the variance, of the probability distribution are known. Of 
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course, if the actual distribution were known, then the desired probabilities 
could be exactly computed, and we would not need to resort to bounds. 

Example 2.48 Suppose we know that the number of items produced in 
a factory during a week is a random variable with mean 500. 

(a) What can be said about the probability that this week's production 
will be at least 1000? 
(b) If the variance of a week's production is known to equal 100, then 
what can be said about the probability that this week's production will be 
between 400 and 600? 

Solution: Let X be the number of items that will be produced in 
a week. 

(a) By Markov's inequality, 

(b) By Chebyshev's inequality, 

Hence, 

and so the probability that this week's production will be between 400 
and 600, is at least 0.99. + 
The following theorem, known as the strong law of large numbers, is 

probably the most well-known result in probability theory. It states that 
the average of a sequence of independent random variables having the 
same distribution will, with probability 1, converge to the mean of that 
distribution. 

Theorem 2.1 (Strong Law of Large Numbers). Let XI, X,  , . . . be a 
sequence of independent random variables having a common distribution, 
and let E[Xi]  = p. Then, with probability 1, 
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As an example of the preceding, suppose that a sequence of independent 
trials are performed. Let E be a fixed event and denote by P ( E )  the 
probability that E occurs on any particular trial. Letting 

if E occurs on the ith trial 

0, if E does not occur on the ith trial 

we have by the strong law of large numbers that, with probability 1, 

Since X, -t .-- + Xn represents the number of times that the event E occurs 
in the first n trials, we may interpret Equation (2.24) as stating that, with 
probability 1, the limiting proportion of time that the event E occurs is 
just P ( E ) .  

Running neck and neck with the strong law of large numbers for the 
honor of being probability theory's number one result is the central limit 
theorem. Besides its theoretical interest and importance, this theorem 
provides a simple method for computing approximate probabilities for 
sums of independent random variables. It also explains the remarkable fact 
that the empirical frequencies of so many natural "populations" exhibit a 
bell-shaped (that is, normal) curve. 

Theorem 2.2 (Central Limit Theorem). Let X, , X2, . . . be a sequence 
of independent, identically distributed random variables each with mean p 
and variance 0'. Then the distribution of 

tends to the standard normal as n + oo. That is, 

Note that like the other results of this section, this theorem holds for any 
distribution of the Xi's; herein lies its power. 

If X is binomially distributed with parameters n and p, then X has the 
same distribution as the sum of n independent Bernoulli random variables 
each with parameter p. (Recall that the Bernoulli random variable is just 
a binomial random variable whose parameter n equals 1.) Hence, the 
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distribution of 

X - E [ X ]  X - n p  - - 
diEiQ3 Jnp(1-P)  

approaches the standard normal distribution as n approaches m. The 
normal approximation will, in general, be quite good for values of n 
satisfying np(1 - p) r 10. 

Example 2.49 (Normal Approximation to the Binomial): Let X  be the 
~iurnber of times that a fair coin, flipped 40 times, lands heads. Find the 
probability that X = 20. Use the normal approximation and then compare 
it to the exact solution. 

Solution: Since the binomial is a discrete random variable, and the 
normal a continuous random variable, it leads to a better approximation 
to write the desired probability as 

where @(x), the probability that the standard normal is less than x is 
given by 

By the symmetry of the standard normal distribution 

where N(0, 1) is a standard normal random variable. Hence, the desired 
probability is approximated by 

Using Table 2.3, we obtain that 

P ( X  = 20) = 0.1272 
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The exact result is 

Table 2.3 Area @(x) under the Standard Normal Curve to the Left of x 

which, after some calculation, can be shown to equal 0.1268. 

x 

Example 2.50 Let X i ,  i = l , 2 ,  . . . , 10  be independent random variables, 
each being uniformly distributed over (0, 1). Calculate P(C:' xi > 7) .  

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 
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Solution': Since E[Xi] = 3, Var(Xi) = 3 we have by the central limit 
theorem that 

Example 2.51 The lifetime of a special type of battery is a random 
variable with mean 40 hours and standard deviation 20 hours. A battery is 
used until it fails, at which point it is replaced by a new one. Assuming a 
stockpile of 25 such batteries the lifetimes of which are independent, 
approximate the probability that over 1100 hours of use can be obtained. 

Solution: If we let Xi denote the lifetime of the ith battery to be put in 
use, then we desire p = P(X, + + X,, > 1 loo), which is approximated 
as follows: 

2.8. Stochastic Processes 

A stochasticprocess (X( t ) ,  t E T ]  is a collection of random variables. That is, 
for each t E T, X(t) is a random variable. The index t is often interpreted as 
time and, as a result, we refer to X(t) as the state of the process at time t. For 
example, X(t) might equal the total number of customers that have entered a 
supermarket by time t ;  or the number of customers in the supermarket at 
time t; or the total amount of sales that have been recorded in the market by 
time t; etc. 

The set T is called the index set of the process. When T is a countable set 
the stochastic process is said to be discrete-time process. If T is an interval of 
the real line, the stochastic process is said to be a continuous-time process. For 
instance, (X, , n = 0,1, . . .] is a discrete-time stochastic process indexed by 
the nonnegative integers; while [X(t), t 1 0) is a continuous-time stochastic 
process indexed by the nonnegative real numbers. 
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Figure 2.3. Particle moving around a circle. 

The state space of a stochastic process is defined as the set of all possible 
values that the random variables X(t) can assume. 

Thus, a stochastic process is a family of random variables that describes 
the evolution through time of some (physical) process. We shall see much of 
stochastic processes in the following chapters of this text. 

Example 2.52 Consider a particle that moves along a set of rn + 1 nodes, 
labeled 0, 1, . . . , rn, that are arranged around a circle (see Figure 2.3). 
At each step the particle is equally likely to move one position in either the 
clockwise or counterclockwise direction. That is, if Xn is the position of the 
particle after its nth step then 

where i + 1 E 0 when i = rn, and i - 1 = rn when i = 0. Suppose now that 
the particle starts at 0 and continues to move around according to the 
preceding rules until all the nodes 1,2, . . . , rn have been visited. What is the 
probability that node i, i = 1, . . . , m, is the last one visited? 

Solution: Surprisingly enough, the probability that node i is the last 
node visited can be determined without any computations. To do so, 
consider the first time that the particle is at one of the two neighbors of 
node i, that is, the first time that the particle is at one of the nodes i - 1 
or i + 1 (with m + 1 = 0). Suppose it is at node i - 1 (the argument in 
the alternative situation is identical). Since neither node i nor i + 1 has 
yet been visited, it follows that i will be the last node visited if and only 
if i + 1 is visited before i. This is so because in order to visit i + 1 before 
i the particle will have to visit all the nodes on the counterclockwise path 
from i - 1 to i + 1 before it visits i. But the probability that a particle at 
node i - 1 will visit i + 1 before i is just the probability that a particle 
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will progress m - 1 steps in a specified direction before progressing one 
step in the other direction. That is, it is equal to the probability that a 
gambler who starts with one unit, and wins one when a fair coin turns up 
heads and loses one when it turns up tails, will have his fortune go up by 
rn - 1 before he goes broke. Hence, because the preceding implies that 
the probability that node i is the last node visited is the same for all i, and 
because these probabilities must sum to 1, we obtain 

P ( i  is the last node visited) = l/m, i = 1, . . . , m 

Remark The argument used in Example 2.52 also shows that a gambler 
who is equally likely to either win or lose one unit on each gamble will lose 
tr before winning 1 with probability l/(n + 1); or equivalently 

n 
P(gamb1er is up 1 before being down n] = - 

n + l  

Suppose now we want the probability that the gambler is up 2 before being 
down n. Upon conditioning on whether he reaches up 1 before down n, we 
obtain that 

P(gamb1er is up 2 before being down n) 
n 

= P(up 2 before down n 1 up 1 before down n) - 
n + l  

n 
= P(up 1 before down n + I] - 

n + l  

Repeating this argument yields that 

n 
Plgambler is up k before being down n] = - 

n + k  

Exercises 

1. An urn contains five red, three orange, and two blue balls. Two balls 
are randomly selected. What is the sample space of this experiment? Let X 
represent the number of orange balls selected. What are the possible values 
of X? Calculate P(X = 01. 

2. Let X represent the difference between the number of heads and the 
number of tails obtained when a coin is tossed n times. What are the 
possible values of X ?  
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3. In Exercise 2, if the coin is assumed fair, then, for n = 2, what are 
the probabilities associated with the values that X  can take on? 

*4. Suppose a die is rolled twice. What are the possible values that the 
following random variables can take on? 

(i) The maximum value to appear in the two rolls. 
(ii) The minimum value to appear in the two rolls. 
(iii) The sum of the two rolls. 
(iv) The value of the first roll minus the value of the second roll. 

5. If the die in Exercise 4 is assumed fair, calculate the probabilities 
associated with the random variables in (i)-(iv). 

6. Suppose five fair coins are tossed. Let E be the event that all coins land 
heads. Define the random variable ZE 

if E occurs 
I E =  [" 

0, if Ec occurs 

For what outcomes in the original sample space does IE equal l? What is 
P(ZE = l ] ?  

7. Suppose a coin having probability 0.7 of coming up heads is tossed 
three times. Let X  denote the number of heads that appear in the three 
tosses. Determine the probability mass function of X. 

8. Suppose the distribution function of X is given by 

0, b < O  

, 0 5 b  < 1 
1 ,  1 6 b < O O  

What is the probability mass function of X? 

9. If the distribution function of F is given by 

calculate the probability mass function of X. 
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10. Suppose three fair dice are rolled. What is the probability that at most 
one six appears? 

' 11. A ball is drawn from an urn containing three white and three black 
balls. After the ball is drawn, it is then replaced and another ball is drawn. 
?'his goes on indefinitely. What is the probability that of the first four balls 
drawn, exactly two are white? 

12. On a multiple-choice exam with three possible answers for each of the 
five questions, what is the probability that a student would get four or more 
correct answers just by guessing? 

13. An individual claims to have extrasensory perception (ESP). As a test, 
a fair coin is flipped ten times, and he is asked to predict in advance the 
outcome. Our individual gets seven out of ten correct. What is the prob- 
ability he would have done at least this well if he had no ESP? (Explain why 
the relevant probability is P ( X  1 7) and not PIX = 71.) 

14. Suppose X has a binomial distribution with parameters 6 and t .  
Show that X = 3 is the most likely outcome. 

15. Let X be binomially distributed with parameters n and p. Show that 
as k goes from 0 to n, P(X = k) increases monotonically, then decreases 
monotonically reaching its largest value. 

(a) in the case that (n + 1)p is an integer, when k equals either 
(n + 1)p - 1 or (n + l)p, 
(b) in the case that (n + 1)p is not an integer, when k satisfies 
(n + 1)p - 1 < k < (n + 1)p. 

Hint: Consider PIX = k)/P(X = k - 1) and see for what values of k it 
is greater or less than 1. 

'16. An airline knows that 5 percent of the people making reservations 
on a certain flight will not show up. Consequently, their policy is to sell 52 
tickets for a flight that can only hold 50 passengers. What is the probability 
that there will be a seat available for every passenger that shows up? 

17. Suppose that an exptriment can result in one of r possible outcomes, 
the ith outcome having probability pi, i = 1, ..., r, 1 j= ,  pi = 1. If n of 
these experiments are performed, and if the outcome of any one of the n 
does not affect the outcome of the other n - 1 experiments, then show that 
the probability that the first outcome appears xl times, the second x2 times, 
and the rth xr times is 

This is known as the multinomial distribution. 
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18. Show that when r = 2 the multinomial reduces to the binomial. 

19. In Exercise 17, let Xi denote the number of times the ith outcome 
appears, i = 1, . . . , r. What is the probability mass function of 
X ,  + x, + ... + X,? 

20. A television store owner figures that 50 percent of the customers 
entering his store will purchase an ordinary television set, 20 percent will 
purchase a color television set, and 30 percent will just be browsing. If five 
customers enter his store on a certain day, what is the probability that two 
customers purchase color sets, one customer purchases an ordinary set, and 
two customers purchase nothing? 

21. In Exercise 20, what is the probability that our store owner sells three 
or more televisions on that day? 

22. If a fair coin is successively flipped, find the probability that a head 
first appears on the fifth trial. 

*23. A coin having a probability p of coming up heads is successively 
flipped until the rth head appears. Argue that X, the number of flips 
required, will be n, n 1 r, with probability 

This is known as the negative binomial distribution. 

Hint: How many successes must there be in the first n - 1 trials? 

24. The probability mass function of X is given by 

Give a possible intepretation of the random variable X .  

Hint: See Exercise 23. 

In Exercises 25 and 26, suppose that two teams are playing a series of 
games, each of which is independently won by team A with probability p 
and by team B with probability 1 - p. The winner of the series is the first 
team to win i games. 

25. If i = 4, find the probability that a total of 7 games are played. Also 
show that this probability is maximized when p = 1/2. 
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26. Find the expected number of games that are played when 

(a) i = 2. 
(b) i = 3. 

In both cases, show that this number is maximized when p = 1/2. 

'27. A fair coin is independently flipped n times, k times by A and n - k 
times by B. Show that the probability that A and B flip the same number 
of heads is equal to the probability that there are a total of k heads. 

28. Suppose that we want to generate a random variable X that is equally 
likely to be either 0 or 1, and that all we have at our disposal is a biased coin 
that, when flipped, lands on heads with some (unknown) probability p. 
Consider the following procedure: 

1. Flip the coin, and let 0,, either heads or tails, be the result. 
2. Flip the coin again, and let 0, be the result. 
3. If 0, and O2 are the same, return to step 1. 
4. If 0, is heads, set X  = 0, otherwise set X = 1. 

(a) Show that the random variable X generated by this procedure is 
equally likely to be either 0 or 1. 
(b) Could we use a simpler procedure that continues to flip the coin until 
the last two flips are different, and then sets X  = 0 if the final flip is a 
head, and sets X = 1 if it is a tail? 

29. Consider n independent flips of a coin having probability p of landing 
heads. Say a changeover occurs whenever an outcome differs from the one 
preceding it. For instance, if the results of the flips are H H T H T H H T, 
then there are a total of 5 changeovers. If p = 1/2, what is the probability 
there are k changeovers? 

30. Let X be a Poisson random variable with parameter A. Show that 
P(X = i )  increases monotonically and then decreases monotonically as 
i increases, reaching its maximum when i is the largest integer not 
exceeding I. 

Hint: Consider P ( X  = i ) /P(X = i - I). 

31. Compare the Poisson approximation with the correct binomial 
probability for the following cases: 

(i) P ( X  = 2) when n = 8, p = 0.1. 
(ii) P(X = 9) when n = 10, p = 0.95. 
(iii) P ( X  = 0) when n = 10, p = 0.1. 
(iv) P ( X  = 4) when n = 9, p = 0.2. 
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32. If you buy a lottery ticket in 50 lotteries, in each of which your chance 
of winning a prize is &, what is the (approximate) probability that you will 
win a prize (a) at least once, (b) exactly once, (c) at least twice? 

33. Let X be a random variable with probability density 

c(l - x2), -1 < x <  1 
otherwise 

(a) What is the value of c? 
(b) What is the cumulative distribution function of X ?  

34. Let the probability density of X be given by 

c(4x - 2w2), 0 < X < 2 
otherwise 

(a) What is the value of c? 
(b) P[+ < X < $1 = ? 

35. The density of X is given by 

10/xZ, for x > 10 
for x I 10 

What is the distribution of X ?  Find P I X  > 20). 

36. A point is uniformly distributed within the disk of radius 1. That is, 
its density is 

f (x ,y )=C,  o s x 2 + y 2 s 1  

Find the probability that its distance from the origin is less than x, 
O s x s l .  

37. Let X I ,  X2, . . . , X, be independent random variables, each having a 
uniform distribution over (0, 1). Let M = maximum (XI, X2,  . . . , X,). 
Show that the distribution function of M, FM(.), is given by 

FM(x) = x", 0 5 x 5 1 

What is the probability density function of M ?  

*38. If the density function of X equals 

find c. What is PIX > 2)? 

39. The random variable X has the following probability mass function 

p ( l ) = i ,  p ( 2 ) = f ,  p ( 2 4 ) = i  
Calculate E [XI. 
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40. Suppose that two teams are playing a series of games, each of which 
is independently won by team A with probability p and by team B with 
probability 1 - p. The winner of the series is the first team to win 4 games. 
Find the expected number of games that are played, and evaluate this 
quantity when p = 1/2. 

41. Consider the case of arbitrary p in Exercise 29. Compute the expected 
number of changeovers. 

42. Suppose that each coupon obtained is, independent of what has been 
previously obtained, equally likely to be any of m different types. Find the 
expected number of coupons one needs to obtain in order to have at least 
one of each type. 

Hint: Let X  be the number needed. It is useful to represent X  by 

where each Xi is a geometric random variable. 

43. An urn contains n + rn balls, of which n are red and m are black. They 
are withdrawn from the urn, one at a time and without replacement. Let X  be 
the number of red balls removed before the first black ball is chosen. We are 
interested in determining E [ X ] .  To obtain this quantity, number the red balls 
from 1 to n. Now define the random variables Xi,  i = 1, . . . , n, by 

1, if red ball i is taken before any black ball is chosen xi = [ 
0, otherwise 

(a) Express X  in terms of the X i .  
(b) Find E  [XI. 

44. In Exercise 43, let Y  denote the number of red balls chosen after the 
first but before the second black ball has been chosen. 

(a) Express Y as the sum of n random variables, each of which is equal 
to either 0 or 1. 
(b) Find E [ Y ] .  
(c) Compare E [ Y ]  to E [ X ]  obtained in Exercise 43. 
(d) Can you explain the result obtained in part (c)? 

45. A total of r keys are to be put, one at a time, in k boxes, with each key 
independently being put in box i with probability p i ,  sf= pi = 1. Each 
time a key is put in a nonempty box, we say that a collision occurs. Find the 
expected number of collisions. 
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*46. Consider three trials, each of which is either a success or not. Let X 
denote the number of successes. Suppose that E[X] = 1.8. 

(a) What is the largest possible value of P ( X  = 3)? 
(b) What is the smallest possible value of P ( X  = 3)? 

In both cases, construct a probability scenario that results in P ( X  = 3) 
having the desired value. 

47. If X is uniformly distributed over (0, l), calculate E[x~]. 

*48. Prove that E[x'] r (E[x])~. When do we have equality? 

49. Let c be a constant. Show that 

(i) Var(cX) = c2 Var(X). 
(ii) Var(c + X) = Var(X). 

50. A coin, having probabilityp of landing heads, is flipped until the head 
appears for the rth time. Let N denote the number of flips required. 
Calculate E [N]. 

Hint: There is an easy way of doing this. It involves writing N as the 
sum of r geometric random variables. 

51. Calculate the variance of the Bernoulli random variable. 

52. (a) Calculate E[X] for the maximum random variable of Exercise 37. 
(b) Calculate E(X) for X as in Exercise 33. 
(c) Calculate E [XI for X as in Exercise 34. 

53. If X is uniform over (0, l), calculate E[Xn] and Var(Xn). 

54. Let X and Y each take on either the value 1 or - 1. Let 

p(-1, 1) = P(X = -1, Y = 11, 

p(-1, -1) = P ( X  = -1, Y = -1) 

Suppose that E[X] = E[Y] = 0. Show that 

Let p = 2p(l, 1). Find 
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55. Let X be a positive random variable having density function f(x). If 
. / (x)  I c for all x, show that, for a > 0, 

'56. Calculate, without using moment generating functions, the variance 
of a binomial random variable with parameters n and p. 

57. Suppose that X and Y are independent binomial random variables 
with parameters (n, p) and (m,p). Argue probabilistically (no computations 
necessary) that X + Y is binomial with parameters (n + m, p). 

58. Suppose that X and Y are independent continuous random variables. 
Show that 

59. Let XI ,  X2 , X3 , and X4 be independent continuous random variables 
with a common distribution function F and let 

(a) Argue that the value of p is the same for all continuous distribution 
functions F. 
(b) Find p by integrating the joint density function over the appropriate 
region. 
(c) Find p by using the fact that all 4! possible orderings of X,, . . . , X4 
are equally likely. 

60. Calculate the moment generating function of the uniform distribution 
on (0, 1). Obtain E[X] and Var[X] by differentiating. 

61. Suppose that X takes on each of the values 1, 2, 3 with probability ) . 
What is the moment generating function? Derive E[X], E[x~], and E[x~] 
by differentiating the moment generating function and then compare the 
obtained result with a direct derivation of these moments. 

62. Suppose the density of X is given by 

, x > o  
otherwise 

Calculate the moment generating function, E[X], and Var(X). 

63. Calculate the moment generating function of a geometric random 
variable. 
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"64. Show that the sum of independent identically distributed exponential 
random variables has a gamma distribution. 

65. Consider Example 2.47. Find Cov(Xi, Xj) in terms of the a,, . 
66. Use Chebyshev's inequality to prove the weak law of large numbers. 
Namely, if Xl , X, , . . . are independent and identically distributed with 
mean p and variance d then, for any E > 0, 

p [ l ~ ,  + x, + m e .  + x,, - p l > c j + ~  a s n 4 m  
n 

67. Suppose that X is a random variable with mean 10 and variance 15. 
What can we say about P(5  < X < 15)? 

68. Let XI, X, , . . . , XI, be independent Poisson random variable with 
mean 1. 

(i) Use the Markov inequality to get a bound on P(Xl  + - + Xlo r 151. 
(ii) Use the central limit theorem to approximate P(Xl + . - + Xlo 2 151. 

69. If X is normally distributed with mean 1 and variance 4, use the tables 
to find P(2  < X < 3). 

'70. Show that 

Hint: Let X,  be Poisson with mean n. Use the central limit theorem to 
show that P(Xn I nj + .3;. 

71. Let X denote the number of white balls selected when k balls are 
chosen at random from an urn containing n white and rn black balls. 

(i) Compute P(X = i). 
(ii) Let, for i = 1, 2, ..., k ;  j = 1,2,  ..., n, 

if the ith ball selected is white 
0, otherwise 

if the j th  white ball is selected 
0, otherwise 

Compute E [ X ]  in two ways be expressing X first as a function of the X,'s 
and then of the q's. 

*72. Show that Var(X) = 1 when X is the number of men that select their 
own hats in Example 2.3 1. 
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73. For the multinomial distribution (Exercise 17), let Ni denote the 
number of times outcome i occurs. Find 

(i) E[NiI 
(ii) Var(Ni) 
(iii) Cov(Ni , Nj) 
(iv) Compute the expected number of outcomes which do not occur. 

74. Let XI ,  X2, . . . be a sequence of independent identically distributed 
continuous random variables. We say that a record occurs at time n if 
X ,  > max(X, , . . . , X,-,). That is, X, is a record if it is larger than each of 
X I ,  . . . , Xn-, . Show 

(i) P ( a  record occurs at time nJ = l /n 
(ii) E[number of records by time n] = C:=, l / i  

.2 (iii) Var(number of records by time n) = I;=, (i - l)/r 
(iv) Let N = min(n: n > 1 and a record occurs at time n]. Show E [N] = 00. 

Hint: For (ii) and (iii) represent the number of records as the sum of 
indicator (that is, Bernoulli) random variables. 

75. Let a, < a2 c < a, denote a set of n numbers, and consider any 
permutation of these numbers. We say that there is an inversion of ai 
and aj in the permutation if i c j and aj precedes ai. For instance the 
permutation 4,2, 1, 5, 3 has 5 inversions-(4,2), (4, l), (4,3), (2, l), (5,3). 
Consider now a random permutation of a,, a,, . . . , a,-in the sense that 
each of the n ! permutations is equally likely to be chosen-and let N denote 
the number of inversions in this permutation. Also, let 

Ni = number of k: k < i, ai precedes a, in the permutation 

and note that N = IT=, Ni . 

(i) Show that N, , . . . , N, are independent random variables. 
(ii) What is the distribution of Ni? 
(iii) Compute E [N] and Var(N). 

76. Let X and Y be independent random variables with means p, and p,, 
and variances & and a,?. Show that 

77. Let X and Y be independent normal random variables each having 
parameters p and 2. Show that X + Y is independent of X - Y. 



90 2 Random Variables 

78. Let $(tl, . . . , t,,) denote the joint moment generating function of 
X 1 ,  ..., x,,. 

(a) Explain how the moment generating function of Xi, $xi(ti), can be 
obtained from Q(tl , . . . , t,); 
(b) Show that XI, . . . , Xn are independent if and only if 
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Chapter 3 
Conditional Probability and 

Conditional Expectation 

3.1. Introduction 

One of the most useful concepts in probability theory is that of conditional 
probability and conditional expectation. The reason is twofold. First, in 
practice, we are often interested in calculating probabilities and expectations 
when some partial information is available; hence, the desired probabilities 
and expectations are conditional ones. Secondly, in calculating a desired 
probability or expectation it is often extremely useful to first "condition" 
on some appropriate random variable. 

3.2. The Discrete Case 

Recall that for any two events E and F, the conditional probability of E 
given F is defined, as long as P(F) > 0, by 

Hence, if X and Y are discrete random variables, then it is natural to define 
the conditional probability mass function of X given that Y = y, by 
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for all values of y such that P(Y = y) > 0. Similarly, the conditional 
probability distribution function of X given that Y = y is defined, for ally 
such that P(Y = y) > 0, by 

F.X~Y(~IY) = P ( X r x l Y = y )  

= C PX,Y(~IY) 
a s x  

Finally, the conditional expectation of X given that Y = y is defined by 

In other words, the definitions are exactly as before with the exception 
that everything is now conditional on the event that Y = y. If X is 
independent of Y, then the conditional mass function, distribution, and 
expectation are the same as the unconditional ones. This follows, since if X 
is independent of Y, then 

Example 3.1 Suppose that p(x, y), the joint probability mass function 
of X and Y, is given by 

p ( l , l )=O.5 ,  p ( l ,2 )=0 .1 ,  p(2,1)=0.1,  p(2 ,2)=0.3  

Calculate the probability mass function of X given that Y = 1. 

Solution: We first note that 

~ y ( 1 )  = C P(X, 1) = ~ ( 1 ,  1) + ~ ( 2 9 1 )  = 0.6 
X 

Hence, 
p x l y ( l I l ) =  P ( X =  1IY = 1) 
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Similarly, 

Example 3.2 If X  and Y  are independent Poisson random variables 
with respective means A, and A,, then calculate the conditional expected 
value of X  given that X + Y  = n. 

Solution: Let us first calculate the conditional probability mass 
function of X  given that X  + Y  = n. We obtain 

where the last equality follows from the assumed independence of X  and 
Y. Recalling (see Example 2.36) that X + Y  has a Poisson distribution 
with mean A, + A,, the preceding equation equals 

e-h~2t e-A~jl;-k e-(X~+W(~l + A2)n - 1  
P ( X =  k l ~ + Y = n ] = -  

k !  ( n - k ) !  [ n! 1 

In other words, the conditional distribution of X given that X  + Y  = n, 
is the binomial distribution with parameters n  and A1/(A1 + A,). 
Hence, 

Example 3.3 If X  and Y are independent binomial random variables 
with identical parameters n  and p, calculate the conditional probability 
mass function of X  given that X + Y  = m. 
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Solution: For k I min(n, m), 

where we have used the fact (see Example 2.44) that X + Y is binomially 
distributed with parameters (2n,p). Hence, the conditional probability 
mass function of X given that X + Y = m is given by 

The distribution given in Equation (3.1) is known as the hypergeometric 
distribution. It arises as the distribution of the number of black balls that 
are chosen when a sample of m balls is randomly selected from an urn 
containing n white and n black balls. + 

Example 3.4 Consider an experiment which results in one of three 
possible outcomes. Outcome i occurring with probability pi, i = 1, 2, 3, 
c!=, pi = 1. Suppose that n independent replications of this experiment 
are performed and let Xi, i = 1,2,3,  denote the number of times outcome 
i appears. Determine the conditional distribution of Xl given that X2 = m. 

Solution: For k I n - m, 

Now if Xl = kand Xz = m, then it follows that X3 = n - k - m. However, 

- n! 
- k  m (n -k -m)  

k!m!(n - k - m)! Pl Pz P3 
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This follows since any particular sequence of the n experiments having 
outcome 1 appearing k times, outcome 2 m times, and outcome 3 
(n - k - m) times has probability p f p ~ p ~ - k - m )  of occurring. Since there 
are n !/[k!m!(n - k - m)!] such sequences, Equation (3.2) follows. 

Therefore, we have 
n! k m (n-k-m) 

k!m!(n - k - m)! Pl P2 P 3  

P(Xl = k l x 2  = m) = 
n! 

m!(n - m)! p?(l - ~ 2 ) ~ - ~  

where we have used the fact that X2 has a binomial distribution with 
parameters n and p2 . Hence, 

n-m-k 

P(Xl  = kl X2 = mJ = 

or equivalently, writing p3 = 1 - p1 - p2, 

n-m-k 

P{Xl = kIX2 = -1 = (" im)(&>*(l -&) 
In other words, the conditional distribution of X I ,  given that X2 = m, is 
binomial with parameters n - m and pl/(l - p2). 

Remarks (i) The desired conditional probability in Example 3.4 could 
also have been computed in the following manner. Consider the n - m 
experiments which did not result in outcome 2. For each of these 
experiments, the probability that outcome 1 was obtained is given by 

P(outcome 1, not outcome 2) 
P(outcome 1 1 not outcome 2) = 

P(not outcome 2) 

I t  therefore follows that, given X2 = m, the number of times outcome 1 
occurs is binomially distributed with parameters n - m andpl/(l - p2). 

(ii) Conditional expectations possess all of the properties of ordinary 
expectations. For instance, such identities as 

remain valid. 



96 3 Conditionai Probability and Conditional Expectation 

Example 3.5 Consider n + m independent trials, each of which results 
in a success with probability p. Compute the expected number of successes 
in the first n trials given that there are k successes in all. 

Solution: Letting Y denote the total number of successes, and 

1, if the ith trial is a success xi = 
0, otherwise 

the desired expectation is E[CY=, Xi 1 Y = k] which is obtained as 

where the last equality follows since if there are a total of k successes, 
then any individual trial will be a success with probability k/(n + m). 
That is, 

EIXiIY = k] = P(Xi = 1 1 ~  = k) 

3.3. The Continuous Case 

If X and Y have a joint probability density function f(x, y), then the 
conditional probability density function of X, given that Y = y, is defined 
for all values of y such that f,(y) > 0, by 

To motivate this definition, multiply the left side by dx and the right side by 
(dx dy)/dy to get 

P ( x s X s x + d x , y s Y s y + d y )  = 
P l y  s Y s y + dy) 
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In other words, for small values dx and dy,  fxly(xl  y) dx represents the 
conditional probability that X is between x and x + dx given that Y is 
between y and y + dy. 

The conditional expectation of X ,  given that Y = y,  is defined for all 
values of y such that f y (y )  > 0 ,  by 

m 

ECYIY=YI = X ~ ~ I ~ ( X I Y ) ~ X  
-0J 

Example 3.6 Suppose the joint density of X and Y is given by 

6 x y ( 2 - X - y ) ,  O < X <  l , O < y <  1 
otherwise 

Compute the conditional expectation of X given that Y = y,  where 
O < y < l .  

Solution: We first compute the conditional density 

Hence, 

Example 3.7 Suppose the joint density of X and Y is given by 

4y(x - ~)e-('+"), 0 < x < oo, 0 5 y 5 x 
otherwise 

Compute E [X ( Y = y] .  
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Solution: The conditional density of X, given that Y = y, is given by 

Integrating by parts shows that the above gives 

= (x - Y)~-(~-Y), x > Y  

Therefore, 
00 

E W I Y = Y I =  j x f x l y ( x ~ ~ ) d x  
-00 

= IY* x(x - y)e-(x-y) dx 

Integration by parts yields 

E [X 1 Y = y] = -x(x - y)e-(X-Y) )I + i: (2 - y)e-cX-y) dx 

= 1; ( b  - y)e-cX-y) 

= - ( b  - y)e-(X-Y) 1: + 2 dx 

= y + 2  + 
Example 3.8 The joint density of X and Y is given by 

f(x, y) = [ o < x < o o , o < y < 2  
otherwise 

What is E[dY" I Y = I]? 
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Solution: The conditional density of X, given that Y = 1, is given by 

Hence, by Proposition 2.1, 

E [ ~ ~ / ~ I Y = ~ ] =  ex'2fxlr(x~l)dx S : 

3.4. Computing Expectations by Conditioning 

Let us denote by E[XI Y] that function of the random variable Y whose 
value at Y = y is E [X I Y = y]. Note that E [X I Y] is itself a random 
variable. An extremely important property of conditional expectation is 
that for all random variables X and Y 

If Y is a discrete random variable, then Equation (3.3) states that 

while if Y is continuous with density fy(y), then Equation (3.3) says that 

We now give a proof of Equation (3.3) in the case where X and Y are both 
discrete random variables. 

Proof of Equation (3.3) When X and Y Are Discrete We must 
show that 

E[X] = E[XIY = y]P[Y = y] (3.4) 
Y 



100 3 Condltionai Probability and Conditional Expectatlon 

Now, the right side of the preceding can be written 

and the result is obtained. + 
One way to understand Equation (3.4) is to interpret it as follows. 

It states that to calculate E [ X ]  we may take a weighted average of the 
conditional expected value of X  given that Y  = y, each of the terms 
E [ X ( Y  = y] being weighted by the probability of the event on which it 
is conditioned. 

The following examples will indicate the usefulness of Equation (3.3). 

Example 3.9 Sam will read either one chapter of his probability book or 
one chapter of his history book. If the number of misprints in a chapter of 
his probability book is Poisson distributed with mean 2 and if the number 
of misprints in his history chapter is Poisson distributed with mean 5, then 
assuming Sam is equally likely to choose either book, what is the expected 
number of misprints that Sam will come across? 

Solution: Letting X  denote the number of misprints and letting 

Y =  1, if Sam chooses his history book 

2, if Sam chooses his probability book 

then 

E [ X ]  = E [ X ( Y  = 1]P(Y = 1 )  + E[XIY = 2JPIY = 2)  
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Example 3.10 (The Expectation of the Sum of a Random Number of 
Random Variables): Suppose that the expected number of accidents per 
week at an industrial plant is four. Suppose also that the numbers of 
workers injured in each accident are independent random variables with a 
common mean of 2. Assume also that the number of workers injured in 
each accident is independent of the number of accidents that occur. What 
is the expected number of injuries during a week? 

Solution: Letting N denote the number of accidents and Xi the number 
injured in the ith accident, i = 1,2, . . . , then the total number of injuries 
can be expressed as CZ Xi. Now 

E[ f xi] = E [ E [ ~  X~IN]] 

But 

= E [  $ Xi] 
by the independence of Xi and N 

which yields that 

and thus 

E C Xi = E [NE [XI] = E [N]E [XI 
[ i"  ] 

Therefore, in our example, the expected number of injuries during a week 
equals 4 x 2 = 8. + 

Example 3.1 1 (The Mean of a Geometric Distribution): A coin, having 
probability p of coming up heads, is to be successively flipped until the first 
head appears. What is the expected number of flips required? 

Solution: Let N be the number of flips required, and let 

if the first flip results in a head 

0, if the first flip results in a tail 
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Now 
E [ N ]  = E[N1 Y  = l ]P(Y  = 1 )  + E[NI Y  = O]P(Y = 0 )  

= P E [ N ~ Y  = 1 1  + ( 1  - P ) E [ N ( Y  = 01 (3.5) 

However, 

E [ N I Y = l ] = l ,  E [ N ( Y = O ] = l + E [ N ]  (3.6) 

To see why Equation (3.6) is true, consider E [NI Y  = 11. Since Y = 1, we 
know that the first flip resulted in heads and so, clearly, the expected 
number of flips required is 1. On the other hand if Y  = 0, then the first 
flip resulted in tails. However, since the successive flips are assumed 
independent, it follows that, after the first tail, the expected additional 
number of flips until the first head is just E[N].  Hence E [ N (  Y = 01 = 
1 + E [ N ] .  Substituting Equation (3.6) into Equation (3.5) yields 

Because the random variable N  is a geometric random variable with prob- 
ability mass function p(n) = p(l - p)"-', its expectation could easily have 
been computed from E[N]  = Cy np(n) without recourse to conditional 
expectation. However, if the reader attempts to obtain the solution to our 
next example without using conditional expectation, he will quickly learn 
what a useful technique "conditioning" can be. 

Example 3.12 A miner is trapped in a mine containing three doors. The 
first door leads to a tunnel which takes him to safety after two hours of 
travel. The second door leads to a tunnel which returns him to the mine 
after three hours of travel. The third door leads to a tunnel which returns 
him to his mine after five hours. Assuming that the miner is at all times 
equally likely to choose any one of the doors, what is the expected length of 
time until the miner reaches safety? 

Solution: Let X denote the time until the miner reaches safety, and let 
Y denote the door he initially chooses. Now 



3.4. Computing Expectations by Conditioning 103 

However, 

To understand why the above is correct consider, for instance, 
E[xIY = 21, and reason as follows. If the miner chooses the second 
door, then he spends three hours in the tunnel and then returns to 
his cell. But once he returns to his cell the problem is as before, and 
hence his expected additional time until safety is just E[X]. Hence 
E [X I Y = 21 = 3 + E [Y]. The argument behind the other equalities in 
Equation (3.7) is similar. Hence 

Example 3.1 3 (The Matching Rounds Problem): Suppose in Example 
2.31 that those choosing their own hats depart, while the others (those 
without a match) put their selected hats in the center of the room, mix them 
up, and then reselect. Also, suppose that this process continues until each 
individual has his or her own hat. 

(a) Find E[R,] where R, is the number of rounds that are necessary when 
n individuals are initially present. 
(b) Find E[S,] where S, is the total number of selections made by the n 
individuals, n r 2. 
(c) Find the expected number of false selections made by one of the n 
people, n 1 2. 

Solution: (a) It follows from the results of Example 2.31 that no matter 
how many people remain there will, on average, be one match per round. 
Hence, one might suggest that E[R,] = n. This turns out to be true, 
and an induction proof will now be given. Because it is obvious that 
E[R,] = 1, assume that E[R,] = k for k = 1, ..., n - 1. To compute 
E[R,], start by conditioning on X,, the number of matches that occur in 
the first round. This gives 

Now, given a total of i matches in the initial round, the number of rounds 
needed will equal 1 plus the number of rounds that are required when 
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n - i persons are to be matched with their hats. Therefore, 

n 

= 1 + E[Rn]P(Xn = 0) + (n - i)P(Xn = i )  
i =  1 

by the induction hypothesis 

where the final equality used the result, established in Example 2.31, that 
E[Xn] = 1. Since the preceding equation implies that E[Rn] = n, the 
result is proven. 
(b) For n 1 2, conditioning on Xn, the number of matches in round 1, 
gives 

where EISo] = 0. To solve the preceding equation, rewrite it as 

Now, if there were exactly one match in each round, then it would take 
a total of 1 + 2 + + n = n(n + 1)/2 selections. Thus, let us try a 
solution of the form E[Sn] = an + bn2. For the preceding equation to be 
satisfied by a solution of this type, for n 2 2, we need 

or, equivalently, 
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Now, using the results of Example 2.31 and Exercise 72 of Chapter 2 that 
E[Xn] = Var(Xn) = 1, the preceding will be satisfied if 

and this will be valid provided that b = 1/2, a = 1. That is, 

satisfies the recursive equation for E[Sn]. 
The formal proof that E[Sn] = n + n2/2, n 1 2, is obtained by 

induction on n. It is true when n = 2 (since, in this case, the number of 
selections is twice the number of rounds and the number of rounds is a 
geometric random variable with parameter p = 1/2). Now, the recursion 
gives that 

n 

E[Sn] = n + E[Sn]P(Xn = Oj  + E[Sn-i]P(Xn = i) 
i =  1 

Hence, upon assuming that E[S,] = EISl] = 0, E[Sk] = k + k2/2, for 
k = 2, ..., n - 1 and using that P(Xn = n - 1) = 0, we see that 

Substituting the identities E[Xn] = 1, E[x;] = 2 in the preceding shows 
that 

E[Sn] = n + n2/2 

and the induction proof is complete. 
(c) If we let Cj denote the number of hats chosen by person j ,  
j = 1, ..., n then 

Taking expectations, and using the fact that each Cj has the same mean, 
yields the result 

E[Cj] = E[Sn]/n = 1 + n/2 

Hence, the expected number of false selections by person j is 
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Example 3.14 Independent trials, each of which is a success with 
probability p, are performed until there are k consecutive successes. What 
is the mean number of necessary trials? 

Solution: Let Nk denote the number of necessary trials to obtain k 
consecutive successes, and let Mk denote its mean. We will obtain a 
recursive equation for Mk by conditioning on Nk-, , the number of trials 
needed for k - 1 consecutive successes. This yields 

where the above follows since if it takes Nk-l trials to obtain k - 1 
consecutive successes, then either the next trial is a success and we 
have our k in a row or it is a failure and we must begin anew. Taking 
expectations of both sides of the above yields 

Since N , ,  the time of the first success, is geometric with parameter p, 
we see that 

and, recursively 

and, in general, 
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Example 3.15 (Analyzing the Quick-Sort Algorithm): Suppose we are 
given a set of n distinct values-xl, .. ., x,-and we desire to put these 
values in increasing order or, as it is commonly called, to sort them. 
An efficient procedure for accomplishing this is the quick-sort algorithm 
which is defined recursively as follows: When n = 2 the algorithm compares 
the 2 values and puts them in the appropriate order. When n > 2 it starts 
by choosing at random one of the n values-say, xi-and then compares 
each of the other n - 1 values with xi, noting which are smaller and which 
are larger than xi. Letting Si denote the set of elements smaller than xi, 
and gi the set of elements greater than xi, the algorithm now sorts the 
set Si and the set Si. The final ordering, therefore, consists of the ordered 
set of the elements in Si, then xi, and then the ordered set of the elements 
in &. For instance, suppose that the set of elements is 10, 5, 8, 2, 1, 4, 7. 
We start by choosing one of these values at random (that is, each of the 
7 values has probability of 3 of being chosen). Suppose, for instance, that 
the value 4 is chosen. We then compare 4 with each of the other 6 values 
to obtain 

(2,1), 4, (10,5,8,7) 

We now sort the set (2, 1) to obtain 

Next we choose a value at random from (10,5,8,7]-say, 7 is chosen-and 
compare each of the other 3 values with 7 to obtain 

Finally, we sort (10,B) to end up with 

One measure of the effectiveness of this algorithm is the expected number 
of comparisons that it makes. Let us denote by Mn the expected number of 
comparisons needed by the quick-sort algorithm to sort a set of n distinct 
values. To obtain a recursion for M,, we condition on the rank of the initial 
value selected to obtain: 

Mn = E[number of comparisons I value selected is j th  smallest] 
j =  1 n 

Now if the initial value selected is the j th  smallest, then the set of values 
smaller than it is of size j - 1, and the set of values greater than it is of size 
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n - j .  Hence, as n - 1 comparisons with the initial value chosen must be 
made, we see that 

L 
= n - 1 + - C Mk (since Mo = 0) 

k = l  

or, equivalently, 

To solve the preceding, note that upon replacing n by n + 1 we obtain 

Hence, upon subtraction, 

Therefore, 

Iterating this gives 

n -  1 n - k  
= 2  C since MI = 0 

k = O  (n + 1 - k)(n + 2 - k) 

Hence, 
n -  1 n - k  

M"+l = 2(n + 2) C k = O ( n  + 1 - k)(n + 2 - k) 
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Using the identity i/(i + l)(i + 2) = 2/(i + 2) - l/(i + I), we can approxi- 
mate Ma+, for large n as follows: 

= 2(n + 2)[2 log(n + 2) - log(n + 1) + log 2 - 2 log 31 

I n + 2  
= 2(n + 2) log(n + 2) + log- + log2 - 2log3 

n + l  I 
The conditional expectation is often useful in computing the variance of 

a random variable. In particular, we have that 

Example 3.16 (The Variance of a Random Number of Random 
Variables): In Example 3.10 we showed that if X I ,  X2,  . . . are independent 
and identically distributed, and if N is a nonnegative integer valued random 
variable independent of the X's, then 

What can we say about ~ a r ( ~ y =  "=, Xi)? 

Solution: 

Var ( z Xi ) = E [ ( i ! l~iy]-(E[i ! l~i]y  
(3.8) 

To compute each of the individual terms, we condition on N: 

Now, given that N = n, (c?= xi)' is distributed as the square of the 
sum of n independent and identically distributed random variables. 
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Hence, using the identity E[z'] = Var(Z) + ( ~ [ a ) ' ,  we have that 

= n Var(X) + (~E[x])' 

Therefore, 

Taking expectations of both sides of the above equation yields that 

E [ ( Xi)f]  = E [N] Var(X) + E [N'](E [XI)' 
i =  1 

Hence, from Equation (3.8) we obtain 

= E [N] Var(X) + E [N2](E [XI)' - (E [N]E [XI)' 

= E [N] Var(X) + (E [x])'(E [N'] - (E [N])') 

= E [N] Var(X) + (E [XI)' Var(N) + 
Example 3.17 (Variance of the Geometric Distribution): Independent 
trials, each resulting in a success with probability p, are successively 
performed. Let N be the time of the first success. Find Var(N). 

Solution: Let Y = 1 if the first trial results in a success, and Y = 0 
otherwise. 

Var(N) = E(N~)  - (E[N])' 

To calculate E[NZ] and E[N] we condition on Y. For instance, 

E[N~] = E[E[N2 I Y]] 
However, 

E[N'~Y= I] = 1 

E [N' I Y = 01 = E [(l + N ) ~ ]  

These two equations are true since if the first trial results in a success, 
then clearly N = 1 and so N2  = 1. On the other hand, if the first trial 
results in a failure, then the total number of trials necessary for the first 
success will equal one (the first trial that results in failure) plus the 
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necessary number of additional trials. Since this latter quantity has the 
same distribution as N, we get that E [N2 I Y = 01 = E [(l + N)~] .  Hence, 
we see that 

E[N2] = E [ N ~ ( Y  = I]P(Y = 1) + E [ N 2 ( Y  = O]P(Y = 0) 

= p + ~ [ ( i  + N)~](I  - p) 

= 1 + (1 - p)E[2N + N2] 

Since, as was shown in Example 3.11, E[N] = l/p, this yields 

Therefore, 
Var(N) = E[N2] - (E[N]12 

3.5. Computing Probabilities by Conditioning 

Not only can we obtain expectations by first conditioning on an appropriate 
random variable, but we may also use this approach to compute prob- 
abilities. To see this, let E denote an arbitrary event and define the indicator 
random variable X by 

1, if E occurs 

0, if E does not occur 

It follows from the definition of X that 

EWI = P(E), 

E [X ( Y = y] = P(E I Y = y), for any random variable Y 

Therefore, from Equations (3.3a) and (3.3b) we obtain 

P(E) = 1 P(E I Y = y)P(Y = y), if Y is discrete 
Y 
aD 

= P(E I Y = y)fy(y) dy, if Y is continuous 
-OD 
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Example 3.18 Suppose that X and Y are independent continuous 
random variables having densities f, and fy, respectively. Compute 
PIX < Y). 

Solution: Conditioning on the value of Y yields 

where 

Example 3.19 Suppose that X and Y are independent continuous 
random variables. Find the distribution of X + Y. 

Solution: By conditioning on the value of Y we obtain 

Example 3.20 Each customer who enters Rebecca's clothing store will 
purchase a suit with probability p. If the number of customers entering the 
store is Poisson distributed with mean A, what is the probability that 
Rebecca does not sell any suits? 
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Solution: Let X  be the number of suits that Rebecca sells, and let N  
denote the number of customers who enter the store. By conditioning on 
N  we see that 

m 

P ( X =  0)  = C P ( X =  OIN= n ) P ( N =  n) 
n = O  

m 

= C P ( X  = 0  IN = n)e-'ln/n! 
n = O  

Now, given that n  customers enter the store, the probability that Rebecca 
does not sell any suits is just ( 1  - p)'. That is, P ( X  = O J N  = n )  = 
( 1  - p)". Therefore, 

Example 3.20 (continued) What is the probability that Rebecca sells 
k  suits? 

Solution: 
m 

P ( X  = k)  = C P ( X  = k l N  = n)e-'~"/n! 
n = 0 

Now, given that N  = n, X  has a binomial distribution with parameters n  
and p. Hence, 

0 ,  n c k  
so that 

e - ' ( ~ p ) ~  " ( 4 1  - P ) ) " - ~  
=- C k!  n = k  ( n - k ) !  
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In other words, X has a Poisson distribution with mean Ap. + 
Example 3.21 (The Best Prize Problem): Suppose that we are to be 
presented with n distinct prizes in sequence. After being presented with a 
prize we must immediately decide whether to accept it or reject it and 
consider the next prize. The only information we are given when deciding 
whether to accept a prize is the relative rank of that prize compared to ones 
already seen. That is, for instance, when the fifth prize is presented we learn 
how it compares with the first four prizes already seen. Suppose that once 
a prize is rejected it is lost, and that our objective is to maximize the 
probability of obtaining the best prize. Assuming that all n! orderings of the 
prizes are equally likely, how well can we do? 

Solution: Rather surprisingly, we can do quite well. To see this, fix a 
value k, 0 I k < n, and consider the strategy that rejects the first k prizes 
and then accepts the first one that is better than all of those first k. Let 
Pk(best) denote the probability that the best prize is selected when this 
strategy is employed. To compute this probability, condition on X, the 
position of the best prize. This gives 

n 

Pk (best) = Pk (best I X = i)P(X = i) 
is 1 

Now, if the overall best prize is among the first k, then no prize is ever 
selected under the strategy considered. On the other hand, if the best prize 
is in position i, where i > k, then the best prize will be selected if the best of 
the first kprizes is also the best of the first i - 1 prizes (for then none of the 
prizes in positions k + 1, k + 2, . . . , i - 1 would be selected). Hence, 
we see that 

Pk(best I X = i )  = P(best of first i - 1 is among the first k) 
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From the preceding, we obtain that 

Now, if we consider the function 

then 

and so 

gl(x) = 0 * log(n/x) = 1 * x = n/e 

Thus, since Pk(best) = g(k), we see that the best strategy of the type 
considered is to let the first n/e prizes go by and then accept the first one 
to appear that is better than all of those. In addition, since g(n/e) = l/e, 
the probability that this strategy selects the best prize is approximately 
l/e = 0.36788. 

Remark Most students are quite surprised by the size of the probability 
of obtaining the best prize, thinking that this probability would be close to 
0 when n is large. However, even without going through the calculations, a 
little thought reveals that the probability of obtaining the best prize can be 
made to be reasonably large. Consider the strategy of letting half of the 
prizes go by, and then selecting the first one to appear that is better than all 
of those. The probability that a prize is actually selected is the probability 
that the overall best is among the second half and this is 1/2. In addition, 
given that a prize is selected, at the time of selection that prize would have 
been the best of more than n/2 prizes to have appeared, and would thus 
have probability of at least 1/2 of being the overall best. Hence, the strategy 
of letting the first half of all prizes go by and then accepting the first one 
that is better than all of those prizes results in a probability greater than 1/4 
of obtaining the best prize. + 
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Example 3.22 At a party n men take off their hats. The hats are then 
mixed up and each man randomly selects one. We say that a match occurs 
if a man selects his own hat. What is the probability of no matches? What 
is the probability of exactly k matches? 

Solution: Let E denote the event that no matches occur, and to make 
explicit the dependence on n, write P, = P(E). We start by conditioning 
on whether or not the first man selects his own hat-call these events M 
and MC. Then 

Clearly, P(E I M )  = 0, and so 

n - 1  
P, = P(E I MC) - 

n (3.9) 

Now, P(E M') is the probability of no matches when n - 1 men select 
from a set of n - 1 hats that does not contain the hat of one of these 
men. This can happen in either of two mutually exclusive ways. Either 
there are no matches and the extra man does not select the extra hat 
(this being the hat of the man that chose first), or there are no matches 
and the extra man does select the extra hat. The probability of the first of 
these events is just P,-,, which is seen by regarding the extra hat as 
"belonging" to the extra man. As the second event has probability 
[l/(n - 1)]Pn-2 , we have 

and thus, from Equation (3.9) 

or, equivalently, 

However, as P, is the probability of no matches when n men select among 
their own hats, we have 



3.5. Computing Probabilities by Conditioning 11 7 

and so, from Equation (3.10), 

and, in general, we see that 

To obtain the probability of exactly k matches, we consider any fixed 
group of k men. The probability that they, and only they, select their own 
hats is 

1 1  - - ... 1 (n - k)! 
Pn-k = 

n n - 1  n - ( k - 1 )  n! Pn-k 

where Pn-, is the conditional probability that the other n - k men, 

selecting among their own hats, have no matches. As there are (3 
choices of a set of k men, the desired probability of exactly k matches is 

1 1  - - - + ... + (-I)"-, 
P,-' 2! 3! (n - k)! 

which, for n large, is approximately equal to e-'/k!. + 
Example 3.23 (The Ballot Problem): In an election, candidate A 
receives n votes, and candidate B receives m votes where n > rn. Assuming 
that all orderings are equally likely, show that the probability that A is 
always ahead in the count of votes is (n - m)/(n + m). 

Solution: Let P,,, denote the desired probability. By conditioning on 
which candidate receives the last vote counted we have 

n 
P,,, = P(A always ahead I A receives last vote] - 

n + m  

always ahead receives last vote] 

Now given that A receives the last vote, one can see that the probability 
that A is always ahead is the same as if A had received a total of n - 1 
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and B a total of m votes. Because a similar result is true when we are 
given that B receives the last vote, we see from the above that 

We can now prove that P,,, = (n - m)/(n + m) by induction on n + m. 
AS it is true when n + m = 1, i.e., PI,, = 1, assume it whenever 
n + m = k.Thenwhenn + m = k + l,wehavebyEquation(3.11)and 
the induction hypothesis that 

and the result is proven. + 
The ballot problem has some interesting applications. For example, 

consider successive flips of a coin which always land on "heads" with prob- 
ability p ,  and let us determine the probability distribution of the first time, 
after beginning, that the total number of heads is equal to the total number 
of tails. The probability that the first time this occurs is at time 2n can be 
obtained by first conditioning on the total number of heads in the first 2n 
trials. This yields 

P(first time equal = 2n) 

= P(first time equal = 2n ( n  heads in first 2n) 

Now given a total of n heads in the first 2n flips, one can see that all possible 
orderings of the n heads and n tails are equally likely, and thus the 
preceding conditional probability is equivalent to the probability that in an 
election, in which each candidate receives n votes, one of the candidates is 
always ahead in the counting until the last vote (which ties them). But by 
conditioning on whomever receives the last vote, we see that this is just the 
probability in the ballot problem when m = n - 1. Hence 

P(first time equal = 2n) = P,,,-, pn(l - p)" (3 
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Suppose now that we wanted to determine the probability that the first 
time there are i more heads than tails occurs after the (2n + i)th flip. Now, 
in order for this to be the case, the following two events must occur: 

(a) The first 2n + i tosses result in n + i heads and n tails; and 
(b) the order in which the n + i heads and n tails occur is such that the 
number of heads is never i more than the number of tails until after the 
final flip. 

Now, it is easy to see that event (b) will occur if and only if the order of 
appearance of the n + i heads and n tails is such that starting from the final 
flip and working backwards heads is always in the lead. For instance, if 
there are 4 heads and 2 tails (n = 2, i = 2), then the outcome - - - - TH 
would not suffice because there would have been 2 more heads than tails 
sometime before the sixth flip (since the first 4 flips resulted in 2 more heads 
than tails). 

Now, the probability of the event specified in (a) is just the binomial 
probability of getting n + i heads and n tails in 2n + i flips of the coin. 

We must now determine the conditional probability of the event specified 
in (b) given that there are n + i heads and n tails in the first 2n + i flips. To 
do so, note first that given that there are a total of n + i heads and n tails 
in the first 2n + i flips, all possible orderings of these flips are equally 
likely. As a result, the conditional probability of (b) given (a) is just the 
probability that a random ordering of n + i heads and n tails will, when 
counted in reverse order, always have more heads than tails. Since all 
reverse orderings are also equally likely, it follows from the ballot problem 
that this conditional probability is i/(2n + i). 

That is, we have shown that 

and so 

P[first time heads leads by i is after flip 2n + i )  
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Example 3.24 Let U,, U,, . . . be a sequence of independent uniform 
(0, 1) random variables, and let 

N = min(n r 2 : Un > Urn-,) 
and 

M = min(n r 1 : U1 + + Un > 1) 

That is, N is the index of the first uniform random variable that is larger 
than its immediate predecessor, and M is the number of uniform random 
variables whose sum we need to exceed 1. Surprisingly, Nand  M have the 
same probability distribution, and their cornrnon.mean is e! 

Solution: It is easy to find the distribution of N. Since all n! possible 
orderings of Ul , . . . , Un are equally likely, we have 

To show that P ( M  > n] = I/n!, we will use mathematical induction. 
However, to give ourselves a stronger result to use as the induction 
hypothesis, we will prove the stronger result that for 0 < x 5 1, 
P(M(x) > n) = xn/n!, n 2 1, where 

M(x) = min[n r 2 :  Ul + --. + Un > x] 

is the mean number of uniforms that need be summed to exceed x. To 
prove that P(M(x) > n] = xn/n!, note first that it is true for n = 1 since 

P(M(x) > I ]  = P(Ul s x] = x 

So assume that for all 0 < x I 1, P(M(x) > nJ = xn/n!. To determine 
P(M(x) > n + 11, condition on Ul to obtain: 

by the induction hypothesis 
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where the third equality of the preceding follows from the fact that given 
U, = y, M(x) is distributed as 1 plus the number of uniforms that need be 
summed to exceed x - y. Thus, the induction is complete and we have 
shown that for 0 < x I 1, n 1 1, 

Letting x = 1 shows that Nand M have the same distribution. Finally, we 
have that 

0 0 

E[M] = E[N] = C P(N> n) = C l/n! = e 
n = O  n = 0 

Example 3.25 Let XI ,  X2 , . . . be independent continuous random 
variables with a common distribution function F and density f = F', and 
suppose that they are to be observed one at a time in sequence. Let 

N = min(n r 2 : X, = second largest of XI ,  . . . , Xn) 

and let 
M = min(n 2 2 : Xn = second smallest of XI, . . . , Xn) 

Which random variable XN, the first random variable which when observed 
is the second largest of those that have been seen, or X,, the first one that 
on observation is the second smallest to have been seen, tends to be larger? 

Solution: To calculate the probability density function of XN, it is 
natural to condition on the value of N; so let us start by determining its 
probability mass function. Now, if we let 

Ai = (Xi Z second largest of X I ,  . . . , Xi), i 2 2 

then, for n 2 2, 
PIN = n) = P(A2A3 ... An-,A@ 

Since the Xi are independent and identically distributed it follows that, 
for any rn 2 1, knowing the ordering of the variables XI ,  . . . , X, yields 
no information about the set of rn values (XI, . . . , X,). That is, for 
instance, knowing that X1 < X2 gives us no information about the values 
of min(Xl, X2) or max(Xl, X2). It follows from this that the events Ai, 
i 2 2 are independent. Also, since Xi is equally likely to be the largest, 
or the second largest, . . . , or the ith largest of Xl . . . , Xi it follows that 
P(Ai] = (i - l)/i, i r 2. Therefore, we see that 

1 2 3  n - 2 1  P(N= n) = ---...-- - - 1 
2 3 4  n - l n  n (n -1 )  
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Hence, conditioning on N yields that the probability density function of 
XN is as follows: 

OD , 

Now, since the ordering of the variables XI, . . . , X, is independent of 
the set of values [XI, . . . , X, ), it follows that the event [N = n) is 
independent of [XI, . . . , X,). From this, it follows that the conditional 
distribution of XN given that N = n is equal to the distribution of the 
second largest from a set of n random variables having distribution F. 
Thus, using the results of Example 2.37 concerning the density function 
of such a random variable, we obtain that 

OD 

= f (x)(l - F(x)) C (fix))' 
i = 0 

= f (x) 

Thus, rather surprisingly, XN has the same distribution as XI ,  namely, 
F. Also, if we now let w. = -Xi, i r 1, then WM will be the value of the 
first w., which on observation is the second largest of all those that have 
been seen. Hence, by the preceding, it follows that WM has the same 
distribution as Wl . That is, -XM has the same distribution as -XI, and 
so XM also has distribution F! In other words, whether we stop at the 
first random variable that is the second largest of all those presently 
observed, or we stop at the first one that is the second smallest of all 
those presently observed, we will end up with a random variable having 
distribution F. 

Whereas the preceding result is quite surprising, it is a special case of 
a general result known as Ignatov's theorem, which yields even more 
surprises. For instance, for k 2 1, let 

Nk = min[n r k : X, = kth largest of XI, . . . , X, ) 

Therefore, N2 is what we previously called N and XNk is the first random 
variable that upon observation is the kth largest of all those observed up 
to this point. It can then be shown by a similar argument as used in the 
preceding that XNk has distribution function F for all k (see Exercise 67 
at the end of this chapter). In addition, it can be shown that the random 
variables XNk, k r 1 are independent. (A statement and proof of 
Ignatov's theorem in the case of discrete random variables is given in 
Section 3.6.4.) + 
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The use of conditioning can also result in a more computationally 
efficient solution than a direct calculation. This is illustrated by our next 
example. 

Example 3.26 Consider n independent trials in which each trial results 
in one of the outcomes 1, ..., k with respective probabilities p,, ..., pk, 
~ f =  pi = 1. Suppose further that n > k, and that we are interested in 
determining the probability that each outcome occurs at least once. If we let 
A, denote the event that outcome i does not occur in any of the n trials, then 
the desired probability is 1 - P ( U ~ =  Ai), and it can be obtained by using 
the inclusion-exclusion theorem as follows: 

where 

The difficulty with the preceding solution is that its computation requires 
the calculation of 2k - 1 terms, each of which is a quantity raised to the 
power n. The preceding solution is thus computationally inefficient when k 
is large. Let us now see how to make use of conditioning to obtain an 
efficient solution. 

To begin, note that if we start by conditioning on Nk (the number of 
times that outcome k occurs) then when Nk > 0 the resulting conditional 
probability will equal the probability that all of the outcomes 1, . . . , k - 1 
occur at least once when n - Nk trials are performed, and each results in 
outcome i with probability p,/~jk;; pj, i = 1, . . . , k - 1. We could then use 
a similar conditioning step on these terms. 

To follow through on the preceding idea, let A,,,, for m s n, r s k, 
denote the event that each of the outcomes 1, . . . , r occurs at least once 
when m independent trials are performed, where each trial results in one of 
the outcomes 1, . . . , r with respective probabilities p,/P,, . . . ,p,/P,, where 
Pr = Cjl= pj. Let P(m, r) = P(A,,,) and note that P(n, k) is the desired 
probability. To obtain an expression for P(m, r), condition on the number 
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of times that outcome r occurs. This gives 

rn 

P(m, r) = C P(Arn,, I r occurs j times) 
j = O  

Starting with 

P(m, 1) = 1, if m 2 1 

we can use the preceding recursion to obtain the quantities P(m, 2), m = 
2, ..., n - (k - 2), and then the quantities P(m, 3), m = 3, ..., n - 
(k - 3), and so on, up to P(m, k - I), m = k - 1, . . . , n - 1. At this point 
we can then use the recursion to compute P(n, k). It is not difficult to check 
that the amount of computation needed is a polynomial function of k, 
which will be much smaller than 2k when k is large. + 

3.6. Some Applications 

3.6.1. A List Model 

Consider n elements-el , e2, . . . , en-which are initially arranged in some 
ordered list. At each unit of time a request is made for one of these 
elements-ei being requested, independently of the past, with probability 
4. After being requested the element is then moved to the front of the list. 
That is, for instance, if the present ordering is e l ,  e,, e,, e, and if e, is 
requested, then the next ordering is e,, e l ,  e,, e,. 

We are interested in determining the expected position of the element 
requested after this process has been in operation for a long time. However, 
before computing this expectation, let us note two possible applications of 
this model. In the first we have a stack of reference books. At each unit of 
time a book is randomly selected and is then returned to the top of the 
stack. In the second application we have a computer receiving requests for 
elements stored in its memory. The request probabilities for the elements 
may not be known, so to reduce the average time it takes the computer to 
locate the element requested (which is proportional to the position of the 
requested element if the computer locates the element by starting at the 
beginning and then going down the list), the computer is programmed to 
replace the requested element at the beginning of the list. 



3.6. Some Applications 125 

To compute the expected position of the element requested, we start by 
conditioning on which element is selected. This yields 

E [position of element requested] 

Now 

where 

n 

= C E [position 1 ei is selected]P, 
i =  1 

n 

= z E[position of ei I ei is selected14 
i =  1 
n 

= C E [position of ei]P, 
i =  1 

position of ei = 1 + 1 4 
j # i  

1, if ej precedes ei 
0, otherwise 

and so, 
E [position of ei] = 1 + C E [Ij] 

j# i  

= 1 + C P[ej precedes ei) (3.13) 
j# i  

To compute P(ej precedes ei) ,  note that ej will precede ei if the most recent 
request for either of them was for ej .  But given that a request is for either 
ei or ej ,  the probability that it is for ej is 

and, thus, 

S P(ej precedes ei) = - 
p l : + <  

Hence from Equations (3.12) and (3.13) we see that 
n S E[position of element requested] = 1 + 1 P;: C - 

i = 1  j # i e + <  
This list model will be further analyzed in Section 4.8, where we will assume 
a different reordering rule-namely, that the element requested is moved 
one closer to the front of the list as opposed to being moved to the front 
of the list as assumed here. We will show there that the average position of 
the requested element is less under the one-closer rule than it is under the 
front-of-the-line rule. 
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Figure 3.1. A graph. 

3.6.2. A Random Graph 

A graph consists of a set V of elements called nodes and a set A of pairs of 
elements of V called arcs. A graph can be represented graphically by 
drawing circles for nodes and drawing lines between nodes i  and j  whenever 
(i ,  j )  is an arc. For instance if V = ( 1 ,  2, 3 , 4 ]  and A = ( ( l , 2 ) ,  (1 ,4) ,  (2 ,  3),  
(1 ,2) ,  ( 3 ,3 ) ) ,  then we can represent this graph as shown in Figure 3.1. 
Note that the arcs have no direction (a graph in which the arcs are ordered 
pairs of nodes is called a directed graph); and that in the figure there are 
multiple arcs connecting nodes 1 and 2,  and a self-arc (called a self-loop) 
from node 3 to itself. 

We say that there exists a path from node i  to node j ,  i  # j ,  if there exists 
a sequence of nodes i ,  i , ,  . . ., ik ,  j  such that (i ,  i,), ( i , ,  i,), .. ., ( ik ,  j )  are 

all arcs. If there is a path between each of the (I) distinct pair of nodes 

we say that the graph is connected. The graph i n ~ i ~ u r e  3.1 is connected 
but the graph in Figure 3.2 is not. Consider now the following graph 
where V = (1 ,2 ,  . . . , n) and A = (( i ,  X(i)),  i  = 1, . . ., n] where the X(i )  are 
independent random variables such that 

1 
P ( X ( i )  = j )  = -, j  = 1,2, ..., n 

n 

In other words from each node i  we select at random one of the n nodes 
(including possibly the node i  itself) and then join node i  and the selected 
node with an arc. Such a graph is commonly referred to as a random graph. 

Figure 3.2. A disconnected graph. 
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Figure 3.3. 

We are interested in determining the probability that the random graph 
so obtained is connected. As a prelude, starting at some node-say, node 1- 
let us follow the sequence of nodes, 1, X(1), x2(1), . . . , where Xn(l)  = 
x(x"-'(I)); and define N to equal the first k such that x k ( l )  is not a new 
node. In other words, 

N = 1st k such that x k ( l )  E (1, X(l), . . . , xk-'(1)) 

We can represent this as shown in Figure 3.3 where the arc from xN-'(1) 
goes back to a node previously visited. 

To obtain the probability that the graph is connected we first condition 
on N to obtain 

n 

P(graph is connected) = P(connected ( N  = k)P(N = k) (3.14) 
k =  1 

Now given that N = k, the k nodes 1, X(l), . . . , xk-'(1) are connected to 
each other, and there are no other arcs emanating out of these nodes. 
In other words, if we regard these k nodes as being one supernode, the 
situation is the same as if we had one supernode and n - k ordinary nodes 
with arcs emanating from the ordinary nodes-each arc going into the 
supernode with probability k/n. The solution in this situation is obtained 
from Lemma 3.1 by taking r = n - k. 

Lemma 3.1 Given a random graph consisting of nodes O,1, . . . , r and r 
arcs-namely, (i, x), i = 1, ..., r, where 

1 
j with probability - j = 1, ..., r 

r + k '  
= 

k 
0 with probability - 

r + k  
then 

k 
P(graph is connected) = - 

r + k  

(In other words, for the preceding graph there are r + 1 nodes-r 
ordinary nodes and one supernode. Out of each ordinary node an arc is 
chosen. The arc goes to the supernode with probability k/(r + k) and to 
each of the ordinary ones with probability l/(r + k). There is no arc 
emanating out of the supernode.) 
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Proof The proof is by induction on r .  As it is true when r = 1 for any k, 
assume it true for all values less than r.  Now in the case under considera- 
tion, let us first condition on the number of arcs (j, I;.) for which I;. = 0. 
This yields 

r 

= 1 P[connected 1 i of the Yj = 0) 
i = 0 

Now given that exactly i of the arcs are into the supernode (see Figure 3.4), 
the situation for the remaining r - i arcs which do not go into the super- 
node is the same as if we had r - i ordinary nodes and one supernode with 
an arc going out of each of the ordinary nodes-into the supernode with 
probability i /r  and into each ordinary node with probability l / r .  But by the 
induction hypothesis the probability that this would lead to a connected 
graph is i /r.  

Hence, 
i 

P(connected I i of the I;. = 01 = - r 

and from Equation (3.15) 

which completes the proof of the lemma. + 

Figure 3.4. The situation given that i of the r arcs are into the supernode. 
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Hence as the situation given N = k is exactly as described by Lemma 3.1 
when r = n - k, we see that, for the original graph, 

k 
P(graph is connected IN = k) = - 

n 
and, from Equation (3.14), 

E ( N )  P(graph is connected) = - 
n 

To compute E ( N )  we use the identity 

which can be proved by defining indicator variables I i ,  i  2 1, by 

Hence, 

and so 

Now the event IN r i J  occurs if the nodes 1 ,  X ( l ) ,  . . ., x i - ' ( I )  are all 
distinct. Hence, 

and so, from Equations (3.16) and (3.17), 

1 
P(graph is connected) = (n - I)! C 

i= (n  - i ) ! n i  
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We can also use Equation (3.18) to obtain a simple approximate expres- 
sion for the probability that the graph is connected when n is large. To do 
so, we first note that if X is a Poisson random variable with mean n, then 

Since a Poisson random variable with mean n can be regarded as being the 
sum of n independent Poisson random variables each with mean 1, it 
follows from the central limit theorem that for n large such a random 
variable has approximately a normal distribution and as such has 
probability 4 of being less than its mean. That is, for n large 

P ( X < n ) = f  
and so for n large, 

n - l n j  en 
C -,- 

j=o j! 2 

Hence from Equation (3.18), for n large, 
en(n - I)! 

P(graph is connected) = 
2nn 

By employing an approximation due to Stirling which states that for n large 

n! , ,p+l/* e -n 

we see that, for n large, 

Pigraph is connected) .r r e ( ? ) "  2(n - 1) 

and as 

We see that, for n large, 

Pigraph is connected) -- 
-J2(n :I) 

Now a graph is said to consist of r connected components if its nodes can 
be partitioned into r subsets so that each of the subsets is connected and 
there are no arcs between nodes in different subsets. For instance, the graph 
in Figure 3.5 consists of three connected components-namely, (1,2,3], 
(4,5), and (6). Let C denote the number of connected components of our 
random graph and let 
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Figure 3.5. A graph having three connected components. 

where we use the notation Pn(i) to make explicit the dependence on n, the 
number of nodes. Since a connected graph is by definition a graph 
consisting of exactly one component, from Equation (3.18) we have 

To obtain Pn(2), the probability of exactly two components, let us first fix 
attention on some particular node-say, node 1. In order that a given set of 
k - 1 other n ~ d e s ~ s a y ,  nodes 2, . . . , k-will along with node 1 constitute 
one connected component and the remaining n - k a second connected 
component, we must have 

(i) X(i) E (1,2, .. . , k), for all i = 1, ..., k. 
(ii) X(i)  E (k + 1, ..., n), for all i = k + 1, ..., n. 
(iii) The nodes 1,2, . . . , k form a connected subgraph. 
(iv) The nodes k + 1, . . . , n form a connected subgraph. 

The probability of the preceding occurring is clearly 

and because there are (; I :) ways of choosing a set of k - 1 nodes from 

the nodes 2 through n, we have 

and so Pn(2) can be computed from Equation (3.19). In general, the 
recursive formula for Pn(i) is given by 
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Figure 3.6. A cycle. 

To compute E[C], the expected number of connected components, first 
note that every connected component of our random graph must contain 
exactly one cycle [a cycle is a set of arcs of the form (i, i,), (i, , i,), . . . , 
(ik-,, ik), (ik, i) for distinct nodes i, i,, . .., ik]. For example, Figure 3.6 
depicts a cycle. 

The fact that every connected component of our random graph must 
contain exactly one cycle is most easily proved by noting that if the 
connected component consists of r nodes, then it must also have r arcs and, 
hence, must contain exactly one cycle (why?). Thus, we see that 

E [C] = E [number of cycles] 

where the sum is over all subsets S C (1,2, . . . , n) and 

1, if the nodes in S are all the nodes of a cycle 
I(S) = 

0, otherwise 

Now, if S consists of k nodes, say 1, . . ., k, then 

E[I(S)] = P(1, X(l), . . . , xk-'(1) are all distinct and 
contained in 1, . . . , k and x k ( l )  = 1) 

Hence, as there are (2) subsets of size k we see that 
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3.6.3. Uniform Priors, Polya's Urn Model, and 
Bose-Einstein Statistics 

Suppose that n independent trials, each of which is a success with 
probability p are performed. If we let X denote the total number of 
successes, then X is a binomial random variable such that 

However, let us now suppose that whereas the trials all have the same 
success probability p ,  its value is not predetermined but is chosen according 
to a uniform distribution on (0, 1). (For instance, a coin may be chosen at 
random from a huge bin of coins representing a uniform spread over all 
possible values of p ,  the coin's probability of coming up heads. The chosen 
coin is then flipped n times.) In this case, by conditioning on the actual 
value of p ,  we have that 

1 

P [ X = k ] =  P [ X = k l p l f @ ) d p  
So 

Now, it can be shown that 

k!(n - k)! 1; pk(l - p)n'k dp = 
(n + I)! 

and thus 

n k!(n - k)! 
P [ X  = k) = (k) 

(n + I)! 

In other words, each of the n + 1 possible values of X is equally likely. 
As an alternate way of describing the preceding experiment, let us 

compute the conditional probability that the (r + 1)st trial will result in a 
success given a total of k successes (and r - k failures) in the first r trials. 

P(( r  + 1)st trial is a success I k successes in first r] 

- P((r  + 1)st is a success, k successes in first r trials) - 
P ( k  successes in first r trials) 
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- j: P((r + 1)st is a success, k in first r 1 p] dp - 
l/(r + 1) 

by Equation (3.20) 

That is, if the first r trials result in k successes, then the next trial will be a 
success with probability (k + l ) / ( r  + 2). 

It follows from Equation (3.22) that an alternative description of the 
stochastic process of the successive outcomes of the trials can be described 
as follows: There is an urn which initially contains one white and one black 
ball. At each stage a ball is randomly drawn and is then replaced along with 
another ball of the same color. Thus, for instance, if of the first r balls 
drawn k were white, then the urn at the time of the (r + 1)th draw would 
consist of k + 1 white and r - k + 1 black, and thus the next ball would 
be white with probability (k + l)/(r + 2). If we identify the drawing of a 
white ball with a successful trial, then we see that this yields an alternate 
description of the original model. This latter urn model is called Polya's 
urn model. 

Remarks (i) In the special case when k = r, Equation (3.22) is sometimes 
called Laplace's rule of succession, after the French mathematician Pierre 
de Laplace. In Laplace's era, this "rule" provoked much controversy, for 
people attempted to employ it in diverse situations where its validity was 
questionable. For instance, it was used to justify such propositions as "If 
you have dined twice at a restaurant and both meals were good, then the 
next meal also will be good with probability $," and "Since the sun has 
risen the past 1,826,213 days, so will it rise tomorrow with probability 
1,826,214/1,826,215." The trouble with such claims resides in the fact that 
it is not at all clear the situation they are describing can be modeled as 
consisting of independent trials having a common probability of success 
which is itself uniformly chosen. 

(ii) In the original description of the experiment, we referred to the 
successive trials as being independent, and in fact they are independent 
when the success probability is known. However, when p is regarded as a 
random variable, the successive outcomes are no longer independent since 
knowing whether an outcome is a success or not gives us some information 
about p, which in turn yields information about the other outcomes. 
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The preceding can be generalized to situations in which each trial has 
more than two possible outcomes. Suppose that n independent trials, each 
resulting in one of m possible outcomes 1, . . ., m with respective 
probabilities p, , . . . ,p, are performed. If we let Xi denote the number of 
type i outcomes that result in the n trials, i = 1, . . . , m, then the vector 
X, , . . . , X, will have the multinomial distribution given by 

n! 
P(X, = x,,X, = x2, ..., x, = x,(p) = , pppp . . . P i m  x,! x,. 

where x, , . . . , x, is any vector of nonnegative integers which sum to n. Now 
let us suppose that the vector p = (p l  , . . . , p,) is not specified, but instead 
is chosen by a "uniform" distribution. Such a distribution would be of 
the form 

f rn 

c, O s p i s  1 , i =  1 ,..., m, C p i =  1 
f@l, pm) = 1 

0, otherwise 

The preceding multivariate distribution is a special case of what is known as 
the Dirichlet distribution, and it is not difficult to show, using the fact that 
the distribution must integrate to 1, that c = (m - I)!. 

The unconditional distribution of the vector X is given by 

= 1 1  ...I PIX, = x  ,,..., xm =xmIp ,,..., p,) 

- - (m - l)!n! j 1 ... jpF . . . p i m  dp, . .  dpm 
x,! ... x,! 

O S P ' S  1 

E ? P ~  = 1 
Now it can be shown that 

x,! -..x,! 1 1 ... 1 Pf ...Pkmdpl .-. dp, = 
(Cyxi + rn - I)! (3.23) 

- o s p i s  i 
Z P P ~  = 1 

and thus, using the fact that Cyxi = n, we see that 

n!(m - l)! 
P(X1 = Xl, . .. , x, = x,] = 

(n + m - l)! 
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Hence, all of the 
(n Lm l) possible outcomes (there are 

possible nonnegati;e integer Lalued solutions of x, + .-. + xm'= n) of the 
vector (XI, . . . , X,) are equally likely. The probability distribution given 
by Equation (3.24) is sometimes called the Bose-Einstein distribution. 

To obtain an alternative description of the foregoing, let us compute the 
conditional probability that the (n + 1)st outcome is of type j if the first n 
trials have resulted in xi type i outcomes, i = 1, . . . , m, CT xi = n. This is 
given by 

P((n + 1)st is j J x i  type i in first n, i = 1, ..., m] 

- P((n + 1)st is j ,  xi type i in first n, i = 1, . .., m] - 
P(xi type i in first n, i = 1, . . . , m] 

n!(m - I)! 1 . . . 1 p;' . . . pjl" . . .p$m dp, . . . dp, 
x,! -..x,! 

c 

where the numerator is obtained by conditioning on the p vector and the 
denominator is obtained by using Equation (3.24). By Equation (3.23), we 
have that 

P((n + 1)st is j )xi type i in first n, i = 1, . . . , m] 

Using Equation (3.25), we can now present an urn model description of 
the stochastic process of successive outcomes. Namely, consider an urn 
which initially contains one of each of m types of balls. Balls are then 
randomly drawn and are replaced along with another of the same type. 
Hence, if in the first n drawings there have been a total of x, type j balls 
drawn, then the urn immediately before the (n + 1)st draw will contain 
xj + 1 type j balls out of a total of m + n, and so the probability of a type 
j on the (n + 1)st draw will be given by Equation (3.25). 



3.6. Some Applications 137 

Remarks Consider a situation where n particles are to be distributed at 
random among rn possible regions; and suppose that the regions appear, 
at least before the experiment, to have the same physical characteristics. 
It would thus seem that the most likely distribution for the numbers of 
particles that fall into each of the regions is the multinomial distribution 
with pi E l/rn. (This, of course, would correspond to each particle, 
independent of the others, being equally likely to fall in any of the rn 
regions.) Physicists studying how particles distribute themselves observed 
the behavior of such particles as photons and atoms containing an even 
number of elementary particles. However, when they studied the resulting 
data, they were amazed to discover that the observed frequencies did not 
follow the multinomial distribution but rather seemed to follow the Bose- 
Einstein distribution. They were amazed because they could not imagine a 
physical model for the distribution of particles which would result in all 
possible outcomes being equally likely. (For instance, if 10 particles are to 
distribute themselves between two regions, it hardly seems reasonable that 
it is just as likely that both regions will contain 5 particles as it is that all 10 
will fall in region 1 or that all 10 will fall in region 2.) 

However, from the results of this section we now have a better under- 
standing of the cause of the physicists' dilemma. In fact, two possible 
hypotheses present themselves. First, it may be that the data gathered by the 
physicists were actually obtained under a variety of different situations, 
each having its own characteristic p vector which gave rise to a uniform 
spread over all possible p vectors. A second possibility (suggested by the urn 
model interpretation) is that the particles select their regions sequentially 
and a given particle's probability of falling in a region is roughly propor- 
tional to the fraction of the landed particles that are in that region. (In other 
words, the particles presently in a region provide an "attractive" force on 
elements which have not yet landed.) 

3.6.4. The k-Record Values of Discrete Random Variables 

Let X ,  , X, , . . . be independent and identically distributed random variables 
whose set of possible values are the positive integers, and let PIX = j), j r 1, 
denote their common probability mass function. Suppose that these random 
variables are observed in sequence, and say that X, is a k-record value if 

Xi 2 X,, for exactly k of the values i, i = 1 ,  . . ., n 

That is, the nth value in the sequence is a k-record value if exactly k of the 
first n values (including X,) are at least as large as it. Let R, denote the 
ordered set of k-record values. 
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It is a rather surprising result that not only do the sequences of k-record 
values have the same probability distributions for all k, but these sequences 
are also independent of each other. This result is known as Ignatov's 
theorem. 

Ignatov's Theorem R, , k r 1, are independent and identically distri- 
buted random vectors. 

Proof Define a series of subsequences of the data sequence XI ,  X, , . . . by 
letting the ith subsequence consist of all data values that are at least as large 
as i, i 2 1. For instance, if the data sequence is 

then the subsequences are as follows: 

rl: 2,5 ,1 ,6 ,9 ,8 ,3 ,4 ,1 ,5 ,7 ,8 ,2 ,1 ,3 ,4 ,2 ,5 ,6 ,1 ,  ... 

and so on. 
Let X; be the j th element of subsequence i. That is, X; is the j th data 

value that is at least as large as i. An important observation is that i is a 
k-record value if and only if X i  = i. That is, i will be a k-record value if and 
only if the kth value to be at least as large as i is equal to i. (For instance, 
for the preceding data since the fifth value to be at least as large as 3 is equal 
to 3 it follows that 3 is a 5-record value.) Now, it is not difficult to see that, 
independent of which values in the first subsequence are equal to 1, the 
values in the second subsequence are independent and identically distributed 
according to the mass function 

P(va1ue in second subsequence = j ]  = P ( X  = j I X r 21, j r 2 

Similarly, independent of which values in the first subsequence are equal to 
1 and which values in the second subsequence are equal to 2, the values in 
the third subsequence are independent and identically distributed according 
to the mass function 

P[value in third subsequence = j ) = PIX = j I X r 31, j r 3 

and so on. It therefore follows that the events (x; = i ) ,  i r 1, j r 1, are 
independent and 

P[i  is a k-record value) = P(X; = i )  = P[X = i I X r i )  



3.6. Some Applications 139 

It now follows from the independence of the events (x; = i),  i 2 1, 
and the fact that P[i  is a k-record value) does not depend on k, that Rk 
has the same distribution for all k 2 1. In addition, it follows from the 
independence of the events (Xi = i], that the random vectors R, , k 2 1, are 
also independent. + 
Suppose now that the Xi, i 2 1 are independent finite-valued random 
variables with probability mass function 

pi = PIX = i], i = 1, ..., m 

and let 

T = min(n : Xi r X,, for exactly k of the values i, i = 1, . . ., n) 
denote the first k-record index. We will now determine its mean. 

Proposition 3.1 Let Ai = pi/Cjm_ pj, i = 1, . . . , m. Then 

Proof To begin, suppose that the observed random variables XI ,  X, , . . . 
take on one of the values i, i + 1, . . . , m with respective probabilities 

Let denote the first k-record index when the observed data have the 
preceding mass function, and note that since the each data value is at least 
i it follows that the k-record value will equal i, and z will equal k, if Xk = i. 
As a result, 

E[T 1 Xk = i] = k 

On the other hand, if Xk > i then the k-record value will exceed i, and so 
all data values equal to i can be disregarded when searching for the k-record 
value. In addition, since each data value greater than i will have probability 
mass function 

it follows that the total number of data values greater than i that need be 
observed until a k-record value appears has the same distribution as 
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Hence, 

where T+, is the total number of variables greater than i that we need 
observe to obtain a k-record, and Ni is the number of values equal to i that 
are observed in that time. Now, given that Xk > i and that T+l = n (n r k) 
it follows that the time to observe q+, values greater than i has the same 
distribution as the number of trials to obtain n successes given that trial k 
is a success and that each trial is independently a success with probability 
1 - pi/Cjl ,  pj = 1 - li . Thus, since the number of trials needed to obtain 
a success is a geometric random variable with mean 1/(1 - Li), we see that 

Taking expectations gives that 

Thus, upon conditioning on whether Xk = i, we obtain 

Starting with E [T,] = k, the preceding gives that 

In general, 

and the result follows since T = T,. + 
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Exercises 

1. If X and Y are both discrete, show that C, pxl ,(x ( y) = 1 for all y 
such that py(y) > 0. 

'2. Let X I  and X2 be independent geometric random variables having the 
same parameter p. Guess the value of 

Hint: Suppose a coin having probability p of coming up heads is 
continually flipped. If the second head occurs on flip number n, what is 
the conditional probability that the first head was on flip number i, 
i = 1, ..., n - l?  

Verify your guess analytically. 

3. The joint probability mass function of X  and Y, p(x, y), is given by 

p ( l , 2 ) = + ,  p (2 ,2 )=0 ,  p ( 3 , 2 ) = &  

p(l,3) = 0, ~ ( 2 , 3 )  = +, PO, 3) = d 
Compute E[XI Y = i] for i = 1,2, 3. 

4 .  In Exercise 3, are the random variables X and Y independent? 

5. An urn contains three white, six red, and five black balls. Six of these 
balls are randomly selected from the urn. Let X and Y denote respectively 
the number of white and black balls selected. Compute the conditional 
probability mass function of X given that Y = 3. Also compute 
E[X(Y = I]. 

'6. Repeat Exercise 5 but under the assumption that when a ball is 
selected its color is noted, and it is then replaced in the urn before the next 
selection is made. 

7. Suppose p(x, y, z), the joint probability mass function of the random 
variables X, Y, and Z, is given by 

a( l ,2 ,2)  = 0, ~ ( 2 , 2 , 2 )  = $ 
What is E [ X J  Y = 2]? What is E [ x ]  Y = 2,  Z = I]? 
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8. An unbiased die is successively rolled. Let X and Y denote respectively 
the number of rolls necessary to obtain a six and a five. Find (a) EfX],  
( b ) ~ [ X l  Y = 11, (c) E[XI Y = 51. 

9. Show in the discrete case that if X and Y are independent, then 

E [ x I Y = ~ ] = E [ X ]  fora l ly  

10. Suppose X and Y are independent continuous random variables. 
Show that 

E [X ) Y = y] = E [XI for all y 

11. The joint density of X and Y is 

Show that E[X ( Y = y] = 0. 

12. The joint density of X and Y is given by 

Show E[XI Y = y] = y. 

'13. Let X be exponential with mean 1/A; that is, 

fx(x) = Aebk, 0 < x < oo 
Find E[X\X > 11. 

14. Let X be uniform over (0,l). Find E[X1 X < 31. 
15. The joint density of X and Y is given by 

Compute E [ x 2  I Y = y]. 

16. The random variables X and Y are said to have a bivariate normal 
distribution if their joint density function is given by 

x [?+y - ~ P ( X  - Icx)(y - 6) + Y - Icy 
o x  ('Y ( 0, 711 
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for -a < x <  00, -00 < y  < m,whereox,ay,px,py,andpareconstants 
such that -1 < p < 1, a, > 0, a, > 0, -m < p, < oo, -oo < py < a. 

(a) Show that X is normally distributed with mean p, and variance &, 
and Y is normally distributed with mean py and variance 4. 
(b) Show that the conditional density of X given that Y = y is normal 
with mean px + (pax/ay)(y - y )  and variance 4(l - p2). 

The quantity p is called the correlation between X and Y. It can be 
shown that 

17. Let Y be a gamma random variable with parameters (s, a). That is, its 
density is 

fy(y) = Ce-aYyS-l, y > 0 

where C is a constant that does not depend on y. Suppose also that the 
conditional distribution of X given that Y = y is Poisson with mean y. 
That is, 

PIX= i l ~  = y) = e - ~ ~ ' / i ! ,  i z  0 

Show that the conditional distribution of Y given that X = i is the gamma 
distribution with parameters (s + i, a + 1). 

18. Let XI ,  . . . , X, be independent random variables having a common 
distribution function that is specified up to an unknown parameter 0. Let 
T = T(X) be a function of the data X = (XI, . . . , X,). If the conditional 
distribution of XI ,  . . . , X, given T(X) does not depend on 0 then T(X) is 
said to be a sufficient statistic for 8. In the following cases, show that 
T(X) = C7=, Xi is a sufficient statistic for 0. 

(a) The Xi are normal with mean 0 and variance 1. 
(b) The density of Xi is f(x) = 0 e-OX, x > 0. 
(c) The mass function of Xi is p(x) = f ( 1  - x = 0, 1, 0 < 0 < 1. 
(d) The Xi are Poisson random variables with mean 0. 

'19. Prove that if X and Y are jointly continuous, then 
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20. Consider Example 3.12 which refers to a miner trapped in a mine. Let 
N denote the total number of doors selected before the miner reaches 
safety. Also, let II;. denote the travel time corresponding to the ith choice, 
i r 1. Again let X denote the time when the miner reaches safety. 

(a) Give an identity that relates X to N and the T .  
(b) What is E[N]? 
(c) What is E[TN]? 
(d) What is E [c?= 1 N = n]? 
(e) Using the preceding, what is E[X]? 

21. Suppose that independent trials, each of which is equally likely to 
have any of m possible outcomes, are performed until the same outcome 
occurs k consecutive times. If N denotes the number of trials, show that 

Some people believe that the successive digits in the expansion of 
n = 3.14159 ... are "uniformly" distributed. That is, they believe that 
these digits have all the appearance of being independent choices from a 
distribution that is equally likely to be any of the digits from 0 through 9. 
Possible evidence against this hypothesis is the fact that starting with the 
24,658,601st digit there is a run of nine successive 7's. Is this information 
consistent with the hypothesis of a uniform distribution? 

To answer this, we note from the preceding that if the uniform hypothesis 
were correct, then the expected number of digits until a run of nine of the 
same value occurs is 

Thus, the actual value of approximately 25 million is roughly 22 percent of 
the theoretical mean. However, it can be shown that under the uniformity 
assumption the standard deviation of N will be approximately equal to the 
mean. As a result, the observed value is approximately 0.78 standard 
deviations less than its theoretical mean and is thus quite consistent with the 
uniformity assumption. 

'22. A coin having probability p of coming up heads is successively 
flipped until 2 of the most recent 3 flips are heads. Let N denote the 
number of flips. (Note that if the first 2 flips are heads, then N = 2.) 
Find E [N] . 
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23. A coin, having probability p of landing heads, is continually flipped 
until at least one head and one tail have been flipped. 

(a) Find the expected number of flips needed. 
(b) Find the expected number of flips that lands on heads. 
(c) Find the expected number of flips that land on tails. 
(d) Repeat part (a) in the case where flipping is continued until there has 
been a total of at least two heads and one tail. 

24. The random variables X and Y have the following joint probability 
mass function: 

(a) What is the conditional distribution of Y given that X = i? 
(b) Find Cov(X, Y). 

25. Two players take turns shooting at a target, with each shot by player 
i hitting the target with probability pi, i = 1,2. Shooting ends when two 
consecutive shots hit the target. Let pi denote the mean number of shots 
taken when player i shoots first, i = 1,2. 

(a) Find p1 and p, . 
(b) Let hi denote the mean number of times that the target is hit when 
player i shoots first, i = 1,2. Find h,  and h,. 

26. Let Xi ,  i r 0 be independent and identically distributed random 
variables with probability mass function 

m 

p ( j ) = P ( X i = j ] ,  j = l , . . . , m  c p ( j ) = 1  
j =  1 

Find E[N], where N = min(n > 0 : Xn = X,]. 

27. A set of n dice is thrown. All those that land on six are put aside, and 
the others are again thrown. This is repeated until all the dice have landed 
on six. Let N denote the number of throws needed. (For instance, suppose 
that n = 3 and that on the initial throw exactly 2 of the dice land on six. 
Then the other die will be thrown, and if it lands on six, then N =  2.) 
Let mn = E [N]. 

(a) Derive a recursive formula for m, and use it to calculate mi, 
i = 2,3,4,  and to show that in, = 13.024. 
(b) Let Xi denote the number of dice rolled on the ith throw. Find 
E [ c ~ =  1 Xi]. 
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28. An interval of length 1 is broken at a point uniformly distributed over 
(0, 1). Find the expected length of the subinterval that contains the point x, 
0 < x < 1, and show that it is maximized when x = ). 

29. A manuscript is sent to a typing firm consisting of typists A, B, 
and C. If it is typed by A, then the number of errors made is a Poisson 
random variable with mean 2.6; if typed by B, then the number of errors is 
a Poisson random variable with mean 3; and if typed by C, then it is a 
Poisson random variable with mean 3.4. Let X denote the number of errors 
in the typed manuscript. Assume that each typist is equally likely to do 
the work. 

(a) Find E [XI 
(b) Find Var(X). 

30. Let U be a uniform (0,l) random variable. Suppose that n trials are to 
be performed and that conditional on U = u these trials will be independent 
with a common success probability u. Compute the mean and variance of 
the number of successes that occur in these trials. 

31. A deck of n cards, numbered 1 through n, is randomly shuffled so 
that all n! possible permutations are equally likely. The cards are then 
turned over one at a time until card number 1 appears. These upturned 
cards constitute the first cycle. We now determine (by looking at the 
upturned cards) the lowest numbered card that has not yet appeared, and 
we continue to turn the cards face up until that card appears. This new 
set of cards represents the second cycle. We again determine the lowest 
numbered of the remaining cards and turn the cards until it appears, and 
so on until all cards have been turned over. Let m, denote the mean number 
of cycles. 

(a) Derive a recursive formula for m, in terms of m,, k = 1, . . . , n - 1. 
(b) Starting with mo = 0, use the recursion to find m, , m, , m, , and m4. 
(c) Conjecture a general formula for m,. 
(d) Prove your formula by induction on n. That is, show it is valid for 
n = 1, then assume it is true whenever k is any of the values 1, . . . , n - 1 
and show that this implies it is true when k = n. 
(e) Let Xi equal 1 if one of the cycles ends with card i, and let it equal 
0 otherwise, i = 1, . . . , n. Express the number of cycles in terms of 
these Xi. 
(f) Use the representation in part (e) to determine m, . 
(g) Are the random variables X, , . . . , X, independent? Explain. 
(h) Find the variance of the number of cycles. 
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32. A prisoner is trapped in a cell containing three doors. The first door 
leads to a tunnel which returns him to his cell after two-day's travel. The 
second leads to a tunnel which returns him to his cell after three day's 
travel. The third door leads immediately to freedom. 

(a) Assuming that the prisoner will always select doors, 1, 2, and 3 with 
probabilities 0.5, 0.3, 0.2, what is the expected number of days until he 
reaches freedom? 
(b) Assuming that the prisoner is always equally likely to choose among 
those doors that he has not used, what is the expected number of days 
until he reaches freedom? (In this version, for instance, if the prisoner 
initially tries door 1, then when he returns to the cell, he will now select 
only from doors 2 and 3.) 
(c) For parts (a) and (b) find the variance of the number of days until our 
prisoner reaches freedom. 

33. A rat is trapped in a maze. Initially he has to choose one of two 
directions. If he goes to the right, then he will wander around in the maze 
for three minutes and will then return to his initial position. If he goes to the 
left, then with probability 3 he will depart the maze after two minutes of 
traveling, and with probability 3 he will return to his initial position after 
five minutes of traveling. Assuming that the rat is at all times equally likely 
to go to the left or the right, what is the expected number of minutes that 
he will be trapped in the maze? 

34. Find the variance of the amount of time the rat spends in the maze in 
Exercise 33. 

35. The number of claims received at an insurance company during a 
week is a random variable with mean pl and variance a:. The amount paid 
in each claim is a random variable with mean p2 and variance 4. Find the 
mean and variance of the amount of money paid by the insurance company 
each week. What independence assumptions are you making? Are these 
assumptions reasonable? 

36. The number of customers entering a store on a given day is Poisson 
distributed with mean I = 10. The amount of money spent by a customer 
is uniformly distributed over (0, 100). Find the mean and variance of the 
amount of money that the store takes in on a given day. 

37. The conditional variance of X, given the random variable Y, is 
defined by 

Var(X I Y) = E[[X - E(X I y)12 I Y] 
Show that 

Var(X) = E [Var(X I Y)] + Var(E [X I Y]) 
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'38. Use Exercise 37 to give another proof of the fact that 

Var Xi = E [N] Var(X) + (E [x])~ Var(N) 
( i : l  ) 

39. An individual traveling on the real line is trying to reach the origin. 
However, the larger the desired step, the greater is the variance in the result of 
that step. Specifically, whenever the person is at location x, he next moves to 
a location having mean 0 and variance Px2. Let X, denote the position of the 
individual after having taken n steps. Supposing that Xo = xo, find 

40. (a) Show that 
Cov(X, Y) = Cov(X, E [Y I XI) 

(b) Suppose, that, for constants a and b, 

E[Y(X] = a +  bX 
Show that 

b = Cov(X, Y)/Var(X) 

42. Give another proof of Exercise 38 by computing the moment 
generating function of I?='=, Xi and then differentiating to obtain its 
moments. 

Hint: Let 

Now, 

E exp t z Xi N = n  = E  exp t Xi =(+,(t))" [ i > I  ] [ i )I 
since N is independent of the X's where ~ $ ~ ( t )  = E[etY] is the moment 
generating function for the X's. Therefore, 
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Differentiation yields 

Evaluate at t = 0 to get the desired result. 

43. The number of fish that Elise catches in a day is a Poisson random 
variable with mean 30. However, on the average, Elise tosses back two 
out of every three fish she catches. What is the probability that, on a given 
day, Elise takes home n fish. What is the mean and variance of (a) the 
number of fish she catches, (b) the number of fish she takes home? 
(What independence assumptions have you made?) 

44. There are three coins in a barrel. These coins, when flipped, will come 
up heads with respective probabilities 0.3, 0.5, 0.7. A coin is randomly 
selected from among these three and is then flipped ten times. Let N be the 
number of heads obtained on the ten flips. Find 

(a) PIN = 0). 
(b) P(N= n], n = 0, 1, ..., 10. 
(c) Does N have a binomial distribution? 
(d) If you win $1 each time a head appears and you lose $1 each time a 
tail appears, is this a fair game? Explain. 

45. Do Exercise 44 under the assumption that each time a coin is flipped, 
it is then put back in the barrel and another coin is randomly selected. Does 
N have a binomial distribution now? 

46. Explain the relationship between the general formula 

P(E) = P(E I Y = y)P(Y = y) 
Y 

and Bayes' formula. 

'47. Suppose X is a Poisson random variable with mean A. The param- 
eter A is itself a random variable whose distribution is exponential with 
mean 1. Show that P(X = n] = (*)"+I. 

48. A coin is randomly selected from a group of ten coins, the nth coin 
having a probability n/10 of coming up heads. The coin is then repeatedly 
flipped until a head appears. Let N denote the number of flips necessary. 
What is the probability distribution of N? Is N a geometric random 
variable? When would N be a geometric random variable; that is, what 
would have to be done differently? 
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49. A collection of n coins is flipped. The outcomes are independent, and 
the ith coin comes up heads with probability ai, i = 1, . . . , n. Suppose that 
for some value of j ,  1 _( j _( n, 9 = i. Find the probability that the total 
number of heads to appear on the n coins is an even number. 

50. Let A and B be mutually exclusive events of an experiment. If 
independent replications of the experiment are continually performed, what 
is the probability that A occurs before B? 

*51. Two players alternate flipping a coin that comes up heads with 
probability p. The first one to obtain a head is declared the winner. We are 
interested in the probability that the first player to flip is the winner. Before 
determining this probability, which we will call f(p), answer the following 
questions. 

(a) Do you think that f@) is a monotone function of p? If so, is it 
increasing or decreasing? 
(b) What do you think is the value of limp,, f(p)? 
(c) What do you think is the value of limp,, f(p)? 
(d) Find f(p). 

52. Suppose in Exercise 25 that the shooting ends when the target has 
been hit twice. Let mi denote the mean number of shots needed for the first 
hit when player i shoots first, i = 1,2. Also, let Pi, i = 1,2, denote the 
probability that the first hit is by player 1, when player i shoots first. 

(a) Find m, and m,. 
(b) Find PI and P, . 

For the remainder of the problem, assume that player 1 shoots first. 

(c) Find the probability that the final hit was by 1. 
(d) Find the probability that both hits were by 1. 
(e) Find the probability that both hits were by 2. 
(f) Find the mean number of shots taken. 

53. A, B, and C are evenly matched tennis players. Initially A and B play 
a set, and the winner then plays C. This continues, with the winner always 
playing the waiting player, until one of the players has won two sets in a 
row. That player is then declared the overall winner. Find the probability 
that A is the overall winner. 

54. Let XI and X, be independent geometric random variables with 
respective parameters p, and p, . Find P(IX, - X21 I 1). 
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49. A collection of n coins is flipped. The outcomes are independent, and 
the ith coin comes up heads with probability ai, i = 1, . . . , n. Suppose that 
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probability p. The first one to obtain a head is declared the winner. We are 
interested in the probability that the first player to flip is the winner. Before 
determining this probability, which we will call f@), answer the following 
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52. Suppose in Exercise 25 that the shooting ends when the target has 
been hit twice. Let mi denote the mean number of shots needed for the first 
hit when player i shoots first, i = 1,2. Also, let P , ,  i = 1,2, denote the 
probability that the first hit is by player 1, when player i shoots first. 
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(c) Find the probability that the final hit was by 1. 
(d) Find the probability that both hits were by 1. 
(e) Find the probability that both hits were by 2. 
(f)  Find the mean number of shots taken. 

53. A,  B, and Care evenly matched tennis players. Initially A and B play 
a set, and the winner then plays C. This continues, with the winner always 
playing the waiting player, until one of the players has won two sets in a 
row. That player is then declared the overall winner. Find the probability 
that A is the overall winner. 

54. Let X, and X2 be independent geometric random variables with 
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the ith coin comes up heads with probability ai , i = 1, . . . , n. Suppose that 
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number of heads to appear on the n coins is an even number. 

50. Let A and B be mutually exclusive events of an experiment. If 
independent replications of the experiment are continually performed, what 
is the probability that A occurs before B? 

'51. Two players alternate flipping a coin that comes up heads with 
probability p.  The first one to obtain a head is declared the winner. We are 
interested in the probability that the first player to flip is the winner. Before 
determining this probability, which we will call f(p) ,  answer the following 
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(c) Find the probability that the final hit was by 1. 
(d) Find the probability that both hits were by 1. 
(e) Find the probability that both hits were by 2. 
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53. A,  B, and C are evenly matched tennis players. Initially A and B play 
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55. A and B roll a pair of dice in turn, with A rolling first. A's objective is to 
obtain a sum of 6, and B's is to obtain a sum of 7. The game ends when either 
player reaches his or her objective, and that player is declared the winner. 

(a) Find the probability that A is the winner. 
(b) Find the expected number of rolls of the dice. 
(c) Find the variance of the number of rolls of the dice. 

56. The number of red balls in an urn that contains n balls is a random 
variable that is equally likely to be any of the values 0, 1, . .., n. That is, 

1 
P( i  red, n - i non-red] = - i = 0, ..., n 

n + l Y  

The n balls are then randomly removed one at a time. Let Yk denote the 
number of red balls in the first k selections, k = 1, . . . , n. 

(a) Find P(Yn = j), j = 0, ..., n. 
(b) Find P(Yn-, = j ) ,  j = 0, ..., n. 
(c) What do you think is the value of P(Yk = j ), j = 0, . . . , n? 
(d) Verify your answer to part (c) by a backwards induction argument. 
That is, check that your answer is correct when k = n, and then show that 
whenever it is true for k it is also true for k - 1, k = 1, ..., n. 

57. In Example 3.24 show that the conditional distribution of N given 
that U, = y is the same as the conditional distribution of M given that 
U1 = 1 - y. Also, show that 

*58. Suppose that we continually roll a die until the sum of all throws 
exceeds 100. What is the most likely value of this total when you stop? 

59. There are five components. The components act independently, with 
component i working with probability pi, i = 1,2,3,4,5. These components 
form a system as shown in Figure 3.7. 

Figure 3.7. 
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The system is said to work if a signal originating at the left end of the diagram 
can reach the right end, where it can only pass through a component if that 
component is working. (For instance, if components 1 and 4 both work, 
then the system also works.) What is the probability that the system works? 

60. This problem will present another proof of the ballot problem of 
Example 3.23. 

(a) Argue that 
P,,, = 1 - P(A and B are tied at some point] 

(b) Explain why 

P(A receives first vote and they are eventually tied] 

= P ( B  receives first vote and they are eventually tied] 

Hint: Any outcome in which they are eventually tied with A receiving 
the first vote corresponds to an outcome in which they are eventually tied 
with B receiving the first vote. Explain this correspondence. 

(c) Argue that P(eventual1y tied) = 2m/(n + m), and conclude that 
P,,, = (n - m)/(n + m). 

61. Consider a gambler who on each bet either wins 1 with probability 
18/38 or loses 1 with probability 20/38. (These are the probabilities if the 
bet is that a roulette wheel will land on a specified color.) The gambler will 
quit either when he is winning a total of 5 or after 100 plays. What is the 
probability he or she plays exactly 15 times? 

62. Show that 

(a) E[XYIY = y] = Y E [ X \ Y =  y] 
(b) E[g(X, Y) 1 Y = YI = E[g(X, Y )  1 Y = YI 
(c) E[XY] = E[YE[X[ Y]] 

63. In the ballot problem (Example 3.23), compute P(A is never behind). 

64. An urn contains n white and m black balls which are removed one at 
a time. If n > m, show that the probability that there are always more white 
than black balls in the urn (until, of course, the urn is empty) equals 
(n - m)/(n + m). Explain why this probability is equal to the probability 
that the set of withdrawn balls always contains more white than black balls. 
(This latter probability is (n - m)/(n + m) by the ballot problem.) 

65. A coin that comes up heads with probability p is flipped n consecutive 
times. What is the probability that starting with the first flip there are 
always more heads than tails that have appeared? 



66. Let Xi, i 2 1, be independent uniform (0, l)  random variables, and 
define N by 

N = min(n : X, < X,-,) 

where Xo = x. Let f(x) = E[N]. 

(a) Derive an integral equation for f(x) by conditioning on XI. 
(b) Differentiate both sides of the equation derived in part (a). 
(c) Solve the resulting equation obtained in part (b). 
(d) For a second approach to determining f(x) argue that 

(e) Use part (d) to obtain f(x). 

67. Let XI ,  X, , . . . be independent continuous random variables with a 
common distribution function F and density f = F' ,  and for k r 1 let 

Nk = min(n r k : X, = kth largest of X, , . . . , X,] 

(a) Show that P(Nk = n) = (k - l)/n(n - I), n 2 k. 
(b) Argue that 

(c) Prove the following identity: 

i + k - 2  
1 a ) ,  0 c a c  l , k 2 2  

i = O  I 

Hint: Use induction. First prove it when k = 2, and then assume it 
for k. To prove it for k + 1, use the fact that 

where the preceding used the combinatorial identity 

Now, use the induction hypothesis to evaluate the first term on the right 
side of the preceding equation. 

(d) Conclude that X,, has distribution F. 
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68. An urn contains n balls, with ball i having weight wi, i = 1, . . . , n. 
The balls are withdrawn from the urn one at a time according to the follow- 
ing scheme: When S is the set of balls that remains, ball i, i E S, is the next 
ball withdrawn with probability wi/G,, wj. Find the expected number of 
balls that are withdrawn before ball i, i = 1, ..., n. 
69. In the list example of Section 3.6.1 suppose that the initial ordering 
at time t = 0 is determined completely at random; that is, initially all n! 
permutations are equally likely. Following the front of the line rule, 
compute the expected position of the element requested at time t. 

Hint: To compute P(ej  precedes ei at time t )  condition on whether or 
not either ei or ej have ever been requested prior to t. 

70. In the list problem, when the P;. are known, show that the best 
ordering (best in the sense of minimizing the expected posi.tion of the 
element requested) is to place the elements in decreasing order of their 
probabilities. That is, if Pl > P, > > P,, show that 1,2, ...., n is the 
best ordering. 

71. Consider the random graph of Section 3.6.2 when n = ii. Compute 
the probability distribution of the number of components and verify your 
solution by using it to compute E [ C ]  and then comparing your solution 
with 

72. (a) From the results of Section 3.6.3 we can conclude that there are 

(n 
; l )  nonnegative integer valued solutions of the equation 

x, + . .- + x, = n. Prove this directly. 
(b) How many positive integer valued solutions of x1 + + x, = n 
are there? 

Hint: Let yi = xi - 1. 

(c) For the Bose-Einstein distribution, compute the problability that 
exactly k of the Xi are equal to 0. 

73. In Section 3.6.3, we saw that if U is a random variable that is uniform 
on (0, 1) and if, conditional on U = p ,  X is binomial with parameters n and 
p ,  then 
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For another way of showing this result, let U, X, , X,, . . . , X, be 
independent uniform (0, 1) random variables. Define X by 

X =  #:Xi< U 

That is, if the n + 1 variables are ordered from smallest to largest, then U 
would be in position X + 1. 

(a) What is P ( X  = i)? 
(b) Explain how this proves the result stated in the preceding. 

74. Let I,, ..., I, be independent random variables, each of which is 
equally likely to be either 0 or 1. A well-known nonparametric statistical test 
(called the signed rank test) is concerned with determining P,(k) defined by 

Justify the following formula: 





Chapter 4 
Markov Chains 

4.1. Introduction 

In this chapter, we consider a stochastic process [ X , ,  n = 0,  1 ,2 ,  . . .] that 
takes on a finite or countable number of possible values. Unless otherwise 
mentioned, this set of possible values of the process will be denoted by the 
set of nonnegative integers (0 ,  1 ,2 ,  . . .). If X ,  = i, then the process is said to 
be in state i  at time n. We suppose that whenever the process is in state i ,  
there is a fixed probability Pij that it will next be in state j. That is, we 
suppose that 

for all states i,, i , ,  .. ., in-, , i ,  j and all n r 0. Such a stochastic process 
is known as a Markov chain. Equation (4.1) may be interpreted as 
stating that, for a Markov chain, the conditional distribution of any 
future state X,,, given the past states X o ,  X ,  , . . . , X,- ,  and the present 
state X , ,  is independent of the past states and depends only on the 
present state. 

The value Pij represents the probability that the process will, when in 
state i ,  next make a transition into state j. Since probabilities are non- 
negative and since the process must make a transition into some state, we 
have that 
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Let P denote the matrix of one-step transition probabilities Pii, so that 

Example 4.1 (Forecasting the Weather): Suppose that the chance of 
rain tomorrow depends on previous weather conditions only through 
whether or not it is raining today and not on past weather conditions. 
Suppose also that if it rains today, then it will rain tomorrow with prob- 
ability a; and if it does not rain today, then it will rain tomorrow with 
probability 8. 

If we say that the process is in state 0 when it rains and state 1 when it 
does not rain, then'the above is a two-state Markov chain whose transition 
probabilities are given by 

Example 4.2 (A Communications System): Consider a communications 
system which transmits the digits 0 and 1. Each digit transmitted must pass 
through several stages, at each of which there is a probability p that the 
digit entered will be unchanged when it leaves. Letting X,, denote the digit 
entering the nth stage, then (X,, , n = 0, 1, . . .] is a two-state Markov chain 
having a transition probability matrix 

Example 4.3 On any given day Gary is either cheerful (C), so-so (S), or 
glum (G). If he is cheerful today, then he will be C, S, or G tomorrow with 
respective probabilities 0.5,0.4,0.1. If he is feeling so-so today, then he will 
be C, S, or G tomorrow with probabilities 0.3,0.4,0.3. If he is glum today, 
then he will be C, S, or G tomorrow with probabilities 0.2, 0.3, 0.5. 

Letting X,, denote Gary's mood on the nth day, then (X,, n 2 0) is a 
three-state Markov chain (state 0 = C, state 1 = S, state 2 = G) with 
transition probability matrix 
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Example 4.4 (Transforming a Process into a Markov Chain): Suppose 
that whether or not it rains today depends on previous weather conditions 
through the last two days. Specifically, suppose that if it has rained for the 
past two days, then it will rain tomorrow with probability 0.7; if it rained 
today but not yesterday, then it will rain tomorrow with probability 0.5; 
if it rained yesterday but not today, then it will rain tomorrow with 
probability 0.4; if it has not rained in the past two days, then it will rain 
tomorrow with probability 0.2. 

If we let the state at time n depend only on whether or not it is raining at 
time n, then the above model is not a Markov chain (why not?). However, 
we can transform the above model into a Markov chain by saying that the 
state at any time is determined by the weather conditions during both that 
day and the previous day. In other words, we can say that the process is in 

state 0 if it rained both today and yesterday, 
state 1 if it rained today but not yesterday, 
state 2 if it rained yesterday but not today, 
state 3 if it did not rain either yesterday or today. 

The preceding would then represent a four-state Markov chain having a 
transition probability matrix 

The reader should carefully check the matrix P ,  and make sure he or she 
understands how it was obtained. + 
Example 4.5 (A Random Walk Model): A Markov chain whose state 
space is given by the integers i = 0, + 1, k2 ,  . . . is said to be a random walk 
if, for some number 0 < p < 1, 

Pi,i+l = p = 1 - i = 0, +I,  ... 
The preceding Markov chain is called a random walk for we may think of 
it as being a model for an individual walking on a straight line who at each 
point of time either takes one step to the right with probability p or one step 
to the left with probability 1 - p. + 
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Example 4.6 (A Gambling Model): Consider a gambler who, at each 
play of the game, either wins $1 with probability p or loses $1 with prob- 
ability 1 - p. If we suppose that our gambler quits playing either when he 
goes broke or he attains a fortune of $N, then the gambler's fortune is a 
Markov chain having transition probabilities 

p. .  = p =  1 - p . .  Z , I + I  , i = l , 2  ,..., N - l  

States 0 and N are called absorbing states since once entered they are 
never left. Note that the above is a finite state random walk with absorbing 
barriers (states 0 and N). + 

4.2. Chapman-Kolmogorov Equations 

We have already defined the one-step transition probabilities Pi,. We now 
define the n-step transition probabilities P{ to be the probability that a 
process in state i will be in state j after n additional transitions. That is, 

Of course P,$ = Pi,. The Chapman-Kolmogorov equations provide a method 
for computing these n-step transition probabilities. These equations are 

OD 

P;+" = C P,",Pg for all n, m r 0, all i, j 
k = 0 

(4.2) 

and are most easily understood by noting that P,",G. represents the prob- 
ability that starting in i the process will go to state j in n + m transitions 
through a path which takes it into state k at the nth transition. Hence, 
summing over all intermediate states k yields the probability that the 
process will be in state j after n + m transitions. Formally, we have 
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If we let PC") denote the matrix of n-step transition probabilities P;, then 
Equation (4.2) asserts that 

PC"+") = PC") . PC") 

where the dot represents matrix multiplication.* Hence, in particular, 

p'2) = p(1+1) = p . p  = p2 

and by induction 
p(n) = pCn-l+l) = pn-1 . p = pn 

That is, the n-step transition matrix may be obtained by multiplying the 
matrix P by itself n times. 

Example 4.7 Consider Example 4.1 in which the weather is considered 
as a two-state Markov chain. If cr = 0.7 and B = 0.4, then calculate the 
probability that it will rain four days from today given that it is raining 
today. 

Solution: The one-step transition probability matrix is given by 

Hence, 

and the desired probability P& equals 0.5749. + 
Example 4.8 Consider Example 4.4. Given that it rained on Monday 
and Tuesday, what is the probability that it will rain on Thursday? 

* If A is an N x M matrix whose element in the ith row and j t h  column is aij and B is a 
M x K matrix whose element in the ith row and j t h  column is bii, then A - B is defined to  be 
the N x K matrix whose element in the i th row and j t h  column is ~ f = ' = ,  aikbkj. 
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Solution: The two-step transition matrix is given by 

Since rain on Thursday is equivalent to the process being in either state 0 
or state 1 on Thursday, the desired probability is given by P& + P& = 
0.49 + 0.12 = 0.61. 6 

So far, all of the probabilities we have considered are conditional 
probabilities. For instance, P; is the probability that the state at time n is j 
given that the initial state at time 0 is i. If the unconditional distribution of 
the state at time n is desired, it is necessary to specify the probability 
distribution of the initial state. Let us denote this by 

All unconditional probabilities may be computed by conditioning on the 
initial state. That is, 

For instance, if a, = 0.4, al = 0.6, in Example 4.7, then the (uncon- 
ditional) probability that it will rain four days after we begin keeping 
weather records is 
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4.3. Classification of States 

State j is said to be accessible from state i if Pi:: > 0 for some n 1 0. Note 
that this implies that state j is accessible from state i if and only if, starting 
in i, it is possible that the process will ever enter state j. This is true since if 
j is not accessible from i, then 

00 

P[ever enter j I start in i)  = P (Xn = j) I Xo = i 1 

Two states i and j that are accessible to each other are said to communicate, 
and we write i * j .  

Note that any state communicates with itself since, by definition, 

The relation of communication satisfies the following three properties: 

(i) State i communicates with state i, all i r 0. 
(ii) If state i communicates with state j ,  then state j communicates with 

state i. 
(iii) If state i communicates with state j ,  and state j communicates with 

state k, then state i communicates with state k. 

Properties (i) and (ii) follow immediately from the definition of com- 
munication. To prove (iii) suppose that i communicates with j ,  and j 
communicates with k. Thus, there exists integers n and m such that P; > 0, 
<? > 0. Now by the Chapman-Kolmogorov equations, we have that 

Hence, state k is accessible from state i. Similarly, we can show that state i 
is accessible from state k. Hence, states i and k communicate. 

Two states that communicate are said to be in the same class. It is an easy 
consequence of (i), (ii), and (iii) that any two classes of states are either 
identical or disjoint. In other words, the concept of communication di,vides 
the state space up into a number of separate classes. The Markov 
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chain is said to be irreducible if there is only one class, that is, if all states 
communicate with each other. 

Example 4.9 Consider the Markov chain consisting of the three states 
0, 1, 2 and having transition probability matrix 

It is easy to verify that this Markov chain is irreducible. For example, it is 
possible to go from state 0 to state 2 since 

That is, one way of getting from state 0 to state 2 is to go from state 0 to 
state 1 (with probability 3) and then go from state 1 to state 2 (with 
probability a). 4 

Example 4.1 0 Consider a Markov chain consisting of the four states 0, 
1, 2, 3 and have a transition probability matrix 

The classes of this Markov chain are (0, I), (2), and (3). Note that while state 
0 (or 1) is accessible from state 2, the reverse is not true. Since state 3 is an 
absorbing state, that is, P3, = 1, no other state is accessible from it. 4 

For any state i we let fi  denote the probability that, starting in state i, the 
process will ever reenter state i. State i is said to be recurrent if fi = 1 and 
transient if fi < 1. 

Suppose that the process starts in state i and i is recurrent. Hence, with 
probability 1, the process will eventually reenter state i. However, by the 
definition of a Markov chain, it follows that the process will be starting over 
again when it reenters state i and, therefore, state i will eventually be visited 
again. Continual repetition of this argument leads to the conclusion that if 
state i is recurrent then, starting in state i, the process will reenter state i 
again and again and again-in fact, infinitely often. 

On the other hand, suppose that state i is transient. Hence, each time 
the process enters state i there will be a positive probability, namely, 1 - J;:, 
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that it will never again enter that state. Therefore, starting in state i ,  the 
probability that the process will be in state i for exactly n time periods 
equals fin-'(1 -A), n 1 1. In other words, if state i is transient then, 
starting in state i, the number of time periods that the process will be in state 
i has a geometric distribution with finite mean 1/(1 - fi). 

From the preceding two paragraphs, it follows that state i is recurrent i f  
and only if, starting in state i, the expected number of time periods that the 
process is in state i is infinite. But, letting 

we have that C7=, In represents the number of periods that the process is in 
state i. Also, 

We have thus proven the following. 

Proposition 4.1 State i is 
OD 

recurrent if Pi = 00, 

n = l  

w 

transient if P{ < oo 
n = l  

The argument leading to the preceding proposition is doubly important 
because it also shows that a transient state will only be visited a finite 
number of times (hence the name transient). This leads to the conclusion 
that in a finite-state Markov chain not all states can be transient. To see 
this, suppose the states are 0, 1, ..., M and suppose that they are all 
transient. Then after a finite amount of time (say, after time T,) state 0 will 
never be visited, and after a time (say, T,) state 1 will never be visited, and 
after a time (say, T,) state 2 will never be visited, etc. Thus, after a finite 
time T = maxIT,, T, , . . . , TM) no states will be visited. But as the process 
must be in some state after time T we arrive at a contradiction, which shows 
that at least one of the states must be recurrent. 
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Another use of Proposition 4.1 is that it enables us to show that 
recurrence is a class property. 

Corollary 4.2 If state i is recurrent, and state i communicates with state 
j ,  then state j is recurrent. 

Proof To prove this we first note that, since state i communicates with 
state j, there exists integers k and m such that P: > 0, <? > 0. Now, for 
any integer n 

pm+n+k 
U 2 <?P; P$ 

This follows since the left side of the above is the probability of going from 
j to j in m + n + k steps, while the right side is the probability of going 
from j to j in m + n + k steps via a path that goes from j to i in m steps, 
then from i to i in an additional n steps, then from i to j in an additional 
k steps. 

From the preceding we obtain, by summing over n, that 

since > 0, and C:= P; is infinite since state i is recurrent. Thus, by 
Proposition 4.1 it follows that state j is also recurrent. + 
Remarks (i) Corollary 4.2 also implies that transience is a class property. 
For if state i is transient and communicates with state j, then state j must 
also be transient. For if j were recurrent then, by Corollary 4.2, i would 
also be recurrent and hence could not be transient. 

(ii) Corollary 4.2 along with our previous result that not all states in a 
finite Markov chain can be transient leads to the conclusion that all states 
of a finite irreducible Markov chain are recurrent. 

Example 4.1 1 Let the Markov chain consisting of the states 0, 1, 2, 3 
have the transition probability matrix 

Determine which states are transient and which are recurrent. 

Solution: It is a simple matter to check that all states communicate and 
hence, since this is a finite chain, all states must be recurrent. + 
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Example 4.1 2 Consider the Markov chain having states 0 ,1 ,2 ,3 ,4  and 

Determine the recurrent state. 

Solution: This chain consists of the three classes (0, 11, (2,3), and (4). 
The first two classes are recurrent and the third transient. + 

Example 4.13 (A Random Walk): Consider a Markov chain whose 
state space consists of the integers i = 0, + 1, + 2, . . . , and have transition 
probabilities given by 

where 0 < p < 1. In other words, on each transition the process either 
moves one step to the right (with probability p)  or one step to the left (with 
probability 1 - p). One colorful interpretation of this process is that it 
represents the wanderings of a drunken man as he walks along a straight 
line. Another is that it represents the winnings of a gambler who on each 
play of the game either wins or loses one dollar. 

Since all states clearly communicate, it follows from Corollary 4.2 that 
they are either all transient or all recurrent. So let us consider state 0 and 
attempt to determine if C:=, P&, is finite or infinite. 

Since it is impossible to be even (using the gambling model interpretation) 
after an odd number of plays we must, of course, have that 

On the other hand, we would be even after 2n trials if and only if we won 
n of these and lost n of these. Because each play of the game results in a win 
with probability p and a loss with probability 1 - p, the desired probability 
is thus the binomial probability 

By using an approximation, due to Stirling, which asserts that 
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where we say that a, - b, when lim,,,a,/b, = 1, we obtain 

Now it is easy to verify that if a, - b,, then Z,a, < co if and only if 
Z,b, < co. Hence, C:= P,", will converge if and only if 

does. However, 4p(l - p) I 1 with equality holding if and only if p = 3. 
Hence, C:=, P,", = co if and only if p = 3. Thus, the chain is recurrent 
when p = 3 and transient if p # 3. 

When p = i, the above process is called a symmetric random walk. We 
could also look at symmetric random walks in more than one dimension. 
For instance, in the two-dimensional symmetric random walk the process 
would, at each transition, either take one step to the left, right, up, or 
down, each having probability $. That is, the state is the pair of integers 
(i, j) and the transition probabilities are given by 

- 
p(i,j),(i+l,j) = p(i,j),(i-l,j) = p(i,j),(i,j+l) - p(i,j),(i,j-I) = $ 

By using the same method as in the one-dimensional case, we now show that 
this Markov chain is also recurrent. 

Since the preceding chain is irreducible, it follows that all states will be 
recurrent if state 0 = (0,O) is recurrent. So consider P&'. Now after 2n 
steps, the chain will be back in its original location if for some i, 0 I i I n, 
the 2n steps consist of i steps to the left, i to the right, n - i up, and n - i 
down. Since each step will be either of these four types with probability $, 
it follows that the desired probability is a multinomial probability. That is, 

where the last equality uses the combinatorial identity 
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which follows upon noting that both sides represent the number of subgroups 
of size n one can select from a set of n white and n black objects. Now, 

- (2n12" + l"e -*" 
n z ~ + ~  -2n by Stirling's approximation 

e (2n) 

Hence, from Equation (4.4) we see that 

which shows that Z,P$ = 00, and thus all states are recurrent. 
Interestingly enough, whereas the symmetric random walks in one and 

two dimensions are both recurrent, all high-dimensional symmetric random 
walks turn out to be transient. (For instance, the three-dimensional sym- 
metric random walk is at each transition equally likely to move in any of 
six ways-either to the left, right, up, down, in, or out.) + 
Remark We can compute the probability of whether the one-dimensional 
random walk of Example 4.13 ever returns to state 0 when p # 1/2 by 
conditioning on the initial transition: 

P(eJer return] = P(ever return I XI = 1]p 

+ P(ever return 1 XI = - 1)(1 - p)  

Suppose that p > 1/2. Then it can be shown (see Exercise 11 at the end of 
this chapter) that p(ever return I X, = - 1) = 1, and thus 

P[ever return) = P[ever return I X, = l ] p  + 1 - p (4.5) 
Let a = P(ever return I XI = 1). Conditioning on the next transition gives 

a = P(ever return I XI = 1, X2 = 0)(1 - p)  

+ P(ever return 1 XI = 1, X2 = 2)p 

= 1 - p + P(ever enter 0 I X, = 2)p 

Now, if the chain is at state 2 then in order for it to enter state 0 it must first 
enter state 1 and the probability that this ever occurs is a (why is that?). 
Also, if it does enter state 1 then the probability that it ever enters state 0 is 
also a. Thus, we see that the probability of ever entering state 0 starting at 
state 2 is a2. Therefore, we have that 
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The two roots of this equation are cr = 1 and a = (1 - p)/p. The first is 
impossible since we know by transience that a < 1. Hence, a = (1 - p)/p, 
and we obtain from Equation (4.5) that 

P(ever return) = 1 - p + 1 - p = 2(1 - p)  

Similarly, when p < 1/2 we can show that P(ever return) = 2p. Thus, in 
general we have that 

Ptever return) = 2 min@, 1 - p)  

Example 4.14 (On the Ultimate Instability of the Aloha Protocol): 
Consider a communications facility in which the numbers of messages 
arriving during each of the time periods n = 1,2, . . . are independent and 
identically distributed random variables. Let ai = P ( i  arrivals), and 
suppose that a, + a, < 1. Each arriving message will transmit at the end of 
the period in which it arrives. If exactly one message is transmitted, then the 
transmission is successful and the message leaves the system. However, if at 
any time two or more messages simultaneously transmit, then a collision is 
deemed to occur and these messages remain in the system. Once a message 
is involved in a collision it will, independently of all else, transmit at the end 
of each additional period with probability p-the so-called Aloha protocol 
(because it was first instituted at the University of Hawaii). We will show 
that such a system is asymptotically unstable in the sense that the number of 
successful transmissions will, with probability 1, be finite. 

To begin let X,, denote the number of messages in the facility at the 
beginning of the nth period, and note that [X,, n r O j  is a Markov chain. 
Now for k r 0 define the indicator variables Ik by 

1, if the first time that the chain departs state k it 
directly goes to state k - 1 

0, otherwise 

and let it be 0 if the system is never in state k, k r 0. (For instance, if the 
successive states are 0, 1,3, 3,4, . . . , then I3 = 0 since when the chain first 
departs state 3 it goes to state 4; whereas, if they are 0, 3,3,2,  . . . , then 
I, = 1 since this time it goes to state 2.) Now, 

k = 0 
w 

5 P(Ik = 1 1 k is ever visited) 
k = O  
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Now, P ( I k  = 11 k is ever visited) is the probability that when state k is 
departed the next state is k - 1. That is, it is the conditional probability that 
a transition from k is to k - 1 given that it is not back into k, and so 

P k ,  k-  1 PIIk = 1 1 k is ever visited) = - . 
1 - P k k  

which is seen by noting that if there are k messages present on the beginning 
of a day, then (a) there will be k - 1 at the beginning of the next day if there 
are no new messages that day and exactly one of the k messages transmits; 
and (b) there will be k at the beginning of the next day if either 

(i) there are no new messages and it is not the case that exactly one of the 
existing k messages transmits, or 
(ii) there is exactly one new message (which automatically transmits) and 
none of the other k messages transmits. 

Substitution of the preceding into Equation (4.6) yields 

where the convergence follows by noting that when k is large the 
denominator of the expression in the preceding sum converges to 1 - a, 
and so the convergence or divergence of the sum is determined by whether 
or not the sum of the terms in the numerator converge and 
Cz= , k(l - p)k- l  < a. 

Hence, E [C;= ,Ik] < m, which implies that C;=, I, < m with probability 
1 (for if there was a positive probability that C;=, I, could be m, then its 
mean would be m). Hence, with probability 1, there will be only a finite 
number of states that are initially departed via a successful transmission; or 
equivalently, there will be some finite integer N such that whenever there 
are N or more messages in the system, there will never again be a successful 
transmission. From this (and the fact that such higher states will eventually 
be reached-why?) it follows that, with probability 1, there will only be a 
finite number of successful transmissions. + 
Remark For a (slightly less than rigorous) probabilistic proof of 
Stirling's approximation, let X I ,  X2,  . . . be independent Poisson random 
variables each having mean 1. Let S, = C;=, Xi, and note that both the 
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mean and variance of S, are equal to n. Now, 

(27C)- 1 / ~ ~ - ~ ~ / 2  when n is large, by the 
dx central limit theorem 

But S, is Poisson with mean n, and so 

Hence, for n large 

or, equivalently 
,! , n n + l / 2  e -n 6 

which is Stirling's approximation. 

4.4. Limiting Probabilities 

In Example 4.7, we calculated PC4) for a two-state Markov chain; it turned 
out to be 

0.5749 0.4251 

0.5668 0.4332 1 
From this it follows that P") = P(~)  . P(~)  is given (to three significant 
places) by 

p(8) = 11 0.572 0.428 1 
0.570 0.430 

Note that the matrix P(') is almost identical to the matrix P (~) ,  and secondly, 
that each of the rows of P") has almost identical entries. In fact it seems 
that Pl is converging to some value (as n + oo) which is the same for all i. 
In other words, there seems to exist a limiting probability that the process 
will be in state j after a large number of transitions, and this value is 
independent of the initial state. 
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To make the above heuristics more precise there are two additional 
properties of the states of a Markov chain that we need consider. State i is 
said to have period d if Pl = 0 whenever n is not divisible by d, and d is the 
largest integer with this property. For instance, starting in i, it may be 
possible for the process to enter state i only at the times 2,4,6, 8, . . . , in 
which case state i has period 2. A state with period 1 is said to be aperiodic. 
It can be shown that periodicity is a class property. That is, if state i has 
period d, and states i and j communicate, then state j also has period d. 

If state i is recurrent, then it is said to bepositive recurrent if, starting in 
i, the expected time until the process returns to state i is finite. It can be 
shown that positive recurrence is a class property. While there exist recur- 
rent states that are not positive recurrent,* it can be shown that in afinite- 
state Markov chain all recurrent states are positive recurrent. Positive 
recurrent, aperiodic states are called ergodic. 

We are now ready for the following important theorem which we state 
without proof. 

Theorem 4.1 For an irreducible ergodic Markov chain limn,, P; exists 
and is independent of i. Furthermore, letting 

n = lim P;, jr 0 
n-w 

then zj is the unique nonnegative solution of 

Remarks (i) Given that nj = limn,, P; exists and is independent of the 
initial state i ,  it is not difficult to (heuristically) see that the n's must satisfy 
Equation (4.7). For let us derive an expression for P[Xn+, = j )  by con- 
ditioning on the state at time n. That is, 

* Such states are called null recurrent. 



174 4 Markov Chains 

Letting n -+ 00, and assuming that we can bring the limit inside the 
summation, leads to 

m 

(ii) It can be shown that nj, the limiting probability that the process will 
be in state j at time n, also equals the long-run proportion of time that the 
process will be in state j. 

(iii) In the irreducible, positive recurrent, periodic case we still have that 
the nj, j z 0, are the unique nonnegative solution of 

But now 9 must be interpreted as the long-run proportion of time that 
the Markov chain is in state j. 

Example 4.15 Consider Example 4.1, in which we assume that if it 
rains today, then it will rain tomorrow with probability a; and if it does not 
rain today, then it will rain tomorrow with probability 8. If we say that the 
state is 0 when it rains and 1 when it does not rain, then by Equation (4.7) 
the limiting probabilities no and 7r1 are given by 

which yields that 

For example if a = 0.7 and p = 0.4, then the limiting probability of rain is 
no = = 0.571. + 
Example 4.16 Consider Example 4.3 in which the mood of an 
individual is considered as a three-state Markov chain having a transition 
probability matrix 

P = 

0.5 0.4 0.1 

0.3 0.4 0.3 

0.2 0.3 0.5 
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In the long run, what proportion of time is the process in each of the three 
states? 

Solution: The limiting probabilities ni ,  i = 0, 1,2,  are obtained by 
solving the set of equations in Equation (4.1). In this case these equations 
are 

no = 0 . 5 ~ ~  + 0 . 3 ~ ~  + 0.2n2, 

no + n1 + n2 = 1 

Solving yields 
2 1 no = m, n1 = B, n2 = + 

Example 4.17 (A Model of Class Mobility): A problem of interest to 
sociologists is to determine the proportion of society that has an upper- or 
lower-class occupation. One possible mathematical model would be to 
assume that transitions between social classes of the successive generations 
in a family can be regarded as transitions of a Markov chain. That is, we 
assume that the occupation of a child depends only on his or her parent's 
occupation. Let us suppose that such a model is appropriate and that the 
transition probability matrix is given by 

That is, for instance, we suppose that the child of a middle-class worker 
will attain an upper-, middle-, or lower-class occupation with respective 
probabilities 0.05, 0.70, 0.25. 

The limiting probabilities xi ,  thus satisfy 

Hence, 
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In other words, a society in which social mobility between classes can be 
described by a Markov chain with transition probability matrix given by 
Equation (4.8) has, in the long run, 7 percent of its people in upper-class 
jobs, 62 percent of its people in middle-class jobs, and 31 percent in lower- 
class jobs. + 
Example 4.18 (The Hardy-Weinberg Law and a Markov Chain in 
Genetics): Consider a large population of individuals each of whom 
possesses a particular pair of genes, of which each individual gene is 
classified as being of type A or type a. Assume that the proportions of 
individuals whose gene pairs are AA , aa, or Aa are respectively po , qO, and 
r, (p, + q, + r, = 1). When two individuals mate, each contributes one of 
his or her genes, chosen at random, to the resultant offspring. Assuming 
that the mating occurs at random, in that each individual is equally likely 
to mate with any other individual, we are interested in determining the 
proportions of individuals in the next generation whose genes are AA, aa, 
or Aa. Calling these proportions p ,  q, and r, they are easily obtained by 
focusing attention on an individual of the next generation and then deter- 
mining the probabilities for the gene pair of that individual. 

To begin, note that randomly choosing a parent and then randomly 
choosing one of its genes is equivalent to just randomly choosing a gene 
from the total gene population. By conditioning on the gene pair of the 
parent, we see that a randomly chosen gene will be type A with probability 

Similarly, it will be type a with probability 

Thus, under random mating a randomly chosen member of the next 
generation will be type AA with probability p, where 

p = P(A)P(A) = (p, + rO/2l2 

Similarly, the randomly chosen member will be type aa with probability 

and will be type Aa with probability 
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Since each member of the next generation will independently be of each of 
the three gene types with probabilities p, q, r, it follows that the percentages 
of the members of the next generation that are of type AA, aa, or Aa are 
respectively p ,  q, and r. 

If we now consider the total gene pool of this next generation, then 
p + r/2, the fraction of its genes that are A,  will be unchanged from the 
previous generation. This follows either by arguing that the total gene pool 
has not changed from generation to generation or by the following simple 
algebra: 

p + r/2 = @, + rO/2l2 + (p, + r0/2)(qo + r0/2) 

= p, + r0/2 since p, + r, + q, = 1 

Thus, the fractions of the gene pool that are A and a are the same as in the 
initial generation. From this it follows that, under random mating, in all 
successive generations after the initial one the percentages of the population 
having gene pairs AA, aa, and Aa will remain fixed at the values p ,  q, 
and r. This is known as the Hardy- Weinberg law. + 

Suppose now that the gene pair population has stabilized in the percen- 
tages p ,  q, r, and let us follow the genetic history of a single individual and 
her descendants. (For simplicity, assume that each individual has exactly 
one offspring.) So, for a given individual, let X,, denote the genetic state of 
her descendant in the nth generation. The transition probability matrix of 
this Markov chain, namely, 

is easily verified by conditioning on the state of the randomly chosen mate. 
It is quite intuitive (why?) that the limiting probabilities for this Markov 
chain (which also equal the fractions of the individual's descendants that 
are in each of the three genetic states) should just be p ,  q, and r. To verify 
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this we must show that they satisfy Equation (4.7). As one of the equations 
in Equation (4.7) is redundant, it suffices to show that 

But this follows from Equation (4.9), and thus the result is established. 

Example 4.19 Suppose that a production process changes states in 
accordance with a Markov chain having transition probabilities Pij,  i, j = 
1, . . . , n, and suppose that certain of the states are considered acceptable 
and the remaining unacceptable. Let A denote the acceptable states and A' 
the unacceptable ones. If the production process is said to be "up" when in 
an acceptable state and "down" when in an unacceptable state, determine 

1. the rate at which the production process goes from up to down (that 
is, the rate of breakdowns); 

2. the average length of time the process remains down when it goes 
down; and 

3. the average length of time the process remains up when it goes up. 

Solution: Let nk, k = 1, . . . , n, denote the limiting probabilities. Now 
for i E A and j E AC the rate at which the process enters state j from 
state i is 

rate enter j from i = nipij 

and so the rate at which the production process enters state j from an 
acceptable state is 

rate enter j from A = nipu 
i e A  

Hence, the rate at which it enters an unacceptable state from an acceptable 
one (which is the rate at which breakdowns occur) is 

rate breakdowns occur = z z nipij (4.10) 
j e A C  i e A  

Now let uand b denote the average time the process remains up when it 
goes up and down when it goes down. Because there is a single breakdown 
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every + D time units on the average, if follows heuristically that 

1 
rate at which breakdowns occur = - 

u + d  
and, so from Equation (4.10), 

To obtain a second equation relating 0 and D, consider the percentage of 
time the process is up, which, of course, is equal to C i e A  xi. However, 
since the process is up on the average out of every 0 + D time units, 
it follows (again somewhat heuristically) that the 

and so 

0 
proportion of up time = - 

O+d 

Hence, from Equations (4.1 1) and (4.12) we obtain 

For example, suppose the transition probability matrix is 

where the acceptable (up) states are 1, 2 and the unacceptable (down) 
ones are 3, 4. The limiting probabilities satisfy 
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These solve to yield 

1l 
1 = &, 112 = $3 n3 = g, n4 = 48 

and thus 

Rate of breakdowns = nl(P13 + Pi4) + n2(P23 + P,) 

= -3Pr, 
O = y  and b = 2  

Hence, on the average, breakdowns occur about $ (or 28 percent) of the 
time. They last, on the average, 2 time units, and then there follows a 
stretch of (on the average) 9 time units when the system is up. + 

Remarks (i) The long run proportions 9, j 1 0 ,  are often called 
stationary probabilities. The reason being that if the initial state is chosen 
according to the probabilities %, j 2 0, then the probability of being in 
state j at any time n is also equal to nj. That is, if 

P [X, ,= j )=n j ,  j 2 0  
then 

PIX, = j) = nj for all n , j  2 0 

The preceding is easily proven by induction, for if we suppose it true for 
n - 1, then writing 

= Puni by the induction hypothesis 
i 

= 7 ~ i  by Equation (4.7) 

(ii) For state j ,  define inJ to be the expected number of transitions until a 
Markov chain, starting in state j, returns to that state. Since, on the average, 
the chain will spend 1 unit of time in state j for every ma units of time, it 
follows that 

In words, the proportion of time in state j equals the inverse of the mean 
time between visits to j. (The above is a special case of a general result, 
sometimes called the strong law for renewal processes, which will be 
presented in Chapter 7.) 
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Example 4.20 Consider independent tosses of a coin that, on each toss, 
lands on heads (H) with probability p and on tails (T) with probability 
q = 1 - p. What is the expected number of tosses needed for the pattern 
HTHT to appear? 

Solution: To answer the question, let us imagine that the coin tossing 
does not stop when the pattern appears, but rather it goes on indefinitely. 
If we define the state at time n to be the most recent 4 outcomes when 
n 1 4, and the most recent n outcomes when n < 4, then it is easy to see 
that the successive states constitute a Markov chain. For instance, if the 
first 5 outcomes are TTTHH, then the successive states of the Markov 
chain are XI = T, Xz = TT, X3 = TTT, X4 = TTTH, and X, = TTHH. 
It therefore follows from remark (ii) that nHTHT, the limiting probability 
of state HTHT, is equal to the inverse of the mean time to go from state 
HTHT to HTHT. However, for any n 1 4, the probability that the state 
at time n is HTHT is just the probability that the toss at n is T, the one 
at n - 1 is H, the one at n - 2 is T, and the one at n - 3 is H. Since the 
successive tosses are independent, it follows that 

P(Xn = HTHT) = pZg2, n 2 4 

and so 

nHrHT = !; P(Xn = HTHT) = pzqz 

Hence, l/(pZq2) is the mean time to go from HTHT to HTHT. But this 
means that starting with HT the expected number of additional trials to 
obtain HTHT is Therefore, since in order to obtain HTHT one 
must first obtain HT, it follows that 

1 
E [time to pattern HTHT] = E [time to the pattern HT] + - 

p2q2 

To determine the expected time to the pattern HT, we can reason in the 
same way and let the state be the most recent 2 tosses. By the same 
argument as used before, it follows that the expected time between 
appearances of HT is equal to l/nHT = l/@q). As this is the same as the 
expected time until HT first appears, we finally obtain that 

1 1 
E [time until HTHT appears] = - + - 

P4 p2q2 
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The same approach can be used to obtain the mean time until any given 
pattern appears. For instance, reasoning as before, we obtain that 

1 
E[time until HTHHTHTHH] = E[time until HTHH] + - 

p6q3 

= E[time until HI + + A P 4  P 4  

Also, it is not necessary that the basic experiment has only two possible 
outcomes (which we designated as H and T). For instance, if the succes- 
sive values are independently and identically distributed with pj denoting 
the probability that any given value is equal to j ,  j 2 0, then 

E[time until 012301] = E[time until 011 + 1 

P O Z P : P ~ P S  

The following result is quite useful. 

Proposition 4.3 Let (X,, n 2 1) be an irreducible Markov chain with 
stationary probabilities nj, j 2 0, and let r be a bounded function on the 
state space. Then, with probability 1, 

m 

lim 
N+m N = C r(j>nj 

j = 0 

Proof If we let aj(N) be the amount of time the Markov chain spends in 
state j during time periods 1, . . . , N, then 

Since aj(N)/N + nj the result follows from the preceding upon dividing by 
N and then letting N -+ co. + 

If we suppose that we earn a reward r( j)  whenever the chain is in 
state j ,  then Proposition 4.3 states that our average reward per unit time is 
Ej r(j>nj - 
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4.5. Some Applications 

4.5.1. The Gambler's Ruin Problem 

Consider a gambler who at each play of the game has probabilityp of winning 
one unit and probability q = 1 - p of losing one unit. Assuming that 
successive plays of the game are independent, what is the probability that, 
starting with i units, the gambler's fortune will reach N before reaching O? 

If we let X,, denote the players fortune at time n, then the process 
[X, , n = 0, 1,2,  . . .) is a Markov chain with transition probabilities 

This Markov chain has three classes, namely, (O), [1,2, . . . , N - 11, and (N]; 
the first and third class being recurrent and the second transient. Since each 
transient state is visited only finitely often, it follows that, after some finite 
amount of time, the gambler will either attain his goal of N or go broke. 

Let Pi ,  i = 0, 1, . .., N, denote the probability that, starting with i, the 
gambler's fortune will eventually reach N. By conditioning on the outcome 
of the initial play of the game we obtain 

or equivalently, since p + q = 1, 

Hence, since Po = 0, we obtain from the preceding line that 
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Adding the first i - 1 of these equations yields 

Now, using the fact that P, = 1, we obtain that 

1 1 - ( 4 1 ~ )  if # - 

= [ 1 - ( 4 1 ~ ) ~  2 

1 - 1 
N ' 

i f p  = - 
2 

and hence 

1 1 - 4 if # - 
2 

1 
i f p  = - 

2 

Note that, as N + eo, 

Thus, i f p  > *, there is a positive probability that the gambler's fortune will 
increase indefinitely; while if p 5 3, the gambler will, with probability 1, go 
broke against an infinitely rich adversary. 

Example 4.21 Suppose Max and Patty decide to flip pennies; the one 
coming closest to the wall wins. Patty, being the better player, has a 
probability 0.6 of winning on each flip. If Patty starts with five pennies and 
Max with ten, then what is the probability that Patty will wipe Max out? 
What if Patty starts with ten and Max with 20? 
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Solution: (a) The desired probability is obtained from Equation (4.13) 
by letting i = 5, N = 15, and p = 0.6. Hence, the desired probability is 

(b) The desired probability is 

For an application of the gambler's ruin problem to drug testing, suppose 
that two new drugs have been developed for treating a certain disease. Drug 
i has a cure rate Pi ,  i = 1,2, in the sense that each patient treated with drug 
i will be cured with probability Pi. These cure rates are, however, not 
known, and suppose we are interested in a method for deciding whether 
Pl > P, or P, > PI. To decide upon one of these alternatives, consider the 
following test: Pairs of patients are treated sequentially with one member of 
the pair receiving drug 1 and the other drug 2. The results for each pair are 
determined, and the testing stops when the cumulative number of cures 
using one of the drugs exceeds the cumulative number of cures when using 
the other by some fixed predetermined number. More formally, let 

1 ,  if the patient in the j th  pair to receive drug number 1 is cured xj = [ 
0, otherwise 

1, if the patient in the j th  pair to receive drug number 2 is cured 
0, otherwise 

For a predetermined positive integer M the test stops after pair N where 
N is the first value of n such that either 

Xl + -.- + X, - (Y, + + Y,) = M 

Xl + + X, - (Yl + ... + Y,) = -M 

In the former case we then assert that Pl > P,, and in the latter that 
P, > PI. 

In order to help ascertain whether the preceding is a good test, one thing 
we would like to know is the probability of it leading to an incorrect 
decision. That is, for given Pl and P2 where PI > P2,  what is the probability 
that the test will incorrectly assert that P, > Pl? To determine this prob- 
ability, note that after each pair is checked the cumulative difference of 
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cures using drug 1 versus drug 2 will either go up by 1 with probability 
Pl(l - P2)-since this is the probability that drug 1 leads to a cure and 
drug 2 does not-or go down by 1 with probability (1 - P1)P2, or remain the 
same with probability PIP2 + (1 - Pl)(l - P,). Hence, if we only consider 
those pairs in which the cumulative difference changes, then the difference 
will go up 1 with probability 

p = P(up 1 / u p  1 or down 1) 

and down 1 with probability 

Hence, the probability that the test will assert that P2 > Pl is equal to the 
probability that a gambler who wins each (one unit) bet with probability p 
will go down M before going up M. But Equation (4.12) with i = M, 
N = 2M, shows that this probability is given by 

P[test asserts that P2 > PI] = 1 - 1 - ( 4 1 ~ ) ~  
1 - ( 4 / ~ ) ~  

Thus, for instance, if PI = 0.6 and P2 = 0.4 then the probability of an 
incorrect decision is 0.017 when M = 5 and reduces to 0.0003 when M = 10. 

4.5.2. A Model for Algorithmic Efficiency 

The following optimization problem is called a linear program: 

minimize cx, 

subject to Ax = b, 

where A is an m x n matrix of fixed constants; c = (c, , . . . , c,) and 
b = (b,, . . ., b,) are vectors of fixed constants, and x = (x,, . . ., x,) is the 
n-vector of nonnegative values that is to be chosen to minimize cx = 
Cy= cixi. Supposing that n > m, it can be shown that the optimal x can 
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always be chosen to have at least n - m components equal to 0-that is, it 
can always be taken to be one of the so-called extreme points of the 
feasibility region. 

The simplex algorithm solves this linear program by moving from an 
extreme point of the feasibility region to a better (in terms of the objective 
function cx) extreme point (via the pivot operation) until the optimal is 

reached. Because there can be as many as N = (1) such extreme points, 

it would seem that this method might take many iterations, but, surprisingly 
to some, this does not appear to be the case in practice. 

To obtain a feel for whether or not the preceding statement is surprising, 
let us consider a simple probabilistic (Markov chain) model as to how the 
algorithm moves along the extreme points. Specifically, we will suppose 
that if at any time the algorithm is at the j th  best extreme point then after 
the next pivot the resulting extreme point is equally likely to be any of the 
j - 1 best. Under this assumption, we show that the time to get from the 
Nth best to the best extreme point has approximately, for large N, a normal 
distribution with mean and variance equal to the logarithm (base e) of N. 

Consider a Markov chain for which PI ,  = 1 and 

1 p.. = - 
u i -  1 '  

and let T denote the number of transitions needed to go from state i to state 
1. A recursive formula for E [ T ]  can be obtained by conditioning on the 
initial transition: 

1 i -1  

Starting with E[T,]  = 0, we successively see that 

and it is not difficult to guess and then prove inductively that 
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However, to obtain a more complete description of TN, we will use the 
representation 

N- 1 

TN= C Zj 
j= 1 

where 
if the process ever enters j 

0, otherwise 

The importance of the preceding representation stems from the following: 

Proposition 4.4 1, , . . . , IN-, are independent and 

Proof Given Ij+, , . . . , IN, let n = min[i : i 7 j, Ii = 11 denote the lowest 
numbered state, greater than j ,  that is entered. Thus we know that the 
process enters state n and the next state entered is one of the states 
1,2, . . . , j. Hence, as the next state from state n is equally likely to be any 
of the lower number states 1,2, . . . , n - 1 we see that 

Hence, P(Ij = 1) = l/j ,  and independence follows since the preceding 
conditional probability does not depend on Ij+l, . . . , IN. + 
Corollary 4.5 

(i) E[TN] = ~7:: l/j. 
(ii) Var(TN) = 17:: (l/j)(l - l/j). 

(iii) For N large, TN has approximately a normal distribution with mean 
log N and variance log N. 

Proof Parts (i) and (ii) follow from Proposition 4.4 and the representa- 
tion TN = ~7:: Ij. Part (iii) follows from the central limit theorem since 

or 

and so 
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Returning to the simplex algorithm, if we assume that n, m, and n - m 
are all large, we have by Stirling's approximation that 

and so, letting c = n/m, 

log N - (mc + *) log(mc) - (m(c - 1) + t )  log(m(c - 1)) 

- (m + t )  log m - log(27r) 
or 

Now, as lim,,, x log[x/(x - I)] = 1, it follows that, when c is large, 

log N - m[l + log(c - I)] 

Thus for instance, if n = 8000, m = 1000, then the number of necessary 
transitions is approximately normally distributed with mean and variance 
equal to 1000(1 + log 7) = 3000. Hence, the number of necessary transitions 
would be roughly between 

3000 + 2&3 or, roughly 3000 + 110, 

95 percent of the time. 

4.5.3. Using a Random Walk to Analyze a Probabilistic 
Algorithm for the Satisfiability Problem 

Consider a Markov chain with states 0, 1, . . . , n having 

Po,, = 1, e,i+l = p ,  ePi-, = q = 1 - p ,  1 I is n 

and suppose that we are interested in studying the time that it takes for 
the chain to go from state 0 to state n. One approach to obtaining the 
mean time to reach state n would be to let mi denote the mean time to go 
from state i to state n, i = 0, . . . , n - 1. If we then condition on the initial 
transition, we obtain the following set of equations: 

mo = 1 + m1 

mi = E[time to reach n I next state is i + l ]p 

+ E[time to reach n I next state is i - 114 
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Whereas the preceding equations can be solved for mi, i = 0, . . . , n - 1, we 
do not pursue their solution; we instead make use of the special structure of 
the Markov chain to obtain a simpler set of equations. To start, let Ni 
denote the number of additional transitions that it takes the chain when it 
first enters state i until it enters state i + 1. By the Markovian property, it 
follows that these random variables Ni, i = 0, . . . , n - 1 are independent. 
Also, we can express No,, , the number of transitions that it takes the chain 
to go from state 0 to state n, as 

Letting pi = E[Ni] we obtain, upon conditioning on the next transition 
after the chain enters state i, that for i = 1, . . . , n - 1 

pi = 1 + E[number of additional transitions to reach i + 1 1 chain to i - l]q 

Now, if the chain next enters state i - 1, then in order for it to reach i + 1 
it must first return to state i and must then go from state i + 1. Hence, we 
have from the preceding that 

where Ntl and N: are, respectively, the additional number of transitions 
to return to state i from i - 1 and the number to then go from i to i + 1. 
Now, it follows from the Markovian property that these random variables 
have, respectively, the same distributions as Ni-I and Ni. In addition, they 
are independent (although we will only use this when we compute the 
variance of No,,). Hence, we see that 

Pi = 1 + dpi-1 + Pi) 
or 

Starting with p, = 1, and letting cr = q/p, we obtain from the preceding 
recursion that 

pl = l/p + a 
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In general, we see that 

Using Equation (4.14), we now get 
1 n-1 i-1 n-1 

EINo,,] = 1 + - C C a' + C a' 
P i = l  j = o  i =  1 

When p = &, and so a = 1, we see from the preceding that 

When p # 3 ,  we obtain that 

1 "-1 a - a n  
E[No,,I = 1 + (1 - a') + - 

~ ( 1  - 4 ; = I  1 - a  

where the second equality used the fact that p = 1/(1 + a). Therefore, we 
see that when a > 1, or equivalently when p < 3,  the expected number of 
transitions to reach n is an exponentially increasing function of n. On the 
other hand, when p = t ,  E[N0,,] = n2, and when p > 3, E[NOpn] is, for 
large n, essentially linear in n. 

Let us now compute Var(N0,,). To do so, we will again make use of the 
representation given by Equation (4.14). Letting vi = Var(Ni), we start by 
determining the vi recursively by using the conditional variance formula. 
Let Si = 1 if the first transition out of state i is into state i + 1, and let 
Si = - 1 if the transition is into state i - 1, i = 1, . . . , n - 1. Then, 

given that Si = 1: Ni = 1 

Hence, 
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implying that 

Var(E[Ni 1 Si]) = Var(E [Ni I Sil - 1) 

Also, since N,?, and N, the numbers of transitions to return from state 
i - 1 to i and to then go from state i to state i + 1 are, by the Markovian 
property, independent random variables having the same distributions as 
Nidl and Ni, respectively, we see that 

Var(Ni / Si = -1) = vi-l + vi 
Hence, 

E[Var(Ni / Si)l = q(viv1 + vi) 

From the conditional variance formula, we thus obtain that 

vi = Pq@i-1 + pi)' + dvi-1 + vi) 
or, equivalently 

Starting with vo = 0, we obtain from the preceding recursion that 

In general, we have for i > 0, 

Therefore, we see that 

where pj is given by Equation (4.15). 
We see from Equations (4.15) and (4.16) that when p r 3, and so 

a 5 1, that pi and vi, the mean and variance of the number of transitions 
to go from state i to i + 1, do not increase too rapidly in i. For instance, 
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when p = 3 it follows from Equations (4.15) and (4.16) that 

and 

Hence, since No,, is the sum of independent random variables, which are 
of roughly similar magnitudes when p r i, it follows in this case from the 
central limit theorem that No,, is, for large n, approximately normally 
distributed. In particular, when p = i ,  No,, is approximately normal with 
mean n2 and variance 

n-1 i  

Var(N0.n) = 8 C C j 2  
i =  1 j =  1 

Example 4.22 (The Satisfiability Problem): A Boolean variable x is one 
that takes on either of two values-either TRUE or FALSE. If x i ,  i r 1 are 
Boolean variables, then a Boolean clause of the form 

x, + 2 2  + x3 

is TRUE if x1 is TRUE, or if x2 is FALSE, or if x3 is TRUE. That is, the 
symbol "+" means "or" and 2 is TRUE if x is FALSE and vice versa. 
A Boolean formula is a combination of clauses such as 

In the preceding, the terms between the parentheses represent clauses, and 
the formula is TRUE if all the clauses are TRUE, and is FALSE otherwise. 
For a given Boolean formula, the satisfiabilityproblem is to either determine 
values for the variables that result in the formula being TRUE, or to 
determine that the formula is never true. For instance, one set of values that 
makes the preceding formula TRUE is to set XI = TRUE, x2 = FALSE, 
and x3 = FALSE. 
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Consider a formula of the n Boolean variables x,, . . . , x,, and suppose 
that each clause in this formula refers to exactly two variables. We will now 
present aprobabilistic algorithm that will either find values that satisfy the 
formula or determine to a high probability that it is not possible to satisfy 
it. To begin, start with an arbitrary setting of values. Then, at each stage 
choose a clause whose value is FALSE, and randomly choose one of the 
Boolean variables in that clause and change its value. That is, if the variable 
has value TRUE then change its value to FALSE, and vice versa. If this new 
setting makes the formula TRUE then stop, otherwise continue in the same 
fashion. If you have not stopped after n2(l + 4 e )  repetitions, then declare 
that the formula cannot be satisfied. We will now argue that if there is a 
satisfiable assignment then this algorithm will find such an assignment with 
a probability very close to 1. 

Let us start by assuming that there is a satisfiable assignment of truth 
values and let a be such an assignment. At each stage of the algorithm 
there is a certain assignment of values. Let 3 denote the number of the n 
variables whose values at the j th  stage of the algorithm agree with their 
values in a. For instance, suppose that n = 3 and consists of the settings 
x, = x2 = x3 = TRUE. If the assignment of values at the j th  step of the 
algorithm is x, = TRUE, x2 = x3 = FALSE, then = 1. Now, at each 
stage, the algorithm considers a clause that is not satisfied, thus implying 
that at least one of the values of the two variables in this clause does not 
agree with its value in a. As a result, when we randomly choose one of 
the variables in this clause then there is a probability of at least i that 
q+, = Yj + 1 and at most that q+, = Y/ - 1 .  That is, independent of 
what has previously transpired in the algorithm, at each stage the number 
of settings in agreement with those in a will either increase or decrease by 
1 and the probability of an increase is at least 3 (it is 1 if both variables 
have values different from their values in a). Thus, even though the 
process q, j r 0 is not itself a Markov chain (why not?) it is intuitively 
clear that both the expectation and the variance of the number of stages of 
the algorithm needed to obtain the values of a will be less than or equal 
to the expectation and variance of the number of transitions to go from 
state 0 to state n in the Markov chain of Section 4.5.2. Hence, if the 
algorithm has not yet terminated because it found a set of satisfiable 
values different from that of a, it will do so within an expected time of at 
most n2 and with a standard deviation of at most n2@. In addition, since 
the time for the Markov chain to go from 0 to n is approximately normal 
when n is large we can be quite certain that a satisfiable assignment will be 
reached by n2 + 4(n2$) stages, and thus if one has not been found by this 
number of stages of the algorithm we can be quite certain that there is no 
satisfiable assignment. 
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Our analysis also makes it clear why we assumed that there are only two 
variables in each clause. For if there were k ,  k > 2,  variables in a clause 
then as any clause that is not presently satisfied may only have 1 incorrect 
setting, a randomly chosen variable whose value is changed might only 
increase the number of values in agreement with a with probability l / k  and 
so we could only conclude from our prior Markov chain results that the 
mean time to obtain the values in a is an exponential function of n, which 
is not an efficient algorithm when n is large. + 

4.6. Mean Time Spent in Transient States 

Consider now a finite state Markov chain and suppose that the states 
are numbered so that T = ( 1 , 2 ,  . . ., t )  denotes the set of transient states. 
Let 

p11 S z  . - -  S t  

e l  P,, ... P,t 

and note that since P, specifies only the transition probabilities from 
transient states into transient states, some of its row sums are less than 1 
(otherwise, T would be a closed class of states). 

For transient states i and j ,  let sii denote the expected number of time 
periods that the Markov chain is in state j ,  given that it starts in state i. 
Let diBj = 1 when i = j  and let it be 0 otherwise. Condition on the initial 
transition to obtain 

where the final equality follows since it is impossible to go from a recurrent 
to a transient state, implying that skj = 0 when k is a recurrent state. 

Let S denote the matrix of values sii, i, j = 1, ..., t. That is 
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In matrix notation, Equation (4.17) can be written as 

where I is the identity matrix of size t. Because the preceding equation is 
equivalent to 

(I - P,)S = I 

we obtain, upon multiplying both sides by (I - P,)-', 

That is, the quantities sii, i E T, j E T, can be obtained by inverting the 
matrix 1 - PT.  (The existence of the inverse is easily established.) 

Example 4.23 Consider the gambler's ruin problem with p = 0.4 and 
N = 7. Starting with 3 units, determine 

(a) the expected amount of time the gambler has 5 units, 
(b) the expected amount of time the gambler has 2 units. 

Solution: The matrix P,, which specifies P;,, i, j E (1,2,3,4,5,6), is 
as follows: 

Inverting I - PT gives 

Hence, 
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For i E T, j E T, the quantityAj, equal to the probability that the Markov 
chain ever makes a transition into state j given that it starts in state i, is 
easily determined from P,. To determine the relationship, let us start by 
deriving an expression for sij by conditioning on whether state j is ever 
entered. This yields 

sii = E[time in j I start in i, ever transit to j]Aj 

+ E[time in j I start in i, never transit to j]( l  - hj) 

= (6i.j + sjj)Aj + ai, j(l - fi, j )  

= Si,j + Ajsjj 

since sjj is the expected number of additional time periods spent in state j 
given that it is eventually entered from state i. Solving the preceding equation 
yields 

Sjj - di, f.. = 
U Sjj 

Example 4.24 In Example 4.23, what is the probability that the gambler 
ever has a fortune of 1. 

Solution: Since ~ 3 . 1  = 1.4206 and s,,, = 1.6149, then 

As a check, note that f3,, is just the probability that a gambler starting 
with 3 reaches 1 before 7. That is, it is the probability that the gambler's 
fortune will go down 2 before going up 4; which is the probability that a 
gambler starting with 2 will go broke before reaching 6. Therefore, 

which checks with our earlier answer. + 

4.7. Branching Processes 

In this section we consider a class of Markov chains, known as branching 
processes, which have a wide variety of applications in the biological, 
sociological, and engineering sciences. 
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Consider a population consisting of individuals able to produce offspring 
of the same kind. Suppose that each individual will, by the end of its 
lifetime, have produced j new offspring with probability 4 ,  j 2 0, inde- 
pendently of the number produced by any other individual. We suppose 
that 4 < 1 for all j 2 0. The number of individuals initially present, 
denoted by Xo, is called the size of the zeroth generation. All offspring of 
the zeroth generation constitute the first generation and their number is 
denoted by XI. In general, let Xn denote the size of the nth generation. It 
follows that [X, , n = 0, 1, . . .) is a Markov chain having as its state space 
the set of nonnegative integers. 

Note that state 0 is a recurrent state, since clearly P, = 1. Also, if 
Po > 0, all other states are transient. This follows since Pi, = P;, which 
implies that starting with i individuals there is a positive probability of at 
least P; that no later generation will ever consist of i individuals. Moreover, 
since any finite set of transient states [1,2, . . . , n) will be visited only finitely 
often, this leads to the important conclusion that, if Po > 0, then the 
population will either die out or its size will converge to infinity. 

Let 
OD 

denote the mean number of offspring of a single individual, and let 

be the variance of the number of offspring produced by a single individual. 
Let us suppose that Xo = 1, that is, initially there is a single individual 

present. We calculate E[Xn] and Var(Xn) by first noting that we may write 

where Zi represents the number of offspring of the ith individual of the 
(n - 1)st generation. By conditioning on Xn-, , we obtain 
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where we have used the fact that E[Zi] = p. Since EIXo] = 1, Equation 
(4.18) yields 

E[XlI = P, 

Similarly, Var(X,) may be obtained by using the conditional variance 
formula 

Var(X,) = E [Var(X, I X,- ,)I + Var(E [X, I X,- 

Now, given X,-I , X, is just the sum of X,-I independent random variables 
each having the distribution {Pi, j 1 0). Hence, 

Thus, the conditional variance formula yields 

Using the fact that Var(Xo) = 0 we can show by mathematical induction 
that the preceding implies 

( no2,  i f p  = 1 

Let no denote the probability that the population will eventually die out 
(under the assumption that Xo = 1). More formally, 

no = lim P(X, = OIXo = 1) 
,-+-a 

The problem of determining the value of no was first raised in connection 
with the extinction of family surnames by Galton in 1889. 

We first note that no = 1 if p < 1. This follows since 
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Since pn  + 0 when p < 1, it follows that P(X, 1 1) + 0, and hence 
P(X" = 0) -, 1. 

In fact, it can be shown that no = 1 even when p = 1. When p > 1, it 
turns out that no c 1, and an equation determining no may be derived by 
conditioning on the number of offspring of the initial individual, as follows: 

no = P(popu1ation dies out) 
m 

= P(popu1ation dies out I XI = j)4 
j = O  

Now, given that XI = j, the population will eventually die out if and only 
if each of the j families started by the members of the first generation 
eventually dies out. Since each family is assumed to act independently, and 
since the probability that any particular family dies out is just no, this yields 

P(popu1ation dies out 1 XI = j )  = R! 

and thus no satisfies 
ca 

no = C n i e  
j = O  

In fact when p > 1, it can be shown that no is the smallest positive number 
satisfying Equation (4.20). 

Example 4.25 If Po = t ,  P, = $, P, = $, then determine no. 

S0l~ti0n: Since p = % 5 1, it follows that no = 1. + 
Example 4.26 If Po = b, PI = $, P, = 3, then determine no. 

Solution: no satisfies 
no = $ + $no + +ni 

or 
2n; - 3no + 1 = 0 

The smallest positive solution of this quadratic equation is no = t .  + 
Example 4.27 In Examples 4.25 and 4.26, what is the probability that 
the population will die out if it initially consists of n individuals? 

Solution: Since the population will die out if and only if the families 
of each of the members of the initial generation die out, the desired 
probability is n,". For Example 4.25 this yields n," = 1, and for Example 
4.26, no" = (t)". + 



4.8. Time Reversible Markov Chains 201 

4.8. Time Reversible Markov Chains 

Consider a stationary ergodic Markov chain (that is, an ergodic Markov 
chain that has been in operation for a long time) having transition prob- 
abilities Pij and stationary probabilities xi ,  and suppose that starting at 
some time we trace the sequence of states going backwards in time. That is, 
starting at time n, consider the sequence of states X,,, Xn-,, Xn-,, ... . It 
turns out that this sequence of states is itself a Markov chain with transition 
probabilities Qij defined by 

To prove that the reversed process is indeed a Markov chain, we must 
verify that 

P(Xm = jlXm+, = i, Xm+,,Xm+,, ...I = PIXm = jlxm+, = i )  

To see that this is so, suppose that the present time is m + 1. Now, 
since X,, X I ,  X,, . . . is a Markov chain, it follows that the conditional 
distribution of the future Xm+, , Xm+3, . . . given the present state Xm+, is 
independent of the past state Xm. However, independence is a symmetric 
relationship (that is, if A is independent of B, then B is independent of A), 
and so this means that given Xm+, , Xm is independent of X,+, , X,+, , . . . . 
But this is exactly what we had to verify. 

Thus, the reversed process is also a Markov chain with transition 
probabilities given by 

nj Pji 
Q.. = - 

lJ xi 

If Q" = PU for all i, j ,  then the Markov chain is said to be time reversible. The 
condition for time reversibility, namely, Qu = PU,  can also be expressed as 

nipij = %Pji for all i, j (4.21) 

The condition in Equation (4.21) can be stated that, for all states i and j ,  the 
rate at which the process goes from i to j (namely, nipii) is equal to the rate 
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at which it goes from j to i (namely, njPii). It is worth noting that this is an 
obvious necessary condition for time reversibility since a transition from i 
to j going backward in time is equivalent to a transition from j to i going 
forward in time; i.e., if Xm = i and Xm-, = j, then a transition from i to 
j is observed if we are looking backward, and one from j to i if we are 
looking forward in time. Thus, the rate at which the forward process makes 
a transition from j to i is always equal to the rate at which the reverse 
process makes a transition from i to j; if time reversible, this must equal the 
rate at which the forward process makes a transition from i to j. 

If we can find nonnegative numbers, summing to one, which satisfy 
Equation (4.21), then it follows that the Markov chain is time reversible and 
the numbers represent the limiting probabilities. This is so since if 

xiPv = xjPi, for all i, j, xi = 1 
i 

Then summing over i yields 

and, as the limiting probabilities ni are the unique solution of the above, it 
follows that xi = ni for all i. 

Example 4.28 Consider a random walk with states 0, 1, . . . , M and 
transition probabilities 

Without the need of any computations, it is possible to argue that this 
Markov chain, which can only make transitions from a state to one of its 
two nearest neighbors, is time reversible. This follows by noting that the 
number of transitions from i to i + 1 must at all times be within 1 of the 
number from i + 1 to i. This is so since between any two transitions from 
i to i + 1 there must be one from i + 1 to i (and conversely) since the only 
way to reenter i from a higher state is via state i + 1. Hence, it follows that 
the rate of transitions from i to  i + 1 equals the rate from i + 1 to i, and so 
the process is time reversible. 

We can easily obtain the limiting probabilities by equating for each state 
i = 0,1, . . . , M - 1 the rate at which the process goes from i to i + 1 with 
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the. rate at which it goes from i + 1 to i. This yields 

Solving in terms of no yields 

and, in general, 

Since ~f ni = 1,  we obtain 

and 

For instance, if cri = a, then 

and, in general, 

where 
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Another special case of Example 4.28 is the following urn model, proposed 
by the physicists P. and T. Ehrenfest to describe the movements of molecules. 
Suppose that M molecules are distributed among two urns; and at each time 
point one of the molecules is chosen at random, removed from its urn, and 
placed in the other one. The number of molecules in urn I is a special case 
of the Markov chain of Example 4.28 having 

Hence, using Equations (4.23) and (4.24) the limiting probabilities in this 
case are 

where we have used the identity 

Hence, from Equation (4.24) 

As the preceding are just the binomial probabilities, it follows that in the 
long run, the positions of each of the M balls are independent and each one 
is equally likely to be in either urn. This, however, is quite intuitive, for if 
we focus on any one ball, it becomes quite clear that its position will be 
independent of the positions of the other balls (since no matter where the 
other M - 1 balls are, the ball under consideration at each stage will be 
moved with probability 1/M) and by symmetry, it is equally likely to be in 
either urn. 
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Figure 4.1. A connected graph with arc weights. 

Example 4.29 Consider an arbitrary connected graph (see Section 3.6 
for definitions) having a number wu associated with arc (i, j) for each arc. 
One instance of such a graph is given by Figure 4.1. Now consider a particle 
moving from node to node in this manner: If at any time the particle resides 
at node i, then it will next move to node j with probability Pu where 

W . .  p . .  = 2 
ZJ 

Ej wij 

and where wu is 0 if (i, j) is not an arc. For instance, for the graph of Figure 
4.1, PI,  = 3/(3 + 1 + 2) = *. 

The time reversibility equations 

7r.P.. = n .P.. Z u  J J l  

reduce to 

or, equivalently, since wu = wji 

which is equivalent to 



206 4 Markov Chains 

or, since 1 = C i n i  

As the ni7s given by this equation satisfy the time reversibility equations, it 
follows that the process is time reversible with these limiting probabilities. 

For the graph of Figure 4.1 we have that 

n 1 =  &, n2 = &, 7r3 = fir, 7r4 = &, n5 = ++ + 
If we try to solve Equation (4.22) for an arbitrary Markov chain with 

states 0, 1, . . . , M, it will usually turn out that no solution exists. For 
example, from Equation (4.22), 

x i p  = x.p.. 
ZJ J JI ' 

xkPkj = x j e k  

implying (if PijP,  > 0) that 

which in general need not equal Pki/Pik. Thus, we see that a necessary 
condition for time reversibility is that 

Pik PkjPji = PUPjkPki for all i, j, k (4.25) 

which is equivalent to the statement that, starting in state i, the path 
i -+ k -+ j -+ i has the same probability as the reversed path i + j -+ k -+ i. 
To understand the necessity of this note that time reversibility implies that 
the rate at which a sequence of transitions from i to k to j to i occurs must 
equal the rate of ones from i to j to k to i (why?), and so we must have 

7riPikPkjp,, = 7riPijPik Pki 

implying Equation (4.25) when ni > 0. 
In fact, we can show the following: 

Theorem 4.2 An ergodic Markov chain for which Pij = 0 whenever 
Pji = 0 is time reversible if and only if starting in state i, any path back to 
i has the same probability as the reversed path. That is, if 

pi, i lpi l , i2 . . . p .  . = p. . p. . . . . p .  . 
l k ,  I l ,  lk 1k. l k - l  l l . l  (4.26) 

for all states i, i,, ..., ik .  
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Proof We have already proven necessity. To prove sufficiency, fix states 
i and j and rewrite (4.26) as 

Summing the above over all states i, , . . . , ik yields 

p$+Ip.. 11 = p..pk+I u JI 

Letting k -+ co yields 
njPji = Pijlli 

which proves the theorem. + 
Example 4.30 Suppose we are given a set of n elements, numbered 1 
through n, which are to be arranged in some ordered list. At each unit of 
time a request is made to retrieve one of these elements, element i being 
requested (independently of the past) with probability Pi. After being 
requested, the element then is put back but not necessarily in the same 
position. In fact, let us suppose that the element requested is moved one 
closer to the front of the list; for instance, if the present list ordering is 
1 ,3 ,4 ,2 ,5  and element 2 is requested, then the new ordering becomes 
1 ,3 ,2 ,4 ,5 .  We are interested in the long-run average position of the 
element requested. 

For any given probability vector P = (PI, . . . , P,), the preceding can be 
modeled as a Markov chain with n! states, with the state at any time being 
the list order at that time. We shall show that this Markov chain is time 
reversible and then use this to show that the average position of the element 
requested when this one-closer rule is in effect is less than when the rule of 
always moving the requested element to the front of the line is used. The 
time reversibility of the resulting Markov chain when the one-closer 
reordering rule is in effect easily follows from Theorem 4.2. For instance, 
suppose n = 3 and consider the following path from state (1,2,3) to itself 

The product of the transition probabilities in the forward direction is 

whereas in the reverse direction, it is 

As the general result follows in much the same manner, the Markov chain 
is indeed time reversible. (For a formal argument note that if fi denotes the 
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number of times element i moves forward in the path, then as the path goes 
from a fixed state back to itself, it follows that element i will also move 
backwardsfi times. Therefore, since the backwards moves of element i are 
precisely the times that it moves forward in the reverse path, it follows that 
the product of the transition probabilities for both the path and its reversal 
will equal 

fl p,"+ri 

i 

where ri is equal to the number of times that element i is in the first position 
and the path (or the reverse path) does not change states.) 

For any permutation i,, i,, . . ., in of 1,2, . . ., n, let n(i, , i,, . . ., in) denote 
the limiting probability under the one-closer rule. By time reversibility 
we have 

. . 
Pi n i l  . . . , 1 , 1 , . . . , in) = P ( i  , . . . , + , , . . . , in) (4.27) 

J + 1  

for all permutations. 
Now the average position of the element requested can be expressed (as in 

Section 3.6.1) as 

Average position = C PiE [Position of element i] 
i 

= 1 Pi[l + E Pielement j precedes element i )  
i jzi I 

= 1 + C E PiP(ej precedes ei ) 
i j Z i  

= 1 + C [PiP[ej precedes ei ) + P,P[ei precedes ej)] 
i < j  

= 1 + [PiP(ej precedes e l )  + e(l - P(ej precedes ei))] 
i < j  

= 1 + C C ( p i  - e)p[ejprecedeseil + CCe 
i < j  i c j  

Hence, to minimize the average position of the element requested, we would 
want to make Piej precedes ei) as large as possible when 4 > Pi and as 
small as possible when Pi > Pj. Now under the front-of-the-line rule we 
showed in Section 3.6.1 that 

1 ,  

Piej precedes ei) = - 
Pj + Pi 

(since under the front-of-the-line rule element j will precede element i if and 
only if the last request for either i or j was for j).  
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Therefore, to show that the one-closer rule is better than the front-of-the- 
line rule, it suffices to show that under the one-closer rule 

P j  P[ej precedes ei) > - when Pj > Pi 
Pj + Pi 

Now consider any state where element i precedes element j, say 
(. . ., i , i l  , . . . , ik, j ,  . . .). By successive transpositions using Equation (4.27), 
we have 

For instance, 

Now when Pj > Pi,  Equation (4.28) implies that 

Letting a(i, j )  = P[ei precedes ej), we see by summing over all states for 
which i precedes j and by using the preceding that 

which, since a(i, j )  = 1 - a(j, i), yields 

Hence, the average position of the element requested is indeed smaller 
under the one-closer rule than under the front-of-the-line rule. + 

The concept of the reversed chain is useful even when the process is not 
time reversible. To illustrate this, we start with the following proposition 
whose proof is left as an exercise. 
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Pr0p0~ition 4.6 Consider an irreducible Markov chain with transition 
probabilities PU. If one can find positive numbers ni,  i r 0, summing to 
one, and a transition probability matrix Q = [QU] such that 

Z.P. = n.Q r u  ~ j i  (4.29) 
then the Qij are the transition probabilities of the reversed chain and the ni 
are the stationary probabilities both for the original and reversed chain. 

The importance of the preceding proposition is that, by thinking back- 
wards, we can sometimes guess at the nature of the reversed chain and then 
use the set of equations (4.29) to obtain both the stationary probabilities 
and the QU. 

Example 4.31 A single bulb is necessary to light a given room. When 
the bulb in use fails, it is replaced by a new one at the beginning of the next 
day. Let X, equal i if the bulb in use at the beginning of day n is in its ith 
day of use (that is, if its present age is i). For instance, if a bulb fails on day 
n - 1, then a new bulb will be put in use at the beginning of day n and so 
X, = 1. If we suppose that each bulb, independently, fails on its ith day of 
use with probability p i ,  i r 1, then it is easy to see that (X , ,  n r 1) is a 
Markov chain whose transition probabilities are as follows: 

Pi,, = P(bulb, on its ith day of use, fails] 

= P(1ife of bulb = i 1 life of bulb 2 i )  

where L,  a random variable representing the lifetime of a bulb, is such that 
P [L  = i ]  = pi. Also, 

p i , i + ~  = 1 - Pi.1 

Suppose now that this chain has been in operation for a long (in theory, an 
infinite) time and consider the sequence of states going backwards in time. 
Since, in the forward direction, the state is always increasing by 1 until it 
reaches the age at which the item fails, it is easy to see that the reverse chain 
will always decrease by 1 until it reaches 1 and then it will jump to a random 
value representing the lifetime of the (in real time) previous bulb. Thus, it 
seems that the reverse chain should have transition probabilities given by 

Q i  = 1 i > 1 

Ql,i = p i ,  i 1 1 

To check this, and at the same time determine the stationary probabilities, we 
must see if we can find, with the QiSj as given above, positive numbers (ni) 
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such that 
= njQjPi 

To begin, let j = 1 and consider the resulting equations: 

nipi, 1 = 711 Ql, i 

This is equivalent to 

Summing over all i yields 

and so, for the Q" above to xepresent the reverse transition probabilities, 
it is necessary that the stationary probabilities are 

To finish the proof that the reverse transition probabilities and stationary 
probabilities are as given all that remains is to show that they satisfy 

niPi,i+l = ni+l Qi+l ,  i 

which is equivalent to 

4.9. Markov Chain Monte Carlo Methods 

Let X be a discrete random vector whose set of possible values is xj, j 1 1 .  
Let the probability mass function of X be given by P(X = xj), j 1 1, and 
suppose that we are interested in calculating 

for some specified function h. In situations where it is computationally 
difficult to evaluate the function h(xj), j r 1 ,  we often turn to simulation 
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to approximate 6. The usual approach, called Monte Carlo simulation, is to 
use random numbers to generate a partial sequence of independent and 
identically distributed random vectors XI,  X2, . . . , X, having the mass 
function P(X = xj), j 2 1 (see Chapter 11 for a discussion as to how this 
can be accomplished). Since the strong law of large numbers yields 

" h(Xi) lim x - - - 8 
n - m  r = l  n 

it follows that we can estimate 6 by letting n be large and using the average 
of the values of h(Xi), i = 1, . .., n as the estimator. 

It often, however, turns out that it is difficult to generate a random vector 
having the specified probability mass function, particularly if X is a vector 
of dependent random variables. In addition, its probability mass function is 
sometimes given in the form P(X = xjJ = Cbj, j 2 1, where the bj are 
specified, but C must be computed, and in many applications it is not 
computationally feasible to sum the bj so as to determine C .  Fortunately, 
however, there is another way of using simulation to estimate 8 in these 
situations. It works by generating a sequence, not of independent random 
vectors, but of the successive states of a vector-valued Markov chain 
XI,  X, , . . . whose stationary probabilities are PIX = xj), j 2 1. If this can 
be accomplished, then it would follow from Proposition 4.3 that Equation 
(4.30) remains valid, implying that we can then use C:=, h(Xi)/n as an 
estimator of 6. 

We now show how to generate a Markov chain with arbitrary stationary 
probabilities that may only be specified up to a multiplicative constant. 
Let b(j), j = 1, . . . be positive numbers whose sum B = C;=, b(j) is finite. 
The following, known as the Hastings-Metropolis algorithm, can be used to 
generate a time reversible Markov chain whose stationary probabilities are 

n ( j ) = b ( j ) / B ,  j = l  ,... 
To begin, let Q be any specified irreducible Markov transition probability 
matrix on the integers, with q(i, j )  representing the row i column j element 
of Q. Now define a Markov chain (X,, n r 0) as follows. When X, = i, 
generate a random variable Y such that P(Y = j ) = q(i, j ) ,  j = 1, . . . . 
If Y = j ,  then set X,,, equal to j with probability a(i, j ) ,  and set it equal to 
i with probability 1 - a(i, j).  Under these conditions, it is easy to see that 
the sequence of states constitutes a Markov chain with transition 
probabilities f iSj  given by 

, j = q ( i , j ) a ( i , j ) ,  i f j # i  

Fji  = q(i, i )  + q(i, k)(l - a(i, k)) 
k g i  
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This Markov chain will be time reversible and have stationary probabilities 
n(j)  if 

~ ( i ) e , ~  = ~ l ( j ) $ , ~  for j # i 

which is equivalent to 

But if we take = b(j)/B and set 

a(i, j )  = min (n(j)q(j,  i) , l) 
n(i)q(i, j )  

then Equation (4.31) is easily seen to be satisfied. For if 

then a ( j ,  i )  = 1 and Equation (4.31) follows, and if a(i, j )  = 1 then 

and again Equation (4.31) holds, thus showing that the Markov chain is 
time reversible with stationary probabilities n(j). Also, since n( j )  = b(j)/B, 
we see from (4.32) that 

which shows that the value of B is not needed to define the Markov chain, 
because the values b(j) suffice. Also, it is almost always the case that n(j),  
j r 1 will not only be stationary probabilities but will also be limiting 
probabilities. (Indeed, a sufficient condition is that e.,i > 0 for some i.) 

Example 4.32 Suppose that we want to generate a uniformly distri- 
buted element in S, the set of all permutations (x, , . . . , x,) of the numbers 
(1, . . . , n) for which , jxj > a for a given constant a. To utilize the 
Hastings-Metropolis algorithm we need to define an irreducible Markov 
transition probability matrix on the state space S. To accomplish this, we 
first define a concept of "neighboring" elements of S, and then construct 
a graph whose vertex set is S. We start by putting an arc between each pair 
of neighboring elements in S, where any two permutations in S are said to 
be neighbors if one results from an interchange of two of the positions of 
the other. That is, (1,2,3,4) and (1,2,4,3) are neighbors whereas (1,2,3,4) 
and (1,3,4,2) are not. Now, define the q transition probability function 
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as follows. With N(s) defined as the set of neighbors of s, and IN@)[ equal 
to the number of elements in the set N(s), let 

That is, the candidate next state from s is equally likely to be any of its 
neighbors. Since the desired limiting probabilities of the Markov chain are 
n(s) = C, it follows that n(s) = n(t), and so 

That is, if the present state of the Markov chain is s then one of its 
neighbors is randomly chosen, say, t. If t is a state with fewer neighbors 
than s (in graph theory language, if the degree of vertex t is less than that 
of vertex s), then the next state is t. If not, a uniform (0, 1) random number 
U is generated and the next state if t if U < IN(s)l/l~(t)l and is s otherwise. 
The limiting probabilities of this Markov chain are n(s) = 1/ISI, where IS[ 
is the (unknown) number of permutations in S. 

The preceding does not specify how to randomly choose a neighbor 
permutation of s. One possibility, which is efficient when n is small enough 
so that we can easily keep track of all the neighbors of s, is to just randomly 
choose one, call it t, as the target next state. The number of the neighbors 
of t would then have to be determined, and the next state of the Markov 
chain would then either be t with probability min(1, IN(s)l/lN(t)l) or it 
would remain s otherwise. However, if n is large this may be impractical, 
and a better approach might be to expand the state space to consist of all n! 
permutations. The desired limiting probability mass function is then 

With this setup, each permutation s has (;) neighbors, and one can be 

randomly chosen by generating a random subset of size two from the set 
1, . . . , n and if i and j are chosen then the candidate next state t is obtained 
by interchanging the values of the ith and j th  coordinates of s. If t E S 
then t becomes the next state of the chain, and if not then the next state 
remains s. 4 

The most widely used version of the Hastings-Metropolis algorithm is the 
Gibbs sampler. Let X = (XI, . . . , X,) be a random vector with probability 
mass function p(x), which may only be specified up to a multiplicative 
constant, and suppose that we want to generate a random vector whose 
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distribution is that of the conditional distribution of X given that X E Q. for 
some set @. That is, we want to generate a random vector having mass 
function 

P(X) 
f(X) = PIX E a ]  

for x E Q. 

The Gibbs sampler assumes that for any i, i = 1, . . . , n and values xj, j # i, 
we can generate a random variable X having the probability mass function 

It operates by considering a Markov chain with states 

and then uses the Hastings-Metropolis algorithm with Markov transition 
probabilities defined as follows. Whenever the present state is x, a coordinate 
that is equally likely to be any of 1, . . . , n is generated. If coordinate i is the 
one chosen, then a random variable X having probability mass function 
P ( X  = x) = P(Xi = x I Xj = xi, j # i )  is generated, and if X = x then the 
state y = (x,, . . ., xi-,, X, xi+,, . . . , xn) is considered as a candidate for 
transition. In other words, the Gibbs sampler uses the Hastings-Metropolis 
algorithm with 

Since we want the limiting mass function to be f, we have from Equation 
(4.32) that the vector y is then accepted as the new state with probability 

a(x, y) = min (f (y)q(y X, I) 
f (x)q(x, Y) ' 

Now, for x E Q. and y E Q. 

whereas for x E Q. and y $ Q. we have [since f(y) = 01 

Hence, the next state is either y if y E Q. or it remains x if y $ a. 
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Example 4.33 Suppose we want to generate n uniformly distributed 
points in the circle of radius 1 centered at the origin, conditional on the event 
that no two points are within a distance d of each other, where 

B = P(no two points are within d of each other) 

is assumed to be a small positive number. (If B were not small, then we 
could just continue to generate sets of n uniformly distributed points in the 
circle, stopping the first time that no two points in the set are within d of 
each other.) This can be accomplished by the Gibbs sampler by starting with 
any n points in the circle, xl , . . . , xn , for which no two are within a distance 
d of each other. Then generate the value of a random variable I that is 
equally likely to be any of the values 1, . . . , n. Also generate a random point 
in the circle (see Chapter 11 for details of these generations). If this point 
is not within d of any of the other n - 1 points excluding xI then replace 
x, by this generated point, otherwise do not make a change. After a large 
number of iterations the set of n points will approximately have the desired 
distribution. + 

The Gibbs sampler for generating a random vector X conditional on the 
event that X E (3 moves from state to state by choosing a coordinate I at 
random and then generating a random variable from the conditional distri- 
bution of XI given the values of the other random variables, Xi, j # I. If the 
vector obtained by replacing the old value of XI by this generated value 
remains in (3 then it becomes the next state, and if not then the next state 
remains unchanged from the previous one. However, if we can easily generate 
XI conditional both on the values of Xi, j # I and on the condition that 
X E A ,  then the Gibbs sampler may be performed by doing this generation 
and then obtaining the next state of the Markov chain by replacing the old 
value of XI by the value generated. This is illustrated by our next example. 

Example 4.34 Let Xi, i = 1, . . . , n be independent random variables 
with Xi having an exponential distribution with rate ,Ii, i = 1, . . . , n. Let 
S = CY=, Xi and suppose that we want to generate the random vector 
X = (XI, . . . , Xn) conditional on the event that S > c for some large 
positive constant c. That is, we want to generate the value of a random 
vector whose density function is given by 

This is easily accomplished by starting with an initial vector x = (x, , . . . , xn) 
satisfying xi > 0, i = 1, . . . , n and I;=, xi > c. Then generate a variable I 
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that is equally likely to be any of 1, . . . , n. Now, we want to generate an 
exponential random variable X with rate 11, conditioned on the event that 
X i- Cj#Ixj > c. That is, we want to generate the value of X conditional 
on the event that it exceeds c - C,,,x,. Hence, using the fact that an 
exponential conditioned to be greater than a positive constant is distributed 
as the constant plus the exponential, we see that we should generate an 
exponential random variable Y with rate 11, and set 

where b+ is equal to b when b > 0 and is 0 otherwise. The value of xI should 
then be reset to equal X and a new iteration of the algorithm begun. 

Remark As can be seen by Examples 4.33 and 4.34, although the theory 
for the Gibb's sampler was presented under the assumption that the 
distribution to be generated was discrete, it also holds when this distribution 
is continuous. 

4.1 0. Markov Decision Processes 

Consider a process that is observed at discrete time points to be in any one 
of M possible states, which we number by 1,2, . . . , M. After observing the 
state of the process, an action must be chosen, and we let A ,  assumed finite, 
denote the set of all possible actions. 

If the process is in state i at time n and action a is chosen, then the next state 
of the system is determined according to the transition probabilities Pij(a). 
If we let X, denote the state of the process at time n and a, the action chosen 
at time n, then the above is equivalent to stating that 

P[X,+, = j 1 X,, a,, X,, a , ,  ..., X, = i, a, = a] = Pv(a) 

Thus, the transition probabilities are functions only of the present state and 
the subsequent action. 

By a policy, we mean a rule for choosing actions. We shall restrict 
ourselves to policies which are of the form that the action they prescribe at 
any time depends only on the state of the process at that time (and not on 
any information concerning prior states and actions). However, we shall 
allow the policy to be "randomized" in that its instructions may be to 
choose actions according to a probability distribution. In other words, 
a policy P is a set of numbers P = (&(a), a E A ,  i = 1, ..., MI with the 
interpretation that if the process is in state i, then action a is to be chosen 
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with probability Bi(a). Of course, we need have that 

0 I &(a) 5 1, for all i , a  

C P i ( a ) = l ,  fo ra l l i  
a 

Under any given policy P, the sequence of states [X,, n = 0, 1, . . .] 
constitutes a Markov chain with transition probabilities Pii(P) given by 

where the last equality follows by conditioning on the action chosen when 
in state i. Let us suppose that for every choice of a policy P, the resultant 
Markov chain [X, , n = 0, 1, . . .J is ergodic. 

For any policy P, let nia denote the limiting (or steady-state) probability 
that the process will be in state i and action a will be chosen if policy $ is 
employed. That is, 

nia = lim PB[Xn = i, a, = a] 
n-+w 

The vector x = (nia) must satisfy 

(i) nia L 0 for all i, a 
(ii) Zi za nia = 1 

(iii) Ca nja = Ci Ca nia Pij(a) for all j 

Equations (i) and (ii) are obvious, and Equation (iii) which is an analogue 
of Equation (4.7) follows as the left-hand side equals the steady-state 
probability of being in state j and the right-hand side is the same probability 
computed by conditioning on the state and action chosen one stage earlier. 

Thus for any policy P, there is a vector x = (n,) which satisfies (i)-(iii) 
and with the interpretation that nia is equal to the steady-state probability 
of being in state i and choosing action a when policy J3 is employed. 
Moreover, it turns out that the reverse is also true. Namely, for any vector 
x = (n,) which satisfies (i)-(iii), there exists a policy P such that if $ is used, 
then the steady-state probability of being in i and choosing action a equals 
nia. To verify this last statement, suppose that x = (n,) is a vector which 
satisfies (i)-(iii). Then, let the policy P = (&(a)) be 

&(a) = P(P chooses a 1 state is i ]  

* We use the notation Pg to signify that the probability is conditional on the fact that policy 
$ is used. 
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Now let Pi, denote the limiting probability of being in i and choosing a 
when policy P is employed. We need to show that Pi, = nia. TO do so, first 
note that (Pis , i = 1, . . . , M, a E A )  are the limiting probabilities of the two- 
dimensional Markov chain ((X,, a,), n r 0). Hence, by the fundamental 
Theorem 4.1, they are the unique solution of 

(if) Pia 1 0 
(iif) Xi  Capia = 1 

(iii') Pja = Ci Ca, PiatPij(af)Pj(a) 

where (iii') follows since 

P(X,+l = j ,  a,+l = a J X ,  = i, a, = a ')  = P,j(a')/3j(a) 

Since 

we see that (Pi,) is the unique solution of 

Hence, to show that Pi, = nia, we need show that 

The top two equations follow from (i) and (ii) of Equation (4.33), and the 
third which is equivalent to . 

follows from condition (iii) of Equation (4.33). 
Thus we have shown that a vector n = (n,) will satisfy (i), (ii), and (iii) 

of Equation (4.33) if and only if there exists a policy P such that nia is equal 
to the steady-state probability of being in state i and choosing action a when 
p is used. In fact, the policy P is defined by Pi(a) = nia/Ca nia. 
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The preceding is quite important in the determination of "optimal" 
policies. For instance, suppose that a reward R(i, a) is earned whenever 
action a is chosen in state i. Since R(Xi, ai) would then represent the reward 
earned at time i, the expected average reward per unit time under policy P 
can be expressed as 

expected average reward under P = lim Eg [ Xb 1 RWi, ail] 
?I --. = n 

Now, if nia denotes the steady-state probability of being in state i and 
choosing action a, it follows that the limiting expected reward at time n 
equals 

lim E [R(Xn , a,)] = C C nia R(i, a) 
n-+m i a 

which implies (see Exercise 60) that 

expected average reward under p = C C niaR(i, a) 
i a 

Hence, the problem of determining the policy that maximizes the expected 
average reward is 

maximize C C nia R(i, a) 
X ' (win) i (I 

subject to n, 2 0, for all i, a ,  

C71i,=CCniaPij(a), f o r a l l j  (4.34) 
a i a 

However, the above maximization problem is a special case of what is 
known as a linear program* and can thus be solved by a standard linear 
programming algorithm known as the simplex algorithm. If sr* = (ni*,) 
maximizes the preceding, then the optimal policy will be given by P* where 

Remarks (i) It can be shown that there is a sr* maximizing Equation 
(4.34) that has the property that for each i, ng is zero for all but one value 
of a, which implies that the optimal policy is nonrandomized. That is, the 
action it prescribes when in state i is a deterministic function of i. 

* It is called a linear program since the objective function C i  C, R(i, a ) ~ ,  and the constraints 
are all linear functions of the xi,, . 
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(ii) The linear programming formulation also often works when there are 
restrictions placed on the class of allowable policies. For instance, suppose 
there is a restriction on the fraction of time the process spends in some state, 
say, state 1. Specifically, suppose that we are only allowed to consider 
policies having the property that their use results in the process being in 
state 1 less that lOOa percent of time. To determine the optimal policy 
subject to this requirement, we add to the linear programming problem the 
additional constraint 

C 711. 5 a 
a 

since Ca nla represents the proportion of time that the process is in state 1. 

Exercises 

'1. Three white and three black balls are distributed in two urns in such 
a way that each contains three balls. We say that the system is in state i, 
i = 0, 1,2,3, if the first urn contains i white balls. At each step, we draw 
one ball from each urn and place the ball drawn from the first urn into the 
second, and conversely with the ball from the second urn. Let X, denote the 
state of the system after the nth step. Explain why [X,, n = 0, 1,2, . . .] is 
a Markov chain and calculate its transition probability matrix. 

2. Suppose that whether or not it rains today depends on previous weather 
conditions through the last three days. Show how this system may be 
analyzed by using a Markov chain. How many states are needed? 

3. In Exercise 2, suppose that if it has rained for the past three days, then 
it will rain today with probability 0.8; if it did not rain for any of the past 
three days, then it will rain today with probability 0.2; and in any other case 
the weather today will, with probability 0.6, be the same as the weather 
yesterday. Determine P for this Markov chain. 

'4. Consider a process [X,, n = 0, 1, . . .) which takes on the values 0, 1, 
or 2. Suppose 

P ,  when n is even 
P[X,+, = jlx,= i,X,-I = i n _ ,  ,..., X , =  io) = 

P ,  when n is odd 

where C;= Pi = c;= P; = 1, i = 0,1,2. Is (X,, n 1 0) a Markov chain? 
If not, then show how, by enlarging the state space, we may transform it 
into a Markov chain. 
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5. Let the transition probability matrix of a two-state Markov chain be 
given, as in Example 4.2, by 

Show by mathematical induction that 

6. In Example 4.4 suppose that it has rained neither yesterday nor the day 
before yesterday. What is the probability that it will rain tomorrow? 

7.  Suppose that coin 1 has probability 0.7 of coming up heads, and coin 
2 has probability 0.6 of coming up heads. If the coin flipped today comes 
up heads, then we select coin 1 to flip tomorrow, and if it comes up tails, 
then we select coin 2 to flip tomorrow. If the coin initially flipped is equally 
likely to be coin 1 or coin 2, then what is the probability that the coin 
flipped on the third day after the initial flip is coin l? 

8. Specify the classes of the following Markov chains, and determine 
whether they are transient or recurrent: 

9. Prove that if the number of states in a Markov chain is M, and if state 
j can be reached from state i, then it can be reached in M steps or less. 

'10. Show that if state i is recurrent and state i does not communicate 
with state j ,  then P" = 0. This implies that once a process enters a recurrent 
class of states it can never leave that class. For this reason, a recurrent class 
is often referred to as a closed class. 
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11. For the random walk of Example 4.13 use the strong law of large 
numbers to give another proof that the Markov chain is transient when 
pz* .  

Hint: Note that the state at time n can be written as Y;: where the 
X's are independent and P[Y;: = 1) = p = 1 - P(Z.;. = -1). Argue that if 
p > 3, then, by the strong law of large numbers, C; Y;: -, a as n + 

and hence the initial state 0 can be visited only finitely often, and hence 
must be transient. A similar argument holds when p < t .  

12. Coin 1 comes up heads with probability 0.6 and coin 2 with probability 
0.5. A coin is continually flipped until it comes up tails, at which time that 
coin is put aside and we start flipping the other one. 

(a) What proportion of flips use coin l?  
(b) If we start the process with coin 1 what is the probability that coin 2 
is used on the fifth flip? 

13. For Example 4.4, calculate the proportion of days that it rains. 

14. A transition probability matrix P is said to be doubly stochastic if the 
sum over each column equals one; that is, 

Cej i = 1, for a l l j  

If such a chain is irreducible and aperiodic and consists of M + 1 states 
0, 1, . . . , M, show that the limiting probabilities are given by 

'1 5. A particle moves on a circle through points which have been marked 
0, 1, 2, 3,  4 (in a clockwise order). At each step it has a probability p of 
moving to the right (clockwise) and 1 - p to the left (counterclockwise). Let 
X, denote its location on the circle after the nth step. The process 
(X,, n 2 0) is a Markov chain. 

(a) Find the transition probability matrix. 
(b) Calculate the limiting probabilities. 

16. Let Y,  be the sum of n independent rolls of a fair die. Find 

lim P(Y, is a multiple of 13) 
n - t w  

Hint: Define an appropriate Markov chain and apply the results of 
Exercise 14. 
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17. Each morning an individual leaves his house and goes for a run. He 
is equally likely to leave either from his front or back door. Upon leaving 
the house, he chooses a pair of running shoes (or goes running barefoot if 
there are no shoes at the door from which he departed). On his return he is 
equally likely to enter, and leave his running shoes, either by the front or 
back door. If he owns a total of k pairs of running shoes, what proportion 
of the time does he run barefooted? 

18. Consider the following approach to shuffling a deck of n cards. 
Starting with any initial ordering of the cards, one of the numbers 
1,2, . . . , n is randomly chosen in such a manner that each one is equally 
likely to be selected. If number i is chosen, then we take the card that is in 
position i and put it on top of the deck-that is, we put that card in position 
1. We then repeatedly perform the same operation. Show that, in the limit, 
the deck is perfectly shuffled in the sense that the resultant ordering is 
equally likely to be any of the n! possible orderings. 

*19. Determine the limiting probabilities nj for the model presented in 
Exercise 1. Give an intuitive explanation of your answer. 

20. For a series of dependent trials the probability of success on any trial 
is (k + l)/(k + 2) where k is equal to the number of successes on the 
previous two trials. Compute lim,,, P(success on the nth trial). 

21. An organization has N employees where N is a large number. Each 
employee has one of three possible job classifications and changes 
classifications (independently) according to a Markov chain with transition 
probabilities 

0.7 0.2 0.1 

0.2 0.6 0.2 

0.1 0.4 0.5 

What percentage of employees are in each classification? 

22. Three out of every four trucks on the road are followed by a car, while 
only one out of every five cars is followed by a truck. What fraction of 
vehicles on the road are trucks? 

23. A certain town never has two sunny days in a row. Each day is 
classified as being either sunny, cloudy (but dry), or rainy. If it is sunny one 
day, then it is equally likely to be either cloudy or rainy the next day. If it 
is rainy or cloudy one day, then there is one chance in two that it will be the 
same the next day, and if it changes then it is equally likely to be either of 
the other two possibilities. In the long run, what proportion of days are 
sunny? What proportion are cloudy? 
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"24. Each of two switches is either on or off during a day. On day n, each 
switch will independently be on with probability 

[ l  + number of on switches during day n - 1]/4 

For instance, if both switches are on during day n - 1, then each will 
independently be on during day n with probability 3/4. What fraction of 
days are both switches on? What fraction are both off? 

25. A professor continually gives exams to her students. She can give 
three possible types of exams, and her class is graded as either having done 
well or badly. Let pi denote the probability that the class does well on a type 
i exam, and suppose thatp, = 0.3, p, = 0.6, andp3 = 0.9. If the class does 
well on an exam, then the next exam is equally likely to be any of the three 
types. If the class does badly, then the next exam is always type 1. What 
proportion of exams are type i, i = l , 2 ,3?  

26. A flea moves around the vertices of a triangle in the following 
manner: Whenever it is at vertex i it moves to its clockwise neighbor vertex 
with probability pi and to the counterclockwise neighbor with probability 
qi = 1 - p i ,  i = 1,2,3.  

(a) Find the proportion of time that the flea is at each of the vertices. 
(b) How often does the flea make a counterclockwise move which is then 
followed by 5 consecutive clockwise moves? 

27. Consider a Markov chain with states 0, 1, 2, 3, 4. Suppose Po,, = 1; 
and suppose that when the chain is in state i, i > 0, the next state is equally 
likely to be any of the states 0, 1, . . . , i - 1. Find the limiting probabilities 
of this Markov chain. 

*28. Let ni denote the long-run proportion of time a given Markov chain 
is in state i. 

(a) Explain why ni is also the proportion of transitions that are into state 
i as well as being the proportion of transitions that are from state i. 
(b) xi& represents the proportion of transitions that satisfy what 
property? 
(c) Ci nip" represent the proportion of transitions that satisfy what 
property? 
(d) Using the preceding explain why 
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29. Let A be a set of states, and let AC be the remaining states. 

(a) What is the interpretation of 

(b) What is the interpretation of 

(c) Explain the identity 

30. Each day, one of n possible elements is requested, the ith one with 
probability 5 ,  i r 1, Pi = 1. These elements are at all times arranged in 
an ordered list which is revised as follows: The element selected is moved to 
the front of the list with the relative positions of all the other elements 
remaining unchanged. Define the state at any time to be the list ordering at 
that time and note that there are n! possible states. 

(a) Argue that the preceding is a Markov chain. 
(b) For any state i,, ..., in (which is a permutation of 1,2, ..., n), let 
n(i, , . . . , in) denote the limiting probability. In order for the state to be 
i, , . . . , in, it is necessary for the last request to be for i, , the last non-i, 
request for i2, the last non-i, or i, request for i,, and so on. Hence, it 
appears intuitive that 

Verify when n = 3 that the above are indeed the limiting probabilities. 

31. Suppose that a population consists of a fixed number, say, rn, of 
genes in any generation. Each gene is one of two possible genetic types. If 
any generation has exactly i (of its rn) genes being type 1, then the next 
generation will have j type 1 (and m - j type 2) genes with probability 

Let X,, denote the number of type 1 genes in the nth generation, and 
assume that X, = i. 

(a) Find E[Xn]. 
(b) What is the probability that eventually all the genes will be type l ?  
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32. Consider an irreducible finite Markov chain with states 0, 1, . . . , N. 

(a) Starting in state i, what is the probability the process will ever visit 
state j ?  Explain! 
(b) Let xi = P(visit state N before state 0 I start in i) .  Compute a set of 
linear equations which the xi satisfy, i = 0, 1, ..., N. 
(c) If C j  jp, = i for i = 1, ..., N - 1, show that xi = i/N is a solution 
to the equations in part (b). 

33. An individual possesses r umbrellas which he employs in going from 
his home to office, and vice versa. If he is at home (the office) at the 
beginning (end) of a day and it is raining, then he will take an umbrella with 
him to the office (home), provided there is one to be taken. If it is not 
raining, then he never takes an umbrella. Assume that, independent of the 
past, it rains at the beginning (end) of a day with probability p. 

(i) Define a Markov chain with r + 1 states which will help us to 
determine the proportion of time that our man gets wet. (Note: He 
gets wet if it is raining, and all umbrellas are at his other location.) 

(ii) Show that the limiting probabilities are given by 

4 i f i = O  
where q = 1 - p 

1 
if i = 1, ..., r 

(iii) What fraction of time does our man get wet? 
(iv) When r = 3, what value of p maximizes the fraction of time he 

gets wet? 

*34. Let (X,, n 2 0) denote an ergodic Markov chain with limiting 
probabilities n. Define the process (Y,, n r 1) by Y, = (X,-, , X,). That is, 
Y, keeps track of the last two states of the original chain. Is (Y,, n 2 1) a 
Markov chain? If so, determine its transition probabilities and find 

lim P(G = (i, j ) )  
n-+- 

35. Verify the transition probability matrix given in Example 4.18. 

36. Let P(') and P'~) denote transition probability matrices for ergodic 
Markov chains having the same state space. Let n1 and n2 denote the 
stationary (limiting) probability vectors for the two chains. Consider a 
process defined as follows: 
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(i) X, = 1. A coin is then flipped and if it comes up heads, then the 
remaining states XI ,  . . . are obtained from the transition probability 
matrix P(') and if tails from the matrix PC'). Is (X,, n 2 0) a Markov 
chain? If p = P(coin comes up heads), what is limn,, P(X, = i )?  
(ii) X, = 1. At each stage the coin is flipped and if it comes up heads, 
then the next state is chosen according to P") and if tails comes up, then 
it is chosen according to P('). In this case do the successive states constitute 
a Markov chain? If so, determine the transition probabilities. Show by a 
counterexample that the limiting probabilities are not the same as in 
part (i). 

37. A fair coin is continually flipped. Compute the expected number of 
flips until the following patterns appear: 

(a) HHTTHT 
*(b) HHTTHH 
(c) HHTHHT 

38. Consider the Ehrenfest urn model in which M molecules are 
distributed among two urns, and at each time point one of the molecules is 
chosen at random and is then removed from its urn and placed in the other 
one. Let Xn denote the number of molecules in urn 1 after the nth switch 
and let p, = E [X,]. Show that 

(0 P,+1 = 1 + (1 - 2 /M)~n  
(ii) Use (i) to prove that 

39. Consider a population of individuals each of whom possesses two 
genes which can be either type A or type a. Suppose that in outward 
appearance type A is dominant and type a is recessive. (That is, an 
individual will only have the outward characteristics of the recessive gene 
if its pair is aa.) Suppose that the population has stabilized, and the 
percentages of individuals having respective gene pairs AA, aa, and Aa are 
p ,  q, and r. Call an individual dominant or recessive depending on the 
outward characteristics it exhibits. Let S,, denote the probability that an 
offspring of two dominant parents will be recessive; and let S,, denote the 
probability that the offspring of one dominant and one recessive parent will 
be recessive. Compute S,, and S,, to show that S,, = s:,. (The quantities 
Slo and S,, are known in the genetics literature as Snyder's ratios.) 
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40. Suppose that on each play of the game a gambler either wins 1 with 
probability p or loses 1 with probability 1 - p. The gambler continues 
betting until she or he is either winning n or losing m. What is the probability 
that the gambler quits a winner? 

41. A particle moves among n + 1 vertices that are situated on a circle 
in the following manner: At each step it moves one step either in the 
clockwise direction with probability p or the counterclockwise direction 
with probability q = 1 - p. Starting at a specified state, call it state 0, let T 
be the time of the first return to state 0. Find the probability that all states 
have been visited by time T. 

Hint: Condition on the initial transition and then use results from the 
gambler's ruin problem. 

42. In the gambler's ruin problem of Section 4.5.1, suppose the gambler's 
fortune is presently i, and suppose that we know that the gambler's fortune 
will eventually reach N (before it goes to 0). Given this information, show 
that the probability he wins the next gamble is 

i f p  = f  

Hint: The probability we want is 

P(Xn+,  = i + 1 I x ,  = i, lim Xm = N ]  
m + m  

43. For the gambler's ruin model of Section 4.5.1, let Mi denote the mean 
number of games that must be played until the gambler either goes broke or 
reaches a fortune of N, given that he starts with i, i = 0, 1, . . ., N. Show 
that Mi satisfies 

44. Solve the equations given in Exercise 43 to obtain 

Mi = i(N - i), i f p  = *  
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'45. In Exercise 15, 

(a) what is the expected number of steps the particle takes to return to the 
starting position? 
(b) what is the probability that all other positions are visited before the 
particle returns to its starting state? 

46. For the Markov chain with states 1,2,3,4 whose transition probability 
matrix P is as specified below find J;:, and si3 for i = 1,2,3. 

47. Consider a branching process having p < 1. Show that if Xo = 1, 
then the expected number of individuals that ever exist in this population is 
given by 1/(1 - p). What if Xo = n? 

48. In a branching process having Xo = 1 and p > 1, prove that no is the 
smallest positive number satisfying Equation (4.15). 

Hint: Let n be any solution of n = Cj"=, nJe. Show by mathematical 
induction that n 2 P(Xn = 0) for all n, and let n -, a. In using the 
induction argue that 

49. For a branching process, calculate no when 

(a) Po = $, P, = f 
(b) Po = $, Pl = +, P, = $ 
(c) Po = +, Pl = +, P3 = f. 

50. At all times, an urn contains N balls-some white balls and some 
black balls. At each stage, a coin having probability p, 0 < p < 1, of 
landing heads is flipped. If heads appears, then a ball is chosen at random 
from the urn and is replaced by a white ball; if tails appears, then a ball is 
chosen from the urn and is replaced by a black ball. Let Xn denote the 
number of white balls in the urn after the nth stage. 
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(a) Is (X , ,  n r 0) a Markov chain? If so, explain why. 
(b) What are its classes? What are their periods? Are they transient or 
recurrent? 
(c) Compute the transition probabilities ej. 
(d) Let N = 2. Find the proportion of time in each state. 
(e) Based on your answer in part (d) and your intuition, guess the answer 
for the limiting probability in the general case. 
(f) Prove your guess in part (e) either by showing that Equation (4.7) is 
satisfied or by using the results of Example 4.28. 
(g) If p = 1, what is the expected time until there are only white balls in 
the urn if initially there are i white and N - i black? 

*51. (a) Show that the limiting probabilities of the reversed Markov 
chain are the same as for the forward chain by showing that they satisfy the 
equations 

nj = niQij 
i 

(b) Give an intuitive explanation for the result of part (a). 

52. M balls are initially distributed among rn urns. At each stage one of 
the balls is selected at random, taken from whichever urn it is in, and then 
placed, at random, in one of the other M - 1 urns. Consider the Markov 
chain whose state at any time is the vector (n, , . . . , n,) where ni denotes the 
number of balls in urn i. Guess at the limiting probabilities for this Markov 
chain and then verify your guess and show at the same time that the Markov 
chain is time reversible. 

53. It follows from Theorem 4.2 that for a time reversible Markov chain 

Pij$kPki = &Pkjei, for all i, j ,  k 

It turns out that if the state space is finite and ej > 0 for all i ,  j ,  then the 
preceding is also a sufficient condition for time reversibility. (That is, in this 
case, we need only check Equation (4.26) for paths from i to i that have 
only two intermediate states.) Prove this. 

Hint: Fix i and show that the equations 

%pik = 7TkPkj 

are satisfied by nj = ce j /P j i ,  where c is chosen so that C j  nj = 1 .  

54. For a time reversible Markov chain, argue that the rate at which 
transitions from i to j to k occur must equal the rate at which transitions 
from k to j to i occur. 
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55. Show that the Markov chain of Exercise 23 is time reversible. 

56. A group of n processors are arranged in an ordered list. When a job 
arrives, the first processor in line attempts it; if it is unsuccessful, then the 
next in line tries it; if it too is unsuccessful, then the next in line tries it, and 
so on. When the job is successfully processed or after all processors have 
been unsuccessful, the job leaves the system. At this point we are allowed to 
reorder the processors, and a new job appears. Suppose that we use the 
one-closer reordering rule, which moves the processor that was successful 
one closer to the front of the line by interchanging its position with the one 
in front of it. If all processors were unsuccessful (or if the processor in the 
first position was successful), then the ordering remains the same. Suppose 
that each time processor i attempts a job then, independently of anything 
else, it is successful with probability pi. 

(a) Define an appropriate Markov chain to analyze this model. 
(b) Show that this Markov chain is time reversible. 
(c) Find the long run probabilities. 

57. A Markov chain is said to be a tree process if 

(i) cj > 0 whenever P,, > 0. 
(ii) for every pair of states i and j ,  i # j ,  there is a unique sequence of 
distinct states i = i,, i,, ..., i ,-,, in = j such that 

k , i , + O ,  k = 0 , 1 ,  ..., n - 1  

In other words, a Markov chain is a tree process if for every pair of 
distinct states i and j there is a unique way for the process to go from i to 
j without reentering a state (and this path is the reverse of the unique path 
from j to i). Argue that an ergodic tree process is time reversible. 

58. On a chessboard compute the expected number of plays it takes a 
knight, starting in one of the four corners of the chessboard, to return to its 
initial position if we assume that at each play it is equally likely to choose 
any of its legal moves. (No other pieces are on the board.) 

Hint: Make use of Example 4.29. 

59. In a Markov decision problem, another criterion often used, different 
than the expected average return per unit time, is that of the expected 
discounted return. In this criterion we choose a number a ,  0 < a < 1, and 
try to choose a policy so as to maximize E [ C ~ = " = , ~ R ( X ~ ,  ai)]. (That is, 
rewards at time n are discounted at rate an.) Suppose that the initial state is 
chosen according to the probabilities bi .  That is, 
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For a given policy $ let yja denote the expected discounted time that the 
process is in state j and action a is chosen. That is, 

y j a  = E~ 1 C an1{x,, = j ,  a,, = a }  
n = 0 1 

where for any event A the indicator variable IA is defined by 

if A occurs 
I A =  [" 

0, otherwise 

(a) Show that 

or, in other words, C ,  yja is the expected discounted time in state j 
under $. 
(b) Show that 

C a Y j a  = bj + a C C y i a P i i ( a )  
i a 

Hint: For the second equation, use the identity 

Take expectations of the preceding to obtain 

(c) Let ( y j a ]  be a set of numbers satisfying 

C Y j a  = bj + ff C C y i a P , j ( a )  (4.35) 
a i a 

Argue that yja can be interpreted as the expected discounted time that the 
process is in state j and action a is chosen when the initial state is chosen 
according to the probabilities bj and the policy $, given by 

Y i a  
B i ( a )  = - 

C a  ~ i a  

is employed. 
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Hint: Derive a set of equations for the expected discounted times when 
policy P is used and show that they are equivalent to  Equation (4.35). 

(d) Argue that an optimal policy with respect to  the expected discounted 
return criterion can be obtained by first solving the linear program 

maximize yjaR(j, a), 
.i a 

1 
such that z yja = =, 

j a 

C a Yja = bj + C C yiaPj(a), 
i a 

and then defining the policy p* by 

where the yj:, are the solutions of the linear program. 
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Chapter 5 
The Exponential Distribution 

and the Poisson Process 

5.1. Introduction 

In making a mathematical model for a real-world phenomenon it is always 
necessary to make certain simplifying assumptions so as to render the 
mathematics tractable. On the other hand, however, we cannot make too 
many simplifying assumptions, for then our conclusions, obtained from the 
mathematical model, would not be applicable to the real-world situation. 
Thus, in short, we must make enough simplifying assumptions to enable us 
to handle the mathematics but not so many that the mathematical model no 
longer resembles the real-world phenomenon. One simplifying assumption 
that is often made is to assume that certain random variables are exponen- 
tially distributed. The reason for this is that the exponential distribution is 
both relatively easy to work with and is often a good approximation to the 
actual distribution. 

The property of the exponential distribution which makes it easy to 
analyze is that it does not deteriorate with time. By this we mean that if the 
lifetime of an item is exponentially distributed, then an item which has been 
in use for ten (or any number of)  hours is as good as a new item in regards 
to the amount of time remaining until the item fails. This will be formally 
defined in Section 5.2 where it will be shown that the exponential is the only 
distribution which possesses this property. 

In Section 5.3 we shall study counting processes with an emphasis on a 
kind of counting process known as the Poisson process. Among other 
things we shall discover about this process is its intimate connection with the 
exponential distribution. 
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5.2. The Exponential Distribution 

5.2.1. Definition 

A continuous random variable X is said to have an exponential distribution 
with parameter I ,  I > 0,  if its probability density function is given by 

or, equivalently, if its cdf is given by 

1 - e ,  x z 0 
x c o  

The mean of the exponential distribution, E[X], is given by 

Integrating by parts (u = x, dv = ~ e - ~ d x )  yields 

The moment generating function 4( t )  of the exponential distribution is 
;hen by 

d( t )  = E[etY1 

=- I for t < I 
I - t 

All the moments of X can now be obtained by differentiating Equation 
(5.1). For example, 
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Also, from the preceding, we obtain 

5.2.2. Properties of the Exponential Distribution 

A random variable X is said to be without memory, or memoryless, if 

P ( X > s +  t l ~ >  t )  = P ( X > s )  f o r a l l s , t ? O  (5.2) 

If we think of X as being the lifetime of some instrument, then Equation 
(5.2) states that the probability that the instrument lives for at least s + t 
hours given that it has survived t hours is the same as the initial probability 
that it lives for at least s hours. In other words, if the instrument is alive at 
time t, then the distribution of the remaining amount of time that it survives 
is the same as the original lifetime distribution, that is, the instrument does 
not remember that it has already been in use for a time t .  

The condition in Equation (5.2) is equivalent to 

Since Equation (5.3) is satisfied when X is exponentially distributed 
(for e-~(s+t)  = e - ~ ~  e -A' ), it follows that exponentially distributed random 

variables are memoryless. 

Example 5.1 Suppose that the amount of time one spends in a bank is 
exponentially distributed with mean ten minutes, that is, A = &. What is 
the probability that a customer will spend more than fifteen minutes in the 
bank? What is the probability that a customer will spend more than fifteen 
minutes in the bank given that he is still in the bank after ten minutes? 

Solution: If X represents the amount of time that the customer spends 
in the bank, then the first probability is just 

P [ X  > 15) = e-lSX = e-3'2 = 0.220 

The second question asks for the probability that a customer who has 
spent ten minutes in the bank will have to spend at least five more minutes. 
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However, since the exponential distribution does not "remember" that 
the customer has already spent ten minutes in the bank, this must equal 
the probability that an entering customer spends at least five minutes in 
the bank. That is, the desired probability is just 

Example 5.2 Consider a post office which is manned by two clerks. 
Suppose that when Mr. Smith enters the system he discovers that Mr. Jones 
is being served by one of the clerks and Mr. Brown by the other. Suppose 
also that Mr. Smith is told that his service will begin as soon as either Jones 
or Brown leaves. If the amount of time that a clerk spends with a customer 
is exponentially distributed with mean 1/1, what is the probability that, of 
the three customers, Mr. Smith is the last to leave the post office? 

Solution: The answer is obtained by this reasoning: Consider the time 
at which Mr. Smith first finds a free clerk. At this point either Mr. Jones 
or Mr. Brown would have just left and the other one would still be in 
service. However, by the lack of memory of the exponential, it follows 
that the amount of time that this other man (either Jones or Brown) 
would still have to spend in the post office is exponentially distributed 
with mean 1/1. That is, it is the same as if he was just starting his service 
at this point. Hence, by symmetry, the probability that he finishes before 
Smith must equal i. + 
It turns out that not only is the exponential distribution "memoryless," 

but it is the unique distribution possessing this property. To see this, 
suppose that X is memoryless and let F(x) = P(X > XI. Then by Equation 
(5.3) it follows that 

F(s + t) = F(s)F(t) 

That is, F(x) satisfies the functional equation 

However, it turns out that the only right continuous solution of this 
functional equation is 

g(x) = e-XX * 

* This is proven as follows: If g(s + t )  = g(s)g(t),  then 

and repeating this yields g ( m / n )  = g m ( l / n ) .  Also 
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and since a distribution function is always right continuous we must have 

F(x) = e-XX 
or 

F(x) = P ( X  I x] = 1 - e-xr 

which shows that X is exponentially distributed. 

Example 5.3 Suppose that the amount of time that a lightbulb works 
before burning itself out is exponentially distributed with mean ten hours. 
Suppose that a person enters a room in which a lightbulb is burning. 
If this person desires to work for five hours, then what is the probability 
that he will be able to complete his work without the bulb burning out? 
What can be said about this probability when the distribution is not 
exponential? 

Solution: Since the bulb is burning when the person enters the room 
it follows, by the memoryless property of the exponential, that its 
remaining lifetime is exponential with mean ten. Hence the desired 
probability is 

P(remaining lifetime > 5) = 1 - F(5) = e-" = e-1'2 

However, if the lifetime distribution F is not exponential, then the 
relevant probability is 

1 - F(t + 5) 
P(1ifetime > t + 5 1 lifetime > t ]  = 

1 - F(t) 

where t is the amount of time that the bulb had been in use prior to the 
person entering the room. That is, if the distribution is not exponential 
then additional information is needed (namely, t) before the desired 
probability can be calculated. In fact, it is for this reason, namely, that 
the distribution of the remaining lifetime is independent of the amount of 
time that the object has already survived, that the assumption of an 
exponential distribution is so often made. + 
The memoryless property is further illustrated by the failure rate function 

(also called the hazard rate function) of the exponential distribution. 

Hence g(m/n) = (g(~))~'",  which implies, since g is right continuous, that g(x) = &(I))'. 
Since g(1) = 2 0 we obtain g(x) = e-k,  where 1 = -log&(l)). 
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Consider a continuous positive random variable X having distribution 
function F and density f. The failure (or hazard) rate function r(t) is 
defined by 

To interpret r(t), suppose that X has survived for t hours, and we desire the 
probability that X will not survive for an additional time dt. That is, 
consider P IX E (t, t + dt) I X > t ) .  Now 

P ( X  E (t, t + dt), X > t )  
P ( X € ( t , t  + d t ) I ~ >  t )  = 

P I X  > t )  

- - P ( X  E (t, t + dt)) 
P ( X  > t j  

That is, r(t) represents the conditional probability density that a t-year-old 
item will fail. 

Suppose now that the lifetime distribution is exponential. Then, by the 
memoryless property, it follows that the distribution of remaining life for a 
t-year-old item is the same as for a new item. Hence r(t) should be constant. 
This checks out since 

Thus, the failure rate function for the exponential distribution is constant. 
The parameter ,I is often referred to as the rate of the distribution. (Note 
that the rate is the reciprocal of the mean, and vice versa.) 

It turns out that the failure rate function r(t) uniquely determines the 
distribution F. To prove this, we note by Equation (5.4) that 

Integrating both sides yields 

log(1 - F(t)) = - r(t) dt + k S : 
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1 - ~ ( t )  = ek exp [- S: r(t) dt] 

Letting t = 0 shows that k = 0 and thus 

Example 5.4 Let XI ,  . . . , Xn be independent exponential random 
variables with respective rates A,, . . . , An, where Ai # Aj when i # j. Let N be 
independent of these random variables and suppose that 

The random variable X,,, is said to be a hyperexponential random variable. 
By conditioning on the value of N, we obtain that its density function is 

where the next to last equality used the fact that N is independent of Xi. 
To see how such a random variable might originate, imagine that a bin 

contains n different types of batteries, with a type j battery lasting for an 
exponential distributed time with rate Aj, j = 1, . . . , n. Suppose further that 
4 is the proportion of batteries in the bin that are type j for each j = 
1, . . . , n. If a battery is randomly chosen, in the sense that it is equally likely 
to be any of the batteries in the bin, then the lifetime of the battery selected 
will have the hyperexponential distribution specified in the preceding. 

Since 
n 

f ( t)dt  = C ee-'j t  
j= 1 

we see that the failure rate function of a hyperexponential random variable is 
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If we let Ai = min(Al, . . ., A,) then, upon multiplying the numerator and 
denominator of r(t) by eAi', we have 

Hence, since for j # i, Aj - ,Ii > 0, we see that 

I";.& 
lim r(t) = - = Ai 
t - =  S 

That is, as a randomly chosen battery ages its failure rate converges to the 
failure rate of the exponential type having the smallest failure rate, which is 
intuitive since the longer the battery lasts, the most likely it seems that it is 
a battery type with the smallest failure rate. + 

5.2.3. Further Properties of the Exponential Distribution 

Let X, , . . . , Xn be independent and identically distributed exponential 
random variables having mean 1/1. It follows from the results of Example 
2.38 that X, + ... + X, has a gamma distribution with parameters n and A. 
Let us now give a second verification of this result by using mathematical 
induction. As there is nothing to prove when n = 1, let us start by assuming 
that X, + + X,-, has density given by 

Hence, 

fx,+ . . . +x,-, +xn(t) = fx,(t - s)fx,+ ... +xn-,(~) ds 

which proves the result. 
Another useful calculation is to determine the probability that one 

exponential random variable is smaller than another. That is, suppose that 
X, and X2 are independent exponential random variables with respective 
means 1/1, and I/&; then what is P(Xl < X2j? This probability is 
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easily calculated by conditioning on XI : 

Example 5.5 Suppose one has a stereo system consisting of two main 
parts, a radio and a speaker. If the lifetime of the radio is exponential 
with mean 1000 hours and the lifetime of the speaker is exponential with 
mean 500 hours independent of the radio's lifetime, then what is the 
probability that the system's failure (when it occurs) will be caused by the 
radio failing? 

Solution: From Equation (5.5) (with 1, = 1/1000, A2 = 1/50)  we see 
that the answer is 

Suppose that XI ,  X2, . . . , Xn are independent exponential random 
variables, with Xi having rate pi ,  i = 1, . . . , n. It turns out that the smallest 
of the Xi is exponential with a rate equal to the sum of the pi.  This is shown 
as follows: 

P(minimum(X,, . . ., X,) > x )  = P(Xi  > x for each i = 1, ..., n)  
n 

= fl P[Xi  > x )  (by independence) 
i =  1 
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Example 5.6 (Analyzing Greedy Algorithms for the Assignment 
Problem): A group of n people are to be assigned to a set of n jobs, with one 
person assigned to each job. For a given set of n2 values CV, i, j = 1, . . . , n, 
a cost Cij is incurred when person i is assigned to job j. The classical 
assignment problem is to determine the set of assignments that minimizes 
the sum of the n costs incurred. 

Rather than trying to determine the optimal assignment, let us consider 
two heuristic algorithms for solving this problem. The first heuristic is as 
follows. Assign person 1 to the job that results in the least cost. That is, 
person 1 is assigned to job j, where C(1, j , )  = minimumjC(l, j).  Now 
eliminate that job from consideration and assign person 2 to the job that 
results in the least cost. That is, person 2 is assigned to job j2 where 
C(2, j,) = minimumjgj! C(2, j).  This procedure is then continued until all n 
persons are assigned. Since this procedure always selects the best job for the 
person under consideration, we will call it Greedy Algorithm A. 

The second algorithm, which we call Greedy Algorithm B, is a more 
"global" version of the first greedy algorithm. It considers all n2 cost values 
and chooses the pair i,, j ,  for which C(i, j )  is minimal. It then assigns 
person i, to job j ,  . It then eliminates all cost values involving either person 
i, or job j, [so that (n - 1)2 values remain] and continues in the same 
fashion. That is, at each stage it chooses the person and job that have the 
smallest cost among all the unassigned people and jobs. 

Under the assumption that the Cij constitute a set of n2 independent 
exponential random variables each having mean 1, which of the two 
algorithms results in a smaller expected total cost? 

Solution: Suppose first that Greedy Algorithm A is employed. Let Ci 
denote the cost associated with person i, i = 1, ..., n. Now C, is the 
minimum of n independent exponentials each having rate 1; so by 
Equation (5.6) it will be exponential with rate n. Similarly, C2 is the 
minimum of n - 1 independent exponentials with rate 1, and so is 
exponential with rate n - 1. Indeed, by the same reasoning Ci will be 
exponential with rate n - i + 1, i = 1, . . . , n. Thus, the expected total 
cost under Greedy Algorithm A is 

E,[total cost] = E[C, + + Cn] 

Let us now analyze Greedy Algorithm B. Let Ci be the cost of the ith 
person-job pair assigned by this algorithm. Since C, is the minimum of 



5.2. The Exponential Distribution 245 

all the n2 values Cij, it follows from Equation (5.6) that C1 is exponential 
with rate n2. Now, it follows from the lack of memory property of the 
exponential that the amounts by which the other Cij exceed C, will be 
independent exponentials with rates 1. As a result, C2 is equal to C1 plus 
the minimum of (n - 1)' independent exponentials with rate 1. Similarly, 
C, is equal to C2 plus the minimum of (n - 2)' independent exponentials 
with rate 1, and so on. Therefore, we see that 

E [C,] = 1 /n2, 

Therefore, 

E [C,] = l/n2, 

Adding up all the E [C,] yields that 

EB[total cost] = n/n2 + (n - l)/(n - 1)2 + (n - 2)/(n - 212 + + 1 

The expected cost is thus the same for both greedy algorithms. + 

5.2.4. Convolutions of Exponential Random Variables 

Let Xi,  i = 1, . . . , n, be independent exponential random variables with 
respective rates A;, i = 1, ..., n, and suppose that A i  # Aj for i # j. The 
random variable I:=, Xi is said to be a hypoexponential random variable. 
To compute its probability density function, let us start with the case n = 2. 
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Now, 

Using the preceding, a similar computation yields, when n = 3, 

which suggests the general result: 
n 

fx,+ ...+ xn ( t )  = C c i , , I i  e-'it 
i =  1 

where 

We will now prove the preceding formula by induction on n. Since we have 
already established it for n = 2, assume it for n and consider n + 1 arbitrary 
independent exponentials Xi with distinct rates I , ,  i = 1, . . . , n + 1. If 
necessary, renumber X1 and Xn+,  so that I ,+1 < I , .  Now, 

fx,+...+x,+,(t) = ~ X , + . . . + X " ( S ) ~ ~ + ~  e-Xn+l't-S) ds S : 



5.2. The Exponential Distribution 247 

where Kn+, = Cy= Ci,,Ai/(Ai - An+1) is a constant that does not depend 
on t. But, we also have that 

fx,+ ... +x,+,(t) = fx,+ ... +x,+,(s)A1 e S : -Al(t-s) ds 

which implies, by the same argument that resulted in Equation (5.7), that 
for a constant K, 

n +  1 

~ X ~ + . . . + X " + ~  (t) = KIAl e-'lt + z c ~ , ~ + ~ A ~ ~ - ~ ~ ~  
i = 2  

Equating these two expressions for fx,+...+xn+l(t) yields 

Multiplying both sides of the preceding equation by eXn+lt and then letting 
t -+ oo yields [since e-'xl-An+l)t -+ 0 as t + oo] 

and this, using Equation (5.7), completes the induction proof. Thus, we 
have shown that if S = Xi, then 

where 

Integrating both sides of the expression for fs from t to m yields that the tail 
distribution function of S is given by 

Hence, we obtain from Equations (5.8) and (5.9) that rs(t), the failure rate 
function of S, is as follows: 

If we let A, = min(A,, . . ., A,), then it follows, upon multiplying the 
numerator and denominator of rs(t) by eAjt, that 

lim rs (t) = Aj 
t - t m  
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From the preceding, we can conclude that the remaining lifetime of a 
hypoexponentially distributed item that has survived to age t is, for t large, 
approximately that of an exponentially distributed random variable with a 
rate equal to the minimum of the rates of the random variables whose sums 
make up the hypoexponential. 

Remark ~ l t h o u g h  

it should not be thought that the Ci,, , i = 1, . . . , n are probabilities, because 
some of them will be negative. Thus, while the form of the hypoexponential 
density is similar to that of the hyperexponential density (see Example 5.4) 
these two random variables are very different. 

Example 5.7 Let XI ,  . . . , Xrn be independent exponential random 
variables with respective rates A,, . . . , Am, where Ai # ;li when i # j .  Let N 
be independent of these random variables and suppose that C:= Pn = 1, 
where Pn = P(N = n). The random variable 

is said to be a Coxian random variable. Conditioning on N gives its density 
function: 

Let 

If we interpret N as a lifetime measured in discrete time periods, then r(n) 
denotes the probability that an item will die in its nth period of use given 
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that it has survived up to that time. Thus, r(n) is the discrete time analog of 
the failure rate function r(t), and is correspondingly referred to as the 
discrete time failure (or hazard) rate function. 

Coxian random variables often arise in the following manner. Suppose 
that an item must go through m stages of treatment to be cured. However, 
suppose that after each stage there is a probability that the item will quit the 
program. If we suppose that the amounts of time that it takes the item to 
pass through the successive stages are independent exponential random 
variables, and that the probability that an item that has just completed stage 
n quits the program is (independent of how long it took to go through the 
n stages) equal to r(n), then the total time that an item spends in the 
program is a Coxian random variable. + 

5.3. The Poisson Process 

5.3.1. Counting Processes 

A stochastic process (N(t), t 2 0) is said to be a counting process if N(t) 
represents the total number of "events" that have occurred up to time t. 
Some examples of counting processes are the following: 

(a) If we let N(t) equal the number of persons who have entered a 
particular store at or prior to time t, then (N(t), t 2 0) is a counting 
process in which an event corresponds to a person entering the store. 
Note that if we had let N(t) equal the number of persons in the store at 
time t, then (N(t), t r O] would not be a counting process (why not?). 
(b) If we say that an event occurs whenever a child is born, then (N(t), 
t r 0) is a counting process when N(t) equals the total number of people 
who were born by time t .  (Does N(t) include persons who have died by 
time t ?  Explain why it must.) 
(c) If N(t) equals the number of goals that a given soccer player has 
scored by time t, then (N(t), t 2 0) is a counting process. An event of this 
process will occur whenever the soccer player scores a goal. 

From its definition we see that for a counting process N(t) must satisfy: 

(i) N(t) 2 0. 
(ii) N(t) is integer valued. 
(iii) If s < t, then N(s) I N(t). 
(iv) For s < t, N(t) - N(s) equals the number of events that have 

occurred in the interval (s, t). 
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A counting process is said to possess independent increments if the 
numbers of events which occur in disjoint time intervals are independent. 
For example, this means that the number of events which have occurred 
by time 10 [that is, N(10)] must be independent of the number of events 
occurring between times 10 and 15 [that is, N(15) - N(10)l. 

The assumption of independent increments might be reasonable for 
example (a), but it probably would be unreasonable for example (b). The 
reason for this is that if in example (b) N(t) is very large, then it is probable 
that there are many people alive at time t ;  this would lead us to believe that 
the number of new births between time t and time t + s would also tend 
to be large [that is, it does not seem reasonable that N(t) is independent 
of N(t + s) - N(t), and so [N(t), t 2 O] would not have independent 
increments in example (b)]. The assumption of independent increments in 
example (c) would be justified if we believed that the soccer player's chances 
of scoring a goal today does not depend on "how he's been going." 
It would not be justified if we believed in "hot streaks" or "slumps." 

A counting process is said to possess stationary increments if the distribu- 
tion of the number of events which occur in any interval of time depends 
only on the length of the time interval. In other words, the process has 
stationary increments if the number of events in the interval (t, + s, t2 + s) 
(that is, N(t2 + s) - N(t, + s)) has the same distribution as the number of 
events in the interval (t, , t2) (that is, N(t2) - N(t,)) for all tl < t2, and s > 0. 

The assumption of stationary increments would only be reasonable in 
example (a) if there were no times of day at which people were more likely 
to enter the store. Thus, for instance, if there was a rush hour (say, between 
12 P.M. and 1 P.M.) each day, then the stationarity assumption would not be 
justified. If we believed that the earth's population is basically constant 
(a belief not held at present by most scientists), then the assumption of 
stationary increments might be reasonable in example (b). Stationary 
increments do not seem to be a reasonable assumption in example (c) since, 
for one thing, most people would agree that the soccer player would 
probably score more goals while in the age bracket 25-30 than he would 
while in the age bracket 35-40. 

5.3.2. Definition of the Poisson Process 

One of the most important counting processes is the Poisson process which 
is defined as follows: 

Definition 5.1 The counting process (N(t), t r 0) is said to be a Poisson 
process having rate A, A > 0, if 
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(i) N(0) = 0. 
(ii) The process has independent increments. 

(iii) The number of events in any interval of length t is Poisson 
distributed with mean At. That is, for all s, t 2 0 

Note that it follows from condition (iii) that a Poisson process has 
stationary increments and also that 

which explains why 1 is called the rate of the process. 
To determine if an arbitrary counting process is actually a Poisson 

process, we must show that conditions (i), (ii), and (iii) are satisfied. 
Condition (i), which simply states that the counting of events begins at time 
t = 0, and condition (ii) can usually be directly verified from our knowledge 
of the process. However, it is not at all clear how we would determine that 
condition (iii) is satisfied, and for this reason an equivalent definition of a 
Poisson process would be useful. 

As a prelude to giving a second definition of a Poisson process we shall 
define the concept of a function f ( - )  being o(h). 

Definition 5.2 The function f ( - )  is said to be o(h) if 

f (h) lim - = 0 
h - 0  h 

Example 5.8 

(i) The function f(x) = x2 is o(h) since 

f (h) h2 lim - = lim - = lim h = 0 
h - 0  h h - 0  h h - 0  

(ii) The function f(x) = x is not o(h) since 

f (h) h lirn - = lim - = lim 1 = 1 # 0 
h - 0  h h - o  h h - o  

(iii) Iff(.) is o(h) and g(.) is o(h), then so isf(.) + n(-). This follows since - . .  

lim f(h) + g(h) f (h) 
= lim - g(h) + l i m - = O + O =  0 

h - 0  h h - 0  h h - 0  h 
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(iv) Iff(.) is o(h), then so is g ( . )  = cf(.). This follows since 

(v) From (iii) and (iv) it follows that any finite linear combination of 
functions, each of which is o(h), is o(h). + 

In order for the function f ( - )  to be o(h) it is necessary that f(h)/h go 
to zero as h goes to zero. But if h goes to zero, the only way for f(h)/h 
to go to zero is for f(h) to go to zero faster than h does. That is, for h small, 
f(h) must be small compared with h. 

We are now in a position to give an alternative definition of a Poisson 
process. 

Definition 5.3 The counting process (N(t), t 2 0) is said to be a Poisson 
process having rate A, A > 0, if 

(i) N(0) = 0. 
(ii) The process has stationary and independent increments. 
(iii) P(N(h) = 1) = Ah + o(h). 
(iv) P(N(h) r 2) = o(h). 

Theorem 5.1 Definitions 5.1 and 5.3 are equivalent. 

Proof We first show that Definition 5.3 implies Definition 5.1. To do 
this, let 

P,(t) = P(N(t) = n) 

We derive a differential equation for Po(t) in the following manner: 

P,(t + h) = P(N(t + h) = 0) 

= P(N(t) = 0, N(t + h) - N(t) = 0) 

= P(N(t) = O)P(N(t + h) - N(t) = 0) 

= Po(t)[l - Ah + ~ ( h ) ]  

where the final two equations follow from assumption (ii) plus the fact that 
assumptions (iii) and (iv) imply that P(N(h) = 0) = 1 - Ah + o(h). Hence, 

Now, letting h + 0 we obtain 

Pd(t) = -AP0(t) 
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or, equivalently, 

which implies, by integration, that 

log Po(t) = -At + c 

Po(t) = ~ e - "  

Since Po(0) = P(N(0) = 0 )  = 1 ,  we arrive at 

Po(t) = e-" 
Similarly, for n > 0, 

Pn(t + h) = P(N(t  + h) = nJ 

However, by assumption (iv), the last term in the preceding is o(h); hence, 
by using assumption (ii), we obtain 

= ( 1  - Ah)Pn(t) + AhPn-,(t) + ~ ( h )  
Thus, 

Pn(t + h) - Pn(t) o(h) 
h 

= -npn(t) + 2pn-]( t)  + - 
h 

and letting h + 0 yields 

PA(t) = -APn(t) + APn-,(t) 
or equivalently, 

eAt[p;(t) + APn(t)] = AeAtpn-,(t) 
Hence, 

Now, by Equation (5.10), we have 
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or 
Pl(t) = (At + c)e-" 

which, since Pl(0) = 0, yields 

To show that Pn(t) = e-"(At)"/n!, we use mathematical induction and 
hence first assume it for n - 1. Then by Equation (5.1 l), 

which implies the result [since Pn(0) = 01. This proves that Definition 5.3 
implies Definition 5.1. 

We shall leave it to the reader to prove the reverse. + 
Remarks (i) The result that N(t) has a Poisson distribution is a conse- 
quence of the Poisson approximation to the binomial distribution (see 
Section 2.2.4). To see this subdivide the interval [0, t] into k equal parts 
where k is very large (Figure 5.1). Now it can be shown using axiom (iv) 
of Definition 5.3 that as k increases to m the probability of having two 
or more events in any of the k subintervals goes to 0. Hence, N(t) will 
(with a probability going to 1) just equal the number of subintervals in 
which an event occurs. However, by stationary and independent increments 
this number will have a binomial distribution with parameters k and 
p = At/k + o(t/k). Hence, by the Poisson approximation to the binomial 
we see by letting k approach m that N(t) will have a Poisson distribution 
with mean equal to 

by using the definition of o(h) and the fact that t/k + 0 as k -+ 00. 

I I I I I I  1 1 1 1 1 1  
I I l l 1 1  1 1 1 1 1 1  

0 t 2t - - kt 
t =- 

k k k 

Figure 5.1. 
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(ii) The explicit assumption that the process has stationary increments can 
be eliminated from Definition 5.3 provided that we change assumptions (iii) 
and (iv) to require that for any t the probability of one event in the interval 
(t, t + h) is Ah + o(h) and the probability of two or more events in that 
interval is o(h). That is, assumptions (ii), (iii), and (iv) of Definition 5.3 can 
be replaced by 

(ii) The process has independent increments. 
(iii) P[N(t + h) - N(t) = 1) = Ah + o(h). 
(iv) P(N(t + h) - N(t) 2 2) = o(h). 

5.3.3. Interarrival and Waiting Time Distributions 

Consider a Poisson process, and let us denote the time of the first event by 
T, . Further, for n > 1, let T, denote the elapsed time between the (n - 1)st 
and the nth event. The sequence (T,, n = 1,2, . . .) is called the sequence of 
interarrival times. For instance, if T, = 5 and T, = 10, then the first event 
of the Poisson process would have occurred at time 5 and the second at time 
15. 

We shall now determine the distribution of the T,. To do so, we first note 
that the event [T, > t )  takes place if and only if no events of the Poisson 
process occur in the interval [0, t] and thus, 

Hence, T, has an exponential distribution with mean 1/A. Now, 

P(T, > t )  = E[P(T, > tlT,)] 
However, 

P(q > t 1 T, = s) = P I O  events in (s, s + t] I T, = s) 

= P[O events in (s, s + t]) 

where the last two equations followed from independent and stationary 
increments. Therefore, from Equation (5.12) we conclude that T, is also an 
exponential random variable with mean 1/A, and furthermore, that T, is 
independent of T, . Repeating the same argument yields the following. 

Proposition 5.1 T, , n = 1,2, . . . , are independent identically distributed 
exponential random variables having mean 1 /A. 
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Remarks The proposition should not surprise us. The assumption of 
stationary and independent increments is basically equivalent to asserting 
that, at any point in time, the process probabilistically restarts itself. That 
is, the process from any point on is independent of all that has previously 
occurred (by independent increments), and also has the same distribution as 
the original process (by stationary increments). In other words, the process 
has no memory, and hence exponential interarrival times are to be expected. 

Another quantity of interest is Sn, the arrival time of the nth event, also 
called the waiting time until the nth event. It is easily seen that 

and hence from Proposition 5.1 and the results of Section 2.2 it follows that 
Sn has a gamma distribution with parameters n and I. That is, the 
probability density of Sn is given by 

Equation (5.13) may also have been derived by noting that the nth event will 
occur prior to or at time t if and only if the number of events occurring by 
time t is at least n. That is, 

N(t) r n o Sn 5 t 
and hence, 

(nt)j 
Fs,(t) = P(S, I t] = P(N(t)  2 n) = e-" - 

j=, j !  
which, upon differentiation, yields 

Example 5.9 Suppose that people immigrate into a territory at a Poisson 
rate I = 1 per day. 

(a) What is the expected time until the tenth immigrant arrives? 
(b) What is the probability that the elapsed time between the tenth and the 
eleventh arrival exceeds two days? 
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Solution: 
(a) EISl,] = 10/1 = 10 days. 
( b ) P ( T , l > 2 ) = e - 2 A = e - 2 = 0 . 1 3 3 .  + 

Proposition 5.1 also gives us another way of defining a Poisson process. 
Suppose we start with a sequence (T,, n r 1) of independent identically 
distributed exponential random variables each having mean 1/1. Now let us 
define a counting process by saying that the nth event of this process occurs 
at time 

S , , E T + G + . . . + T ,  

The resultant counting process (N(t), t r 0)* will be Poisson with rate A. 

Remark Another way of obtaining the density function of S,, is to note 
that since S,, is the time of the nth event, it follows that 

P ( t  < S, < t + h) = P(N(t) = n - 1, one event in (t, t + h)) + o(h) 

= P(N(t) = n - ljP(one event in (t, t + h)) + o(h) 

where the first equality uses the fact that the probability of 2 or more events 
in (t, t + h) is o(h). If we now divide both sides of the preceding equation 
by h and then let h + 0, we obtain 

5.3.4. Further Properties of Poisson Processes 

Consider a Poisson process (N(t), t r 0) having rate 1 ,  and suppose that 
each time an event occurs it is classified as either a type I or a type I1 event. 
Suppose further that each event is classified as a type I event with 
probability p and a type I1 event with probability 1 - p independently of 
all other events. For example, suppose that customers arrive at a store 
in accordance with a Poisson process having rate A; and suppose that each 

* A formal definition of N(t) is given b y  N(t) n max(n: S, 5 t ]  where So = 0. 
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arrival is male with probability 3 and female with probability 3. Then a 
type I event would correspond to a male arrival and a type I1 event to a 
female arrival. 

Let Nl(t) and N2(t) denote respectively the number of type I and type I1 
events occurring in [0, t]. Note that N(t) = N,(t) + N2(t). 

Proposition 5.2 (N,(t), t 2 0) and (N,(t), t 2 0) are both Poisson 
processes having respective rates A p  and A(l - p). Furthermore, the two 
processes are independent. 

Proof Let us calculate the joint probability P(Nl(t) = n, N2(t) = rn). 
To do this, we first condition on N(t) to obtain 

P(N,(t) = n, N2(t) = rn) 

Now, in order for there to have been n type I events and rn type I1 events 
there must have been a total of n + rn events occurring in [0, t]. That is, 

P(N,(t) = n, N2(t) = rn l ~ ( t )  = k) = 0 when k # n + rn 

Hence, 

= P(N,(t) = n,Nz(t) = rnIN(t) = n + rn)P(N(t) = n + rn) 

= PINl(t) = n, N2(t) = rn 1 N(t) = n + rnje-" 
(At)"+"' 

(n + rn)! 

However, given that n + m events occurred, since each event has prob- 
ability p of being a type I event and probability 1 - p of being a type I1 
event, it follows that the probability that n of them will be type I and rn of 
them type I1 events is just the binomial probability 

Thus, 

P(N,(t) = n, N2(t) = rn) = 

- - p P - 1 - p  ( 1  - P ( 5 .  14) 
n! rn! 
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Hence, 
00 

P(N,(t) = n] = P(N,(t) = n, N,(t) = m) 
m = O  

That is, (N,(t), t r 0) is a Poisson process having rate Ap. (How do we know 
that the other conditions of Definition 5.1 are satisfied? Argue it out!) 

Similarly, 

P[N2(t) = m] = e- 
-p) (At( l - PI)" 

m! 

and so [N2(t), t 2 0) is a Poisson process having rate A(l - p). Finally, 
it follows from Equation (5.14) that the two processes are independent 
(since the joint distribution factors). + 
Remark It is not surprising that (N,(t), t r O] and (N,(t), t 1 0) are 
Poisson processes. What is somewhat surprising is the fact that they are 
independent. For assume that customers arrive at a bank at a Poisson rate 
of I = 1 per hour and suppose that each customer is a man with probability 

and a woman with probability 3. Now suppose that 100 men arrived in the 
first 10 hours. Then how many women would we expect to have arrived in 
that time? One might argue that as the number of male arrivals is 100 and 
as each arrival is male with probability i, then the expected number of total 
arrivals should be 200 and hence the expected number of female arrivals 
should also be 100. But, as shown by the previous proposition, such 
reasoning is spurious and the expected number of female arrivals in the first 
10 hours is five, independent of the number of male arrivals in that period. 

To obtain an intuition as to why Proposition 5.2 is true reason as follows: 
If we divide the interval (0, t) into n subintervals of equal length t/n, where 
n is very large, then (neglecting events having probability "little 0") each 
subinterval will have a small probability At/n of containing a single event. 
As each event has probability p of being of type I, it follows that each of the 
n subintervals will have either no events, a type I event, a type I1 event with 
respective probabilities 
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Hence from the result which gives the Poisson as the limit of binomials, we 
can immediately conclude that Nl(t) and N,(t) are Poisson distributed with 
respective means Atp and At(1 - p). To see that they are independent, 
suppose, for instance, that Nl(t) = k. Then of the n subintervals, k will 
contain a type I event, and thus the other n - k will each contain a type I1 
event with probability 

P(type I1 1 no type I) = 
(lt/n)(l - P) 
1 - (At/n)p 

Hence, as n - k will still be a very large number, we see again from the 
Poisson limit theorem that, given N,(t) = k, N,(t) will be Poisson with mean 
lim,,, [(n - k)At(l - p)/n] = At(1 - p), and so independence is established. 

Example 5.10 If immigrants to area A arrive at a Poisson rate of ten 
per week, and if each immigrant is of English descent with probability &, 
then what is the probability that no people of English descent will emigrate 
to area A during the month of February? 

Solution: By the previous proposition it follows that the number of 
Englishmen emigrating to area A during the month of February is Poisson 
distributed with mean 4 10 . & = $. Hence the desired probability 
is e-10'3. + 
It follows from Proposition 5.2 that if each of a Poisson number of 

individuals is independently classified into one of two possible groups with 
respective probabilitiesp and 1 - p, then the number of individuals in each 
of the two groups will be independent Poisson random variables. As this 
result easily generalizes to the case where the classification is into any one 
of r possible groups, we have the following application to a model of 
employees moving about in an organization. 

Example 5.1 1 Consider a system in which individuals at any time are 
classified as being in one of r possible states, and assume that an individual 
changes states in accordance with a Markov chain having transition 
probabilities P,. , i, j = 1, . . . , r. That is, if an individual is in state i during 
a time period then, independently of its previous states, it will be in state j 
during the next time period with probability ej. The individuals are 
assumed to move through the system independently of each other. Suppose 
that the numbers of people initially in states 1,2,  . . . , r are independent 
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Poisson random variables with respective means A,, A2, . . . , A,. We are 
interested in determining the joint distribution of the numbers of 
individuals in states 1,2, ..., r at some time n. 

Solution: For fixed i, let Nj(i), j = 1, . . . , r, denote the number of those 
individuals, initially in state i, that are in state j at time n. Now each of 
the (Poisson distributed) number of people initially in state i will, 
independently of each other, be in state j at time n with probability P;, 
where Pi; is the n-stage transition probability for the Markov chain 
having transition probabilities ej. Hence, the Nj(i), j = 1, . . . , r, will be 
independent Poisson random variables with respective means Lip;, 
j = 1, . . . , r. As the sum of independent Poisson random variables is itself 
a Poisson random variable, it follows that the number of individuals in 
state j at time n-namely Cf,, Nj(i)-will be independent Poisson 
random variables with respective means Ci Lipi?, for j = 1, . . . , r. + 

Example 5.1 2 (The Coupon Collecting Problem): There are m different 
types of coupons. Each time a person collects a coupon it is, independently of 
ones previously obtained, a type j coupon with probabilitypj, C;=, pj = 1. 
Let N denote the number of coupons one needs to collect in order to have 
a complete collection of at least one of each type. Find E[N]. 

Solution: If we let Nj denote the number one must collect to obtain a 
type j coupon, then we can express N as 

N = max Nj 
l s j s m  

However, even though each Nj is geometric with parameter pi, the 
foregoing representation of N is not that useful, because the random 
variables Nj are not independent. 

We can, however, transform the problem into one of determining the 
expected value of the maximum of independent random variables. To do 
so, suppose that coupons are collected at times chosen according to a 
Poisson process with rate 1 = 1. Say that an event of this Poisson process 
is of type j,  1 I j 5 m, if the coupon obtained at that time is a type j 
coupon. If we now let Nj(t) denote the number of type j coupons 
collected by time t, then it follows from Proposition 5.2 that {Nj(t), 
t r 01, j = 1, . . . , m, are independent Poisson processes with respective 
rates Apj(=pj). Let Xj denote the time of the first event of the j th 
process, and let 

X = max Xj 
1 s j s m  
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denote the time at which a complete collection is amassed. Since the Xj 
are independent exponential random variables with respective rates pi, it 
follows that 

P I X  < t ]  = P(maxXj < t )  

= P(Xj < t, for j = 1, ..., m) 

Therefore, 
r 

It remains to relate E[X], the expected time until one has a complete set, 
to E[N], the expected number of coupons it takes. This can be done by 
letting & denote the ith interarrival time of the Poisson process that 
counts the number of coupons obtained. Then it is easy to see that 

Since the & are independent exponentials with rate 1, and N is inde- 
pendent of the q, we see that 

E[XlN] = NE['I;.] = N 

Therefore, 
E [XI = E [N] 

and so E[N] is as given in Equation (5.15). + 
The next probability calculation related to Poisson processes that we shall 

determine is the probability that n events occur in one Poisson process 
before m events have occurred in a second and independent Poisson 
process. More formally let (Nl(t), t r 0) and (Nz(t), t 1 O] be two indepen- 
dent Poisson processes having respective rates 1, and 1,. Also, let s,' denote 
the time of the nth event of the first process, and S: the time of the mth 
event of the second process. We seek 
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Before attempting to calculate this for general n and m, let us consider 
the special case n = m = 1. Since S,', the time of the first event of the 
Nl(t) process, and s:, the time of the first event of the N,(t) process, are 
both exponentially distributed random variables (by Proposition 5.1) with 
respective means 1/11 and 1/12, it follows from Section 5.2.3 that 

Let us now consider the probability that two events occur in the Nl(t) 
process before a single event has occurred in the N,(t) process. That is, 
P(S: c $1. To calculate this we reason as follows: In order for the Nl(t) 
process to have two events before a single event occurs in the N,(t) process, 
it is first necessary that the initial event that occurs must be an event of the 
Nl(t) process [and this occurs, by Equation (5.16), with probability 
11/(11 + I,)]. Now given that the initial event is from the Nl(t) process, the 
next thing that must occur for S: to be less than S: is for the second event 
also to be an event of the Nl(t) process. However, when the first event 
occurs both processes start all over again (by the memoryless property 
of Poisson processes) and hence this conditional probability is also 
11/(11 + I,), and hence the desired probability is given by 

In fact this reasoning shows that each event that occurs is going to be an 
event of the N,(t) process with probability A1/(I1 + I,) and an event of the 
N,(t) process with probability A2/(11 + A,), independent of all that has 
previously occurred. In other words, the probability that the Nl(t) process 
reaches n before the N,(t) process reaches m is just the probability that n 
heads will appear before m tails if one flips a coin having probability 
p = 1 1 / ( 1 1  + I , )  of a head appearing. But by noting that this event will 
occur if and only if the first n + m - 1 tosses result in n or more heads we 
see that our desired probability is given by 

5.3.5. Conditional Distribution of the Arrival Times 

Suppose we are told that exactly one event of a Poisson process has taken 
place by time t, and we are asked to determine the distribution of the time 
at which the event occurred. Now, since a Poisson process possesses 
stationary and independent increments it seems reasonable that each 
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interval in [0, t] of equal length should have the same probability of 
containing the event. In other words, the time of the event should be 
uniformly distributed over [0, t]. This is easily checked since, for s I t, 

- - P ( l  event in [0, s), 0 events in [s, t)) 
P[N(t) = 1) 

- - P[1 event in [0, s))P(O events in [s, t)] 
P(N(t) = 1) 

This result may be generalized, but before doing so we need to introduce the 
concept of order statistics. 

Let Y,  , Y, ,  . . . , Y ,  be n random variables. We say that q,), q2), . . ., 
are the order statistics corresponding to Y,  , Y,, . . . , Yn if qk) is the kth 
smallest value among Y , ,  ..., Y,, k = 1,2, ..., n. For instance if n = 3 
and Y , = 4 ,  & = 5 ,  & = 1  then q l , = l ,  q 2 , = 4 ,  q 3 ) = 5 . I f t h e  x ,  
i = 1, . . . , n, are independent identically distributed continuous random 
variables with probability density f, then the joint density of the order 
statistics q,) , Y;,,, . .., is given by 

n 

~ ( Y I , Y ~ ,  . . . , ~ n )  = n! n f(Yi), YI < YZ C ... < Yn 
i =  1 

The preceding follows since 

(9 (q l ) ,  q2) ,  . . . , qn)) will equal (Y,, y2,  . . . , Y,,) if (Y, , Y,, . . . , Yn) is 
equal to any of the n! permutations of (y,, y2, .. . , y,); 

and 
(ii) the probability density that (Y, ,  Y,, ..., Y,) is equal to yil, ..., yi, is 

f(yi,) = nj"=, f(yj) when i,, . . . , in is a permutation of 1,2, . . . , n. 

If the K ,  i = 1, . . . , n, are uniformly distributed over (0, t), then we obtain 
from the preceding that the joint density function of the order statistics 
ql) , q 2 ) ,  - - - , qn) is 

We are now ready for the following useful theorem. 
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Theorem 5.2 Given that N(t) = n, the n arrival times S, , . . . , S, have 
the same distribution as the order statistics corresponding to n independent 
random variables uniformly distributed on the interval (0, t). 

Proof To obtain the conditional density of S, , . . . , S, given that N(t) = n 
note that for 0 < s, < < t the event that S, = s,, S, = s,, ..., S, = s,, 
N(t) = n is equivalent to the event that the first n + 1 interarrival times 
satisfy T, = s, ,  T, = s2 - s ,,..., T, = s, - s,-,, T,,, > t - s,. Hence, 
using Proposition 5.1, we have that the conditional joint density of 
S1, . . . , S, given that N(t) = n is as follows: 

which proves the result. + 

Remark The preceding result is usually paraphrased as stating that, under 
the condition that n events have occurred in (0, t), the times S,, ..., S, 
at which events occur, considered as unordered random variables, are 
distributed independently and uniformly in the interval (0, t). 

Application of Theorem 5.2 (Sampling a Poisson Process) 
In Proposition 5.2 we showed that if each event of a Poisson process is 
independently classified as a type I event with probability p and as a type I1 
event with probability 1 - p then the counting processes of type I and type 
I1 events are independent Poisson processes with respective rates Ap and 
L(l - p). Suppose now, however, that there are k possible types of events 
and that the probability that an event is classified as a type i event, 
i = 1, . . . , k, depends on the time the event occurs. Specifically, suppose 
that if an event occurs at time y then it will be classified as a type i event, 
independently of anything that has previously occurred, with probability 
fi(y), i = 1 ,  . . . , k where ~ f =  '=, Pi (y) = 1. Upon using Theorem 5.2 we can 
prove the following useful proposition. 
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Proposition 5.3 If Ni(t), i = 1, ..., k, represents the number of type i 
events occurring by time t then Ni(t), i = 1, . . . , k, are independent Poisson 
random variables having means 

Before proving this proposition, let us first illustrate its use. 

Example 5.13 (An Infinite Server Queue): Suppose that customers 
arrive at a service station in accordance with a Poisson process with rate 1. 
Upon arrival the customer is immediately served by one of an infinite 
number of possible servers, and the service times are assumed to be 
independent with a common distribution G. What is the distribution of 
X(t), the number of customers that have completed service by time t? 
What is the distribution of Y(t), the number of customers that are being 
served at time t? 

To answer the preceding questions let us agree to call an entering 
customer a type I customer if he completes his service by time t and a 
type I1 customer if he does not complete his service by time t. Now, if the 
customer enters at time s,  s r t, then he will be a type I customer if his 
service time is less than t - s. Since the service time distribution is G, the 
probability of this will be G(t - s). Similarly, a customer entering at time s, 
s r t, will be a type I1 customer with probability d ( t  - s) = 1 - G(t - s). 
Hence, from Proposition 5.3 we obtain that the distribution of X(t), the 
number of customers that have completed service by time t, is Poisson 
distributed with mean 

Similarly, the distribution of Y(t), the number of customers being served at 
time t is Poisson with mean 

Furthermore, X(t) and Y(t) are independent. 
Suppose now that we are interested in computing the joint distribution of 

Y(t) and Y(t + s)-that is the joint distribution of the number in the system 
at time t and at time t + s. To accomplish this, say that an arrival is 
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type 1: if he arrives before time t and completes service between t and 
t + s, 
type 2: if he arrives before t and completes service after t + s, 
type 3: if he arrives between t and t + s and completes service after t + s, 
type 4: otherwise. 

Hence an arrival at time y will be type i with probability e ( y )  given by 

G(t + s - y) - G(t - y), if y C t 
otherwise 

6 ( t  + s - y), 
P2(. = [*, 

6( t  + s - y), 
P3(. = (0, 

i f y e t  
otherwise 

i f t < y < t + s  
otherwise 

Hence, if Ni = Ni(s + t), i = 1,2,3,  denotes the number of type i events 
that occur, then from Proposition 5.3, Ni, i = 1,2,3, are independent 
Poisson random variables with respective means 

it is now an easy matter to compute the joint distribution of Y(t) and 
Y(t + s). For instance, 

= Cov(N, , N2) by independence of Nl , N2, N3 
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where the last equality follows since the variance of a Poisson random 
variable equals its mean, and from the substitution u = t - y.  Also, the 
joint distribution of Y(t) and Y(t + s) is as follows: 

Example 5.14 (Minimizing the Number of Encounters): Suppose that 
cars enter a one-way highway in accordance with a Poisson process with 
rate I. The cars enter at point a and depart at point b (see Figure 5.2). Each 
car travels at a constant speed that is randomly determined, independently 
from car to car, from the distribution G. When a faster car encounters a 
slower one, it passes it with no time being lost. If your car enters the 
highway at time s and you are able to choose your speed, what speed 
minimizes the expected number of encounters you will have with other cars, 
where we say that an encounter occurs each time your car either passes or 
is passed by another car? 

Solution: We will show that for large s the speed that minimizes the 
expected number of encounters is the median of the speed distribution G .  
To see this, suppose that the speed xis  chosen. Let d = b - a denote the 
length of the road. Upon choosing the speed x, it follows that your car 
will enter the road at times and will depart at times + to, where to = d/x 
is the travel time. 

Now, the other cars enter the road according to a Poisson process with 
rate I. Each of them chooses a speed X according to the distribution G, 
and this results in a travel time T = d/X. Let F denote the distribution of 
travel time T. That is, 

a b 

Figure 5.2. Cars enter at point a and depart at b. 
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Let us say that an event occurs at time t if a car enters the highway at 
time t. Also, say that the event is a type 1 event if it results in an encounter 
with your car. Now, your car will enter the road at time s and will exit at 
time s + to. Hence, a car will encounter your car if it enters before s and 
exits after s + to (in which case your car will pass it on the road) or if it 
enters after s but exits before s + to (in which case it will pass your car). 
As a result, a car that enters the road at time t will encounter your car if 
its travel time T is such that 

t + T > s + t o ,  i f t c s  

From the preceding, we see that an event at time t will, independently 
of other events, be a type 1 event with probability p(t) given by 

P [ t  + T > s + to] = F(s + to - t), if t < s 

p(t) = P ( t  + T < s + to) = F(s + to - t), if s < t C s + to 

[o, i f t > s + t o  

Since events (that is, cars entering the road) are occurring according to a 
Poisson process it follows, upon applying Proposition 5.3, that the total 
number of type 1 events that ever occurs is Poisson with mean 

To choose the value of to that minimizes the preceding quantity, we 
differentiate. This gives 

Setting this equal to 0, and using that F(s + to) = 0 when s is large, we see 
that the optimal travel time to is such that 

F(to) - F(to) = 0 

or 

F(to) - [l - F(to)] = 0 
or 

F(to) = + 
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That is, the optimal travel time is the median of the travel time distribution. 
Since the speed X is equal to the distance d divided by the travel time T, it 
follows that the optimal speed xo = d/to is such that 

Since 

we see that e(xo) = 3, and so the optimal speed is the median of the 
distribution of speeds. 

Summing up, we have shown that for any speed x the number of 
encounters with other cars will be a Poisson random variable, and the mean 
of this Poisson will be smallest when the speed x is taken to be the median 
of the distribution G. + 
Example 5.15 (Tracking the Number of HIV Infections): There is a 
relatively long incubation period from the time when an individual becomes 
infected with the HIV virus, which causes AIDS, until the symptoms of the 
disease appear. As a result, it is difficult for public health officials to be 
certain of the number of members of the population that are infected at any 
given time. We will now present a first approximation model for this 
phenomenon, which can be used to obtain a rough estimate of the number 
of infected individuals. 

Let us suppose that individuals contract the HIV virus in accordance with 
a Poisson process whose rate 1 is unknown. Suppose that the time from 
when an individual becomes infected until symptoms of the disease appear 
is a random variable having a known distribution G. Suppose also that the 
incubation times of different infected individuals are independent. 

Let N,(t) denote the number of individuals that have shown symptoms of 
the disease by time t. Also, let N,(t) denote the number that are HIV 
positive but have not yet shown any symptoms by time t. Now, since an 
individual that contracts the virus at time s will have symptoms by time t 
with probability G(t - s) and will not with probability G(t - s), it follows 
from Proposition 5.3 that N,(t) and N2(t) are independent Poisson random 
variables with respective means 

t 

E I N , ( t ) ] = l { t G ( t - s ) d s = l  o G(y)dy 

and 
So 
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Now, if we knew I ,  then we could use it to estimate N2(t), the number of 
individuals infected but without any outward symptoms at time t, by its 
mean value E[N2(t)]. However, since A is unknown, we must first estimate 
it. Now, we will presumably know the value of Nl(t), and so we can use its 
known value as an estimate of its mean EINl(t)]. That is, if the number of 
individuals that have exhibited symptoms by time t is n,, then we can 
estimate that 

nl = ElNl(t)l = 1 

Therefore, we can estimate I by the quantity A given by 

Using this estimate of I, we can estimate the number of infected but 
symptomless individuals at time t by 

t 

estimate of N2(t) = 1 1 d(y) dy 
0 

For example, suppose that G is exponential with mean p. Then 
c(y) = e-y/p, and a simple integration gives that 

n,p(l - e-t/p) 
estimate of N2(t) = 

t - p(l - e-'Ip) 

If we suppose that t = 16 years, p = 10 years, and n, = 220 thousand, then 
the estimate of the number of infected but symptomless individuals at 
time 16 is 

2200(1 - e-'.6) 
estimate = = 218.96 

16 - 10(1 - e-1.6) 

That is, if we suppose that the foregoing model is approximately correct 
(and we should be aware that the assumption of a constant infection rate A 
that is unchanging over time is almost certainly a weak point of the model), 
then if the incubation period is exponential with mean 10 years and if 
the total number of individuals that have exhibited AIDS symptoms during 
the first 16 years of the epidemic is 220 thousand, then we can expect 
that approximately 219 thousand individuals are HIV positive though 
symptomless at time 16. + 
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Proof of Proposition 5.3 Let us compute the' joint probability 
P ( N i ( t )  = n i ,  i = 1, ..., k]. To do so note first that in order for there to 
have been ni type i events for i = 1, . . . , k there must have been a total of 
~ f =  ni events. Hence, conditioning on N ( t )  yields 

Now consider an arbitrary event that occurred in the interval [0, t ] .  If it had 
occurred at times, then the probability that it would be a type i event would 
be Pi@). Hence, since by Theorem 5.2 this event will have occurred at some 
time uniformly distributed on (0, t ) ,  it follows that the probability that this 
event will be a type i event is 

independently of the other events. Hence, 

will just equal the multinomial probability of ni type i outcomes for 
i = 1, . . . , k when each of ~ f =  ni independent trials results in outcome i 
with probability 4, i = 1, . .., k. That is, 

k 

= n l ,  ..., N k ( f )  = n k / N ( t )  = nil = 
(E!= I nil! p;, . . 

p;" 
i =  1 n , !  ... n k !  

Consequently, 

- - (IZt)Crni (Cini)!  pp .. . pike-" 
n , !  n,! ( C i  nil! 

and the proof is complete. + 
We now present some additional examples of the usefulness of 

Theorem 5.2. 
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Example 5.1 6 (An Electronic Counter): Suppose that electrical pulses 
having random amplitude arrive at a counter in accordance with a Poisson 
process with rate A. The amplitudes of a pulse is assumed to decrease with 
time at an exponential rate. That is, we suppose that if a pulse has an 
amplitude of A units upon arrival, then its amplitude at a time t units later 
will be Ae-"'. We further suppose that the initial amplitudes of the pulses 
are independent and have a common distribution F. 

Let S, , S,, . . . be the arrival times of the pulses and let A, ,  A,, . . . be their 
respective amplitudes. Then 

represents the total amplitude at time t. We can determine the expected 
value of A(t) by conditioning on N(t), the number of pulses to arrive by 
time t. This yields 

Now, conditioned on N(t) = n, the unordered arrival times (S1, . . . , Sn) are 
distributed as independent uniform (0, t) random variables. Hence, given 
N(t) = n, A(t) has the same distribution as ~ j " = ,  ~~e-"( ' -q) ,  where q, 
j = 1, . . ., n, are independent and uniformly distributed on (0, t). Thus, 

where E[A] is the mean initial amplitude of a pulse, and Y is a uniform 
(0, t) random variable. Hence, 

and thus, 
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Taking expectations and using the fact that E[N(t)] = At, we have 

Example 5.1 7 (An Optimization Example): Suppose that items arrive 
at a processing plant in accordance with a Poisson process with rate A. At 
a fixed time T, all items are dispatched from the system. The problem is to 
choose an intermediate time, t E (0, T), at which all items in the system are 
dispatched, so as to minimize the total expected wait of all items. 

If we dispatch at time t, 0 < t < T, then the expected total wait of all 
items will be 

l t 2  l ( T  - t)2 - +  
2 2 

To see why the above is true, we reason as follows: The expected number of 
arrivals in (0, t) is I t ,  and each arrival is uniformly distributed on (0, t), and 
hence has expected wait t/2. Thus, the expected total wait of items arriving 
in (0, t) is lt2/2. Similar reasoning holds for arrivals in (t, T), and the above 
follows. To minimize this quantity, we differentiate with respect to t 
to obtain 

and equating to 0 shows that the dispatch time that minimizes the expected 
total wait is t = T/2. + 

We end this section with a result, quite similar in spirit to Theorem 5.2, 
which states that given S,, the time of the nth event, then the first n - 1 
event times are distributed as the ordered values of a set of n - 1 random 
variables uniformly distributed on (0, S,). 

Proposition 5.4 Given that S, = t, the set S, , . . . , S,-, has the distri- 
bution of a set of n - 1 independent uniform (0, t) random variables. 

Proof We can prove the above in the same manner as we did Theorem 
5.2, or we can argue more loosely as follows: 

where - means "has the same distribution as" and t- is infinitesimally 
smaller than t. The result now follows from Theorem 5.2. + 
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5.3.6. Estimating Software Reliability 

When a new computer software package is developed, a testing procedure 
is often put into effect to eliminate the faults, or bugs, in the package. One 
common procedure is to try the package on a set of well-known problems 
to see if any errors result. This goes on for some fixed time, with all 
resulting errors being noted. Then the testing stops and the package is 
carefully checked to determine the specific bugs that were responsible for 
the observed errors. The package is then altered to remove these bugs. 
As we cannot be certain that all the bugs in the package have been 
eliminated, however, a problem of great importance is the estimation of the 
error rate of the revised software package. 

To model the preceding, let us suppose that initially the package 
contains an unknown number, m, of bugs, which we will refer to as bug 1, 
bug 2, . . . , bug m. Suppose also that bug i will cause errors to occur in 
accordance with a Poisson process having an unknown rate Ai, i = 1, . . . , m. 
Then, for instance, the number of errors due to bug i that occur in any s 
units of operating time is Poisson distributed with mean Ais. Also suppose 
that these Poisson processes caused by bugs i, i = 1, . . . , rn are independent. 
In addition, suppose that the package is to be run for t time units with all 
resulting errors being noted. At the end of this time a careful check of the 
package is made to determine the specific bugs that caused the errors (that 
is, a debugging, takes place). These bugs are removed, and the problem is 
then to determine the error rate for the revised package. 

If we let 

1, if bug i has not caused an error by t 
V'i ( t )  = 0, otherwise 

then the quantity we wish to estimate is 

the error rate of the final package. To start, note that 

Now each of the bugs that is discovered would have been responsible for a 
certain number of errors. Let us denote by Mj(t)  the number of bugs that 
were responsible for j errors, j s 1. That is, M,(t)  is the number of bugs 
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that caused exactly 1 error, M,(t) is the number that caused 2 errors, and so 
on, with C jMj(t) equaling the total number of errors that resulted. To 
compute EIMl(t)],  let us define the indicator variables, Ii( t) ,  i 2 1 ,  by 

1 ,  bug i causes exactly 1 error 
Ii(t) = 

0 ,  otherwise 

Then, 

Ml(t) = C Ii(t) 
i 

and so 
E [M,(t)] = C EIIi(t)] = C Ai te-"' (5.20) 

i i 

Thus, from (5.19) and (5.20) we obtain the intriguing result that 

This suggests the possible use of Ml(t ) / t  as an estimate of A(t). To 
determine whether or not Ml(t ) / t  constitutes a "good" estimate of A(t) 
we shall look at how far apart these two quantities tend to be. That is, we 
will compute 

[ ( Mft)>'] = Var @(t)  - y) from (5.21) E A(t) - - 

Now, 
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where the last two equalities follow since yi(t) and 4(t)  are independent 
when i z j as they refer to different Poisson processes and yi(t)Ii(t) = 0. 
Hence we obtain that 

where the last equality follows from (5.20) and the identity (which we leave 
as an exercise) 

E [M,(t)] = 3 (Ait)2e-xit (5.22) 
i 

Thus, we can estimate the average square of the difference between A(t) 
and M,(t)/t by the observed value of M,(t) + W,(t) divided by t2. 

Example 5.1 8 Suppose that in 100 units of operating time 20 bugs are 
discovered of which two resulted in exactly one, and three resulted in 
exactly two, errors. Then we would estimate that A(100) is something akin 
to the value of a random variable whose mean is equal to 1/50 and whose 
variance is equal to 8/10,000. + 

5.4. Generalizations of the Poisson Process 

5.4.1. Nonhomogeneous .Poisson Process 

In this section we consider two generalizations of the Poisson process. The 
first of these is the nonhomogeneous, also called the nonstationary, Poisson 
process, which is obtained by allowing the arrival rate at time t to be a 
function of t. 

Definition 5.4 The counting process [N(t), t r 0) is said to be a 
nonhomogeneous Poisson process with intensity function A(t), t 1 0, if 

(i) N(0) = 0. 
(ii) (N(t), t 2 O] has independent increments. 

(iii) P{N(t + h) - N(t) r 2) = o(h). 
(iv) P[N(t + h) - N(t) = 1) = A(t)h + o(h). 
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If we let m(t) = 1; A(s) ds, then it can be shown that 

Or, in other words, N(t + s) - N(t) is Poisson distributed with mean 
m(t + s) - m(t). Thus, for instance, N(t) is Poisson distributed with mean 
m(t), and for this reason m(t) is called the mean value function of the 
process. Note that if A(t) = A (that is, if we have a Poisson process), then 
m(t) = At and so Equation (5.23) reduces to the fact that for a Poisson 
process N(t + s) - N(t) is Poisson distributed with mean As. 

The proof of Equation (5.23) follows along the lines of the proof of 
Theorem 5.1 with a slight modification. That is, we fix t and define 

P,,(s) = P(N(t + s) - N(t) = n] 
Now, 

= P(0 events in (t, t + s), 0 events in [t + s, t + s + h]) 

= P ( 0  events in (t, t + s))P(O events in [t + s, t + s + h]) 

where the last two equations follow from independent increments plus 
the fact that (iii) and (iv) imply that P(N(t + s + h) - N(t + s) = 0) = 
1 - A(t + s)h + o(h). Hence, 

letting h + 0 yields 

Pd(s) = - A(t + s)Po(s) 
or 

A(t + U) du = - A(y) dy 

or 
S:" 

po(s) = e-[m(t+s)-m(t)l 

The remainder of the verification of equation (5.23) follows similarly and is 
left as an exercise. 
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The importance of the nonhomogeneous Poisson process resides in the 
fact that we no longer require the condition of stationary increments. Thus 
we now allow for the possibility that events may be more likely to occur at 
certain times of the day than during other times. 

Example 5.19 Siegbert runs a hot dog stand which opens at 8 A . M .  

From 8 until 11 A.M. customers seem to arrive, on the average, at a steadily 
increasing rate that starts with an initial rate of 5 customers per hour at 
8 A.M. and reaches a maximum of 20 customers per hour at 11 A.M. From 
11 A.M. until 1 P.M. the (average) rate seems to remain constant at 20 
customers per hour. However, the (average) arrival rate then drops steadily 
from 1 P.M. until closing time at 5 P.M. at which time it has the value of 
12 customers per hour. If we assume that the number of customers arriving 
at Siegbert's stand during disjoint time periods is independent, then what is 
a good probability model for the above? What is the probability that no 
customers arrive between 8 : 3 0 ~ . ~ .  and 9:30 A.M. on Monday morning? 
What is the expected number of arrivals in this period? 

Solution: A good model for the above would be to assume that arrivals 
constitute a nonhomogeneous Poisson process with intensity function 
A(t) given by 

i 5 + 5t, O r t s 3  
I ( t )  = 20, 3 1 t s 5  

2 0 - 2 ( t - 5 ) ,  5 r t s 9  
and 

I ( t ) = I ( t - 9 )  f o r t > 9  

Note that N(t) represents the number of arrivals during the first t hours 
that the store is open. That is, we do not count the hours between 5 P.M. 

and 8 A.M. If for some reason we wanted N(t) to represent the number of 
arrivals during the first t hours regardless of whether the store was open 
or not, then, assuming that the process begins at midnight we would let 
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and 
1 ( t )=A( t -24)  f o r t > 2 4  

As the number of arrivals between 8 : 3 0 ~ . ~ .  and 9 : 3 0 ~ . ~ .  will be 
Poisson with mean m($) - m ( i )  in the first representation (and 
m(y) - m(y) in the second representation), we have that the probability 
that this number is zero is 

3/2 

expl-1 ( 5 +  5t)dt =e- lo  
1/2 1 

and the mean number of arrivals is 

When the intensity function L(t) is bounded, we can think of the 
nonhomogeneous process as being a random sample from a homogeneous 
Poisson process. Specifically, let I be such that 

I(t) I I for all t r 0  

and consider a Poisson process with rate 1. Now if we suppose that an 
event of the Poisson process that occurs at time t is counted with probability 
L(t)/A, then the process of counted events is a nonhomogeneous Poisson 
process with intensity function I(t). This last statement easily follows from 
definition 5.4. For instance (i), (ii), and (iii) follow since thay are also true 
for the homogeneous Poisson process. Axiom (iv) follows since 

P(one counted event in (t, t + h)] = P(one event in (t, t + h)) - + o(h) 
I 

Example 5.20 [The Output Process of an Infinite Server Poisson 
Queue (M/G/ao)]: It turns out that the output process of the M/G/m 
queue-that is, of the infinite server queue having Poisson arrivals and 
general service distribution G-is a nonhomogeneous Poisson process 
having intensity function I(t) = IG(t). To prove this claim, note first that 
the (joint) probability (density) that a customer arrives at times and departs 
at time t is equal to 1 ,  the probability (intensity) of an arrival at time s, 
multiplied by g(t - s), the probability (density) that its service time is t - s. 
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(and is thus presently being repaired), i2 the second most recent, and so on. 
Because there are k! possible orderings for a fixed set of k failed components 

and (i) choices of that set, it follows that there are 

possible states. 
The balance equations for the limiting probabilities are as follows: 

where 4 is the state when all components are working. The preceding 
equations follow because state i, , . . . , ik can be left either by a failure of any 
of the additional components or by a repair completion of component i, . Also 
that state can be entered either by a repair completion of component i when 
the state is i, i, , . . . , i, or by a failure of component i, when the state is 
1 2 ,  ..., Z k .  

However, if we take 

then it is easily seen that Equations (6.23) are satisfied. Hence, by uniqueness 
these must be the limiting probabilities with P(4) determined to make their 
sum equal 1. That is, 

As an illustration, suppose n = 2 and so there are 5 states 4, 1,2, 12,21. 
Then from the preceding we would have 



282 5 The Exponential Distrlbutlon and the Poisson Process 

where (N(t), t r 0) is a Poisson process, and (5,  i 2 t ]  is a family of 
independent and identically distributed random variables which are also 
independent of (N(t), t r 0). The random variable X(t) is said to be a 
compound Poisson random variable. 

Examples of Compound Poisson Processes 

(i) If I;: = 1, then X(t) = N(t), and so we have the usual Poisson process. 
(ii) Suppose that buses arrive at a sporting event in accordance with a 
Poisson process, and suppose that the numbers of customers in each bus are 
assumed to be independent and identically distributed. Then (X(t), t 2 0) is 
a compound Poisson process where X(t) denotes the number of customers 
who have arrived by t. In Equation (5.24) I;: represents the number of 
customers in the ith bus. 
(iii) Suppose customers leave a supermarket in accordance with a Poisson 
process. If I;:, the amount spent by the ith customer, i = 1,2, ..., are 
independent and identically distributed, then (X(t), t r 0) is a compound 
Poisson process when X(t) denotes the total amount of money spent by 
time t. + 

Let us calculate the mean and variance of X(t). To calculate E[X(t)], we 
first condition on N(t) to obtain 

E [X(t)l = E(E [XU) I N(t)l) 

Now 

where we have used the assumed independence of the I;:'s and N(t). Hence, 

E [X(t) I N(t)l = N(t)E [Y,I 

and therefore 

E [X(t)] = I t E  [Y,] 
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the probability that n machines will not be in use, is given by 

- - 1 
1 + C ~ = ~ ( A / ~ ) " M ! / ( M  - n)! 

(A/P)~M!/(M - n)! 
Pn = n = 0, 1, ..., M 

1 + c:= l(A/p)nM!/(M - n)! ' 

Hence, the average number of machines not in use is given by 
M c:= n(M!/(M - n)!)(A/p)" z nPn = (6.22) 

n = O  1 + c:= (A/p)"M!/(M - n)! 

To obtain the long-run proportion of time that a given machine is working 
we will compute the equivalent limiting probability of its working. To do 
so, we condition the number of machines that are not working to obtain 

M 

P[machine is working) = C P(machine is working I n not working]Pn 
n = 0 

M ~ - n  
= Z -  (since if n are not working, 

n = o  M Pn then M - n are working!) 

where ~f nPn is given by Equation (6.22). + 
Example 6.14 (The M/M/l Queue): In the M/M/1 queue An = A, 
p, = p and thus, from Equation (6.20), 

provided that A/p < 1. It is intuitive that A must be less than p for limiting 
probabilities to exist. Customers arrive at rate A and are served at rate p ,  
and thus if A > p, then they arrive at a faster rate than they can be served 
and the queue size will go to infinity. The case A = p behaves much like the 
symmetric random walk of Section 4.3, which is null recurrent and thus has 
no limiting probabilities. + 
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Example 5.22 (Busy Periods in Single-Server Poisson Arrival Queues): 
Consider a single-server service station in which customers arrive according 
to a Poisson process having rate 1. An arriving customer is immediately 
served if the server is free; if not, the customer waits in line (that is, he or 
she joins the queue). The successive service times are independent with a 
common distribution. 

Such a system will alternate between idle periods when there are no 
customers in the system, so the server is idle, and busy periods when there 
are customers in the system, so the server is busy. A busy period will begin 
when an arrival finds the system empty, and because of the memoryless 
property of the Poisson arrivals it follows that the distribution of the length 
of a busy period will be the same for each such period. Let B denote the 
length of a busy period. We will compute its mean and variance. 

To begin, let S denote the service time of the first customer in the busy 
period and let N(S) denote the number of arrivals during that time. Now, 
if N(S) = 0 then the busy period will end when the initial customer 
completes his service, and so B will equal S in this case. Now, suppose that 
one customer arrives during the service time of the initial customer. Then, 
at time's there will be a single customer in the system who is just about to 
enter service. As the arrival stream from time S on will still be a Poisson 
process with rate 1 ,  it thus follows that the additional time from S until the 
system becomes empty will have the same distribution as a busy period. 
That is, if N(S) = 1 then 

B = S + B l  

where B, is independent of S and has the same distribution as B. 
Now, consider the general case where N(S) = n, so there will be n 

customers waiting when the server finishes his initial service. To determine 
the distribution of remaining time in the busy period note that the order in 
which customers are served will not affect the remaining time. Hence, let us 
suppose that the n arrivals, call them C,, . . . , C, , during the initial service 
period are served as follows. Customer C1 is served first, but C2 is not 
served until the only customers in the system are C2, . . . , Cn . For instance, 
any customers arriving during ClYs service time will be served before C2. 
Similarly, C3 is not served until the system is free of all customers but 
C3, . . . , Cn, and so on. A little thought reveals that the times between 
the beginnings of service of customers Ci and Ci+ , , i = 1, . . . , n - 1, and 
the time from the beginning of service of C, until there are no customers 
in the system, are independent random variables, each distributed as a 
busy period. 

It follows from the preceding that if we let B, , B2, . . . be a sequence of 
independent random variables, each distributed as a busy period, then we 
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By adding to each equation the equation preceding it, we obtain 

nopo = PlPl 9 

Alp1 = P2P2, 

A2P2 = P3P3 9 

A n P n  = P n + l P n + l ,  n 2 0 

Solving in terms of Po yields 

And by using the fact that C ; = ,  Pn = 1 ,  we obtain 

and so 

The foregoing equations also show us what condition is necessary for these 
limiting probabilities to exist. Namely, it is necessary that 

This condition also may be shown to be sufficient. 
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There is a very nice representation of the compound Poisson process 
when the set of possible values of the YI: is finite or countably infinite. So let 
us suppose that there are numbers aj, j 2 1, such that 

P(y,=cYj]=pj,  c p j = l  
i 

Now, a compound Poisson process arises when events occur according to a 
Poisson process and each event results in a random amount Y being added 
to the cumulative sum. Let us say that the event is a type j event whenever 
it results in adding the amount aj, j L 1. That is, the ith event of the 
Poisson process is a type j event if YI: = aj. If we let Nj(t) denote the 
number of type j events by time t, then it follows from Proposition 5.2 that 
the random variables Nj(t), j r 1, are independent Poisson random 
variables with respective means 

Since, for each j ,  the amount aj is added to the cumulative sum a total of 
Nj(t) times by time t, it follows that the cumulative sum at time t can be 
expressed as 

X(t) = C ajNj(t) (5.30) 
j 

As a check of Equation (5.30), let us use it to compute the mean and 
variance of X(t). This yields 

= C ajIZpjt 
i 

= AtE[&] 
Also, 

Var[X(t)] = Var z ajNj(t) 
[ i  I 

= 4 Var[Nj(t)] by the independence of the 
j Nj(t), j 2 1 

= z &pjt 
j 

= A ~ E  [Y:] 
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6.5. Limiting Probabilities 

In analogy with a basic result in discrete-time Markov chains, the prob- 
ability that a continuous-time Markov chain will be in state j at time t often 
converges to a limiting value which is independent of the initial state. That 
is, if we call this value Pj, then 

Pj = lim Pii(t) 
t-00 

where we are assuming that the limit exists and is independent of the initial 
state i. 

To derive a set of equations for the Pj, consider first the set of forward 
equations 

Now, if we let t approach co, then assuming that we can interchange limit 
and summation, we obtain 

However, as Pii(t) is a bounded function (being a probability it is always 
between 0 and I), it follows that if P;(t) converges, then it must converge 
to 0 (why is this?). Hence, we must have that 

vjP, = qkjPk, all states j 
k # j  

The preceding set of equations, along with this equation 

can be used to solve for the limiting probabilities. 

Remarks (i) We have assumed that the limiting probabilities P, exist. 
A sufficient condition for this is that 

(a) all states of the Markov chain communicate in the sense that starting 
in state i there is a positive probability of ever being in state j ,  for all i, j 
and 
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2. Consider a post office with two clerks. Three people, A ,  B, and C, 
enter simultaneously. A and B go directly to the clerks, and C waits until 
either A or B leaves before he begins service. What is the probability that 
A is still in the post office after the other two have left when 

(a) the service time for each clerk is exactly (nonrandom) ten minutes? 
(b) the service times are i with probability f, i = 1,2,3? 
(c) the service times are exponential with mean 1/p? 

3. The lifetime of a radio is exponentially distributed with a mean of ten 
years. If Jones buys a ten-year-old radio, what is the probability that it will 
be working after an additional ten years? 

4. In Example 5.2 if server i serves at an exponential rate A i ,  i = 1,2, 
show that 

P(Smith is not last) = (Ay + (+>' 
A1 + A2 1 + A2 

'5. If X, and X, are independent nonnegative continuous random 
variables, show that 

where ri(t) is the failure rate function of Xi. 

6. Show that the failure rate function of a gamma distribution with 
parameters n and A is increasing when n r 1. 

7.  Norb and Nat enter a barbershop simultaneously-Norb to get a shave 
and Nat a haircut. If the amount of time it takes to receive a haircut (shave) 
is exponentially distributed with mean 20 (15) minutes, and if Norb and Nat 
are immediately served, what is the probability that Nat finishes before 
Norb? 

' 8 .  If X and Y are independent exponential random variables with 
respective means 1/A, and 1/A2, then 

(a) use the lack of memory property of the exponential to intuitively 
explain why Z = min(X, Y) is exponential. 
(b) what is the conditional distribution of Z given that Z = X ?  
(c) give a heuristic argument that the conditional distribution of Y - Z, 
given that Z = X, is exponential with mean 1/A2. 
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which finally yields, by setting t = 0 and using the fact that Poo(0) = 1, 

From Equation (6.12), this also implies that 

Hence, our desired probability Poo(lO) equals 

Another set of differential equations, different from the backward equa- 
tions, may also be derived. This set of equations, known as Kolmogorov's 
forward equations is derived as follows. From the Chapman-Kolmogorov 
equations (Lemma 6.2), we have 

m 

Pij(t + h) - Pij(?) = C Pik(t)Pkj(h) - Pij(t) 
k = 0 

and thus 

Pij(t + h) - Pij(t) 
lim 

h h-0  h 

and, assuming that we can interchange limit with summation, we obtain 
from Lemma 6.1 

Unfortunately, we cannot always justify the interchange of limit and 
summation and thus the above is not always valid. However, they do hold 
in most models, including all birth and death processes and all finite state 
models. We thus have the following. 

Theorem 6.2 (Kolmogorov's Forward Equations). Under suitable 
regularity conditions, 

Pb(t) = qkjPik(f) - ujPij(f) (6.13) 
k # j  

We shall now attempt to solve the forward equations for the pure birth 
process. For this process, Equation (6.13) reduces to 

Pb(t) = Aj-] Pj,j-,(t) - AjPjj(t) 
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15. In a certain system, a customer must first be served by server 1 and 
then by server 2. The service times at server i are exponential with rate pi,  
i = 1,2. An arrival finding server 1 busy waits in line for that server. Upon 
completion of service at server 1, a customer either enters service with server 
2 if that server is free or else remains with server 1 (blocking any other 
customer from entering service) until server 2 is free. Customers depart the 
system after being served by server 2. Suppose that when you arrive there is 
one customer in the system and that customer is being served by server 1. 
What is the expected total time you spend in the system? 

16. Suppose in Exercise 15 you arrive to find two others in the system, one 
being served by server 1 and one by server 2. What is the expected time you 
spend in the system? Recall that if server 1 finishes before server 2, then 
server 1's customer will remain with him (thus blocking your entrance) until 
server 2 becomes free. 

*17. A flashlight needs two batteries to be operational. Consider such a 
flashlight along with a set of n functional batteries-battery 1, battery 2, . . . , 
battery n. Initially, battery 1 and 2 are installed. Whenever a battery fails, 
it is immediately replaced by the lowest numbered functional battery that 
has not yet been put in use. Suppose that the lifetimes of the different 
batteries are independent exponential random variables each having rate p. 
At a random time, call it T, a battery will fail and our stockpile will 
be empty. At that moment exactly one of the batteries-which we call 
battery X-will not yet have failed. 

(a) What is P ( X  = n)? 
(b) What is P(X = I]? 
(c) What is P IX = i]? 
(d) Find E [TI. 
(e) What is the distribution of T? 

18. Let X and Y be independent exponential random variables having 
respective rates A and p. Let I, independent of X, Y, be such that 

c1 1, with probability - 
I =  A + P  

1 
with probability - 

I + D  
and define Z by .=I-;; ;;;I; 
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Now assuming that we can interchange the limit and the summation in the 
preceding and applying Lemma 6.1, we obtain 

It turns out that this interchange can indeed be justified and, hence, we have 
the following theorem. 

Theorem 6.1 (Kolmogorov's Backward Equations). For all states i, j ,  
and times t 2 0, 

Pb(t) = qikPkj(f) - viPU(t) 
k # i 

Example 6.9 The backward equations for the pure birth process 
become 

P/j(t) = 12iPi+l,j(tj - AiPij(t) 4 

Example 6.1 0 The backward equations for the birth and death process 
become 

Pij(t) = AoPu(t) - IoPoj(t), 

or equivalently 

Example 6.1 1 (A Continuous-Time Markov Chain Consisting of Two 
States): Consider a machine that works for an exponential amount of time 
having mean 1/12 before breaking down; and suppose that it takes an 
exponential amount of time having mean l/p to repair the machine. If the 
machine is in working condition at time 0, then what is the probability that 
it will be working at time t = lo? 

To answer this question, we note that the process is a birth and death 
process (with state 0 meaning that the machine is working and state 1 that 
it is being repaired) having parameters 
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25. Let XI ,  . . . , X, be independent exponential random variables, each 
having rate A. Also, let X(i) be the ith smallest of these values, i = 1, . . . , n. 
Find 

26. Argue that if Ai, i = 1, . . . , n are distinct positive numbers then 

Hint: Relate this problem to Section 5.2.4. 

27. Show that Definition 5.1 of a Poisson process implies Definition 5.3. 

*28. Show that assumption (iv) of Definition 5.3 follows from assump- 
tions (ii) and (iii). 

Hint: Derive a functional equation for g(t) = P(N(t) = 0). 

29. Cars cross a certain point in the highway in accordance with a Poisson 
process.with rate A = 3 per minute. If Reb blindly runs across the highway, 
then what is the probability that she will be uninjured if the amount of 
time that it takes her to cross the road is s seconds? (Assume that if she 
is on the highway when a car passes by, then she will be injured.) Do it for 
s = 2, 5, 10, 20. 

30. Suppose in Exercise 29 that Reb is agile enough to escape from a 
single car, but if she encounters two or more cars while attempting to cross 
the road, then she will be injured. What is the probability that she will be 
unhurt if it takes her s seconds to cross. Do it for s = 5, 10, 20, 30. 

*31. Show that if (Ni(t), t r O] are independent Poisson processes with 
rate Ai, i = 1,2, then [N(t), t 2 0) is a Poisson process with rate A, + A2 
where N(t) = Nl(t) + N2(t). 

32. In Exercise 31 what is the probability that the first event of the 
combined process is from the N1 process? 

33. Let (N(t), t 2 0) be a Poisson process with rate A. Let S, denote the 
time of the nth event. Find 
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[We could, of course, have used Proposition 6.1 to immediately obtain an 
equation for Pu(t), rather than just using it for Plj(t), but the algebra that 
would have then been needed to show the equivalence of the resulting 
expression to the preceding result is somewhat involved.] 4 

We shall now attempt to derive a set of differential equations that the 
transition probabilities cj( t)  satisfy in a general continuous-time Markov 
chain. However, first we need a definition and a pair of lemmas. 

For any pair of states i and j, let 

q.. = v.p.. 
IJ I IJ 

Since vi is the rate at which the process makes a transition when in state i 
and ej is the probability that this transition is into state j ,  it follows that qU 
is the rate, when in state i, at which the process makes a transition into 
state j .  The quantities qij are called the instantaneous transition rates. Since 

and 

it follows that specifying the instantaneous transition rates determines the 
parameters of the continuous-time Markov chain. 

Lemma 6.1 

1 - Pii(h) 
lim = vi 
h - 0  h 

P.. (h) 
lim '-- = qu when i # j 
h - 0  h 

Proof We first note that since the amount of time until a transition 
occurs is exponentially distributed it follows that the probability of two or 
more transitions in a time h is o(h). Thus, 1 - Pii(h), the probability that a 
process.. in state i at time 0 will not be in state i at time h, equals the 
probability that a transition occurs within time h plus something small 
compared to h. Therefore, 

and part (a) is proven. To prove part (b), we note that PV(h), the probability 
that the process goes from state i to state j in a time h, equals the probability 
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"40. Events occur according to a Poisson process with rate 1 = 2 
per hour. 

(a) What is the probability that no event occurs between 8 P.M. and 
9 P.M.? 
(b) Starting at noon, what is the expected time at which the fourth event 
occurs? 
(c) What is the probability that two or more events occur between 6 P.M. 

and 8 P.M.? 

41. Pulses arrive at a Geiger counter in accordance with a Poisson process 
at a rate of three arrivals per minute. Each particle arriving at the counter 
has a probability 3 of being recorded. Let X(t) denote the number of pulses 
recorded by time t minutes. 

(a) P(X(t) = 0) = ? 
(b) E [X(t)] = ? 

42. Cars pass a point on the highway at a Poisson rate of one per minute. 
If 5 percent of the cars on the road are vans, then 

(a) what is the probability that at least one van passes by during an hour? 
(b) given that ten vans have passed by in an hour, what is the expected 
number of cars to have passed by in that time? 
(c) if 50 cars have passed by in an hour, what is the probability that five 
of them were vans? 

*43. Customers arrive at a bank at a Poisson rate 1. Suppose two 
customers arrived during the first hour. What is the probability that 

(a) both arrived during the first 20 minutes? 
(b) at least one arrived during the first 20 minutes? 

44. A system has a random number of flaws that we will suppose is 
Poisson distributed with mean c. Each of these flaws will, independently, 
cause the system to fail at a random time having distribution G. When 
a system failure occurs, suppose that the flaw causing the failure is 
immediately located and fixed. 

(a) What is the distribution of the number of failures by time t? 
(b) What is the distribution of the number of flaws that remain in the 
system at time t ? 
(c) Are the random variables in parts (a) and (b) dependent or 
independent? 
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We can explicitly determine P,.(t) in the case of a pure birth process 
having distinct birth rates. For such a process, let Xk denote the time the 
process spends in state k before making a transition into state k + 1, k 2 1. 
Suppose that the process is presently in state i, and let j > i. Then, as Xi is 
the time it spends in state i before moving to state i + 1, and Xi+, is the time 
it then spends in state i + 1 before moving to state i + 2, and so on, it 
follows that ~ i - = ~ ~  Xk is the time it takes until the process enters state j. 
Now, if the process has not yet entered state j by time t, then its state at time 
t is smaller than j ,  and vice versa. That is, 

Therefore, for i < j, we have for a pure birth process that 

However, since Xi,  . . . , Xi-, are independent exponential random variables 
with respective rates A,, . . . , IZj-l, we obtain from the preceding and 
Equation (5.9), which gives the tail distribution function of x,, that 

Replacing j by j + 1 in the preceding gives that 

Since 

P(X(t) = j 1 X(0) = i J  = P(X(t) < j + 1 I X(0) = i) 

and since fii(t) = P(Xi > t )  = e-'it, we have shown the following. 

Proposition 6.1 For a pure birth process having IZi # 4 when i # j 
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49. A cable car starts off with n riders. The times between successive stops 
of the car are independent exponential random variables with rate 1. At 
each stop one rider gets off. This takes no time, and no additional riders get 
on. After a rider gets off the car, he or she walks home. Independently of 
all else, the walk takes an exponential time with rate p. 

(a) What is the distribution of the time at which the last rider departs 
the 'car? 
(b) Suppose the last rider departs the car at time t. What is the 
probability that all the other riders are home at that time? 

50. Shocks occur according to a Poisson process with rate A, and each 
shock independently causes a certain system to fail with probability p. Let 
T denote the time at which the system fails and let N denote the number of 
shocks that it takes. 

(a) Find the conditional distribution of T given that N = n. 
(b) Calculate the conditional distribution of N, given that T = t ,  and 
notice that it is distributed as 1 plus a Poisson random variable with mean 
A(1 - p)t. 
(c) Explain how the result in part (b) could have been obtained without 
any calculations. 

51. The number of missing items in a certain location, call it X, is a 
Poisson random variable with mean A. When searching the location, each 
item will independently be found after an exponentially distributed time 
with rate p. A reward of R is received for each item found, and a searching 
cost of C per unit of search time is incurred. Suppose that you search for a 
fixed time t and then stop. 

(a) Find your total expected return. 
(b) Find the value of t that maximizes the total expected return. 
(c) The policy of searching for a fixed time is a static policy. Would a 
dynamic policy which allows the decision as to whether to stop at each 
time t depend on the number already found by t be beneficial? 

Hint: How does the distribution of the number of items not yet found 
by time t depend on the number already found by that time? 

52. Suppose that the times between successive arrivals of customers at a 
single-server station are independent random variables having a common 
distribution F. Suppose that when a customer arrives, he or she either 
immediately enters service if the server is free or else joins the end of the 
waiting line if the server is busy with another customer. When the server 
completes work on a customer that customer leaves the system and the next 
waiting customer, if there are any, enters service. Let X, denote the number 
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and, in general, 

The expected time to reach state j ,  starting at state k, k < j ,  is 
j- 1 

E[time to go from k to j ]  = E[T]  
i = k  

The foregoing assumes that 1 # p. If 1 = p, then 

j(j  + 1 )  - k(k + 1) 
E [time to go from k to j ]  = 

2A 
+ 

We can also compute the variance of the time to go from 0 to i + 1 by 
utilizing the conditional variance formula (see Exercise 37 of Chapter 3). 
First note that Equation (6.3) can be written as 

where Var(Zi) is as shown since Ii is a Bernoulli random variable with 
parameter p = &/(Ai + pi). Also, note that if we let Xi denote the time 
until the transition from i occurs, then 

Var(T 1 Zi = 1) = Var(Xi I Ii = 1) 

= Var(Xi) 

where the preceding uses the fact that the time until transition is independent 
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59. (a) Let (N(t), t r 0) be a nonhomogeneous Poisson process with 
mean value function m(t). Given N(t) = n, show that the unordered set of 
arrival times has the same distribution as n independent and identically 
distributed random variables having distribution function 

(1, X > t  

(b) Suppose that workmen incur accidents in accordance with a 
nonhomogeneous Poisson process with mean value function m(t). Suppose 
further that each injured man is out of work for a random amount of time 
having distribution F. Let X(t) be the number of workers who are out of 
work at time t. By using part (a), find E[X(t)]. 

60. Suppose that events occur according to a nonhomogeneous Poisson 
process with intensity function A(t), t r 0. Suppose that, independently of 
anything that has previously occurred, an event at time s will be counted 
with probability p(s), s r 0. Let Nc(t) denote the number of counted events 
by time t. 

(a) What type of process if (Nc(t), t r O)? 
(b) Prove your answer to part (a). 

61. Suppose that (No(t), t 2 0) is a Poisson process with rate A = 1. 
Let A(t) denote a nonnegative function of t, and let 

Define N(t) by 
N(t) = No(m(t)) 

Argue that (N(t), t r 0) is a nonhomogeneous Poisson process with 
intensity function A(t), t r 0. 

Hint: Make use of the identity 

m(t + h) - m(t) = ml(t)h + o(h) 

'62. Let X I ,  X,, ... be independent and identically distributed non- 
negative continuous random variables having density function f(x).  We say 
that a record occurs at time n if X, is larger than each of the previous values 
X I ,  . . . , X,-, . (A record automatically occurs at time 1 .) If a record occurs 
at time n, then X,, is called a record value. In other words, a record occurs 
whenever a new high is reached, and that new high is called the record value. 
Let N(t) denote the number of record values that are less than or equal to t. 
Characterize the process (N(t), t r 0) when 
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The preceding is known as the M/M/l queueing system. The first M 
refers to the fact that the interarrival process is Markovian (since it is a 
Poisson process) and the second to the fact that the service distribution is 
exponential (and, hence, Markovian). The 1 refers to the fact that there is 
a single server. 

If we let X(t) denote the number in the system at time t then [X(t), t r 0) 
is a birth and death process with 

Example 6.6 (A Multiserver Exponential Queueing System): Consider 
an exponential queueing system in which there are s servers available. An 
entering customer first waits in line and then goes to the first free server. 
This is a birth and death process with parameters 

np, l s n s s  
pn = Isp, n > s  

To see why this is true, reason as follows: If there are n customers in the 
system, where n I s, then n servers will be busy. Since each of these servers 
works at a rate p ,  the total departure rate will be np. On the other hand, if 
there are n customers in the system, where n > s, then all s of the servers 
will be busy, and thus the total departure rate will be sp. This is known as 
an M/M/s queueing model (why?). + 

Consider now a general birth and death process with birth rates (A,) and 
death rates (p,), where po = 0, and let denote the time, starting from 
state i, it takes for the process to enter state i + 1, i r 0. We will recursively 
compute E[T], i 2 0, by starting with i = 0. Since T, is exponential with 
rate A,, we have that 

For i > 0, we condition whether the first transition takes the process into 
state i - 1 or i + 1. That is, let 

if the first transition from i is to i + 1 

0, if the first transition from i is to i - 1 
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68. In Exercise 67 show that XI and X2 both have exponential 
distributions. 

*69. Let X I ,  X2, . . . , Xn be independent and identically distributed 
exponential random variables. Show that the probability that the largest 
of them is greater than the sum of the others is n/2"-'. That is if 

M = max Xj 
j 

then show 

Hint: What is P(Xl  > C;,, Xi]? 

70. Prove Equation (5.22). 

71. Prove that 

(a) max(Xl, X2) = X1 + X2 - min(Xl , X2) and, in general, 

Show by defining appropriate random variables Xi ,  i = 1, . . . , n, and by 
taking expectations in (b) how to obtain the well-known formula 

+ ... + (-I)"-'P(A~ ... A,) 

(c) Consider n independent Poisson processes-the ith having rate li. 
Derive an expression for the expected time unt'il an event has occurred in 
all n processes. 

72. A two-dimensional Poisson process is a process of randomly occurring 
events in the plane such that 

(i) for any region of area A the number of events in that region has a 
Poisson distribution with mean LA and 

(ii) the number of events in nonoverlapping regions are independent. 
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Let X( t )  denote the population size at time t. Suppose that X(0) = i and 
let 

M(t)  = E[X(t)l  

We will determine M(t )  by deriving and then solving a differential equation 
that it satisfies. 

We start by deriving an equation for M(t + h) by conditioning on X(t) .  
This yields 

M(t + h) = E[X(t  + h)] 

Now, given the size of the population at time t  then, ignoring events whose 
probability is o(h), the population at time t  + h will either increase in size 
by 1 if a birth or an immigration occurs in ( t ,  t  + h), or decrease by 1 if a 
death occurs in this interval, or remain the same if neither of these two 
possibilities occurs. That is, given X( t ) ,  

x ( t  + h) 

X ( t )  + 1 ,  with probability [ B  + X(t)A]h + o(h) 

X ( t )  - 1 ,  with probability X(t)ph + o(h) 

X( t ) ,  with probability 1 - [ B  + X(t)A + X(t)p]h + o(h) 

Therefore, 

E[X( t  + h) lX( t )]  = X(t)  + [ B  + X(t)A - X(t)p]h + ~ ( h )  

Taking expectations yields 

M(t + h) = M(t )  + ( A  - p)M(t)h + Bh + ~ ( h )  

or, equivalently, 

Taking the limit as h -, 0 yields the differential equation 

~ y t )  = ( A  - p ) ~ ( t )  + e 
If we now define the function h(t)  by 

then 
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need to know which chair he was presently in. Hence, an appropriate state 
space might consist of the three states 0, 1, and 2 where the states have the 
following interpretation: 

State Interpretation 
0 system is empty 
1 a customer is in chair 1 
2 a customer is in chair 2 

We leave it as an exercise for the reader to verify that 

6.3. Birth and Death Processes 

Consider a system whose state at any time is represented by the number of 
people in the system at that time. Suppose that whenever there are n people 
in the system, then (i) new arrivals enter the system at an exponential rate 
A,, and (ii) people leave the system at an exponential rate p, . That is, when- 
ever there are n persons in the system, then the time until the next arrival is 
exponentially distributed with mean l/A, and is independent of the time 
until the next departure which is itself exponentially distributed with mean 
Up,. Such a system is called a birth and death process. The parameters 

and (c(,]:=~ are called respectively the arrival (or birth) and 
departure (or death) rates. 

Thus, a birth and death process is a continuous-time Markov chain with 
states (0, 1, ...I for which transitions from state n may go only to either 
state n - 1 or state n + 1. The relationships between the birth and death 
rates and the state transition rates and probabilities are 

P. p.. =A 
1 , 1 - ~  , i > O  

Ai + Pi 

The preceding follows, since when there are i in the system, then the next 
state will be i + 1 if a birth occurs before a death; and the probability that 



304 6 Continuous-Time Markov Chains 

differential equations-the forward and backward equations-which 
describe the probability laws for the system. The material in Section 6.5 
is concerned with determining the limiting (or long-run) probabilities 
connected with a continuous-time Markov chain. In Section 6.6 we consider 
the topic of time reversibility. We show that all birth and death processes 
are time reversible, and then illustrate the importance of this observation to 
queueing systems. In the final section we show how to "uniformize" 
Markov chains, a technique useful for numerical computations. 

6.2. Continuous-Time Markov Chains 

Suppose we have a continuous-time stochastic process (X(t), t 2 0) taking 
on values in the set of nonnegative integers. In analogy with the definition 
of a discrete-time Markov chain, given in Chapter 4, we say that the process 
[X(t), t 1 0) is a continuous-time Markov chain if for all s ,  t 2 0 and 
nonnegative integers i, j ,  x(u), 0 5 u < s 

In other words, a continuous-time Markov chain is a stochastic process 
having the Markovian property that the conditional distribution of the 
future X(t + s) given the present X(s) and the past X(u), 0 I u < s,  
depends only on the present and is independent of the past. If, in addition, 

is independent of s ,  then the continuous-time Markov chain is said to have 
stationary or homogeneous transition probabilities. 

All Markov chains considered in this text will be assumed to have 
stationary transition probabilities. 

Suppose that a continuous-time Markov chain enters state i at some 
time, say, time 0, and suppose that the process does not leave state i (that 
is, a transition does not occur) during the next ten minutes. What is the 
probability that the process will not leave state i during the following five 
minutes? Now since the process is in state i at time 10 it follows, by the 
Markovian property, that the probability that it remains in that state during 
the interval [lo, 151 is just the (unconditional) probability that it stays in 
state i for at least five minutes. That is, if we let T denote the amount of 
time that the process stays in state i before making a transition into a 
different state, then 

PIT ;, 151T > 10) = PIT I. 55) 
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differential equations-the forward and backward equations-which 
describe the probability laws for the system. The material in Section 6.5 
is concerned with determining the limiting (or long-run) probabilities 
connected with a continuous-time Markov chain. In Section 6.6 we consider 
the topic of time reversibility. We show that all birth and death processes 
are time reversible, and then illustrate the importance of this observation to 
queueing systems. In the final section we show how to "uniformize" 
Markov chains, a technique useful for numerical computations. 

6.2. Continuous-Time Markov Chains 

Suppose we have a continuous-time stochastic process (X(t), t 1 0) taking 
on values in the set of nonnegative integers. In analogy with the definition 
of a discrete-time Markov chain, given in Chapter 4, we say that the process 
(X(t), t r 0) is a continuous-time Markov chain if for all s ,  t 2 0 and 
nonnegative integers i, j ,  x(u), 0 I u c s 

In other words, a continuous-time Markov chain is a stochastic process 
having the Markovian property that the conditional distribution of the 
future X(t + s) given the present X(s) and the past X(u), 0 I u < s, 
depends only on the present and is independent of the past. If, in addition, 

is independent of s ,  then the continuous-time Markov chain is said to have 
stationary or homogeneous transition probabilities. 

All Markov chains considered in this text will be assumed to have 
stationary transition probabilities. 

Suppose that a continuous-time Markov chain enters state i at some 
time, say, time 0, and suppose that the process does not leave state i (that 
is, a transition does not occur) during the next ten minutes. What is the 
probability that the process will not leave state i during the following five 
minutes? Now since the process is in state i at time 10 it follows, by the 
Markovian property, that the probability that it remains in that state during 
the interval [lo, 151 is just the (unconditional) probability that it stays in 
state i for at least five minutes. That is, if we let 6 denote the amount of 
time that the process stays in state i before making a transition into a 
different state, then 
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need to know which chair he was presently in. Hence, an appropriate state 
space might consist of the three states 0, 1, and 2 where the states have the 
following interpretation: 

State Interpretation 
0 system is empty 
1 a customer is in chair 1 
2 a customer is in chair 2 

We leave it as an exercise for the reader to verify that 

6.3. Birth and Death Processes 

Consider a system whose state at any time is represented by the number of 
people in the system at that time. Suppose that whenever there are n people 
in the system, then (i) new arrivals enter the system at an exponential rate 
A,, and (ii) people leave the system at an exponential rate p, . That is, when- 
ever there are n persons in the system, then the time until the next arrival is 
exponentially distributed with mean l/A, and is independent of the time 
until the next departure which is itself exponentially distributed with mean 
l/p,. Such a system is called a birth and death process. The parameters 

and (p,):=, are called respectively the arrival (or birth) and 
departure (or death) rates. 

Thus, a birth and death process is a continuous-time Markov chain with 
states (0, 1, ...) for which transitions from state n may go only to either 
state n - 1 or state n + 1. The relationships between the birth and death 
rates and the state transition rates and probabilities are 

l , l + l  

Ai  p . .  =- , i > O  
Ai  + Pi 

P. p.. =A 
a , l - ~  , i > O  

Ai  + Pi 

The preceding follows, since when there are i in the system, then the next 
state will be i + 1 if a birth occurs before a death; and the probability that 
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Let X( t )  denote the population size at time t. Suppose that X(0) = i and 
let 

= E[X(t)l  

We will determine M(t)  by deriving and then solving a differential equation 
that it satisfies. 

We start by deriving an equation for M(t + h) by conditioning on X(t) .  
This yields 

M(t + h) = E[X( t  + h)] 

Now, given the size of the population at time t  then, ignoring events whose 
probability is o(h), the population at time t  + h will either increase in size 
by 1 if a birth or an immigration occurs in (t ,  t  + h), or decrease by 1 if a 
death occurs in this interval, or remain the same if neither of these two 
possibilities occurs. That is, given X( t ) ,  

i X( t )  + 1 ,  with probability [e + X(t)A]h + o(h) 

= X ( t )  - 1, with probability X(t)ph + o(h) 

X( t ) ,  with probability 1 - [e + X(t)A + X(t)p]h + o(h) 

Therefore, 

Taking expectations yields 

or, equivalently, 

Taking the limit as h -t 0 yields the differential equation 

~ y t )  = ( A  - p ) ~ ( t )  + e 
If we now define the function h(t )  by 

then 
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68. In Exercise 67 show that Xl and X2 both have exponential 
distributions. 

*69. Let X I ,  X2 , . . . , Xn be independent and identically distributed 
exponential random variables. Show that the probability that the largest 
of them is greater than the sum of the others is n/2"-'. That is if 

M = max Xj 
j 

then show 

Hint: What is PIX, > C1=2Xi)? 

70. Prove Equation (5.22). 

71. Prove that 

(a) max(X, , X,) = X, + X2 - min(Xl , X,) and, in general, 

Show by defining appropriate random variables Xi ,  i = 1, . . . , n, and by 
taking expectations in (b) how to obtain the well-known formula 

(c) Consider n independent Poisson processes-the ith having rate Ai. 
Derive an expression for the expected time until an event has occurred in 
all n processes. 

72. A two-dimensional Poisson process is a process of randomly occurring 
events in the plane such that 

(i) for any region of area A the number of events in that region has a 
Poisson distribution with mean jlA and 

(ii) the number of events in nonoverlapping regions are independent. 
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The preceding is known as the M/M/l queueing system. The first M 
refers to the fact that the interarrival process is Markovian (since it is a 
Poisson process) and the second to the fact that the service distribution is 
exponential (and, hence, Markovian). The 1 refers to the fact that there is 
a single server. 

If we let X(t) denote the number in the system at time t then (X(t), t 2 0) 
is a birth and death process with 

Example 6.6 (A Multiserver Exponential Queueing System): Consider 
an exponential queueing system in which there are s servers available. An 
entering customer first waits in line and then goes to the first free server. 
This is a birth and death process with parameters 

np, l s n s s  
p n = [ s p ,  n > s  

To see why this is true, reason as follows: If there are n customers in the 
system, where n I s, then n servers will be busy. Since each of these servers 
works at a rate p, the total departure rate will be np. On the other hand, if 
there are n customers in the system, where n > s,  then all s of the servers 
will be busy, and thus the total departure rate will be sp. This is known as 
an M/M/s queueing model (why?). + 

Consider now a general birth and death process with birth rates [A,) and 
death rates (p,), where p, = 0, and let denote the time, starting from 
state i ,  it takes for the process to enter state i + 1, i r 0. We will recursively 
compute E [ q ] ,  i r 0, by starting with i = 0. Since T, is exponential with 
rate l o ,  we have that 

For i > 0, we condition whether the first transition takes the process into 
state i - 1 or i + 1. That is, let 

if the first transition from i is to i + 1 

0, if the first transition from i is to i - 1 
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59. (a) Let (N(t), t r 0) be a nonhomogeneous Poisson process with 
mean value function m(t). Given N(t) = n, show that the unordered set of 
arrival times has the same distribution as n independent and identically 
distributed random variables having distribution function 

(b) Suppose that workmen incur accidents in accordance with a 
nonhomogeneous Poisson process with mean value function m(t). Suppose 
further that each injured man is out of work for a random amount of time 
having distribution F. Let X(t) be the number of workers who are out of 
work at time t. By using part (a), find E[X(t)]. 

60. Suppose that events occur according to a nonhomogeneous Poisson 
process with intensity function l( t) ,  t r 0. Suppose that, independently of 
anything that has previously occurred, an event at time s will be counted 
with probability p(s), s r 0. Let N,(t) denote the number of counted events 
by time t. 

(a) What type of process if (N,(t), t r O)? 
(b) Prove your answer to part (a). 

61. Suppose that {No(t), t r 0) is a Poisson process with rate l = 1. 
Let l ( t )  denote a nonnegative function of t, and let 

r t  

Define N(t) by 
N(t) = No(m(t)) 

Argue that (N(t), t r 0) is a nonhomogeneous Poisson process with 
intensity function l( t) ,  t r 0. 

Hint: Make use of the identity 

*62. Let X I ,  X, , . . . be independent and identically distributed non- 
negative continuous random variables having density function f(x).  We say 
that a record occurs at time n if Xn is larger than each of the previous values 
X I ,  . . . , Xn-,. (A record automatically occurs at time 1 .) If a record occurs 
at time n, then Xn is called a record value. In other words, a record occurs 
whenever a new high is reached, and that new high is called the record value. 
Let N(t) denote the number of record values that are less than or equal to t. 
Characterize the process {N(t), t 1 0) when 
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and, in general, 

The expected time to reach state j ,  starting at state k, k < j ,  is 
j- 1 

E[time to go from k to j ]  = E[T]  
i = k  

The foregoing assumes that I # p. If A = p,  then 

j(j + 1) - k(k + 1) 
E [time to go from k to j ]  = 

2A 
+ 

We can also compute the variance of the time to go from 0 to i + 1 by 
utilizing the conditional variance formula (see Exercise 37 of Chapter 3). 
First note that Equation (6.3) can be written as 

where Var(Zi) is as shown since Zi is a Bernoulli random variable with 
parameter p = &/(Ii + pi). Also, note that if we let Xi denote the time 
until the transition from i occurs, then 

Var(T /Ii = 1) = Var(Xi )Ii = 1) 

= Var(Xi) 

where the preceding uses the fact that the time until transition is independent 
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49. A cable car starts off with n riders. The times between successive stops 
of the car are independent exponential random variables with rate A. At 
each stop one rider gets off. This takes no time, and no additional riders get 
on. After a rider gets off the car, he or she walks home. Independently of 
all else, the walk takes an exponential time with rate p. 

(a) What is the distribution of the time at which the last rider departs 
the 'car? 
(b) Suppose the last rider departs the car at time t. What is the 
probability that all the other riders are home at that time? 

50. Shocks occur according to a Poisson process with rate A, and each 
shock independently causes a certain system to fail with probability p. Let 
T denote the time at which the system fails and let N denote the number of 
shocks that it takes. 

(a) Find the conditional distribution of T given that N = n. 
(b) Calculate the conditional distribution of N, given that T = t, and 
notice that it is distributed as 1 plus a Poisson random variable with mean 
A(1 - p)t. 
(c) Explain how the result in part (b) could have been obtained without 
any calculations. 

51. The number of missing items in a certain location, call it X, is a 
Poisson random variable with mean A. When searching the location, each 
item will independently be found after an exponentially distributed time 
with rate p. A reward of R is received for each item found, and a searching 
cost of C per unit of search time is incurred. Suppose that you search for a 
fixed time t and then stop. 

(a) Find your total expected return. 
(b) Find the value of t that maximizes the total expected return. 
(c) The policy of searching for a fixed time is a static policy. Would a 
dynamic policy which allows the decision as to whether to stop at each 
time t depend on the number already found by t be beneficial? 

Hint: How does the distribution of the number of items not yet found 
by time t depend on the number already found by that time? 

52. Suppose that the times between successive arrivals of customers at a 
single-server station are independent random variables having a common 
distribution F. Suppose that when a customer arrives, he or she either 
immediately enters service if the server is free or else joins the end of the 
waiting line if the server is busy with another customer. When the server 
completes work on a customer that customer leaves the system and the next 
waiting customer, if there are any, enters service. Let X,, denote the number 
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We can explicitly determine e j ( t )  in the case of a pure birth process 
having distinct birth rates. For such a process, let Xk denote the time the 
process spends in state k before making a transition into state k + 1, k 2 1. 
Suppose that the process is presently in state i, and let j > i. Then, as Xi is 
the time it spends in state i before moving to state i + 1, and Xi+, is the time 
it then spends in state i + 1 before moving to state i + 2, and so on, it 
follows that Xk is the time it takes until the process enters state j. 
Now, if the process has not yet entered state j by time t ,  then its state at time 
t is smaller than j ,  and vice versa. That is, 

Therefore, for i < j ,  we have for a pure birth process that 

However, since X i ,  . . . , Xj- ,  are independent exponential random variables 
with respective rates A , ,  . . . ,12,.-, , we obtain from the preceding and 
Equation (5.9), which gives the tail distribution function of X k ,  that 

Replacing j by j + 1 in the preceding gives that 

Since 

and since P;:,(t) = P(Xi > t )  = e-'it, we have shown the following. 

Proposition 6.1 For a pure birth process having Ai # Aj when i # j 
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*40. Events occur according to a Poisson process with rate A = 2 
per hour. 

(a) What is the probability that no event occurs between 8 P.M. and 
9 P.M.? 
(b) Starting at noon, what is the expected time at which the fourth event 
occurs? 
(c) What is the probability that two or more events occur between 6 P.M. 

and 8 P.M.? 

41. Pulses arrive at a Geiger counter in accordance with a Poisson process 
at a rate of three arrivals per minute. Each particle arriving at the counter 
has a probability 3 of being recorded. Let X(t) denote the number of pulses 
recorded by time t minutes. 

(a) P(X(t) = 0) = ? 
(b) E [X(t)] = ? 

42. Cars pass a point on the highway at a Poisson rate of one per minute. 
If 5 percent of the cars on the road are vans, then 

(a) what is the probability that at least one van passes by during an hour? 
(b) given that ten vans have passed by in an hour, what is the expected 
number of cars to have passed by in that time? 
(c) if 50 cars have passed by in an hour, what is the probability that five 
of them were vans? 

'43. Customers arrive at a bank at a Poisson rate A. Suppose two 
customers arrived during the first hour. What is the probability that 

(a) both arrived during the first 20 minutes? 
(b) at least one arrived during the first 20 minutes? 

44. A system has a random number of flaws that we will suppose is 
Poisson distributed with mean c. Each of these flaws will, independently, 
cause the system to fail at a random time having distribution G. When 
a system failure occurs, suppose that the flaw causing the failure is 
immediately located and fixed. 

(a) What is the distribution of the number of failures by time t? 
(b) What is the distribution of the number of flaws that remain in the 
system at time t? 
(c) Are the random variables in parts (a) and (b) dependent or 
independent? 
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[We could, of course, have used Proposition 6.1 to immediately obtain an 
equation for qj(t), rather than just using it for Pu(t), but the algebra that 
would have then been needed to show the equivalence of the resulting 
expression to the preceding result is somewhat involved.] 4 

We shall now attempt to derive a set of differential equations that the 
transition probabilities Q(t) satisfy in a general continuous-time Markov 
chain. However, first we need a definition and a pair of lemmas. 

For any pair of states i and j ,  let 

q.. = V . P .  
IJ I r j  

Since vi is the rate at which the process makes a transition when in state i 
and ej is the probability that this transition is into state j ,  it follows that qij 
is the rate, when in state i, at which the process makes a transition into 
state j .  The quantities qij are called the instantaneous transition rates. Since 

Vi = 1 vieii = 1 9.. IJ 

i j 

and 

4,- 4.. p.. = "I = U 
1.l 

Vi  Cjqij 

it follows that specifying the instantaneous transition rates determines the 
parameters of the continuous-time Markov chain. 

Lemma 6.1 

1 - P,(h) 
lim = ui 
h - 0  h 

P. . (h)  lim = qij when i # j 
h-+O h 

Proof We first note that since the amount of time until a transition 
occurs is exponentially distributed it follows that the probability of two or 
more transitions in a time h is o(h). Thus, 1 - Pii(h), the probability that a 
process,, in state i at time 0 will not be in state i at time h, equals the 
probability that a transition occurs within time h plus something small 
compared to h. Therefore, 

and part (a) is proven. To prove part (b), we note that Pij(h), the probability 
that the process goes from state i to state j in a time h, equals the probability 
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25. Let X, , . . . , X,, be independent exponential random variables, each 
having rate A. Also, let X(i) be the ith smallest of these values, i = 1, . . . , n. 
Find 

26. Argue that if Ai , i = 1, . . . , n are distinct positive numbers then 

Hint: Relate this problem to Section 5.2.4. 

27. Show that Definition 5.1 of a Poisson process implies Definition 5.3. 

'28. Show that assumption (iv) of Definition 5.3 follows from assump- 
tions (ii) and (iii). 

Hint: Derive a functional equation for g(t) = P(N(t) = 0). 

29. Cars cross a certain point in the highway in accordance with a Poisson 
process with rate A = 3 per minute. If Reb blindly runs across the highway, 
then what is the probability that she will be uninjured if the amount of 
time that it takes her to cross the road is s seconds? (Assume that if she 
is on the highway when a car passes by, then she will be injured.) Do it for 
s = 2, 5, 10, 20. 

30. Suppose in Exercise 29 that Reb is agile enough to  escape from a 
single car, but if she encounters two or more cars while attempting to cross 
the road, then she will be injured. What is the probability that she will be 
unhurt if it takes her s seconds to cross. Do it for s = 5, 10, 20, 30. 

'31. Show that if [Ni(t), t r 0) are independent Poisson processes with 
rate Ai, i = 1,2, then [N(t), t r O] is a Poisson process with rate A, + A, 
where N(t) = N,(t) + N,(t). 

32. In Exercise 31 what is the probability that the first event of the 
combined process is from the N, process? 

33. Let [N(t), t r 0) be a Poisson process with rate A. Let S,, denote the 
time of the nth event. Find 
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Now assuming that we can interchange the limit and the summation in the 
preceding and applying Lemma 6.1, we obtain 

It turns out that this interchange can indeed be justified and, hence, we have 
the following theorem. 

Theorem 6.1 (Kolmogorov's Backward Equations). For all states i, j ,  
and times t 2 0, 

Example 6.9 The backward equations for the pure birth process 
become 

Pb(t) = AiPi+l,j(tj - AiPij(t) + 
Example 6.1 0 The backward equations for the birth and death process 
become 

PAj(t) = &Pu(t) - &Poj(t), 

or equivalently 

Example 6.1 1 (A Continuous-Time Markov Chain Consisting of Two 
States): Consider a machine that works for an exponential amount of time 
having mean 1/A before breaking down; and suppose that it takes an 
exponential amount of time having mean l /p to repair the machine. If the 
machine is in working condition at time 0, then what is the probability that 
it will be working at time t = lo? 

To answer this question, we note that the process is a birth and death 
process (with state 0 meaning that the machine is working and state 1 that 
it is being repaired) having parameters 
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15. In a certain system, a customer must first be served by server 1 and 
then by server 2. The service times at server i are exponential with rate p i ,  
i = 1,2. An arrival finding server 1 busy waits in line for that server. Upon 
completion of service at server 1, a customer either enters service with server 
2 if that server is free or else remains with server 1 (blocking any other 
customer from entering service) until server 2 is free. Customers depart the 
system after being served by server 2. Suppose that when you arrive there is 
one customer in the system and that customer is being served by server 1. 
What is the expected total time you spend in the system? 

16. Suppose in Exercise 15 you arrive to find two others in the system, one 
being served by server 1 and one by server 2. What is the expected time you 
spend in the system? Recall that if server 1 finishes before server 2, then 
server 1's customer will remain with him (thus blocking your entrance) until 
server 2 becomes free. 

17. A flashlight needs two batteries to be operational. Consider such a 
flashlight along with a set of n functional batteries-battery 1, battery 2, . . . , 
battery n. Initially, battery 1 and 2 are installed. Whenever a battery fails, 
it is immediately replaced by the lowest numbered functional battery that 
has not yet been put in use. Suppose that the lifetimes of the different 
batteries are independent exponential random variables each having rate p. 
At a random time, call it T, a battery will fail and our stockpile will 
be empty. At that moment exactly one of the batteries-which we call 
battery X-will not yet have failed. 

(a) What is P(X = n)? 
(b) What is P(X = I)? 
(c) What is P(X = i)? 
(d) Find E [TI. 
(e) What is the distribution of T? 

18. Let X and Y be independent exponential random variables having 
respective rates I and p. Let I ,  independent of X, Y, be such that 

P 1, with probability - 
I =  I + P  

A 
with probability - 

I + D  
and define Z by 
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which finally yields, by setting t = 0 and using the fact that Poo(0) = 1, 

From Equation (6.12), this also implies that 

Hence, our desired probability P,(10) equals 

Another set of differential equations, different from the backward equa- 
tions, may also be derived. This set of equations, known as Kolmogorov's 
forward equations is derived as follows. From the Chapman-Kolmogorov 
equations (Lemma 6.2), we have 

and thus 

Pij(t + h) - Pij(t) 
lim 

h h - 0  h 

and, assuming that we can interchange limit with summation, we obtain 
from Lemma 6.1 

Unfortunately, we cannot always justify the interchange of limit and 
summation and thus the above is not always valid. However, they do hold 
in most models, including all birth and death processes and all finite state 
models. We thus have the following. 

Theorem 6.2 (Kolmogorov's Forward Equations). Under suitable 
regularity conditions, 

Pr[i(t) = C qkjPik(f) - vjPij(f) (6.13) 
k # j  

We shall now attempt to solve the forward equations for the pure birth 
process. For this process, Equation (6.13) reduces to 

P i p )  = lj-lPi,j-l(t) - ljPij(t) 
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2. Consider a post office with two clerks. Three people, A, B, and C, 
enter simultaneously. A and B go directly to the clerks, and C waits until 
either A or B leaves before he begins service. What is the probability that 
A is still in the post office after the other two have left when 

(a) the service time for each clerk is exactly (nonrandom) ten minutes? 
(b) the service times are i with probability f, i = 1,2,3? 
(c) the service times are exponential with mean l/p? 

3. The lifetime of a radio is exponentially distributed with a mean of ten 
years. If Jones buys a ten-year-old radio, what is the probability that it will 
be working after an additional ten years? 

4. In Example 5.2 if server i serves at an exponential rate l i ,  i = 1,2, 
show that 

P[Smith is not last] = ( A 7  + ( A 7  
A1 + 122 121 + 122 

'5. If X, and X2 are independent nonnegative continuous random 
variables, show that 

where ri(t) is the failure rate function of Xi. 

6. Show that the failure rate function of a gamma distribution with 
parameters n and 12 is increasing when n 2 1. 

7.  Norb and Nat enter a barbershop simultaneously-Norb to get a shave 
and Nat a haircut. If the amount of time it takes to receive a haircut (shave) 
is exponentially distributed with mean 20 (15) minutes, and if Norb and Nat 
are immediately served, what is the probability that Nat finishes before 
Norb? 

"8. If X and Y are independent exponential random variables with 
respective means 1/12, and 1/12,, then 

(a) use the lack of memory property of the exponential to intuitively 
explain why Z = min(X, Y) is exponential. 
(b) what is the conditional distribution of Z given that Z = X? 
(c) give a heuristic argument that the conditional distribution of Y - Z, 
given that Z = X, is exponential with mean 1/12,. 
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6.5. Limiting Probabilities 

In analogy with a basic result in discrete-time Markov chains, the prob- 
ability that a continuous-time Markov chain will be in state j at time t often 
converges to a limiting value which is independent of the initial state. That 
is, if we call this value Pj, then 

Pj = lim Pij(t) 
t - t m  

where we are assuming that the limit exists and is independent of the initial 
state i. 

To derive a set of equations for the 5 ,  consider first the set of forward 
equations 

Pb(t) = C qkjPik(t) - vjPij(t) (6.17) 
k f j  

Now, if we let t approach ao, then assuming that we can interchange limit 
and summation, we obtain 

However, as Pij(t) is a bounded function (being a probability it is always 
between 0 and l), it follows that if P$(t) converges, then it must converge 
to 0 (why is this?). Hence, we must have that 

0 = C qkjPk - vjPj 
k f j  

vjP, = qkjPk, all states j 
k i t  j 

The preceding set of equations, along with this equation 

can be used to solve for the limiting probabilities. 

Remarks (i) We have assumed that the limiting probabilities 5 exist. 
A sufficient condition for this is that 

(a) all states of the Markov chain communicate in the sense that starting 
in state i there is a positive probability of ever being in state j, for all i, j 
and 
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There is a very nice representation of the compound Poisson process 
when the set of possible values of the 5 is finite or countably infinite. So let 
us suppose that there are numbers a,, j 2 1, such that 

P(y,  = a,) =pi, Cp, = 1 
i 

Now, a compound Poisson process arises when events occur according to a 
Poisson process and each event results in a random amount Y being added 
to the cumulative sum. Let us say that the event is a type j event whenever 
it results in adding the amount q, j 2 1. That is, the ith event of the 
Poisson process is a type j event if 5 = aj. If we let Nj(t) denote the 
number of type j events by time t, then it follows from Proposition 5.2 that 
the random variables Nj(t), j 2 1 ,  are independent Poisson random 
variables with respective means 

E [Nj (t)] = A p j  t 

Since, for each j ,  the amount q is added to the cumulative sum a total of 
Nj(t) times by time t, it follows that the cumulative sum at time t can be 
expressed as 

As a check of Equation (5.30), let us use it to compute the mean and 
variance of X(t). This yields 

= AtE[&] 

Also. 

Var[X(t)] = Var C ajNj(t) 1, 1 
= z c$ Var[N,(t)] by the independence of the 

i Nj(t), j 2 1 

= &pit 
i 
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By adding to each equation the equation preceding it, we obtain 

Solving in terms of Po yields 

And by using the fact that C ; = ,  Pn = 1, we obtain 

and so 

The foregoing equations also show us what condition is necessary for these 
limiting probabilities to exist. Namely, it is necessary that 

This condition also may be shown to be sufficient. 
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Example 5.22 (Busy Periods in Single-Server Poisson Arrival Queues): 
Consider a single-server service station in which customers arrive according 
to a Poisson process having rate 1. An arriving customer is immediately 
served if the server is free; if not, the customer waits in line (that is, he or 
she joins the queue). The successive service times are independent with a 
common distribution. 

Such a system will alternate between idle periods when there are no 
customers in the system, so the server is idle, and busy periods when there 
are customers in the system, so the server is busy. A busy period will begin 
when an arrival finds the system empty, and because of the memoryless 
property of the Poisson arrivals it follows that the distribution of the length 
of a busy period will be the same for each such period. Let B denote the 
length of a busy period. We will compute its mean and variance. 

To begin, let S denote the service time of the first customer in the busy 
period and let N(S) denote the number of arrivals during that time. Now, 
if N(S) = 0 then the busy period will end when the initial customer 
completes his service, and so B will equal S in this case. Now, suppose that 
one customer arrives during the service time of the initial customer. Then, 
at timi S there will be a single customer in the system who is just about to 
enter service. As the arrival stream from time S on will still be a Poisson 
process with rate 1 ,  it thus follows that the additional time from S until the 
system becomes empty will have the same distribution as a busy period. 
That is, if N(S) = 1 then 

where B, is independent of S and has the same distribution as B. 
Now, consider the general case where N(S) = n, so there will be n 

customers waiting when the server finishes his initial service. To determine 
the distribution of remaining time in the busy period note that the order in 
which customers are served will not affect the remaining time. Hence, let us 
suppose that the n arrivals, call them C,, . . . , C,, during the initial service 
period are served as follows. Customer C, is served first, but C2 is not 
served until the only customers in the system are C2, . . . , C, . For instance, 
any customers arriving during C,'s service time will be served before C2. 
Similarly, C3 is not served until the system is free of all customers but 
C3, . . . , C,, and so on. A little thought reveals that the times between 
the beginnings of service of customers Ci and Ci+,, i = 1, . . . , n - 1, and 
the time from the beginning of service of C, until there are no customers 
in the system, are independent random variables, each distributed as a 
busy period. 

It follows from the preceding that if we let B, , B2 , . . . be a sequence of 
independent random variables, each distributed as a busy period, then we 
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the probability that n machines will not be in use, is given by 

- - 1 
1 + (IZ/p)"M!/(M - n)! 

(A/pInM!/(M - n)! 
Pn = n = 0, 1, ..., M 

1 + c:= l(A/p)nM!/(M - n)! ' 

Hence, the average number of machines not in use is given by 
M c:=~ n(M!/(M - n)!)(A/p)" C nPn = 

n = o 1 + c:= (A/p)"M!/(M - n)! 

To obtain the long-run proportion of time that a given machine is working 
we will compute the equivalent limiting probability of its working. To do 
so, we condition the number of machines that are not working to obtain 

M 

P(machine is working) = C P(machine is working I n not working)Pn 
n = O  

M ~ - n  
= C -  (since if n are not working, 

n = o  M 
Pn then M - n are working!) 

where ~ f n ~ ,  is given by Equation (6.22). + 
Example 6.14 (The M/M/l Queue): In the M/M/l queue A, = 1, 
pn = p and thus, from Equation (6.20), 

provided that A/p < 1. It is intuitive that A must be less than p for limiting 
probabilities to exist. Customers arrive at rate A and are served at rate p, 
and thus if A > p,  then they arrive at a faster rate than they can be served 
and the queue size will go to infinity. The case A = p behaves much like the 
symmetric random walk of Section 4.3, which is null recurrent and thus has 
no limiting probabilities. + 
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where (N(t), t 2 0) is a Poisson process, and (Y;,, i 2 t ]  is a family of 
independent and identically distributed random variables which are also 
independent of (N(t), t 2 0). The random variable X(t) is said to be a 
compound Poisson random variable. 

Examples of Compound Poisson Processes 

(i) If x = 1, then X(t) = N(t), and so we have the usual Poisson process. 
(ii) Suppose that buses arrive at a sporting event in accordance with a 
Poisson process, and suppose that the numbers of customers in each bus are 
assumed to be independent and identically distributed. Then (X(t), t 2 O] is 
a compound Poisson process where X(t) denotes the number of customers 
who have arrived by t. In Equation (5.24) & represents the number of 
customers in the ith bus. 
(iii) Suppose customers leave a supermarket in accordance with a Poisson 
process. If Y;,, the amount spent by the ith customer, i = 1,2, ..., are 
independent and identically distributed, then (X(t), t 2 Oj  is a compound 
Poisson process when X(t) denotes the total amount of money spent by 
time t. + 

Let us calculate the mean and variance of X(t). To calculate E[X(t)], we 
first condition on N(t) to obtain 

Now 

where we have used the assumed independence of the x's and N(t). Hence, 

E[X(t) I N(t)l = N(t)E [Y,I 
and therefore 

E [X(t)] = A tE [Y,] 
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(and is thus presently being repaired), i2 the second most recent, and so on. 
Because there are k! possible orderings for a fixed set of k failed components 

and (i) choices of that set, it follows that there are 

possible states. 
The balance equations for the limiting probabilities are as follows: 

where 4 is the state when all components are working. The preceding 
equations follow because state il , . . . , ik can be left either by a failure of any 
of the additional components or by a repair completion of component i1 . Also 
that state can be entered either by a repair completion of component i when 
the state is i, il , . . . , ik or by a failure of component i1 when the state is 
12, ..., lk. 

However, if we take 

then it is easily seen that Equations (6.23) are satisfied. Hence, by uniqueness 
these must be the limiting probabilities with P(4) determined to make their 
sum equal 1. That is, 

As an illustration, suppose n = 2 and so there are 5 states 4, 1,2, 12,21. 
Then from the preceding we would have 
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and 
A(t)=A(t-24) f o r t > 2 4  

As the number of arrivals between 8 : 3 0 ~ . ~ .  and 9 : 3 0 ~ . ~ .  will be 
Poisson with mean m(3) - m(i) in the first representation (and 
m(y)  - m(y)  in the second representation), we have that the probability 
that this number is zero is 

and the mean number of arrivals is 

When the intensity function A(t) is bounded, we can think of the 
nonhomogeneous process as being a random sample from a homogeneous 
Poisson process. Specifically, let A be such that 

and consider a Poisson process with rate A. Now if we suppose that an 
event of the Poisson process that occurs at time t is counted with probability 
1(t)/1, then the process of counted events is a nonhomogeneous Poisson 
process with intensity function I(t). This last statement easily follows from 
definition 5.4. For instance (i), (ii), and (iii) follow since thay are also true 
for the homogeneous Poisson process. Axiom (iv) follows since 

A(t) P(one counted event in (t, t + h)) = P(one event in (t, t + h)] - + o(h) 
1 

Example 5.20 [The Output Process of an Infinite Server Poisson 
Queue (M/G/oo)]: It turns out that the output process of the M/G/oo 
queue-that is, of the infinite server queue having Poisson arrivals and 
general service distribution G-is a nonhomogeneous Poisson process 
having intensity function A(t) = LG(t). To prove this claim, note first that 
the (joint) probability (density) that a customer arrives at times and departs 
at time t is equal to 1 ,  the probability (intensity) of an arrival at time s,  
multiplied by g(t - s), the probability (density) that its service time is t - s. 
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we trace the process going backward in time. To determine the probability 
structure of this reversed process, we first note that given we are in state i 
at some time-say, t-the probability that we have been in this state for an 
amount of time greater than s is just e-'is. This is so, since 

P(process is in state i throughout [t - s, t] I ~ ( t )  = i )  

- - P(process is in state i throughout [t - s, t]] 
P[X(t) = i ]  

since for t large P[X(t - s) = i] = P(X(t) = ij = Pi. 
In other words, going backward in time, the amount of time the process 

spends in state i is also exponentially distributed with rate vi. In addition, 
as was shown in Section 4.8, the sequence of states visited by the reversed 
process constitutes a discrete-time Markov chain with transition probabilities 
Qij given by 

nj Pji 
Q.. = - 
U ni 

Hence, we see from the preceding that the reversed process is a continuous- 
time Markov chain with the same transition rates as the forward-time 
process and with one-stage transition probabilities Qij. Therefore, the 
continuous-time Markov chain will be time reversible, in the sense that the 
process reversed in time has the same probabilistic structure as the original 
process, if the embedded chain is time reversible. That is, if 

.P.. = n .P.. r , ,, , for all i , j  

Now using the fact that Pi = (ni/vi)/(zj nj/uj), we see that the preceding 
condition is equivalent to 

P . q  = P. .. for all i, j r u  J ~ J ~ S  (6.26) 

Since Pi is the proportion of time in state i and qii is the rate when in state 
i that the process goes to j, the condition of time reversibility is that the rate 
at which the process goes directly from state i to state j is equal to the rate 
at which it goes directly from j to i. It should be noted that this is exactly 
the same condition needed for an ergodic discrete-time Markov chain to be 
time reversible (see Section 4.8). 

An application of the preceding condition for time reversibility yields the 
following proposition concerning birth and death processes. 
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Proposition 6.3 An ergodic birth and death process is time reversible. 

Proof We must show that the rate at which a birth and death process 
goes from state i to state i + 1 is equal to the rate at which it goes from 
i + 1 to i. Now in any length of time t the number of transitions from i to 
i + 1 must equal to within 1 the number from i + 1 to i (since between each 
transition from i to i + 1 the process must return to i, and this can' only 
occur through i + 1, and vice versa). Hence, as the number of such tran- 
sitions goes to infinity as t + m, it follows that the rate of transitions from 
i to i + 1 equals the rate from i + 1 to i. + 

Proposition 6.3 can be used to prove the important result that the 
output process of an M/M/s queue is a Poisson process. We state this as a 
corollary. 

Corollary 6.4 Consider an M/M/s queue in which customers arrive in 
accordance with a Poisson process having rate I and are served by any 
one of s servers-each having an exponentially distributed service time 
with rate p. If I < sp, then the output process of customers departing is, 
after the process has been in operation for a long time, a Poisson process 
with rate I. 

Proof Let X(t) denote the number of customers in the system at time t .  
Since the M/M/s process is a birth and death process, it follows from 
Proposition 6.3 that (X(t), t r 0) is time reversible. Now going forward in 
time, the time points at which X(t) increases by 1 constitute a Poisson 
process since these are just the arrival times of customers. Hence, by time 
reversibility the time points at which the X(t) increases by 1 when we go 
backward in time also constitute a Poisson process. But these latter points 
are exactly the points of time when customers depart. (See Figure 6.1.) 
Hence, the departure times constitute a Poisson process with rate I. + 

x=  times at which going backward in time, X(t)  increases 
= times at which going forward in time, X(t )  decreases 

Figure 6.1. 
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We have shown that a process is time reversible if and only if 

Pigij = Pigji for all i Z j 

Analogous to the result for discrete-time Markov chains, if one can find 
a probability vector P that satisfies the preceding then the Markov chain is 
time reversible and the Pi's are the long-run probabilities. That is, we have 
the following proposition. 

Proposition 6.5 If for some set [Pi) 

and 
Pigij = Pjqji for all i # j (6.27) 

then the continuous-time Markov chain is time reversible and Pi represents 
the limiting probability of being in state i. 

Proof For fixed i we obtain upon summing Equation (6.27) over all 
j : j ? c i  

C Piqij = C Pj9ji 
j # i  j # i  

or, since Cj + qij = vi , 

Hence, the Pi's satisfy the balance equations and thus represent the limiting 
probabilities. Because Equation (6.27) holds, the chain is time reversible. + 
Example 6.17 Consider a set of n machines and a single repair facility 
to service them. Suppose that when machine i, i = 1, . . . , n, goes down it 
requires an exponentially distributed amount of work with rate pi to get it 
back up. The repair facility divides its efforts equally among all down 
components in the sense that whenever there are k down machines 
1 r k r n each receives work at a rate of l /k  per unit time. Finally, 
suppose that each time machine i goes back up it remains up for an 
exponentially distributed time with rate Ai .  

The preceding can be analyzed as a continuous-time Markov chain having 
2" states where the state at any time corresponds to the set of machines that 
are down at that time. Thus, for instance, the state will be (i,, i,, . . . , ik) when 
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machines il , . . . , ik are down and all the others are up. The instantaneous 
transition rates are as follows: 

where i l ,  ..., ik are all distinct. This follows since the failure rate of 
machine ik is always Aik and the repair rate of machine ik when there are k 
failed machines is pik/k. 

Hence the time reversible equations (6.27) are 

kAik ( k  - l)Aik-l = -  P i ,  . . . , i )  upon iterating 
Pik Pik-l 

where 4 is the state in which all components are working. Because 

P(4)  + P(i , ,  . . ., ik) = 1 

we see that 

where the above sum is over all the 2" - 1 nonempty subsets (il  , . . . , ik] of 
(1 ,2 ,  . . . , n]. Hence as the time reversible equations are satisfied for this 
choice of probability vector it follows from Proposition 6.5 that the chain 
is time reversible and 

with P(4)  being given by (6.28). 
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For instance, suppose there are two machines. Then, from the preceding 
we would have 

Consider a continuous-time Markov chain whose state space is S. We say 
that the Markov chain is truncated to the set A C S if qij is changed to 0 for 
all i E A, j $ A. That is, transitions out of the class A are no longer allowed, 
whereas ones in A continue at the same rates as before. A useful result is 
that if the chain is time reversible, then so is the truncated one. 

Proposition 6.6 A time reversible chain with limiting probabilities 4,  
j E S, that is truncated to the set A C S and remains irreducible is also time 
reversible and has limiting probabilities IDP given by 

Proof By Proposition 6.5 we need to show that, with as given, 

eqij = eqji for i E A, j E A 
or, equivalently, 

P tqrj .. = Pjqji for i E A, j E A 

But this follows since the original chain is, by assumption, time reversible. + 
Example 6.18 Consider an M/M/l queue in which arrivals finding N 
in the system do not enter. This finite capacity system can be regarded as a 
truncation of the M/M/l queue to the set of states A = (0, 1, . . . , N]. Since 
the number in the system in the M/M/l queue is time reversible and has 
limiting probabilities 5 = (1/p)'(1 - A/p) it follows from Proposition 6.6 
that the finite capacity model is also time reversible and has limiting 
probabilities given by 
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6.7. Uniformization 

Consider a continuous-time Markov chain in which the mean time spent in 
a state is the same for all states. That is, suppose that vi = v, for all states i. 
In this case since the amount of time spent in each state during a visit is 
exponentially distributed with rate v, it follows that if we let N(t) denote the 
number of state transitions by time t, then [N(t), t 2 0) will be a Poisson 
process with rate v. 

To compute the transition probabilities Pij(t), we can condition on N(t): 

Now the fact that there have been n transitions by time t tells us something 
about the amounts of time spent in each of the first n states visited, but 
since the distribution of time spent in each state is the same for all states, it 
follows that knowing that N(t) = n gives us no information about which 
states were visited. Hence, 

where P; is just the n-stage transition probability associated with the 
discrete-time Markov chain with transition probabilities Pij; and so when 
Vi ' V 

Equation (6.29) is quite useful from a computational point of view since 
it enables us to approximate PU(t) by taking a partial sum and then com- 
puting (by matrix multiplication of the transition probability matrix) the 
relevant n stage probabilities P$ . 

Whereas the applicability of Equation (6.29) would appear to be quite 
limited since it supposes that vi = v, it turns out that most Markov chains 
can be put in that form by the trick of allowing fictitious transitions from 
a state to itself. To see how this works, consider any Markov chain for 
which the vi are bounded, and let v be any number such that 

vi I v, for all i (6.30) 

Now when in state i, the process actually leaves at rate vi; but this is 
equivalent to supposing that transitions occur at rate v, but only the 
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fraction vi/v of transitions are real ones (and thus real transitions occur at 
rate vi) and the remaining fraction 1 - vi/v are fictitious transitions which 
leave the process in state i. In other words, any Markov chain satisfying 
condition (6.30) can be thought of as being a process that spends an 
exponential amount of time with rate v in state i and then makes a transi- 
tion to j with probability P$, where 

Hence, from Equation (6.29) we have that the transition probabilities can 
be computed by 

where P$ are the n-stage transition probabilities corresponding to Equation 
(6.31). This technique of uniformizing the rate in which a transition occurs 
from each state by introducing transitions from a state to itself is known as 
uniformization. 

Example 6.1 9 Let us reconsider Example 6.1 1, which models the 
workings of a machine-either on or off-as a two-state continuous-time 
Markov chain with 

POI = Pl0 = 1, 

v o = L ,  v , = p  

Letting v = L + p,  the uniformized version of the preceding is to consider 
it a continuous-time Markov chain with 

As Po, = PI,, it follows that the probability of a transition into state 0 is 
equal to p/(L + p) no matter what the present state. Because a similar result 
is true for state 1, it follows that the n-stage transition probabilities are 
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given by 

Cc p." = - , n r  1 , i = 0 , 1  
'O 1 + p  

1 
P?I = , n > l , i = O , l  

Hence, 

Cc =- 
1 + e - ( x + r ) t  

1 + p  1 + p  

Similarly, 

The remaining probabilities are 

Example 6.20 Consider the two-state chain of Example 6.19 and 
suppose that the initial state is state 0. Let O(t) denote the total amount of 
time that the process is in state 0 during the interval (0, t). The random 
variable O(t )  is often called the occupation time. We will now compute 
its mean. 
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If we let 

then we can represent the occupation time by 

Taking expectations and using the fact that we can take the expectation 
inside the integral sign (since an integral is basically a sum), we obtain 

where the final equality follows by integrating 

(For another derivation of E[O(t)], see Exercise 38.) + 

6.8. Computing the Transition Probabilities 

For any pair of states i and j ,  let 

Using this notation, we can rewrite the Kolmogorov backward equations 

and the forward equations 
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as follows: 

Pi;.(t) = rikPkj(t) (backward) 
k 

P&(t) = C rkjPik(t) (forward) 
k 

This representation is especially revealing when we introduce matrix 
notation. Define the matrices R, P(t), and Pt(t) by letting the element in 
row i, column j of these matrices be, respectively, rij, Pij(t), and Pi[i(t). 
Since the backward equations say that the element in row i, column j of the 
matrix P1(t) can be obtained by multiplying the ith row of the matrix R by 
the j th  column of the matrix P(t), it is equivalent to the matrix equation 

Similarly, the forward equations can be written as 

Now, just as the solution of the scalar differential equation 

(or, equivalent, f '(t) = f (t)c) is 

it can be shown that the solution of the matrix differential Equations (6.32) 
and (6.33) is given by 

P(t) = p(0)eR' 

Since P(0) = I (the identity matrix), this yields that 

where the matrix eRt is defined by 

with Rn being the (matrix) multiplication of R by itself n times. 
The direct use of Equation (6.35) to compute P(t) turns out to be very 

inefficient for two reasons. First, since the matrix R contains both positive 
and negative elements (remember the off-diagonal elements are the qii while 
the ith diagonal element is - v i ) ,  there is the problem of computer round-off 
error when we compute the powers of R. Second, we often have to compute 
many of the terms in the infinite sum (6.35) to arrive at a good approxi- 
mation. However, there are certain indirect ways that we can utilize the 
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relation (6.34) to efficiently approximate the matrix P(t). We now present 
two of these methods. 

Approximation Method 1 Rather than using (6.35) to compute eRt, 
we can use the matrix equivalent of the identity 

which states that 

Thus, if we let n be a power of 2, say, n = 2k, then we can approximate 
P(t) by raising the matrix M = I + Rt/n to the nth power, which can be 
accomplished by k matrix multiplications (by first multiplying M by itself 
to obtain M2 and then multiplying that by itself to obtain M4 and so on). 
In addition, since only the diagonal elements of R are negative (and the 
diagonal elements of the identity matrix I are equal to 1) by choosing n large 
enough, we can guarantee that the matrix I + Rt/n has all nonnegative 
elements. 

Approximation Method 2 A second approach to approximating eRt 
uses the identity 

and thus 
= (I - R$ 

for n large 

= [(I - R;)-'ln 

Hence, if we again choose n to be a large power of 2, say n = 2k, we can 
approximate P(t) by first computing the inverse of the matrix I - Rt/n 
and then raising that matrix to the nth power (by utilizing k matrix multi- 
plications). It can be shown that the matrix (I - ~ t / n ) - '  will have only 
nonnegative elements. 

Remark Both of the above computational approaches for approximating 
P(t) have probabilistic interpretations (see Exercises 41 and 42). 
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Exercises 

1. A population of organisms consists of both male and female members. 
In a small colony any particular male is likely to mate with any particular 
female in any time interval of length h, with probability Ah + o(h). Each 
mating immediately produces one offspring, equally likely to be male or 
female. Let N,(t) and N2(t) denote the number of males and females in the 
population at t. Derive the parameters of the continuous-time Markov 
chain (N,(t), N2(t)), i.e., the v i ,  Pii of Section 6.2. 

*2. Suppose that a one-celled organism can be in one of two states-either 
A or B. An individual in state A will change to state B at an exponential 
rate a; an individual in state B divides into two new individuals of type A 
at an exponential rate /3. Define an appropriate continuous-time Markov 
chain for a population of such organisms and determine the appropriate 
parameters for this model. 

3. Consider two machines that are maintained by a single repairman. 
Machine i functions for an exponential time with rate pi before breaking 
down, i = 1,2. The repair times (for either machine) are exponential with 
rate p.  Can we analyze this as a birth and death process? If so, what are the 
parameters? If not, how can we analyze it? 

"4. Potential customers arrive at a single-server station in accordance 
with a Poisson process with rate A. However, if the arrival finds n customers 
already in the station, then he will enter the system with probability a,. 
Assuming an exponential service rate p,  set this up as a birth and death 
process and determine the birth and death rates. 

5. There are N individuals in a population, some of whom have a certain 
infection that spreads as follows. Contacts between two members of this 
population occur in accordance with a Poisson process having rate A. When 

a contact occurs, it is equally likely to involve any of the c) pairs of 

individuals in the population. If a contact involves an infected and a 
noninfected individual, then with probability p the noninfected individual 
becomes infected. Once infected, an individual remains infected throughout. 
Let X(t) denote the number of infected members of the population at time t. 

(a) Is (X(t), t 2 0) a continuous-time Markov chain? 
(b) Specify the type of stochastic process. 
(c) Starting with a single infected individual, what is the expected time 
until all members are infected? 
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6. Consider a birth and death process with birth rates Li = (i + 1)L, 
i 2 0, and death rates pi = ip, i 2 0. 

(a) Determine the expected time to go from state 0 to state 4. 
(b) Determine the expected time to go from state 2 to state 5. 
(c) Determine the variances in parts (a) and (b). 

*7. Individuals join a club in accordance with a Poisson process with 
rate 1. Each new member must pass through k consecutive stages to become 
a full member of the club. The time it takes to pass through each stage 
is exponentially distributed with rate p. Let Ni(t) denote the number of 
club members at time t that have passed through exactly i stages, i = 

1, ..., k - 1. Also, let N(t) = (Nl(t), N,(t), ..., Nk-,(t)). 

(a) Is (N(t), t 2 0) a continuous-time Markov chain? 
(b) If so, give the infinitesimal transition rates. That is, for any state 
n = (nl , . . . , n,-,) give the possible next states along with their infinitesi- 
mal rates. 

8. Consider two machines, both of which have an exponential lifetime 
with mean 1/1. There is a single repairman that can service machines at an 
exponential rate p. Set up the Kolmogorov backward equations; you need 
not solve them. 

9. The birth and death process with parameters A, = 0 and p, = p, n > 0 
is called a pure death process. Find PU(t). 

10. Consider two machines. Machine i operates for an exponential time 
with rate Ai and then fails; its repair time is exponential with rate pi ,  i = 1,2. 
The machines act independently of each other. Define a four-state 
continuous-time Markov chain which jointly describes the condition of the 
two machines. Use the assumed independence to compute the transition 
probabilities for this chain and then verify that these transition probabilities 
satisfy the forward and backward equations. 

'1 1. Consider a Yule process starting with a single individual-that is, 
suppose X(0) = 1. Let T denote the time it takes the process to go from a 
population of size i to one of size i + 1. 

(a) Argue that T , i = 1, . . . , j, are independent exponentials with 
respective rates i1. 
(b) Let X I ,  . . . , Xj denote independent exponential random variables 
each having rate I, and interpret Xi as the lifetime of component i. Argue 
that max (XI, . . . , Xj) can be expressed as 
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where e l ,  e2, . . . , ej are independent exponentials with respective rates jA, 
(j - l)A, ..., A. 

Hint: Interpret ei as the time between the i - 1 and the ith failure. 

(c) Using (a) and (b) argue that 

(d) Use (c) to obtain that 

and hence, given X(0) = 1, X(t) has a geometric distribution with 
parameter p = e-". 
(e) Now conclude that 

12. Each individual in a biological population is assumed to give birth at 
an exponential rate A, and to die at an exponential rate p. In addition, there 
is an exponential rate of increase 0 due to immigration. However, immi- 
gration is not allowed when the population size is N or larger. 

(a) Set this up as a birth and death model. 
(b) If N = 3,  1 = 13 = A, p = 2, determine the proportion of time that 
immigration is restricted. 

13. A small barbershop, operated by a single barber, has room for at 
most two customers. Potential customers arrive at a Poisson rate of three 
per hour, and the successive service times are independent exponential 
random variables with mean $ hour. What is 

(a) the average number of customers in the shop? 
(b) the proportion of potential customers that enter the shop? 
(c) If the barber could work twice as fast, how much more business 
would he do? 

14. Potential customers arrive at a full-service, one-pump gas station at a 
Poisson rate of 20 cars per hour. However, customers will only enter the 
station for gas if there are no more than two cars (including the one 
currently being attended to) at the pump. Suppose the amount of time 
required to service a car is exponentially distributed with a mean of five 
minutes. 



344 6 Continuous-Time Markov Chains 

(a) What fraction of the attendant's time will be spent servicing cars? 
(b) What fraction of potential customers are lost? 

15. A service center consists of two servers, each working at an exponential 
rate of two services per hour. If customers arrive at a Poisson rate of three 
per hour, then, assuming a system capacity of at most three customers, 

(a) what fraction of potential customers enter the system? 
(b) what would the value of part (a) be if there was only a single server, 
and his rate was twice as fast (that is, p = 4)? 

*16. The following problem arises in molecular biology. The surface 
of a bacterium is supposed to consist of several sites at which foreign 
molecules-some acceptable and some not-become attached. We consider 
a particular site and assume that molecules arrive at the site according to a 
Poisson process with parameter I. Among these molecules a proportion a! 
is acceptable. Unacceptable molecules stay at the site for a length of time 
which is exponentially distributed with parameter pl  , whereas an acceptable 
molecule remains at the site for an exponential time with rate p2. An 
arriving molecule will become attached only if the site is free of other 
molecules. What percentage of time is the site occupied with an acceptable 
(unacceptable) molecule? 

17. Each time a machine is repaired it remains up for an exponentially 
distributed time with rate I. It then fails, and its failure is either of two 
types. If it is a type 1 failure, then the time to repair the machine is 
exponential with rate p, ;  if it is a type 2 failure, then the repair time is 
exponential with rate p2. Each failure is, independently of the time it took 
the machine to fail, a type 1 failure with probability p and a type 2 failure 
with probability 1 - p. What proportion of time is the machine down due 
to a type 1 failure? What proportion of time is it down due to a type 2 
failure? What proportion of time is it up? 

18. After being repaired, a machine functions for an exponential time 
with rate 1 and then fails. Upon failure, a repair process begins. The repair 
process proceeds sequentially through k distinct phases. First a phase 1 
repair must be performed, then a phase 2, and so on. The times to complete 
these phases are independent, with phase i taking an exponential time with 
rate pi,  i = 1, . . ., k. 

(a) What proportion of time is the machine undergoing a phase i repair? 
(b) What proportion of time is the machine working? 

19. A single repairperson looks after both machines 1 and 2. Each time 
it is repaired, machine i stays up for an exponential time with rate A i ,  
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i = l ,2 .  When machine i fails, it requires an exponentially distributed 
amount of work with rate pi to complete its repair. The repairperson will 
always service machine 1 when it is down. For instance, if machine 1 fails 
while 2 is being repaired, then the repairperson will immediately stop work 
on machine 2 and start on 1. What proportion of time is machine 2 down? 

20. There are two machines, one of which is used as a spare. A working 
machine will function for an exponential time with rate 1 and will then fail. 
Upon failure, it is immediately replaced by the other machine if that one 
is in working order, and it goes to the repair facility. The repair facility 
consists of a single person who takes an exponential time with rate p to 
repair a failed machine. At the repair facility, the newly failed machine 
enters service if the repairperson is free. If the repairperson is busy, it waits 
until the other machine is fixed. At that time, the newly repaired machine 
is put in service and repair begins on the other one. Starting with both 
machines in working condition, find 

(a) the expected value and 
(b) the variance 

of the time until both are in the repair facility. 

(c) In the long run, what proportion of time is there a working machine? 

21. Suppose that when both machines are down in Exercise 20 a second 
repairperson is called in to work on the newly failed one. Suppose all repair 
times remain exponential with rate p. Now find the proportion of time at 
least one machine is working, and compare your answer with the one 
obtained in Exercise 20. 

22. Customers arrive at a single server queue in accordance with a Poisson 
process having rate 1. However, an arrival that finds n customers already in 
the system will only join the system with probability l/(n + 1). That is, with 
probability n/(n + 1) such an arrival will not join the system. Show that the 
limiting distribution of the number of customers in the system is Poisson 
with mean 1/p. 

23. A job shop consists of three machines and two repairmen. The 
amount of time a machine works before breaking down is exponentially 
distributed with mean 10. If the amount of time it takes a single repairman 
to fix a machine is exponentially distributed with mean 8, then 

(a) what is the average number of machines not in use? 
(b) what proportion of time are both repairmen busy? 
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'24. Consider a taxi station where taxis and customers arrive in 
accordance with Poisson processes with respective rates of one and two per 
minute. A taxi will wait no matter how many other taxis are present. 
However, if an arriving customer does not find a taxi waiting, he leaves. 
Find 

(a) the average number of taxis waiting, and 
(b) the proportion of arriving customers that get taxis. 

25. Customers arrive at a service station, manned by a single server who 
serves at an exponential rate p, , at a Poisson rate 1. After completion of 
service the customer then joins a second system where the server serves at an 
exponential rate p, . Such a system is called a tandem or sequential queueing 
system. Assuming that I < pi,  i = 1,2, determine the limiting probabilities. 

Hint: Try a solution of the form P,,, = CanBm, and determine C, a, /I. 

26. Consider an ergodic M/M/s queue in steady state (that is, after a long 
time) and argue that the number presently in the system is independent of 
the sequence of past departure times. That is, for instance, knowing that 
there have been departures 2, 3 , 5 ,  and 10 time units ago does not affect the 
distribution of the number presently in the system. 

27. In the M/M/s queue if you allow the service rate to depend on the 
number in the system (but in such a way so that it is ergodic), what can you 
say about the output process? What can you say when the service rate p 
remains unchanged but I > sp? 

28. If (X(t)) and ( Y(t)) are independent continuous-time Markov chains, 
both of which are time reversible, show that the process (X(t), Y(t)) is also 
a time reversible Markov chain. 

29. Consider a set of n machines and a single repair facility to service 
these machines. Suppose that when machine i, i = 1, . . . , n, fails it requires 
an exponentially distributed amount of work with rate pi to repair it. The 
repair facility divides its efforts equally among all failed machines in the 
sense that whenever there are k failed machines each one receives work at a 
rate of l /k per unit time. If there are a total of r working machines, 
including machine i, then i fails at an instantaneous rate l i / r .  

(a) Define an appropriate state space so as to be able to analyze the 
above system as a continuous-time Markov chain. 
(b) Give the instantaneous transition rates (that is, give the qii). 
(c) Write the time reversibility equations. 
(d) Find the limiting probabilities and show that the process is time 
reversible. 



30. Consider a graph with nodes 1,2,  ..., n and the (i) arcs (i,j),  
. , 

i # j ,  i, j ,  = 1, ..., n. (See Section 3.6.2 for appropriate definitions.) 
Suppose that a particle moves along this graph as follows: Events occur 
along the arcs (i, j )  according to independent Poisson processes with rates 
lo .  An event along arc (i, j )  causes that arc to become excited. If the 
particle is at node i at the moment that (i, j )  becomes excited, it instan- 
taneously moves to node j ;  i, j = 1, . . . , n. Let Pj denote the proportion of 
time that the particle is at node j .  Show that 

Hint: Use time reversibility. 

31. A total of N customers move about among r servers in the following 
manner. When a customer is served by server i, he then goes over to server 
j ,  j # i, with probability l/(r - 1). If the server he goes to is free, then the 
customer enters service; otherwise he joins the queue. The service times are 
all independent, with the service times at server i being exponential with rate 
pi,  i = 1, .. ., r. Let the state at any time be the vector (n,, . . ., n,), where ni 
is the number of customers presently at server i, i = 1, . . . , r, x i  ni = N. 

(a) Argue that if X(t) is the state at time t, then (X(t), t 1 0) is a 
continuous-time Markov chain. 
(b) Give the infinitesimal rates of this chain. 
(c) Show that this chain is time reversible, and find the limiting 
probabilities. 

32. Customers arrive at a two-server station in accordance with a Poisson 
process having rate A. Upon arriving, they join a single queue. Whenever a 
server completes a service, the person first in line enters service. The service 
times of server i are exponential with rate pi, i = 1, 2, where pl + p2 > A. 
An arrival finding both servers free is equally likely to go to either one. 
Define an appropriate continuous-time Markov chain for this model, show 
it is time reversible, and find the limiting probabilities. 

*33. Consider two M/M/1 queues with respective parameters Ai, pi ,  
i = 1,2. Suppose they share a common waiting room that can hold at 
most 3 customers. That is, whenever an arrival finds his server busy and 3 
customers in the waiting room, then he goes away. Find the limiting 
probability that there will be n queue 1 customers and m queue 2 customers 
in the system. 

Hint: Use the results of Exercise 28 together with the concept of 
truncation. 
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34. Four workers share an office that contains four telephones. At any 
time, each worker is either "working" or "on the phone." Each "working" 
period of worker i lasts for an exponentially distributed time with rate Li, 
and each "on the phone" period lasts for an exponentially distributed time 
with rate p i ,  i = 1,2, 3,4. 

(a) What proportion of time are all workers "working"? 

Let Xi(t) equal 1 if worker i is working at time t, and let it be 0 otherwise. 
Let X(t) = (X,(t), X2(f), X3(f), X4(t)). 

(b) Argue that ( X ( t ) ,  t r 0) is a continuous-time Markov chain and give 
its infinitesimal rates. 
(c) Is (X(t)) time reversible? Why or why not? 

Suppose now that one of the phones has broken down. Suppose that a 
worker who is about to use a phone but finds them all being used begins a 
new "working" period. 

(d) What proportion of time are all workers "working"? 

35. Consider a time reversible continuous-time Markov chain having 
infinitesimal transition rates qij and limiting probabilities (Pi). Let A denote 
a set of states for this chain, and consider a new continuous-time Markov 
chain with transition rates q; given by 

q; = cqu, i f i ~ A , j $ A  
qu, otherwise 

where c is an arbitrary positive number. Show that this chain remains time 
reversible, and find its limiting probabilities. 

36. Consider a system of n components such that the working times of 
component i, i = 1, . . . , n, are exponentially distributed with rate A i  . When 
failed, however, the repair rate of component i depends on how many other 
components are down. Specifically, suppose that the instantaneous repair 
rate of component i, i = 1, . . . , n, when there are a total of k failed 
components, is akpi. 

(a) Explain how we can analyze the preceding as a continuous-time 
Markov chain. Define the states and give the parameters of the chain. 
(b) Show that, in steady state, the chain is time reversible and compute 
the limiting probabilities. 

37. For the continuous-time Markov chain of Exercise 3 present a 
uniformized version. 
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38. In Example 6.20, we computed m(t) = E[O(t)], the expected occupa- 
tion time in state 0 by time t for the two-state continuous-time Markov 
chain starting in state 0. Another way of obtaining this quantity is by 
deriving a differential equation for it. 

(a) Show that 
m(t + h) = m(t) + Poo(t)h + o(h) 

(b) Show that 

(c) Solve for m(t). 

39. Let O(t) be the occupation time for state 0 in the two-state continuous- 
time Markov chain. Find E[O(t) I X(0) = 11. 

40. Consider the two-state continuous-time Markov chain. Starting in 
state 0, find Cov[X(s), X(t)]. 

41. Let Y denote an exponential random variable with rate A that is 
independent of the continuous-time Markov chain (X(t)) and let 

Fij = P[X(Y) = j 1 X(0) = i )  

(a) Show that 
- 1 
p.. = - 1 

C qikpkj + - " u i + A k  ui + 1 dij 

where dij is 1 when i = j and 0 when i # j. 
(b) Show that the solution of the preceding set of equations is given by 

where is the matrix of elements Po, I is the identity matrix, and R the 
matrix specified in Section 6.8. 
(c) Suppose now that Y j  , . . . , Yn are independent exponentials with rate 1 
that are independent of (X(t)]. Show that 

is equal to the element in row i, column j of the matrix Pn. 
(d) Explain the relationship of the preceding to Approximation 2 ,of 
Section 6.8. 
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*42. (a) Show that Approximation 1 of Section 6.8 is equivalent to 
uniformizing the continuous-time Markov chain with a value v such that 
vt = n and then approximating Pij(t) by P;". 

(b) Explain why the preceding should make a good approximation. 

Hint: What is the standard deviation of a Poisson random variable with 
mean n? 
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Chapter 7 
Renewal Theory and 

Its Applications 

7.1. Introduction 

We have seen that a Poisson process is a counting process for which the 
times between successive events are independent and identically distributed 
exponential random variables. One possible generalization is to consider a 
counting process for which the times between successive events are inde- 
pendent and identically distributed with an arbitrary distribution. Such a 
counting process is called a renewal process. 

Let (N( t ) ,  t > 0) be a counting process and let X,  denote the time 
between the (n - 1)st and the nth event of this process, n r 1. 

Definition 7.1 If the sequence of nonnegative random variables 
[ X ,  X,, . . .] is independent and identically distributed, then the counting 
process (N(t), t r Oj is said to be a renewal process. 

Thus, a renewal process is a counting process such that the time until the 
first event occurs has some distribution F ,  the time between the first and 
second event has, independently of the time of the first event, the same 
distribution F ,  and so on. When an event occurs, we say that a renewal has 
taken place. 

For an example of a renewal process, suppose that we have an infinite 
supply of lightbulbs whose lifetimes are independent and identically dis- 
tributed. Suppose also that we use a single lightbulb at a time, and when it 
fails we immediately replace it with a new one. Under these conditions, 
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Figure 7.1. 

(N(t), t 1 0) is a renewal process when N(t) represents the number of 
lightbulbs that have failed by time t. 

For a renewal process having interarrival times X, , X2, . . . , let 

That is, S, = X, is the time of the first renewal; S2 = XI + XZ is the time 
until the first renewal plus the time between the first and second renewal, 
that is, S, is the time of the second renewal. In general, S, denotes the time 
of the nth renewal (see Figure 7.1). 

We shall let F denote the interarrival distribution and to avoid trivialities, 
we assume that F(0) = P(Xn = 0) < 1. Furthermore, we let 

be the mean time between successive renewals. It follows from the 
nonnegativity of Xn and the fact that X, is not identically 0 that p > 0. 

The first question we shall attempt to answer is whether an infinite 
number of renewals can occur in a finite amount of time. That is, can N(t) 
be infinite for some (finite) value of t? To show that this cannot occur, we 
first note that, as Sn is the time of the nth renewal, N(t) may be written as 

To understand why Equation (7.1) is valid, suppose, for instance, that 
S, 5 t but S, > t .  Hence, the fourth renewal had occurred by time t but the 
fifth renewal occurred after time t ;  or in other words, N(t), the number of 
renewals that occurred by time t, must equal 4. Now by the strong law of 
large numbers it follows that, with probability 1, 

But since p > 0 this means that S, must be going to infinity as n goes to 
infinity. Thus, S, can be less than or equal to t for at most a finite number 
of values of n, and hence by Equation (7.1), N(t) must be finite. 

However, though N(t) < w for each t, it is true that, with probability 1, 

N ( a )  = lim N(t) = w 
t - m  
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This follows since the only way in which N(a ) ,  the total number of 
renewals that occur, can be finite is for one of the interarrival times to be 
infinite. Therefore, 

P(N(oo) < oo) = P(X, = oo for some n) 

7.2. Distribution of N(t) 

The distribution of N(t) can be obtained, at least in theory, by first noting 
the important relationship that the number of renewals by time t is greater 
than or equal to n if and only if the nth renewal occurs before or at time t. 
That is, 

N(t) r n e S, 5 t (7.2) 

From Equation (7.2) we obtain 

Now since the random variables Xi,  i 2 1, are independent and have a 
common distribution F,  it follows that S, = C:=, Xi is distributed as F,, 
the n-fold convolution of F with itself (Section 2.5). Therefore, from 
Equation (7.3) we obtain 

Example 7.1 Suppose that P(X, = i )  = p(l  - p)i-l, i r 1. That is, 
suppose that the interarrival distribution is geometric. Now Sl = XI may be 
interpreted as the number of trials necessary to get a single success when 
each trial is independent and has a probability p of being a success. 
Similarly, Sn may be interpreted as the number of trials necessary to attain 
n successes, and hence has the negative binomial distribution 
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Thus, from Equation (7.3) we have that 

Equivalently, since an event independently occurs with probability p at each 
of the times l , 2 ,  . . . 

P(N(t) = nj = 

By using Equation (7.2) we can calculate m(t), the mean value of N(t), as 

where we have used the fact that if X is nonnegative and integer valued, then 
m m k 

The function m(t) is known as the mean-value or the renewal function. 
It can be shown that the mean-value function m(t) uniquely determines 

the renewal process. Specifically, there is a one-to-one correspondence 
between the interarrival distributions F and the mean-value functions m(t). 

Example 7.2 Suppose we have a renewal process whose mean-value 
function is given by 

m(t) = 2t, t r 0 

What is the distribution of the number of renewals occurring by time lo? 

Solution: Since m(t) = 2t is the mean-value function of a Poisson 
process with rate 2, it follows, by the one-to-one correspondence of 
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interarrival distributions F and mean-value functions m(t), that F must 
be exponential with mean 3. Thus, the renewal process is a Poisson 
process with rate 2 and hence 

Another interesting result that we state without proof is that 

m(t) < w for all t < w 

Remarks (i) Since m(t) uniquely determines the interarrival distribu- 
tion, it follows that the Poisson process is the only renewal process having 
a linear mean-value function. 

(ii) Some readers might think that the finiteness of m(t) should follow 
directly from the fact that, with probability 1, N(t) is finite. However, such 
reasoning is not valid; consider the following: Let Y be a random variable 
having the following probability distribution 

Y = 2" with probability (*)", n r 1 
Now, 

OD OD 

But 
OD OD 

E[Y] = 2"P(Y = 2") = 2"(*)" = 
n = l  n = l  

Hence, even when Y is finite, it can still be true that E[Y] = m. 

An integral equation satisfied by the renewal function can be obtained by 
conditioning on the time of the first renewal. Assuming that the interarrival 
distribution F is continuous with density function f this yields 

Now suppose that the first renewal occurs at a time x that is less than t. 
Then, using the fact that a renewal process probabilistically starts over 
when a renewal occurs, it follows that the number of renewals by time t 
would have the same distribution as 1 plus the number of renewals in the 
first t - x time units. Therefore, 
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Since, clearly 
E [ N ( ~ ) I x , = x ] = O  w h e n x > t  

we obtain from Equation (7.4) that 

m(t) = [l + m(t - x)] f (x)  dx s: 
Equation (7.5) is called the renewal equation and can sometimes be solved 
to obtain the renewal function. 

Example 7.3 One instance in which the renewal equation can be solved 
is when the interarrival distribution is uniform-say, uniform on (0, 1). We 
will now present a solution in this case when t < 1. For such values of t, the 
renewal function becomes 

= t  + J m(y) dy by the substitution y = t - x 
0 

Differentiating the preceding equation yields 

Letting h(t )  = 1 + m(t) ,  we obtain 

Since m(0) = 0, we see that K = 1, and so we obtain 
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7.3. Limit Theorems and Their Applications 

We have shown previously that, with probability 1, N(t) goes to infinity as 
t goes to infinity. However, it would be nice to know the rate at which N(t) 
goes to infinity. That is, we would like to be able to say someting about 
lim,,, N(t)/t. 

As a prelude to determining the rate at which N(t) grows, let us first 
consider the random variable SN(,, . In words, just what does this random 
variable represent? Proceeding inductively suppose, for instance, that 
N(t) = 3. Then SN(t) = S3 represents the time of the third event. Since there 
are only three events that have occurred by time t, S3 also represents the 
time of the last event prior to (or at) time t. This is, in fact, what SN(,, 
represents-namely, the time of the last renewal prior to or at time t. 
Similar reasoning leads to the conclusion that SN(t)+l represents the time of 
the first renewal after time t (see Figure 7.2). We now are ready to prove 
the following. 

Proposition 7.1 With probability 1, 

Proof Since SN(t) is the time of the last renewal prior to or at time t, and 
SN(,)+, is the time of the first renewal after time t, we have 

However, since SN(o/N(t) = c~>']x~/N(~) is the average of N(t) inde- 
pendent and identically distributed random variables, if follows by the 
strong law of large numbers that SN(,)/N(t) -, p as N(t) + os. But since 
N(t) 4 co when t + os, we obtain 

., - 
0 s# , t~  I s ~ , t )  + , Time 

Figure 7.2. 
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Furthermore, writing 

we have that SN(t)+l/(N(t) + 1) + p by the same reasoning as before and 

Hence, 

The result now follows by Equation (7.6) since t/N(t) is between two 
numbers, each of which converges to p as t -+ m. + 
Remarks (i) The preceding propositions are true even when p, the mean 
time between renewals, is infinite. In this case, we interpret l /p  to be 0. 

(ii) The number l /p  is called the rate of the renewal process. 

Proposition 7.1 says that the average renewal rate up to time t will, with 
probability 1, converge to l /p  as t -+ a. What about the expected average 
renewal rate? Is it true that m(t)/t also converges to 1/p? This result, 
known as the elementary renewal theorem, will be stated without proof. 

Elementary Renewal Theorem 

As before, l/p is interpreted as 0 when p = w. 

Remark At first glance it might seem that the elementary renewal 
theorem should be a simple consequence of Proposition 7.1. That is, since 
the average renewal rate will, with probability 1, converge to l/p, should 
this not imply that the expected average renewal rate also converges to 1/p? 
We must, however, be careful; consider the next example. 

Example 7.4 Let U be a random variable which is uniformly distributed 
on (0. 1); and define the random variables Y,, n 2 1, by 
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Now, since, with probability 1, U will be greater than 0, it follows that Y, 
will equal 0 for all sufficiently large n. That is, Y ,  will equal 0 for all n large 
enough so that l/n < U. Hence, with probability 1, 

Y, + 0 as n + oo 

However, 

Therefore, even though the sequence of random variables Y, converges to 0, 
the expected values of the Y, are all identically 1. + 
Example 7.5 Beverly has a radio which works on a single battery. As 
soon as the battery in use fails, Beverly immediately replaces it with a new 
battery. If the lifetime of a battery (in hours) is distributed uniformly over 
the interval (30,60), then at what rate does Beverly have to change batteries? 

Solution: If we let N(t) denote the number of batteries that have failed 
by time t, we have by Proposition 7.1 that the rate at which Beverly 
replaces batteries is given by 

That is, in the long run, Beverly will have to replace one battery every 
45 hours. + 

Example 7.6 Suppose in Example 7.5 that Beverly does not keep any 
surplus batteries on hand, and so each time a failure occurs she must go and 
buy a new battery. If the amount of time it takes for her to get a new battery 
is uniformly distributed over (0, I), then what is the average rate that 
Beverly changes batteries? 

Solution: In this case the mean time between renewals is given by 

where U1 is uniform over (30,60) and U2 is uniform over (0, 1). Hence, 

and so in the long run, Beverly will be putting in a new battery at the rate 
of &. That is, she will put in two new batteries every 91 hours. + 
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Example 7.7 Suppose that potential customers arrive at a single-server 
bank in accordance with a Poisson process having rate 1. However, suppose 
that the potential customer only will enter the bank if the server is free when 
he arrives. That is, if there is already a customer in the bank, then our 
arrivee, rather than entering the bank, will go home. If we assume that the 
amount of time spent in the bank by an entering customer is a random 
variable having a distribution G ,  then 

(a) what is the rate at which customers enter the bank? 
(b) what proportion of potential customers actually enter the bank? 

Solution: In answering these questions, let us suppose that at time 0 a 
customer has just entered the bank. (That is, we define the process to 
start when the first customer enters the bank.) If we let pG denote the 
mean service time, then, by the memoryless property of the Poisson 
process, it follows that the mean time between entering customers is 

Hence, the rate at which customers enter the bank will be given by 

On the other hand, since potential customers will be arriving at a rate A, 
it follows that the proportion of them entering the bank will be given by 

In particular if A = 2 (in hours) and p, = 2 ,  then only one customer out 
of five will actually enter the system. 4 

A somewhat unusual application of Proposition 7.1 is provided by our 
next example. 

Example 7.8 A sequence of independent trials, each of which results in 
outcome number i with probability Pi, i = 1, . . . , n, Cy Pi = 1, is observed 
until the same outcome occurs k times in a row; this outcome then is 
declared to be the winner of the game. For instance, if k = 2 and the 
sequence of outcomes is 1 ,2 ,4 ,3 ,5 ,2 ,  1,3,3,  then we stop after 9 trials 
and declare outcome number 3 the winner. What is the probability that i 
wins, i = 1, . . . , n, and what is the expected number of trials? 
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Solution: We begin by computing the expected number of coin tosses, 
called in E [TI, until a run of k successive heads occurs when the tosses are 
independent and each lands on heads with probability p. By conditioning 
on the time of the first nonhead, we obtain 

k 

E [TI = z (1 - p)pi-'0' + E[T]) + kpk 
j =  1 

Solving this for E[T]  yields 

Upon simplifying, we obtain 

Now, let us return to our example, and let us suppose that as soon as 
the winner of a game has been determined we immediately begin playing 
another game. For each i let us determine the rate at which outcome i 
wins. Now, every time i wins, everything starts over again and thus wins 
by i constitute renewals. Hence, from Proposition 7.1, the 

1 
Rate at which i wins = - 

E [Ni I 
where Ni denotes the number of trials played between successive wins of 
outcome i. Hence, from Equation (7.7) we see that 

pik(l - Pi) 
Rate at which i wins = 

(1 - PF) 

Hence, the long-run proportion of games which are won by number i is 
given by 

rate at which i wins 
proportion of games i wins = C;=, rate at which j wins 

However, it follows from the strong law of large numbers that the 
long-run proportion of games that i wins will, with probability 1, be 
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equal to the probability that i  wins any given game. Hence, 

p:(l - Pi) / ( l  - P:) 
P( i  wins) = cj"= (pk( l  - $)/(I  - 6)) 

To compute the expected time of a game, we first note that the 

w 

rate at which games end = rate at which i wins 
i =  1 

- - e(1 - Pi)  
[from Equation (7.8)] 

i = 1  ( 1  - pik) 

Now, as everything starts over when a game ends, it follows by Proposition 
7.1 that the rate at which games end is equal to the reciprocal of the mean 
time of a game. Hence, 

E [time of a game) = 
1 

rate at which games end 

A key element in the proof of the elementary renewal theorem, which is 
also of independent interest, is the establishment of a relationship between 
m(t) ,  the mean number of renewals by time t, and E[SN(,)+,] ,  the expected 
time of the first renewal after t .  Letting 

we will derive an integral equation, similar to the renewal equation, for g(t) 
by conditioning on the time of the first renewal. This yields 

where we have supposed that the interarrival times are continuous with 
density f. Now if the first renewal occurs at time x and x > t, then clearly 
the time of the first renewal after t is x. On the other hand, if the first 
renewal occurs at a time x < t, then by regarding x as the new origin, 
it follows that the expected time, from this origin, of the first renewal 
occurring after a time t  - x from this origin is g(t - x). That is, we see that 
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Substituting this into the preceding equation gives 

( g ( t - x ) + x ) f ( x ) d x +  

= 1: g(t - x) f  (x) dx + 

which is quite similar to the renewal equation 

Indeed, if we let 

we see that 

gl ( t )  + 1 = 1 + [gl(t  - x )  + l ] f ( x ) d x  

or 
C 

That is, gl ( t )  = E[S,( , ,+ , ] /p  - 1 satisfies the renewal equation and thus, 
by uniqueness, must be equal to m(t ) .  We have thus proven the following. 

Proposition 7.2 

A second derivation of Proposition 7.2 is given in Exercises 12 and 13. 
To see how Proposition 7.2 can be used to establish the elementary renewal 
theorem, let Y( t )  denote the time from t until the next renewal. Y ( t )  is called 
the excess, or residual life, at t .  As the first renewal after t  will occur at time 
t  + Y ( t ) ,  we see that 

S ~ ( t ) + l  = f + Y ( f )  
Taking expectations and utilizing Proposition 7.2 yields 

which implies that 
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The elementary renewal theorem can now be proven by showing that 

E [ Y(t)l lim --_-- = 0 

(see Exercise 13). 
The relation (7.9) shows that if one can determine E[Y(t)], the mean 

excess at t, then one can compute m(t) and vice versa. 

Example 7.9 Consider the renewal process whose interarrival distribu- 
tion is the convolution of two exponentials; that is, 

We will determine the renewal function by first determining E[Y(t)]. To 
obtain the mean excess at t, imagine that each renewal corresponds to a 
new machine being put in use, and suppose that each machine has two 
components-initially component 1 is employed and this lasts an expo- 
nential time with rate p l ,  and then component 2, which functions for an 
exponential time with rate p2 ,  is employed. When component 2 fails, a new 
machine is put in use (that is, a renewal occurs). Now consider the process 
(X(t), t 2 O] where X(t) is i if a type i component is in use at time t. It is 
easy to see that (X(t), t r 0) is a two-state continuous-time Markov chain, 
and so, using the results of Example 6.11, its transition probabilities are 

,Lo compute the remaining life of the machine in use at time t, we condition 
on whether it is using its first or second component: for if it is still using its 
first component, then its remaining life is l/pl + 1/p2, whereas if it is already 
using its second component, then its remaining life is l/p,. Hence, letting 
p(t) denote the probability that the machine in use at time t is using its first 
component, we have that 

But, since at time 0 the first machine is utilizing its first component, it 
follows that p(t) = Pll(t), and so, upon using the preceding expression of 
Pll(t), we obtain 
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Now it follows from Equation (7.9) that 

where p ,  the mean interarrival time, is given in this case by 

Substituting Equation (7.10) and the preceding equation into (7.1 1) yields, 
after simplifying, 

Remark Using the relationship of Equation (7.11) and results from 
the two-state continuous-time Markov chain, the renewal function can also 
be obtained in the same manner as in Example 7.9 for the interarrival 
distributions 

F(t) = ~ F l ( t )  + (1 - p)Fz(t) 
and 

F(t) = pF,(t) + (1 - P)(F, *FZ)(t) 

when F,(t) = 1 - e-"", t > 0, i = 1,2. 

An important limit theorem is the central limit theorem for renewal 
processes. This states that, for large t, N(t) is approximately normally 
distributed with mean t/p and variance  to'/^^, where p and a are, respec- 
tively, the mean and variance of the interarrival distribution. That is, we 
have the following theorem which we state without proof. 

Central Limit Theorem for Renewal Processes 

In addition, as might be expected from the central limit theorem for 
renewal processes, it can be shown that Var(N(t))/t converges to a2/p3. 
That is, it can be shown that 

lim Var(N(t)) = Oz,p3 

t+m t 
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7.4. Renewal Reward Processes 

A large number of probability models are special cases of the following 
model. Consider a renewal process (N(t), t 2 0) having interarrival times 
X,, n 2 1, and suppose that each time a renewal occurs we receive a 
reward. We denote by R,, the reward earned at the time of the nth renewal. 
We shall assume that the R,, n 2 I ,  are independent and identically 
distributed. However, we do allow for the possibility that R, may (and 
usually will) depend on X,, the length of the nth renewal interval. If we let 

N( t )  

R(t) = C Rn 
n = l  

then R(t) represents the total reward earned by time t. Let 

PrOpO~itiOn 7.3 If E[R] < eo and E [ X ]  < eo, then 

R(t) E[Rl (a) with probability 1, lim - = - 
t-02 t E [ x J  

Proof We give the proof for (a) only. To prove this, write 

By the strong law of large numbers we obtain 

and by Proposition 7.1 

The result thus follows. + 
If we say that a cycle is completed every time a renewal occurs then 

Proposition 7.3 states that in the long-run average reward is just the expected 
reward earned during a cycle divided by the expected length of a cycle. 

Example 7.10 In Example 7.7 if we suppose that the amounts that 
the successive customers deposit in the bank are independent random 
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variables having a common distribution H, then the rate at which deposits 
accumulate-that is, lim,,, (total deposits by time t)/t-is given by 

E[deposits during a cycle] - 
- PH 

E[time of cycle] + 1/1 

where pc + 1/1 is the mean time of a cycle, and PH is the mean of the 
distribution H. + 
Example 7.1 1 (A Car Buying Model): The lifetime of a car is a con- 
tinuous random variable having a distribution H and probability density h. 
Mr. Brown has a policy that he buys a new car as soon as his old one either 
breaks down or reaches the age of T years. Suppose that a new car costs C ,  
dollars and also that an additional cost of C, dollars is incurred whenever 
Mr. Brown's car breaks down. Under the assumption that a used car has no 
resale value, what is Mr. Brown's long-run average cost? 

If we say that a cycle is complete every time Mr. Brown gets a new car, 
then it follows from Proposition 7.3 (with costs replacing rewards) that his 
long-run average cost equals 

E lcost incurred during a cycle1 
E [length of a cycle] 

Now letting X be the lifetime of Mr. Brown's car during an arbitrary cycle, 
then the cost incurred during that cycle will be given by 

so the expected cost incurred over a cycle is 

Also, the length of the cycle is 

and so the expected length of a cycle is 

Therefore, Mr. Brown's long-run average cost will be 
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Now, suppose that the lifetime of a car (in years) is uniformly distributed 
over (0, lo), and suppose that C,  is 3 (thousand) dollars and C2 is 3 
(thousand) dollars. What value of T minimizes Mr. Brown's long-run 
average cost? 

If Mr. Brown uses the value T, T I 10, then from Equation (7.13) his 
long-run average cost equals 

We can now minimize this by using the calculus. Toward this end, let 

then 

Equating to 0 yields 

or, equivalently, 

T~ + 120T - 1200 = 0 

which yields the solutions 

T = 9.25 and T = -129.25 

Since T I 10, it follows that the optimal policy for Mr. Brown would be to 
purchase a new car whenever his old car reaches the age of 9.25 years. + 
Example 7.1 2 (Dispatching a Train): Suppose that customers arrive at 
a train depot in accordance with a renewal process having a mean inter- 
arrival time p. Whenever there are N customers waiting in the depot, a train 
leaves. If the depot incurs a cost at the rate of nc dollars per unit time 
whenever there are n customers waiting, what is the average cost incurred by 
the depot? 

If we say that a cycle is completed whenever a train leaves, then the 
preceding is a renewal reward process. The expected length of a cycle is the 
expected time required for N customers to arrive and, since the mean 
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interarrival time is p,  this equals 

E[length of cycle] = Np 

If we let T, denote the time between the nth and (n + 1)st arrival in a cycle, 
then the expected cost of a cycle may be expressed as 

,??[cost of a cycle] = E[c& + 2 c q  + + (N - l)cTN-,] 

which, since E[T,] = p,  equals 

Hence, the average cost incurred by the depot is 

Suppose now that each time a train leaves the depot incurs a cost of six 
units. What value of N minimizes the depot's long-run average cost when 
c = 2 , p =  l? 

In this case, we have that the average cost per unit time when the depot 
uses N is 

By treating this as a continuous function of N and using the calculus, we 
obtain that the minimal value of N is 

Hence, the optimal integral value of N is either 2 which yields a value 4, or 
3 which also yields the value 4. Hence, either N = 2 or N = 3 minimizes the 
depot's average cost. + 
Example 7.1 3 Consider a manufacturing process that sequentially 
produces items, each of which is either defective or acceptable. The follow- 
ing type of sampling scheme is often employed in an attempt to detect and 
eliminate most of the defective items. Initially, each item is inspected and 
this continues until there are k consecutive items that are acceptable. At this 
point 100% inspection ends and each successive item is independently 
inspected with probability a. This partial inspection continues until a defec- 
tive item is encountered, at which time 100% inspection is reinstituted, and 
the process begins anew. If each item is, independently, defective with 
probability q, 
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(a) what proportion of items are inspected? 
(b) if defective items are removed when detected, what proportion of the 
remaining items are defective? 

Remark Before starting our analysis, note that the above inspection 
scheme was devised for situations in which the probability of producing a 
defective item changed over time. It was hoped that 100% inspection would 
correlate with times at which the defect probability was large and partial 
inspection when it was small. However, it is still important to see how such 
a scheme would work in the extreme case where the defect probability 
remains constant throughout. 

Solution: We begin our analysis by noting that we can treat the above 
as a renewal reward process with a new cycle starting each time 100% 
inspection is instituted. We then have 

E [number inspected in a cycle] 
proportion of items inspected = 

E [number produced in a cycle] 

Let Nk denote the number of items inspected until there are k consecutive 
acceptable items. Once partial inspection begins-that is, after Nk items 
have been produced-since each inspected item will be defective with 
probability q, it follows that the expected number that will have to be 
inspected to find a defective item is l/q. Hence, 

1 
E[number inspected in a cycle] = E[Nk] + g 

In addition, since at partial inspection each item produced will, 
independently, be inspected and found to be defective with probability 
aq, it follows that the number of items produced until one is inspected 
and found to be defective is l/crq, and so 

1 
EInumber produced in a cycle] = E[Nk] + - 

a'? 

Also, as E[Nk] is the expected number of trials needed to obtain k 
acceptable items in a row when each item is acceptable with probability 
p = 1 - q, it follows from Example 3.14 that 

Hence we obtain 

PI = proportion of items that are inspected = 
(l/pIk 

(l/plk - 1 + l/cr 
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To answer (b), note first that since each item produced is defective with 
probability q it follows that the proportion of items that are both 
inspected and found to be defective is qPI. Hence, for N large, out of the 
first N items produced there will be (approximately) NQP, that are 
discovered to be defective and thus removed. As the first N items will 
contain (approximately) Nq defective items, it follows that there will be 
Nq - NqP, defective items not discovered. Hence, 

proportion of the non-removed items that are defective = Nq(l - PI) 
N(1 - qP1) 

As the approximation becomes exact as N -, co, we see that 

proportion of the non-removed items that are defective = 90 - PI) 
(1 - qP1) 

Example 7.14 (The Average Age of a Renewal Process): Consider a 
renewal process having interarrival distribution F and define A(t) to be the 
time at t since the last renewal. If renewals represent old items failing and 
being replaced by new ones, then A(t) represents the age of the item in use 
at time t. Since SN( t )  represents the time of the last event prior to or at time t, 
we have that 

A(t) = t - S N ( t )  

We are interested in the average value of the age-that is, in 

lim S; A(t) dt 

To determine the above quantity, we use renewal reward theory in the 
following way: Let us assume that any time we are being paid money at a 
rate equal to the age of the renewal process at that time. That is, at time t, 
we are being paid at rate A(t), and so j; A(t) dt represents our total earnings 
by time s. As everything starts over again when a renewal occurs, it follows 
that 

j; A(t) dt + E [reward during a renewal cycle] 
s E [time of a renewal cycle] 

Now since the age of the renewal process a time t into a renewal cycle is just 
t, we have 

reward during a renewal cycle = t dt s: 
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where X is the time of the renewal cycle. Hence, we have that 

average value of age = lim S; A (t) dt 
s-rm S 

E K21 =- 
[XI 

where X is an interarrival time having distribution function F. + 
Example 7.15 (The Average Excess of a Renewal Process): Another 
quantity associated with a renewal process is Y(t), the excess of residual 
time at time t. Y(t) is defined to equal the time from t until the next renewal 
and, as such, represents the remaining (or residual) life of the item in use at 
time t. The average value of the excess, namely, 

lim I; Y(t> dt 
s-m S 

also can be easily obtained by renewal reward theory. To do so, suppose 
that we are paid at time t at a rate equal to Y(t). Then our average reward 
per unit time will, by renewal reward theory, be given by 

average value of excess = lim J; Y(t> dt 
s-rm S 

- - E [reward during a cycle] 
E[length of a cycle] 

Now, letting X denote the length of a renewal cycle, we have that 

reward during a cycle = (X - t) dt s: 
and thus the average value of the excess is 

E w21 average value of excess = - 
2E [XI 

which was the same result obtained for the average value of the age of 
renewal process. + 
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7.5. Regenerative Processes 

Consider a stochastic process (X(t), t r 0] with state space 0, 1,2, . . . , 
having the property that there exist time points at which the process 
(probabilistically) restarts itself. That is, suppose that with probability one, 
there exists a time T,  , such that the continuation of the process beyond T, 
is a probabilistic replica of the whole process starting at 0. Note that this 
property implies the existence of further times T,, T, , . . . , having the same 
property as T,  . Such a stochastic process is known as a regenerativeprocess. 

From the above, it follows that T, , T,, . . . , constitute the arrival times of 
a renewal process, and we shall say that a cycle is completed every time a 
renewal occurs. 

Examples (1) A renewal process is regenerative, and T, represents the 
time of the first renewal. 

(2) A recurrent Markov chain is regenerative, and T, represents the time 
of the first transition into the initial state. 

We are interested in determining the long-run proportion of time that a 
regenerative process spends in state j. To obtain this quantity, let us imagine 
that we earn a reward at a rate 1 per unit time when the process is in state j 
and at rate 0 otherwise. That is, if I(s) represents the rate at which we earn 
at time s, then 

and 

total reward earned by t = I(s) ds S : 
As the preceding is clearly a renewal reward process which starts over again 
at the cycle time T, , we see from Proposition 7.3 that 

E[reward by time T,] 
average reward per unit time = 

E[T,I 

However, the average reward per unit is just equal to the proportion of time 
that the process is in state j. That is, we have the following. 

Proposition 7.4 For a regenerative process, the long-run 

E [amount of time in j during a cycle] 
proportion of time in state j = 

E[time of a cycle] 
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Remark If the cycle time T, is a continuous random variable, then it can 
be shown by using an advanced theorem called the "key renewal theorem" 
that the above is equal also to the limiting probability that the system is in 
state j at time t. That is, if T, is continuous, then 

E [amount of time in j during a cycle] 
lim P(X(t) = j ) = 
t + =  E[time of a cycle] 

Example 7.1 6 (Markov Chains): Consider a positive recurrent Markov 
chain which is initially in state i. By the Markovian property each time the 
process reenters state i, it starts over again. Thus returns to state i are 
renewals and constitute the beginnings of a new cycle. By Proposition 7.4, 
it follows that the long-run 

E [amount of time in j during an i - i cycle] 
proportion of time in state j = 

Pii 

where pii represents the mean time to return to state i. If we take j to equal 
i, then we obtain 

l / v i  
proportion of time in state i = - 

Pii 

Example 7.1 7 (A Queueing System with Renewal Arrivals): Consider a 
waiting time system in which customers arrive in accordance with an 
arbitrary renewal process and are served one at a time by a single server 
having an arbitrary service distribution. If we suppose that at time 0 the 
initial customer has just arrived, then (X(t), t 2 0) is a regenerative process, 
where X(t) denotes the number of customers in the system at time t. 
The process regenerates each time a customer arrives and finds the server 
free. + 

7.5.1. Alternating Renewal Processes 

Another example of a regenerative process is provided by what is known as 
an alternating renewal process, which considers a system that can be in one 
of two states: on or off. Initially it is on, and it remains on for a time 2 , ;  
it then goes off and remains off for a time Y, . It then goes on for a time 2,; 
then off for a time 5; then on, and so on. 

We suppose that the random vectors (Z,, Y,), n r 1 are independent and 
identically distributed. That is, both the sequence of random variables (2,) 
and the sequence (Y,) are independent and identically distributed; but we 
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allow Z, and Y, to be dependent. In other words, each time the process goes 
on, everything starts over again, but when it then goes off, we allow the 
length of the off time to depend on the previous on time. 

Let E [ a  = E[Z,] and E[Y] = E[Y,] denote respectively the mean 
lengths of an on and off period. 

We are concerned with Po,, the long-run proportion of time that the 
system is on. If we let 

then at time X, the process starts over again. That is, the process starts over 
again after a complete cycle consisting of an on and an off interval. In other 
words, a renewal occurs whenever a cycle is completed. Therefore, we 
obtain from Proposition 7.4 that 

- - E [on1 
E [on] + E [off ] 

Also, if we let Poff denote the long-run proportion of time that the sysyem 
is off, then 

Poff = 1 - Po, 

Example 7.1 8 (A Production Process): One example of an alternating 
renewal process is a production process (or a machine) which works for a 
time Z, , then breaks down and has to be repaired (which takes a time Y,), 
then works for a time Z, ,  then is down for a time Y2, and so on. If we 
suppose that the process is as good as new after each repair, then this 
constitutes an alternating renewal process. It is worthwhile to note that 
in this example it makes sense to suppose that the repair time will depend 
on the amount of time the process had been working before breaking 
down. + 
Example 7.19 (The Age of a Renewal Process): Suppose we are 
interested in determining the proportion of time that the age of a renewal 
process is less than some constant c. To do so, let a cycle correspond to a 
renewal, and say that the system is "on" at time t if the age at t is less than 
or equal to c, and say it is "off" if the age at t is greater than c. In other 
words, the system is "on" the first c time units of a renewal interval, 
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and "off" the remaining time. Hence, letting X denote a renewal interval, 
we have, from Equation (7. IS), 

E [min(X, c)] 
proportion of time age is less than c = 

E [XI 

where F is the distribution function of X and where we have used the 
identity that for a nonnegative random variable Y 

Example 7.20 (The Excess of a Renewal Process): Let us now consider 
the long run proportion of time that the excess of a renewal process is 
less than c. To determine this quantity, let a cycle correspond to a renewal 
interval and say that the system is on whenever the excess of the renewal 
process is greater than or equal to c and that it is off otherwise. In other 
words, whenever a renewal occurs the process goes on and stays on until the 
last c time units of the renewal interval when it goes off. Clearly this is an 
alternating renewal process, and so we obtain from Equation (7.16) that 

E [off time in cycle] 
long run proportion of time the excess is less than c = 

E [cycle time] 

Now, if X is the length of a renewal interval, then since the system is off the 
last c time units of this interval, it follows that the off time in the cycle will 
equal min(X, c). Thus, 

E [min(X, c)] 
long run proportion of time the excess is less than c = 

E [XI 

where the final equality follows from Equation (7.17). Thus, we see from 
the result of Example 7.19 that the long run proportion of time that the 
excess is less than c and the long run proportion of time that the age is less 
than c are equal. One way to understand this equivalence is to consider a 
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- Y(t) y , * n n n b 

3 
first renewal after t 

' f  
last renewal before t 

Figure 7.3. Arrowheads indicate direction of time. 

renewal process that has been in operation for a long time and then observe 
it going backwards in time. In doing so, we observe a counting process 
where the times between successive events are independent random 
variables having distribution F. That is, when we observe a renewal process 
going backwards in time we again observe a renewal process having the 
same probability structure as the original. Since the excess (age) at any time 
for the backwards process corresponds to the age (excess) at that time for 
the original renewal process (see Figure 7.3), it follows that all long run 
properties of the age and the excess must be equal. 4 

Example 7.21 (An Inventory Example): Suppose that customers arrive 
at a specified store in accordance with a renewal process having interarrival 
distribution F. Suppose that the store stocks a single type of item and that 
each arriving customer desires a random amount of this commodity, with 
the amounts desired by the different customers being independent random 
variables having the common distribution G. The store uses the following 
(s, S)  ordering policy: If its inventory level falls below s then it orders 
enough to bring its inventory up to S. That is, if the inventory after serving 
a customer is x, then the amount ordered is 

The order is assumed to be instantaneously filled. 
For a fixed value y, s 5 y 5 S, suppose that we are interested in 

determining the long run proportion of time that the inventory on hand is 
at least as large as y. To determine this quantity, let us say that the system 
is "on" whenever the inventory level is at least y and is "off" otherwise. 
With these definitions, the system will go on each time that a customer's 
demand causes the store to place an order that results in its inventory level 
returning to S. Since whenever this occurs a customer must have just arrived 
it follows that the times until succeeding customers arrive will constitute a 
renewal process with interarrival distribution F; that is, the process will start 
over each time the system goes back on. Thus, the on and off periods so 
defined constitute an alternating renewal process, and from Equation (7.15) 
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we have that 
E [on time in a cycle] 

long run proportion of time inventory 2 y = (7.18) 
E[cycle time] 

Now, if we let Dl ,  D, , . . . denote the successive customer demands, and let 

then it is the Ny customer in the cycle that causes the inventory level to fall 
below y, and it is the N, customer that ends the cycle. As a result, if we let 
Xi,  i 2 1, denote the interarrival times of customers, then 

*Y 

on time in a cycle = C Xi (7.20) 
i =  1 

Ns 
cycle time = z Xi (7.21) 

i =  1 

Assuming that the interarrival times are independent of the successive 
demands, we have that 

Similarly, 

Therefore, from Equations (7.18), (7.20), and (7.21) we see that 

EINyl (7.22) long run proportion of time inventory r y = - 
E INS1 

However, as the Di , i r 1, are independent and identically distributed non- 
negative random variables with distribution G, it follows from Equation 
(7.19) that N, has the same distribution as the index of the first event to 
occur after time S - x of a renewal process having interarrival distribution 
G. That is, Nx - 1 would be the number of renewals by time S - x of this 
process. Hence, we see that 

E[Ny] = m(S - y) + 1 

E[N,] = m(S - s) + 1 
where 

OD 

m(t) = C GAt) 
n = l  
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From Equation (7.22), we arrive at 
m(S - y) + 1 

long run proportion of time inventory r y = , s l y s S  
m(S - S) + 1 

For instance, if the customer demands are exponentially distributed with 
mean l/p, then 

long run proportion of time inventory r y = ' (S-y)+l ~ r y r ~  + 
p(S-s) + 1 ' 

7.6. Semi-Markov Processes 

Consider a process that can be in either state 1 or state 2 or state 3. It is 
initially in state 1 where it remains for a random amount of time having 
mean p l ,  then it goes to state 2 where it remains for a random amount of 
time having mean p2,  then it goes to state 3 where it remains for a mean 
time p,, then back to state 1, and so on. What proportion of time is the 
process in state i, i = 1,2, 3? 

If we say that a cycle is completed each time the process returns to 
state 1, and if we let the reward be the amount of time we spend in state i 
during that cycle, then the above is a renewal reward process. Hence, from 
Proposition 7.3 we obtain that II;., the proportion of time that the process 
is in state i, is given by 

Similarly, if we had a process which could be in any of N states 
1 ,2 ,  ..., N and which moved from state 1 + 2 + 3 + . . . + N -  1 -, 
N + 1, then the long-run proportion of time that the process spends in 
state i is 

where pi is the expected amount of time the process spends in state i during 
each visit. 

Let us now generalize the above to the following situation. Suppose that 
a process can be in any one of N states 1,2, . . . , N, and that each time 
it enters state i it remains there for a random amount of time having mean 
pi and then makes a transition into state j with probability P!,.. Such a 
process is called a semi-Markov process. Note that if the amount of time 
that the process spends in each state before making a transition is identically 
1, then the semi-Markov process is just a Markov chain. 

Let us calculate II;. for a semi-Markov process. To do so, we first consider 
ni the proportion of transitions that take the process into state i .  Now if 
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we let Xn denote the state of the process after the nth transition, then [X,, 
n r 0 )  is a Markov chain with transition probabilities Pv, i, j = 1, 2, . . . , N. 
Hence, ni will just be the limiting (or stationary) probabilities for this 
Markov chain (Section 4.4). That is, ni will be the unique nonnegative 
solution of 

N 

C ni = 1, 
i =  l 

N 

n i =  ?Fji, i =  1 ,2  ,..., N* (7.23) 
j =  1 

Now since the process spends an expected time pi in state i whenever it visits 
that state, it seems intuitive that 8 should be a weighted average of the ni 
where ni is weighted proportionately to pi. That is, 

where the ni are given as the solution to Equation (7.23). 

Example 7.22 Consider a machine that can be in one of three states: 
good condition, fair condition, or broken down. Suppose that a machine 
in good condition will remain this way for a mean time p1 and then will 
go to either the fair condition or the broken condition with respective 
probabilities a and $. A machine in fair condition will remain that way 
for a mean time p2 and then will break down. A broken machine will 
be repaired, which takes a mean time p3,  and when repaired will be in 
good condition with probability $ and fair condition with probability ;. 
What proportion of time is the machine in each state? 

Solution: Letting the states be 1, 2, 3, we have by Equation (7.23) that 
the ni satisfy 

The solution is 

* We shall assume that there exists a solution of Equation (7.23). That is, we assume that all 
of the states in the Markov chain communicate. 
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Hence, from Equation (7.24) we obtain that 4 ,  the proportion of time 
the machine is in state i, is given by 

For instance, if pl = 5, p2 = 2, p3 = 1, then the machine will be in good 
condition $ of the time, in fair condition of the time, in broken 
condition of the time. + 

Remark When the distributions of the amount of time spent in each 
state during a visit are continuous, then 4 also represents the limiting 
(as t + m) probability that the process will be in state i at time t. 

Example 7.23 Consider a renewal process in which the interarrival 
distribution is discrete and is such that 

where X represents an interarrival random variable. Let L(t) denote the 
length of the renewal interval that contains the point t (that is, if N(t) is the 
number of renewals by time t and X,, the nth interarrival time, then 
L(t) = X,(,,+,). If we think of each renewal as corresponding to the failure 
of a lightbulb (which is then replaced at the beginning of the next period by 
a new bulb), then L(t) will equal i is the bulb in use at time t dies in its ith 
period of use. 

It is easy to see that L(t) is a semi-Markov process. To determine the 
proportion of time that L(t) = j ,  note that each time a transition occurs- 
that is, each time a renewal occurs-the next state will be j with probability 
pj .  That is, the transition probabilities of the embedded Markov chain 
are ej = pj .  Hence, the limiting probabilities of this embedded chain are 
given by 

n. = p .  
J J 

and, since the mean time the semi-Markov process spends in state j before 
a transition occurs is j ,  it follows that the long-run proportion of time the 
state is j is 
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7.7. The Inspection Paradox 

Suppose that a piece of equipment, say a battery, is installed and serves 
until it breaks down. Upon failure it is instantly replaced by a like battery, 
and this process continues without interruption. Letting N(t) denote the 
number of batteries that have failed by time t, we have that (N(t), t r O] is 
a renewal process. 

Suppose further that the distribution F of the lifetime of a battery is not 
known and is to be estimated by the following sampling inspection scheme. 
We fix some time t and observe the total lifetime of the battery that is in use 
at time t. Since F is the distribution of the lifetime for all batteries, it seems 
reasonable that it should be the distribution for this battery. However, this 
is the inspection paradox for it turns out that the battery in use at time t 
tends to have a larger lifetime than an ordinary battery. 

To understand the preceding so-called paradox, we reason as follows. In 
renewal theoretic terms what we are interested in is the length of the renewal 
interval containing the point t. That is, we are interested in XN(,.)+, = 

- SN(t) (see Figure 7.2). To calculate the distribution of XN(,)+, we 
condition on the time of the last renewal prior to (or at) time t. That is, 

where we recall (Figure 7.2) that SNCt) is the time of the last renewal prior to 
(or at) t. Since there are no renewals between t - s and t, it follows that 
XN(t)+l must be larger than x if s > x. That is, 

On the other hand, suppose that s I x. As before, we know that a renewal 
occurred at time t - s and no additional renewals occurred between t - s 
and t, and we ask for the probability that no renewals occur for an 
additional time x - s. That is, we are asking for the probability that an 
interarrival time will be greater than x given that it is greater than s. There- 
fore, for s I x, 

= P(interarriva1 time > x 1 interarrival time > s] 

= P(interarriva1 time > x]/P(interarrival time > s) 
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Hence, from Equations (7.25) and (7.26) we see that, for all s, 

Taking expectations on both sides yields that 

However, 1 - F(x) is the probability that an ordinary renewal interval is 
larger than x, that is, 1 - F(x) = P(X, > x], and thus Equation (7.27) is a 
statement of the inspection paradox that the length of the renewal interval 
containing the point t tends to be larger than an ordinary renewal interval. 

Remark To obtain an intuitive feel for the so-called inspection paradox, 
reason as follows. We think of the whole line being covered by renewal 
intervals, one of which covers the point t. It is not more likely that a larger 
interval, as opposed to a shorter interval, covers the point t? 

We can actually calculate the distribution of XN(,)+, when the renewal 
process is a Poisson process. [Note that, in the general case, we did not need 
to calculate explicitly P(XN(,)+, > x) to show that it was at least as large as 
1 - F(x).] To do so we write 

where A(t) denotes the time from t since the last renewal, and Y(t) denotes 
the time from t until the next renewal (see Figure 7.4). A(t) is the age of the 
process at time t (in our example it would be the age at time t of the battery 
in use at time t), and Y(t) is the excess life of the process at time t (it is the 
additional time from t until the battery fails). Of course, it is true that 
A(t) = t - SN(,), and Y(t) = SN(,)+, - t. 

To calculate the distribution of XN(t)+l we first note the important fact 
that, for a Poisson process, A(t) and Y(t) are independent. This follows 
since by the memoryless property of the Poisson process, the time from t 
until the next renewal will be exponentially distributed and will be indepen- 
dent of all that has previously occurred [including, in particular, A(t)]. In 
fact, this shows that if (N(t), t 2 0) is a Poisson process with rate 1, then 

Figure 7.4. 
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The distribution of A(t) may be obtained as follows 

P ( 0  renewals in [t - x, t]), if x 5 t 
P(A(t) > x) = 

i f x > t  

or, equivalently, 

Hence, by the independence of Y(t) and A(t) the distribution of XN(o+l is 
just the convolution of the exponential distribution equation (7.28) and the 
distribution equation (7.5). It is interesting to note that for t large, A(t) 
approximately has an exponential distribution. Thus, for t large, XN@)+, 
has the distribution of the convolution of two identically distributed 
exponential random variables, which by Section 5.2.3, is the gamma 
distribution with parameters (2, A). In particular, for t large, the expected 
length of the renewal interval containing the point t is approximately twice 
the expected length of an ordinary renewal interval. 

7.8. Computing the Renewal Function 

The difficulty with attempting to use the identity 

to compute the renewal function is that the determination of Fn(t) = 
P(X1 + .-. + X,, 5 t )  requires the computation of an n-dimensional 
integral. We present below an effective algorithm which requires as inputs 
only one-dimensional integrals. 

Let Y be an exponential random variable having rate A,  and suppose that 
Y is independent of the renewal process (N(t), t r 0). We start by deter- 
mining E[N(Y)], the expected number of renewals by the random time Y. 
To do so, we first condition on X I ,  the time of the first renewal. This yields 

l- m 

where f is the interarrival density. To determine E[N(Y) (XI = x], we now 
condition on whether or not Y exceeds x. Now, if Y < x, then as the first 
renewal occurs at time x, it follows that the number of renewals by time Y 
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is equal to 0. On the other hand, if we are given that x < Y, then the number 
of renewals by time Y will equal 1 (the one at x) plus the number of 
additional renewals between x and Y. But, but the memoryless property of 
exponential random variables, it follows that, given that Y > x, the amount 
by which it exceeds x is also exponential with rate L, and so given that Y > x 
the number of renewals between x and Y will have the same distribution as 
N(Y). Hence, 

E[N(Y)\x, = X, Y > X] = 1 + E[N(Y)] 

and so, 

since Y and X, are independent 

Substituting this into Equation (7.30) gives 

E [N(Y)] = (1 + E [N(Y)]) e-xxf (x) dx S : 
where X has the renewal interarrival distribution. 

If we let 1 = l/t, then Equation (7.31) presents an expression for the 
expected number of renewals (not by time t ,  but) by a random exponentially 
distributed time with mean t .  However, as such a random variable need not 
be close to its mean (its variance is t2 ) ,  Equation (7.31) need not be 
particularly close to m(t). To obtain an accurate approximation suppose 
that 5 ,  Y,, . . . , Y, are independent exponentials with rate L and suppose 
they are also independent of the renewal process. Let, for r = 1, .. ., n, 

To compute an expression for m,, we again start by conditioning on X I ,  the 
time of the first renewal. 

r = 
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To determine the foregoing conditional expectation, we now condition on 
the number of partial sums C:=, I.;., j = 1, ..., r, that are less than x. 
Now, if all r partial sums are less than x-that is, if I;=, x < x-then 
clearly the number of renewals by time Cf=, % is 0. On the other hand, 
given that k, k < r, of these partial sums are less than x, it follows from the 
lack of memory property of the exponential that the number of renewals by 
time C;=, YI. will have the same distribution as 1 plus N(Yk+, + . . . + Y,). 
Hence, 

To determine the distribution of the number of the partial sums that are less 
than x, note that the successive values of these partial sums C{= I.;., 
j = 1, . . . , r, have the same distribution as the first r event times of a 
Poisson process with rate 1 (since each successive partial sum is the previous 
sum plus an independent exponential with rate 1). Hence, it follows that, 
for k < r, 

N(Y, + + Y,) 

i 
of the partial sums z are less than x X, = x 

i =  1 I 1  

i 
XI = x, kofthesums z I.;.areless thanx 

i =  1 I 

Upon substitution of Equations (7.33) and (7.34) into Equation (7.32), 
we obtain 

or, equivalently, 
~i-1~ (1 + m r - k ) ~ [ ~ k e - X X ] ( ~ k / k ! )  + ~ [ e - ~ ]  

mr = (7.35) 
1 - ~ [ e - ~ ]  

If we set 1 = n/t, then starting with m, given by Equation (7.31), we 
can use Equation (7.35) to recursively compute m2, . . . , m,. The approxi- 
mation of m(t) = E[N(t)] is given by m, = E[N(Y, + + Y,)]. Since 
Y, + .--  + Y, is the sum of n independent exponential random variables 
each with mean t/n, it follows that it is (gamma) distributed with mean t 
and variance nt2/n2 = t2/n. Hence, by choosing n large, Cy= , I.;. will be a 
random variable having most of its probability concentrated about t, and 
so E[N(Cy,, I.;.)] should be quite close to E[N(t)]. [Indeed, if m(t) is 
continuous at t, it can be shown that these approximations converge to m(t) 
as n goes to infinity.] 
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Table 7.1 
- -  - - - - 

4 Exact Approximation 

i t mu)  n = l  n = 3  n = 1 0  n = 2 5  n = 5 0  

1 1 0.2838 0.3333 0.3040 0.2903 0.2865 0.2852 
1 2 0.7546 0.8000 0.7697 0.7586 0.7561 0.7553 
1 5 2.250 2.273 2.253 2.250 2.250 2.250 
1 10 4.75 4.762 4.751 4.750 4.750 4.750 

2 0.1 0.1733 0.1681 0.1687 0.1689 0.1690 - 
2 0.3 0.5111 0.4964 0.4997 0.5010 0.5014 - 
2 0.5 0.8404 0.8182 0.8245 0.8273 0.8281 0.8283 
2 1 1.6400 1.6087 1.6205 1.6261 1.6277 1.6283 
2 3 4.7389 4.7143 4.7294 4.7350 4.7363 4.7367 
2 10 15.5089 15.5000 15.5081 15.5089 15.5089 15.5089 

3 0.1 0.2819 0.2692 0.2772 0.2804 0.2813 - 
3 0.3 0.7638 0.7105 0.7421 0.7567 0.7609 - 
3 1 2.0890 2.0000 2.0556 2.0789 2.0850 2.0870 
3 3 5.4444 5.4000 5.4375 5.4437 5.4442 5.4443 

Example 7.24 Table 7.1 compares the approximation with the exact 
value for the distributions I;;: with densitiesfi , i = 1,2,3, which are given by 

fi(x) = xe-", 

1 - F,(x) = 0.3e-" + 0.7e-'", 

1 - F,(x) = 0.5e-" + 0.5e-'" + 

7.9. Applications to Patterns 

A counting process with independent interarrival times XI, X, ,  . . . is said to 
be a delayed or general renewal process if X, has a different distribution 
from the identically distributed random variables X2, X,, . . . . That is, a 
delayed renewal process is a renewal process in which the first interarrival 
time has a different distribution than the others. Delayed renewal processes 
often arise in practice and it is important to note that all of the limiting 
theorems about N(t), the number of events by time t, remain valid. For 
instance, it remains true that 

E[N(t)l 1 -+- and Var(N(t)) + 02,,""s f + * 
t ," t 

where p and a2 are the expected value and variance of the interarrivals Xi,  
i >  1. 
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7.9.1. Patterns of Discrete Random Variables 

Let X,,  X,, . . . be independent with P[Xi = j) = p(j) ,  j 2 0, and let T 
denote the first time the pattern xl , . . . , xr occurs. If we say that a renewal 
occurs at time n, n 2 r, if (Xn-,+,, . .., Xn) = (i,, .. ., i,), then N(n), n 2 1, 
is a delayed renewal process, where N(n) denotes the number of renewals by 
time n. It follows that 

where ,u and a are, respectively, the mean and standard deviation of the 
time between successive renewals. Whereas, in Example 4.20, we showed 
how to use Markov chain theory to compute the expected value of T, we will 
now show how to use renewal theory results to compute both its mean and 
its variance. 

To begin, let I(i) equal 1 if there is a renewal at time i and let it be 0 
otherwise, i r r. Also, let p = n:= lp(xi). Since, 

it follows that I(i), i 1 r, are Bernoulli random variables with parameter p. 
Now, 

n 

Dividing by n and then letting n + w gives, from Equation (7.36), 

That is, the mean time between successive occurrences of the pattern is 
equal to l/p. Also, 
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where the final equality used the fact that I(i) and I ( j )  are independent, 
and thus have zero covariance, when li - j( 2 r. Letting n -, oo, and using 
the fact that Cov(I(i), I( j))  depends on i and j only through I j - i I, gives 

Therefore, using Equations (7.37) and (7.38), we see that 
r- 1 

o2 = ~ - ~ ( 1  - p)  + 2p-3 Cov(l(r), I(r + j)) (7.39) 
j =  1 

Let us now consider the amount of "overlap" in the pattern. The overlap, 
equal to the number of values at the end of one pattern that can be used as 
the beginning part of the next pattern, is said to be of size k, k > 0, if 

and is of size 0 if for all k = 1, ..., r - 1, (ir-k+l, ..., ir) # (il, . .., ik). 
Thus, for instance, the pattern O,0,1,1 has overlap 0, whereas O,0,1,0,O 
has overlap 2. We consider two cases. 

Case 1. The Pattern Has Overlap 0 

In this case, N(n), n r 1, is an ordinary renewal process and Tis distributed 
as an interarrival time with mean ,u and variance a2. Hence, we have the 
following from Equation (7.38): 

Also, since two patterns cannot occur within a distance less than r of each 
other, it follows that I(r)I(r + j )  = 0 when 1 I j 5 r - 1. Hence, 

Cov(I(r), I(r + j ))  = -E[I(r)]E[I(r + j )]  = -p2, if 1 I j 5 r - 1 

Hence, from Equation (7.39), we obtain 

Var(T) = a2 = p-2(1 - p) - 2pT3(r - l)p2 = p-2 - (2r - 1)p-' (7.41) 

Remark In cases of "rare" patterns, if the pattern hasn't yet occurred 
by some time n, then it would seem that we would have no reason to believe 
that the remaining time would be much less than if we were just beginning 
from scratch. That is, it would seem that the distribution is approximately 
memoryless and would thus be approximately exponentially distributed. 
Thus, since the variance of an exponential is equal to its mean squared, 
we would expect whenp is large that Var(T) = E ~ [ T ] ,  and this is borne out 
by the preceding, which states that Var(T) = E'[T] - (2r - l)E[T]. 
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Example 7.25 Suppose we are interested in the number of times that a 
fair coin needs to be flipped before the pattern h, h, t, h, t occurs. For this 
pattern, r = 5, p = &, and the overlap is 0. Hence, from Equations (7.40) 
and (7.41) 

E[T] = 32, Var(T) = (32)2 - 9 x 32 = 736, 
and 

v ~ ~ ( T ) / E ~ [ T ]  = 0.71875 

On the other hand, if p(i) = .i, i = 1,2,3,4 and the pattern is 1,2, 1,4, 
l , 3 , 2  then r = 7, p = 3/625,000, and the overlap is 0. Thus, again from 
Equations (7.40) and (7.41), we see that in this case 

Case 2. The Overlap Is of Size k 

In this case, 

T = TI, ..., ik + T* 
where T ik is the time until the pattern i t ,  ..., ik appears and T*, 
distributed as an interarrival time of the renewal process, is the additional 
time that it takes, starting with il, ..., ik, to obtain the pattern i,, ..., ir. 
Because these random variables are independent, we have 

E[TI = EITl, ..., ikI + E[T*I (7.42) 

Var(T) = Var(Kl,...,ik) + Var(T*) (7.43) 

Now, from Equation (7.38) 

E[T*] = p = p-' (7.44) 

Also, since no two renewals can occur within a distance r - k - 1 of each 
other, it follows that Z(r)I(r + j )  = 0 if 1 5 j 5 r - k - 1. Therefore, from 
Equation (7.39), we see that 

r- 1 

Var(T*) = o2 = p-2(l - p) + 2p-l( x E[Z(r)Z(r + j )]  - (r - l)p2) 
j = r - k  

The quantities E[Z(r)Z(r + j )]  in Equation (7.45) can be calculated by 
considering the particular pattern. To complete the calculation of the first 
two moments of T, we then compute the mean and variance of by 
repeating the same method. 
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Example 7.26 Suppose that we want to determine the number of flips 
of a fair coin until the pattern h, h, t, h, h occurs. For this pattern, r = 5, 
p = 6, and the overlap parameter is k = 2. Because 

we see from Equations (7.44) and (7.45) that 

Var(T*) = (32)' - 9(32) + 2(3213(& + &) = 1120 

Hence, from Equations (7.42) and (7.43) we obtain 

Now, consider the pattern h, h. It has r = 2, p = $, and overlap parameter 1. 
Since, for this pattern, E[1(2)1(3)] = i, we obtain, as in the preceding, that 

Finally, for the pattern h, which has r = 1, p = i, we see from Equations 
(7.40) and (7.41) that 

E[T,] = 2, Var(T,) = 2 

Putting it all together gives 

Example 7.27 Suppose that P(X, = i] = pi ,  and consider the pattern 
0, 1 ,2 ,0 ,1 ,3 ,0 ,  1. Thenp = r = 8, and the overlap parameter 
is k = 2. Since 

5 5 2 2  
E[1(8)1(14)1 = PO PI PZ ~3 

E[1(8)1(15)] = 0 

we see from Equations (7.42) and (7.44) that 

and from Equations (7.43) and (7.45) that 
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Now, the r and p values of the pattern 0, 1 are r(0, 1) = 2, p(0, 1) = pop, ,  
and this pattern has overlap 0. Hence, from Equations (7.40) and (7.41), 

For instance, if pi = 0.2, i = 0, 1 ,2 ,3  then 

Remark It can be shown that T is a type of discrete random variable 
called new better than used (NBU), which loosely means that if the pattern 
has not yet occurred by some time n then the additional time until it occurs 
tends to be less than the time it would take the pattern to occur if one started 
all over at that point. Such a random variable is known to satisfy (see 
Proposition 9.6.1 of Ref. [4]) 

Now, suppose that there are s patterns, A(l), .. ., A(s) and that we are 
interested in the mean time until one of these patterns occurs, as well as the 
probability mass function of the one that occurs first. Let us assume, 
without any loss of generality, that none of the patterns is contained in 
any of the others. [That is, we rule out such trivial cases as A(l) = h, h 
and A(2) = h, h, t.] To determine the quantities of interest, let T(i) denote 
the time until pattern A(i) occurs, i = 1, . . . , s,  and let T(i, j )  denote the 
additional time, starting with the occurrence of pattern A(i) ,  until pattern 
A(j )  occurs, i # j. Start by computing the expected values of these random 
variables. We have already shown how to compute E[T(i)], i = 1, . . . , s. 
To compute E[T(i, j)], use the same approach, taking into account any 
"overlap" between the latter part of A(i) and the beginning part of A(j). 
For instance, suppose A(l) = 0,0, 1,2,0,3,  and A(2) = 2,0,3,2,0.  Then 

where T,,0,3 is the time to obtain the pattern 2,0,3. Hence, 
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So, suppose now that all of the quantities E[T(i)] and E[T(i, j )]  have been 
computed. Let 

M = min T(i)  
i 

and let 
P ( i ) = P ( M = T ( i ) ] ,  i = l ,  ..., s 

That is, P(i) is the probability that pattern A( i )  is the first pattern to occur. 
Now, for each j we will derive an equation that E[T( j ) ]  satisfies as follows: 

where the final equality is obtained by conditioning on which pattern occurs 
first. But the Equations (7.46) along with the equation 

constitute a set of s + 1 equations in the s + 1 unknowns E[M], P(i), 
i  = 1 ,  . . . , s. Solving them yields the desired quantities. 

Example 7.28 Suppose that we continually flip a fair coin. With 
A ( l )  = h,  t ,  t ,  h, h and A(2) = h,  h ,  t ,  h ,  t ,  we have 

E[T(l)]  = 32 + E[T,] = 34 

E[T(2)] = 32 

E[T( l ,  2)] = E[T(2)] - E[T,,,] = 32 - (4 + E[T,]) = 26 

E[T(2, l ) ]  = E[T(l)]  - E[G,,] = 34 - 4 = 30 

Hence, we need solve the equations 

34 = E [ M  + 30P(2) 

32 = E[M] + 26P(1) 

These equations are easily solved, and yield the values 

Note that although the mean time for pattern A(2) is less than that for A( l ) ,  
each has the same chance of occurring first. + 
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Equations (7.46) are easy to solve when there are no overlaps in any of the 
patterns. In this case, for all i # j 

so Equations (7.46) reduce to 

Summing the preceding over all j yields 

In our next example we use the preceding to reanalyze the model of 
Example 7.8. 

Example 7.29 Suppose that each play of a game is, independently of 
the outcomes of previous plays, won by player i with probability p i ,  
i = 1, . .., s. Suppose further that there are specified numbers n(l), . . ., n(s) 
such that the first player i to win n(i) consecutive plays is declared the 
winner of the match. Find the expected number of plays until there is a 
winner, and also the probability that the winner is i, i = 1, . . . , s. 

Solution: Letting A(i), for i = 1, . . . , s, denote the pattern of ni 
consecutive values of i, this problem asks for P(i), the probability that 
pattern A(i) occurs first, and for E [ W .  Because 

we obtain, from Equations (7.47) and (7.48), that 
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7.9.2. The Expected Time to a Maximal Run 
of Distinct Values 

Let Xi,  i r 1 be independent and identically distributed random variables 
that are equally likely to take on any of the values 1,2,  . . . , m. Suppose that 
these random variables are observed sequentially, and let T denote the first 
time that a run of m consecutive values includes all the values 1, . . . , m. 
That is, 

T = min(n : Xn-,+, , . . . , Xn are all distinct] 

To compute E[T], define a renewal process by letting the first renewal occur 
at time T. At this point start over and, without using any of the data values 
up to T, let the next renewal occur the next time a run of m consecutive 
values are all distinct, and so on. For instance, if m = 3 and the data are 

then there are two renewals by time 10, with the renewals occurring at times 
5 and 9. We call the sequence of m distinct values that constitutes a renewal 
a renewal run. 

Let us now transform the renewal process into a delayed renewal reward 
process by supposing that a reward of 1 is earned at time n, n 1 m, if the 
values Xn-,+,, ..., Xn are all distinct. That is, a reward is earned each 
time the previous m data values are all distinct. For instance, if m = 3 
and the data values are as in (7.49) then unit rewards are earned at times 
5, 7, 9, and 10. If we let Ri denote the reward earned at time i ,  then by 
Proposition 7.3, 

lim E[C;= I Ril =- E[Rl 
n n E[Tl 

where R is the reward earned between renewal epochs. Now, with A, equal 
to the set of the first i data values of a renewal run, and Bi to the set of the 
first i values following this renewal run, we have the following: 

m - 1  

E[R] = 1 + C E[reward earned a time i after a renewal] 
i =  1 

m - l  i !  
= 1 +  I--;; 

i = l  m 
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Hence, since for i 2 m 

m! 
E[Ri] = P(Xi_,+, , . . . , Xi are all distinct) = - 

mm 

it follows from Equation (7.50) that 

Thus from Equation (7.51) we obtain 

The preceding delayed renewal reward process approach also gives us 
another way of computing the expected time until a specified pattern 
appears. We illustrate by the following example. 

Example 7.30 Compute E[T], the expected time until the pattern 
h, h, h, t, h, h, h appears, when a coin that comes up heads with probability 
p and tails with probability q = 1 - p is continually flipped. 

Solution: Define a renewal process by letting the first renewal occur 
when the pattern first appears, and then start over. Also, say that a 
reward of 1 is earned whenever the pattern appears. If R is the reward 
earned between renewal epochs, we have 

6 

E[R] = 1 + E[reward earned i units after a renewal] 
i =  1 

Hence, since the expected reward earned at time i is E[Ri] = p6q, we 
obtain the following from the renewal reward theorem: 
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7.9.3. Increasing Runs of Continuous Random Variables 

Let X, , X2 , . . . be a sequence of independent and identically distributed 
continuous random variables, and let T denote the first time that there is a 
string of r consecutive increasing values. That is, 

T = min[n r r : X,-,+, < X,-,+, < < X,). 

To compute E[T], define a renewal process as follows. Let the first renewal 
occur at T. Then, using only the data values after T, say that the next renewal 
occurs when there is again a string of r consecutive increasing values, and 
continue in this fashion. For instance, if r = 3 and the first 15 data values are 

then 3 renewals would have occurred by time 15, namely, at times 3, 8, and 
14. If we let N(n) denote the number of renewals by time n, then by the 
elementary renewal theorem 

To compute E[N(n)], define a stochastic process whose state at time k, call 
it Sk, is equal to the number of consecutive increasing values at time k. That 
is, for 1 5 j 5 k 

S k = j  i f X k - j > X k - j + l < - . - < X k - l < X k  

where Xo = oo. Note that a renewal will occur at time k if and only if 
Sk = ir for some i 1 1. For instance, if r = 3 and 

x5 > x, < x, < x* < x, < XI, < x,, 
then 

S 7 = 2 ,  & = 3 ,  s 9 = 4 ,  s l o = 5 ,  S l 1 = 6  

and renewals occur at times 8 and 11. Now, for k > j 

= - - -  
j! ( j  + I)! 

j =- 
( j  + I)! 
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where the next to last equality follows since all possible orderings of the 
random variables are equally likely. 

From the preceding, we see that 

m " ir 
lim P{a renewal occurs at time k) = lim z P(Sk = ir) = 
k-+- k - m  i =  I = (ir + I)! 

However, 
n 

E[N(n)] = P(a  renewal occurs at time k]  
k = l  

Because we can show that for any numbers ak ,  k 2 1 for which limk-+" ak 
exists 

lim CIC = 1 ak = lim ak 
n-m n k-+m 

we obtain from the preceding, upon using the elementary renewal theorem, 

Exercises 

1. Is it true that 

(a) N(t) < n if and only if Sn > t?  
(b) N(t) I n if and only if Sn 2 t?  
(c) N(t) > n if and only if Sn < t?  

2. Suppose that the interarrival distribution for a renewal process is 
Poisson distributed with mean p. That is, suppose 

(a) Find the distribution of Sn . 
(b) Calculate P(N(t) = n]. 

*3. If the mean-value function of the renewal process (N(t), t 1 0) is given 
by m(t) = t/2, t 2 0, then what is P(N(5) = O)? 

4. Let (N,(t), t 2 0) and (N2(t), t 1 0) be independent renewal processes. 
Let N(t) = Nl(t) + N2(t). 
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(a) Are the interarrival times of (N(t), t 2 0) independent? 
(b) Are they identically distributed? 
(c) IS (N(t), t 1 0) a renewal process? 

5. Let U1 , U, , . . . be independent uniform (0, 1) random variables, and 
define N by 

N =  min[n:Ul + U, + + Un > 1) 
What is E[N]? 

'6. Consider a renewal process (N(t), t r 0) having a gamma (r, A) 
interarrival distribution. That is, the interarrival density is 

(a) Show that 

(b) Show that 

where [i/r] is the largest integer less than or equal to i/r. 

Hint: Use the relationship between the gamma (r, A) distribution and 
the sum of r independent exponentials with rate A,  to define N(t) in terms 
of a Poisson process with rate A. 

7.  Mr. Smith works on a temporary basis. The mean length of each job he 
gets is three months. If the amount of time he spends between jobs is 
exponentially distributed with mean 2, then at what rate does Mr. Smith 
get new jobs? 

'8. A machine in use is replaced by a new machine either when it fails or 
when it reaches the age of T years. If the lifetimes of successive machines 
are independent with a common distribution F having density f, show that 

(a) the long-run rate at which machines are replaced equals 

(b) the long-run rate at which machines in use fail equals 
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9. A worker sequentially works on jobs. Each time a job is completed, a 
new one is begun. Each job, independently, takes a random amount of time 
having distribution F to complete. However, independently of this, shocks 
occur according to a Poisson process with rate A. Whenever a shock occurs, 
the worker discontinues working on the present job and starts a new one. In 
the long run, at what rate are jobs completed? 

10. Consider a renewal process with mean interarrival time p. Suppose 
that each event of this process is independently "counted" with probability 
p. Let Nc(t) denote the number of counted events by time t, t > 0. 

(a) Is Nc(t), t r 0 a renewal process? 
(b) What is lim,,,N,(t)/t? 

11. A renewal process for which the time until the initial renewal has a 
different distribution than the remaining interarrival times is called a 
delayed (or a general) renewal process. Prove that Proposition 7.1 remains 
valid for a delayed renewal process. (In general, it can be shown that all of 
the limit theorems for a renewal process remain valid for a delayed renewal 
process provided that the time until the first renewal has a finite mean.) 

12. Let X I ,  X2,  . . . be a sequence of independent random variables. The 
nonnegative integer valued random variable N is said to be a stopping time 
for the sequence if the event ( N  = n) is independent of Xn+, , Xn+2, ..., 
the idea being that the Xi are observed one at a time-first X I ,  then X2, and 
so on-and N represents the number observed when we stop. Hence, the 
event (N = n] corresponds to stopping after having observed XI, . . . , Xn 
and thus must be independent of the values of random variables yet to 
come, namely, Xn+,, Xn+2, ... . 

(a) Let X I ,  X2, . . . be independent with 

P(Xi = 1) = p  = 1 - P[Xi = 0), i r  I 

Define 

Which of the Ni are stopping times for the sequence XI ,  . . . ? An 
important result, known as Wald's equation states that if X I ,  X, , . . . 
are independent and identically distributed and have a finite mean E(X), 
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and if N is a stopping time for this sequence having a finite mean, then 

To prove Wald's equation, let us define the indicator variables Ii, i 2 1 
by 

i f i r N  
0, if i > N 

(b) Show that 

From part (b) we see that 

where the last equality assumes that the expectation can be brought inside 
the summation (as indeed can be rigorously proven in this case). 
(c) Argue that Xi and Ii are independent. 

Hint: Ii equals 0 or 1 depending on whether or not we have yet stopped 
after observing which random variables? 

(d) From part (c) we have 

Complete the proof of Wald's equation. 
(e) What does Wald's equation tell us about the stopping times in 
part (a)? 

13. Wald's equation can be used as the basis of a proof of the elementary 
renewal theorem. Let XI, X, , . . . denote the interarrival times of a renewal 
process and let N(t) be the number of renewals by time t .  

(a) Show that whereas N(t) is not a stopping time, N(t) + 1 is. 

Hint: Note that 

N ( t ) = n o X , + . - . + X n ( t  and X I + - . . + X n + , > t  
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(b) Argue that 

(c) Suppose that the Xi are bounded random variables. That is, suppose 
there is a constant M such that P(Xi  c M ]  = 1. Argue that 

(d) Use the previous parts to prove the elementary renewal theorem when 
the interarrival times are bounded. 

14. Consider a miner trapped in a room which contains three doors. Door 
1 leads him to freedom after two days of travel; door 2 returns him to his 
room after a four-day journey; and door 3 returns him to his room after a 
six-day journey. Suppose at all times he is equally likely to choose any of the 
three doors, and let T denote the time it takes the miner to become free. 

(a) Define a sequence of independent and identically distributed random 
variables X ,  , X, , . . . and a stopping time N such that 

Note: You may have to imagine that the miner continues to 
randomly choose doors even after he reaches safety. 

(b) Use Wald's equation to find E [ T ] .  
(c) Compute E [ c ~ =  Xi I N  = n] and note that it is not equal to 
E[CI=  1 Xi]. 
(d) Use part (c) for a second derivation of E  [TI. 

15. A deck of 52 playing cards is shuffled and the cards are then turned 
face up one at a time. Let Xi equal 1 if the ith card turned over is an ace, 
and let it be 0 otherwise, i = 1, . . . ,52. Also, let N denote the number of 
cards that need be turned over until all 4 aces appear. That is, the final ace 
appears on the Nth card to be turned over. Is the equation 

valid? If not, why is Wald's equation not applicable? 
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16. In Example 7.7, suppose that potential customers arrive in accordance 
with a renewal process having interarrival distribution F. Would the 
number of events by time t constitute a (possible delayed) renewal process 
if an event corresponds to a customer 

(a) entering the bank? 
(b) leaving the bank? 

What if F were exponential? 

'17. Compute the renewal function when the interarrival distribution F 
is such that 

1 - F(t) = pe-''I' + (1 - p)e-@~' 

18. For the renewal process whose interarrival times are uniformly 
distributed over (0, I), determine the expected time from t = 1 until the 
next renewal. 

19. For a renewal reward process consider 

where W, represents the average reward earned during the first n cycles. 
Show that W, -, E [ R ] / E [ X ]  as n + a. 

20. Consider a single-server bank for which customers arrive in accord- 
ance with a Poisson process with rate A. If a customer will only enter the 
bank if the server is free when he arrives, and if the service time of a 
customer has the distribution G, then what proportion of time is the 
server busy? 

'21. The lifetime of a car has a distribution H and probability density h. 
Ms. Jones buys a new car as soon as her old car either breaks down or 
reaches the age of T years. A new car costs C1 dollars and an additional cost 
of C2 dollars is incurred whenever a car breaks down. Assuming that a 
T-year-old car in working order has an expected resale value R(T), what is 
Ms. Jones' long-run average cost? 

22. If H is the uniform distribution over (2,8) and if C1 = 4, C2 = 1, and 
R(T) = 4 - (T/2), then what value of T minimizes Ms. Jones' long-run 
average cost in Exercise 21? 

23. In Exercise 21 suppose that H is exponentially distributed with mean 
5, C, = 3, C2 = $, R(T) = 0. What value of T minimizes Ms. Jones' 
long-run average cost? 
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24. Consider a train station to which customers arrive in accordance with 
a Poisson process having rate A. A train is summoned whenever there are N 
customers waiting in the station, but it takes K units of time for the train to 
arrive at the station. When it arrives, it picks up all waiting customers. 
Assuming that the train station incurs a cost at a rate of nc per unit time 
whenever there are n customers present, find the long-run average cost. 

25. In Example 7.13, what proportion of the defective items produced is 
discovered? 

26. Consider a single-server queueing system in which customers arrive in 
accordance with a renewal process. Each customer brings in a random 
amount of work, chosen independently according to the distribution G .  The 
server serves one customer at a time. However, the server processes work at 
rate i per unit time whenever there are i customers in the system. For 
instance, if a customer with workload 8 enters service when there are 3 other 
customers waiting in line, then if no one else arrives that customer will 
spend 2 units of time in service. If another customer arrives after 1 unit of 
time, then our customer will spend a total of 1.8 units of time in service 
provided no one else arrives. 

Let denote the amount of time customer i spends in the system. Also, 
define E [W] by 

E[W] = lim (W, + + W,)/n 
n - m  

and so E [W] is the average amount of time a customer spends in the system. 
Let N denote the number of customers that arrive in a busy period. 

(a) Argue that 
E[W] = EIWl + ... + WN]/E[N] 

Let Li denote the amount of work customer i brings into the system; and 
so the Li, i 2 1, are independent random variables having distribution G. 

(b) Argue that at any time t, the sum of the times spent in the system by 
all arrivals prior to t is equal to the total amount of work processed by 
time t .  

Hint: Consider the rate at which the server processes work. 

(c) Argue that 
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(d) Use Wald's equation (see Exercise 12) to conclude that 

where p is the mean of the distribution G. That is, the average time that 
customers spend in the system is equal to the average work they bring to 
the system. 

*27. For a renewal process, let A(t) be the age at time t .  Prove that if 
I( < oo, then with probability 1 

28. If A(t) and Y(t) are respectively the age and the excess at time t of a 
renewal process having an interarrival distribution F, calculate 

29. Determine the long run proportion of time that XNU)+l < C. 

*30. Satellites are launched according to a Poisson process with rate A. 
Each satellite will, independently, orbit the earth for a random time having 
distribution F. Let X(t) denote the number of satellites orbiting at time t. 

(a) Determine P(X(t) = k). 

Hint: Relate this to the M/G/ao queue. 

(b) If at least one satellite is orbiting, then messages can be transmitted 
and we say that the system is functional. If the first satellite is orbited at 
time t = 0, determine the expected time that the system remains 
functional. 

Hint: Make use of part (a) when k = 0. 

31. Each of n skiers continually, and independently, climbs up and then 
skis down a particular slope. The time it takes skier i to climb up has 
distribution F ; ,  and it is independent of her time to ski down, which has 
distribution Hi, i = 1, . . . , n. Let N(t)  denote the total number of times 
members of this group have skied down the slope by time t. Also, let U(t) 
denote the number of skiers climbing up the hill at time t. 

(a) What is lim,, , N(t)/t ? 
(b) Find lim,, , E [ U(t)] . 
(c) If all F, are exponential with rate A and all Gi are exponential with 
rate p, what is P(U(t) = k]? 
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32. Three marksmen take turns shooting at a target. Marksman 1 shoots 
until he misses, then marksman 2 begins shooting until he misses, then 
marksman 3 until he misses, and then back to marksman 1, and so on. Each 
time marksman 1 fires he hits the target, independently of the past, with 
probability c,  i = 1,2,3. Determine the proportion of time, in the long 
run, that each marksman shoots. 

33. Each time a certain machine breaks down it is replaced by a new one 
of the same type. In the long run, what percentage of time is the machine 
in use less than one year old if the life distribution of a machine is 

(a) uniformly distributed over (0,2)? 
(b) exponentially distributed with mean l ?  

'34. For an interarrival distribution F having mean p, we define the 
equilibrium distribution of F, denoted F,, by 

(a) Show that if F is an exponential distribution, then F = F, . 
(b) If for some constant c, 

0, x < c  
F(x) = 

1, x r c  

show that F, is the uniform distribution on (0, c). That is, if interarrival 
times are identically equal to c, then the equilibrium distribution is the 
uniform distribution on the interval (0, c). 
(c) The city of Berkeley, California, allows for two hours parking at all 
nonmetered locations within one mile of the University of California. 
Parking officials regularly tour around, passing the same point every two 
hours. When an official encounters a car he or she marks it with chalk. 
If the same car is there on the official's return two hours later, then a 
parking ticket is written. If you park your car in Berkeley and return after 
3 hours, what is the probability you will have received a ticket? 

35. Consider a system which can be in either state 1 or 2 or 3. Each time 
the system enters state i it remains there for a random amount of time 
having mean pi and then makes a transition into state j with probability Ej .  
Suppose 

(a) What proportion of transitions take the system into state l ?  
(b) If p, = 1, pz = 2, ps = 3, then what proportion of time does the 
system spend in each state? 
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36. Consider a semi-Markov process in which the amount of time that the 
process spends in each state before making a transition into a different state 
is exponentially distributed. What kind of a process is this? 

37. In a semi-Markov process, let tU denote the conditional expected time 
that the process spends in state i given that the next state is j ,  

(a) Present an equation relating pi to the tii. 
(b) Show that the proportion of time the process is in i and will next 
enter j is equal to eejtii/pi.  

Hint: Say that a cycle begins each time state i is entered. Imagine 
that you receive a reward at a rate of 1 per unit time whenever the 
process is in i and heading for j. What is the average reward per unit 
time? 

38. A taxi alternates between three different locations. Whenever it 
reaches location i, it stops and spends a random time having mean ti before 
obtaining another passenger, i = 1,2,3. A passenger entering the cab at 
location i will want to go to location j with probability ej. The time to 
travel from i to j is a random variable with mean mu. Suppose that t, = 1, 
t2 = 2, t3 = 4, P12 = 1, Pz3 = 1, P3, = 4 = 1 - P3,, m,, = 10, m23 = 20, 
m3, = 15, m3, = 25. Define an appropriate semi-Markov process and 
determine 

(a) the proportion of time the taxi is waiting at location i, and 
(b) the proportion of time the taxi is on the road from i to j ,  i, 
j = 1,2,3. 

*39. Consider a renewal process having the gamma (n, I) interarrival 
distribution, and let Y(t) denote the time from t until the next renewal. Use 
the theory of semi-Markov processes to show that 

1 " 
lim P(Y(t) < x] = - Gi,k(x) 
t - r -  n i = l  

where GiSk(x) is the gamma (i, 1) distribution function. 

40. To prove Equation (7.24), define the following notation: 

X{ 3 time spent in state i on the j th  visit to this state; 

Ni(m) = number of visits to state i in the first m transitions 
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In terms of this notation, write expressions for 

(a) the amount of time during the first m transitions that the process is in 
state i; 
(b) the proportion of time during the first m transitions that the process 
is in state i. 

Argue that, with probability 1, 

(d) Ni(m)/m -, ni as m -, w. 

(e) Combine parts (a), (b), (c), and (d) to prove Equation (7.24). 

41. Let Xi, i = 1,2,  . . . , be the interarrival times of the renewal process 
(N(t)J, and let Y, independent of the Xi,  be exponential with rate A. 

(a) Use the lack of memory property of the exponential to argue that 

PIX, + ... + X" < Y J  = (PIX < Y])" 

(b) Use Part (a) to show that 

where X has the interarrival distribution. 

42. Write a program to approximate m(t) for the interarrival distribution 
F* G, where F is exponential with mean 1 and G is exponential with 
mean 3. 

43. Let Xi,  i 2 1, be independent random variables with pi = P(X = j ] ,  
j 2 1. If pj = . j ,  j = 1,2,3,4,  find the expected time and the variance of 
the number of variables that need be observed until the pattern 1,2,3,  1 ,2  
occurs. 

44. A coin that comes up heads with probability 0.6 is continually flipped. 
Find the expected number of flips until either the sequence t h h t or the 
sequence t t t occurs, and find the probability that t t t occurs first. 

45. Random digits, each of which is equally likely to be any of the digits 
0 through 9, are observed in sequence. 

(a) Find the expected time until a run of 10 distinct values occurs. 
(b) Find the expected time until a run of 5 distinct values occurs.. 
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Chapter 8 
Queueing Theory 

8.1. Introduction 

In this chapter we will study a class of models in which customers arrive in 
some random manner at a service facility. Upon arrival they are made to 
wait in queue until it is their turn to be served. Once served they are 
generally assumed to leave the system. For such models we will be interested 
in determining, among other things, such quantities as the average number 
of customers in the system (or in the queue) and the average time a customer 
spends in the system (or spends waiting in the queue). 

In Section 8.2 we derive a series of basic queueing identities which are of 
great use in analyzing queueing models. We also introduce three different 
sets of limiting probabilities which correspond to what an arrival sees, what 
a departure sees, and what an outside observer would see. 

In Section 8.3 we deal with queueing systems in which all of the defining 
probability distributions are assumed to be exponential. For instance, 
the simplest such model is to assume that customers arrive in accordance 
with a Poisson process (and thus the interarrival times are exponentially 
distributed) and are served one at a time by a single server who takes an 
exponentially distributed length of time for each service. These exponential 
queueing models are special examples of continuous-time Markov chains 
and so can be analyzed as in Chapter 6. However, at the cost of a (very) 
slight amount of repetition we shall not assume the reader to be familiar 
with the material of Chapter 6 ,  but rather we shall redevelop any needed 
material. Specifically we shall derive anew (by a heuristic argument) the 
formula for the limiting probabilities. 
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In Section 8.4 we consider models in which customers move randomly 
among a network of servers. The model of Section 8.4.1 is an open system 
in which customers are allowed to enter and depart the system, whereas the 
one studied in Section 8.4.2 is closed in the sense that the set of customers 
in the system is constant over time. 

In Section 8.5 we study the model M/G/l, which while assuming Poisson 
arrivals, allows the service distribution to be arbitrary. To analyze this 
model we first introduce in Section 8.5.1 the concept of work, and then use 
this concept in Section 8.5.2 to help analyze this system. In Section 8.5.3 we 
derive the average amount of time that a server remains busy between idle 
periods. 

In Section 8.6 we consider some variations of the model M/G/l. In 
particular in Section 8.6.1 we suppose that bus loads of customers arrive 
according to a Poisson process and that each bus contains a random 
number of customers. In Section 8.6.2 we suppose that there are two 
different classes of customers-with type 1 customers receiving service 
priority over type 2. 

In Section 8.7 we consider a model with exponential service times but 
where the interarrival times between customers is allowed to have an 
arbitrary distribution. We analyze this model by use of an appropriately 
defined Markov chain. We also derive the mean length of a busy period and 
of an idle period for this model. 

In the final section of the chapter we talk about multiservers systems. We 
start with loss systems, in which arrivals, finding all servers busy, are 
assumed to depart and as such are lost to the system. This leads to the 
famous result known as Erlang's loss formula, which presents a simple 
formula for the number of busy servers in such a model when the arrival 
process in Poisson and the service distribution is general. We then discuss 
multiserver systems in which queues are allowed. However, except in the 
case where exponential service times are assumed, there are very few explicit 
formulas for these models. We end by presenting an approximation for the 
average time a customer waits in queue in a k-server model which assumes 
Poisson arrivals but allows for a general service distribution. 

8.2. Preliminaries 

In this section we will derive certain identities which are valid in the great 
majority of queueing models. 

8.2.1. Cost Equations 

Some fundamental quantities of interest for queueing models are 
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L,  the average number of customers in the system; 
LQ,  the average number of customers waiting in queue; 
W, the average amount of time a customer spends in the system; 
WQ, the average amount of time a customer spends waiting in queue. 

A large number of interesting and useful relationships between the 
proceding and other quantities of interest can be obtained by making use of 
the following idea: Imagine that entering customers are forced to pay 
money (according to some rule) to the system. We would then have the 
following basic cost identity 

average rate at which the system earns 

= A, x average amount an entering customer pays (8.1) 

where A, is defined to be average arrival rate of entering customers. That is, 
if N(t) denotes the number of customer arrivals by time t, then 

N(t) Aa = lim - 
t+m t 

We now present an heuristic proof of Equation (8.1). 

Heuristic Proof of Equation (8.1) Let T be a fixed large number. In 
two different ways, we will compute the average amount of money the 
system has earned by time T. One one hand, this quantity approximately 
can be obtained by multiplying the average rate at which the system earns 
by the length of time T. On the other hand, we can approximately compute 
it by multiplying the average amount paid by an entering customer by the 
average number of customers entering by time T (and this latter factor is 
approximately 1,T) .  Hence, both sides of Equation (8.1) when multiplied 
by T are approximately equal to the average amount earned by T. The 
result then follows by letting T -, m.* 

By choosing appropriate cost rules, many useful formulas can be 
obtained as special cases of Equation (8.1). For instance, by supposing that 
each customer pays $1 per unit time while in the system, Equation (8.1) 
yields the so-called Little's formula, 

* This can be made into a rigorous proof provided we assume that the queueing process is 
regenerative in the sense of Section 7.5. Most models, including all the ones in this chapter, 
satisfy this condition. 
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This follows since, under this cost rule, the rate at which the system earns 
is just the number in the system, and the amount a customer pays is just 
equal to its time in the system. 

Similarly if we suppose that each customer pays $1 per unit time while in 
queue, then Equation (8.1) yields 

LQ = La WQ (8.3) 

By supposing the cost rule that each customer pays $1 per unit time while in 
service we obtain from Equation (8.1) that the 

average number of customers in service = I ,E[S ]  (8.4) 

where E [S] is defined as the average amount of time a customer spends in 
service. 

It should be emphasized that Equations (8.1) through (8.4) are valid for 
almost all queueing models regardless of the arrival process, the number of 
servers, or queue discipline. 

8.2.2. Steady-State Probabilities 

Let X(t) denote the number of customers in the system at time t and define 
P,, n 1 0, by 

P, = lim P(X(t) = n) 
t - f m  

where we assume the above limit exists. In other words, P, is the limiting 
or long-run probability that there will be exactly n customers in the system. 
It is sometimes referred to as the steady-state probability of exactly n 
customers in the system. It also usually turns out that P, equals the (long- 
run) proportion of time that the system contains exactly n customers. For 
example, if Po = 0.3, then in the long-run, the system will be empty of 
customers for 30 percent of the time. Similarly, PI = 0.2 would imply that 
for 20 percent of the time the system would contain exactly one customer.* 

Two other sets of limiting probabilities are (a,, n 1 0) and (d,, n r 0), 
where 

a, = proportion of customers that find n 
in the system when they arrive, and 

d, = proportion of customers leaving behind n 
in the system when the depart 

* A sufficient condition for the validity of the dual interpretation of P,, is that the queueing 
process be regenerative. 
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That is, P, is the proportion of time during which there are n in the system; 
a, is the proportion of arrivals that find n; and d, is the proportion of 
departures that leave behind n. That these quantities need not always be 
equal is illustrated by the following example. 

Example 8.1 Consider a queueing model in which all customers have 
service times equal to 1, and where the times between successive customers 
are always greater than 1 [for instance, the interarrival times could be 
uniformly distributed over (1,2)]. Hence, as every arrival finds the system 
empty and every departure leaves it empty, we have 

However, 

as the system is not always empty of customers. + 
It was, however, no accident that a, equaled d, in the previous example. 

That arrivals and departures always see the same number of customers is 
always true as is shown in the next proposition. 

Proposition 8.1 In any system in which customers arrive one at a time 
and are served one at a time 

Proof An arrival will see n in the system whenever the number in the 
system goes from n to n + 1; similarly, a departure will leave behind n 
whenever the number in the system goes from n + 1 to n. Now in any 
interval of time T the number of transitions from n to n + 1 must equal to 
within 1 the number from n + 1 to n. [For instance, if transitions from 2 to 
3 occur 10 times, then 10 times there must have been a transition back to 2 
from a higher state (namely, 3).] Hence, the rate of transitions from n to 
n + 1 equals the rate from n + 1 to n; or, equivalently, the rate at which 
arrivals find n equals the rate at which departures leave n. The result now 
follows since the overall arrival rate must equal the overall departure rate 
(what goes in eventually goes out.) + 

Hence, on the average, arrivals and departures always see the same 
number of customers. However, as Example 8.1 illustrates, they do not, in 
general, see the time averages. One important exception where they do is in 
the case of Poisson arrivals. 
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Proposition 8.2 Poisson arrivals always see time averages. In 
particular, for Poisson arrivals, 

Pn = an 

To understand why Poisson arrivals always see time averages, consider an 
arbitrary Poisson arrival. If we knew that it arrived at time t ,  then the 
conditional distribution of what it sees upon arrival is the same as the 
unconditional distribution of the system state at time t. For knowing that an 
arrival occurs at time t gives us no information about what occurred prior 
to t. (Since the Poisson process has independent increments, knowing that 
an event occurred at time t does not affect the distribution of what occurred 
prior to t.) Hence, an arrival would just see the system according to the 
limiting probabilities. 

Contrast the foregoing with the situation of Example 8.1 where knowing 
that an arrival occurred at time t tells us a great deal about the past; in 
particular it tells us that there have been no arrivals in (t - 1 ,  t). Thus, in 
this case, we cannot conclude that the distribution of what an arrival at time 
t observes is the same as the distribution of the system state at time t .  

For a second argument as to why Poisson arrivals see time averages, note 
that the total time the system is in state n by time T is (roughly) Pn T .  Hence, 
as Poisson arrivals always arrive at rate 1 no matter what the system state, 
it follows that the number of arrivals in [0, TI that find the system in state 
n is (roughly) 12PnT. In the long run, therefore, the rate at which arrivals 
find the system in state n is 12Pn and, as 12 is the overall arrival rate, it follows 
that 12Pn /12 = Pn is the proportion of arrivals that find the system in state n. 

8.3. Exponential Models 

8.3.1. A Single-Server Exponential Queueing System 

Suppose that customers arrive at a single-server service station in accord- 
ance with a Poisson process having rate 1. That is, the times between 
successive arrivals are independent exponential random variables having 
mean 1/12. Each customer, upon arrival, goes directly into service if the 
server is free and, if not, the customer joins the queue. When the server 
finishes serving a customer, the customer leaves the system, and the next 
customer in line, if there is any, enters service. The successive service 
times are assumed to be independent exponential random variables having 
mean 1/p. 

The above is called the M / M / l  queue. The two M's refer to the fact that 
both the interarrival and service distributions are exponential (and thus 
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memoryless, or Markovian), and the 1 to the fact that there is a single 
server. To analyze it, we shall begin by determining the limiting prob- 
abilities P,,, for n = 0, 1, ... . To do so, think along the following lines. 
Suppose that we have an infinite number of rooms numbered 0, 1,2, . . . , 
and suppose that we instruct an individual to enter room n whenever there 
are n customers in the system. That is, he would be in room 2 whenever 
there are two customers in the system; and if another were to arrive, then he 
would leave room 2 and enter room 3. Similarly, if a service would take 
place he would leave room 2 and enter room 1 (as there would now be only 
one customer in the system). 

Now suppose that in the long-run our individual is seen to have entered 
room 1 at the rate of ten times an hour. Then at what rate must he have left 
room l? Clearly, at this same rate of ten times an hour. For the total 
number of times that he enters room 1 must be equal to (or one greater 
than) the total number of times he leaves room 1. This sort of argument 
thus yields the general principle which will enable us to determine the state 
probabilities. Namely, for each n 2 0, the rate at which the process enters 
state n equals the rate at which it leaves state n. Let us now determine these 
rates. Consider first state 0. When in state 0 the process can leave only by 
an arrival as clearly there cannot be a departure when the system is empty. 
Since the arrival rate is I and the proportion of time that the process is in 
state 0 is Po,  it follows that the rate at which the process leaves state 0 is 
IPo. On the other hand, state 0 can only be reached from state 1 via a 
departure. That is, if there is a single customer in the system and he 
completes service, then the system becomes empty. Since the service rate is 
p and the proportion of time that the system has exactly one customer is P I ,  
it follows that the rate at which the process enters state 0 is pPl. 

Hence, from our rate-equality principle we get our first equation, 

Now consider state 1. The process can leave this state either by an arrival 
(which occurs at rate I )  or a departure (which occurs at rate p). Hence, 
when in state 1, the process will leave this state at a rate of I + p.* Since the 
proportion of time the process is in state 1 is P I ,  the rate at which the 
process leaves state 1 is ( I  + p)Pl. On the other hand, state 1 can be entered 
either from state 0 via an arrival or from state 2 via a departure. Hence, the 
rate at which the process enters state 1 is IPo + &. Because the reasoning 

* If one event occurs at rate 1 and another occurs at ratep, then the total rate at which either 
event occurs is 1 + p. Suppose one man earns $2 per hour and another earns $3 per hour; then 
together they clearly earn $5 per hour. 
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for other states is similar, we obtain the following set of equations: 

State Rate at which the process leaves = rate at which it enters 
0 np0 = ppl 

n , n r  1 (2 + p)Pn = APn-I + Ppn+~ (8-5) 

The set of Equations (8.5) which balances the rate at which the process 
enters each state with the rate at which it leaves that state is known as 
balance equations. 

In order to solve Equations (8.5), we rewrite them to obtain 

Solving in terms of Po yields 

Po = Po, 

To determine Po we use the fact that the Pn must sum to 1, and thus 
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Notice that for the preceding equations to make sense, it is necessary for 
A/p to be less than 1. For otherwise Cz=,  (Up)"  would be infinite and all 
the Pn would be 0. Hence, we shall assume that A/p < 1. Note that it is quite 
intuitive that there would be no limiting probabilities if A > p .  For suppose 
that I > p.  Since customers arrive at a Poisson rate A, it follows that the 
expected total number of arrivals by time t  is I t .  On the other hand, what 
is the expected number of customers served by time t?  If there were always 
customers present, then the number of customers served would be a Poisson 
process having rate p  since the time between successive services would be 
independent exponentials having mean 1 / p .  Hence, the expected number of 
customers served by time t  is no greater than p t ;  and, therefore, the 
expected number in the system at time t  is at least 

Now if A > p ,  then the above number goes to infinity at t  becomes large. 
That is, A/p > 1 ,  the queue size increases without limit and there will be no 
limiting probabilities. Note also that the condition A/p < 1 is equivalent to 
the condition that the mean service time be less than the mean time between 
successive arrivals. This is the general condition that must be satisfied for 
limited probabilities to exist in most single-server queueing systems. 

Now let us attempt to express the quantities L,  LQ, W, and WQ in terms 
of the limiting probabilities Pn.  Since Pn is the long-run probability that the 
system contains exactly n customers, the average number of customers in 
the system clearly is given by 

where the last equation followed upon application of the algebraic identity 

The quantities W, WQ, and LQ now can be obtained with the help of 
Equations (8.2) and (8 .3) .  That is, since A,  = A, we have from Equation (8.7) 
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that 

Example 8.2 Suppose that customers arrive at a Poisson rate of one per 
every 12 minutes, and that the service time is exponential at a rate of one 
service per 8 minutes. What are L and W? 

Solution: Since I  = &, p  = Q, we have 

Hence, the average number of customers in the system is two, and the 
average time a customer spends in the system is 24 minutes. 

Now suppose that the arrival rate increases 20 percent to A  = &. What 
is the corresponding change in L and W? Again using Equations (8.7), 
we get 

L = 4 ,  W = 4 0  

Hence, an increase of 20 percent in the arrival rate doubled the average 
number of customers in the system. 

To understand this better, write Equations (8.7) as 

From these equations we can see that when I / p  is near 1, a slight increase 
in A/p will lead to a large increase in L and W. + 
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A Technical Remark We have used the fact that if one event occurs at 
an exponential rate A, and another independent event at an exponential rate 
p, then together they occur at an exponential rate A + p. To check this 
formally, let T,  be the time at which the first event occurs, and T,  the time 
at which the second event occurs. Then 

PIT, r t )  = 1 - e-", 

Now if we are interested in the time until either T, or T,  occurs, then we are 
interested in T = min(T,, T,). Now 

= 1 - P(min(T,, T,) > t )  

However, min(T,, T,) > t if and only if both T, and T, are greater than t ;  
hence, 

P ( T r  t )  = 1 -PIT,  > t, T, > t )  

Thus, T has an exponential distribution with rate A + p,  and we are 
justified in adding the rates. + 

Let W* denote the amount of time an arbitrary customer spends in the 
system. To obtain the distribution of W*, we condition on the number in 
the system when the customer arrives. This yields 

m 

P(W* r a] = P(W* 5 a ( n  in the system when he arrives) 
n = O  

x P(n in the system when he arrives) (8.9) 

Now consider the amount of time that our customer must spend in the 
system if there are already n customers present when he arrives. If n = 0, 
then his time in the system will just be his service time. When n 1 1, there 
will be one customer in service and n - 1 waiting in line ahead of our 
arrival. The customer in service might have been in service for some time, 
but due to the lack of memory of the exponential distribution (see Section 
5.2), it follows that our arrival would have to wait an exponential amount 
of time with rate p for this customer to complete service. As he also would 
have to wait an exponential amount of time for each of the other n - 1 
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customers in line, it follows, upon adding his own service time, that the 
amount of time that a customer must spend in the system if there are 
already n customers present when he arrives is the sum of n + 1 independent 
and identically distributed exponential random variables with rate p. But it 
is known (see Section 5.2.3) that such a random variable has a gamma 
distribution with parameters (n + I ,  p). That is, 

P (W * r a 1 n in the system when he arrives) 

Because 

P (n  in the system when he arrives] = P,, (since Poisson arrivals) 

we have from Equation (8.9) and the preceding that 

" (At)" 

= S: (p - 1)e-"' 1 7 dt (by interchanging) 
n = o  n. 

In other words, W*, the amount of time a customer spends in the system, 
is an exponential random variable with rate p - A. (As a check, we note 
that E[W*] = 1/(p - A) which checks with Equation (8.8) since 
W = E[W*].) 

Remark Another argument as to why W* is exponential with rate p - 1 
is as follows. If we let N denote the number of customers in the system as 
seen by an arrival, then this arrival will spend N + 1 service times in the 
system before departing. Now, 
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In words, the number of services that have to be completed before our 
arrival departs is a geometric random variable with parameter 1 - I /p.  
Therefore, after each service completion our customer will be the one 
departing with probability 1 - Up. Thus, no matter how long the customer 
has already spent in the system, the probability he will depart in the next 
h time units is ph + o(h), the probability that a service ends in that time, 
multiplied by 1 - I /p.  That is, the customer will depart in the next h time 
units with probability (p  - I)h + o(h); which says that the hazard rate 
function of W* is the constant p - I. But only the exponential has a 
constant hazard rate, and so we can conclude that W* is exponential with 
rate p - A. 

8.3.2. A Single-Server Exponential Queueing System 
Having Finite Capacity 

In the previous model, we assumed that there was no limit on the number 
of customers that could be in the system at the same time. However, in 
reality there is always a finite system capacity N, in the sense that there can 
be no more than N customers in the system at any time. By this, we mean 
that if an arriving customers finds that there are already N customers 
present, then he does not enter the system. 

As before, we let Pn,  0 I n I N, denote the limiting probability that 
there are n customers in the system. The rate-equality principle yields the 
following set of balance equations: 

State Rate at which the process leaves = rate at which it enters 

0 IPo = pP1 

1 s n s N - 1  (12 + p)Pn = w n -  1 + i u p n +  1 

N pPN = 

The argument for state 0 is exactly as before. Namely, when in state 0, 
the process will leave only via an arrival (which occurs at rate I )  and hence 
the rate at which the process leaves state 0 is IPo. On the other hand, the 
process can enter state 0 only from state 1 via a departure; hence, the rate 
at which the process enters state 0 is pP,. The equation for states n, where 
1 s n c N, is the same as before. The equation for state N is different 
because now state N can only be left via a departure since an arriving 
customer will not enter the system when it is in state N ;  also, state N can 
now only be entered from state N - 1 (as there is no longer a state N + 1) 
via an arrival. 
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To solve, we again rewrite the preceding system of equations: 

L 
PI = -Po, 

P 

, 1 sn I N -  1 
P 

I 
PN = - PN-1 

P 

which, solving in terms of Po,  yields 

1 
PI = -Po, 

P 

By using the fact that c:=, Pn = 1, we obtain 

and hence from Equation (8.10) we obtain 

Note that in this case, there is no need to impose the condition that L/p < 1. 
The queue size is, by definition, bounded so there is no possibility of its 
increasing indefinitely. 
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As before, L may be expressed in terms of Pn to yield 

which after some algebra yields 

In deriving W, the expected amount of time a customer spends in the 
system, we must be a little careful about what we mean by a customer. 
Specifically, are we including those "customers" who arrive to find the 
system full and thus do not spend any time in the system? Or, do we just 
want the expected time spent in the system by a customer that actually 
entered the system? The two questions lead, of course, to different answers. 
In the first case, we have A, = A; whereas in the second case, since the 
fraction of arrivals that actually enter the system is 1 - PN, it follows that 
A, = A ( l  - PN). Once it is clear what we mean by a customer, W can be 
obtained from 

Example 8.3 Suppose that it costs cp dollars per hour to provide service 
at a rate p. Suppose also that we incur a gross profit of A dollars for each 
customer served. If the system has a capacity N, what service rate p 
maximizes our total profit? 

Solution:. To solve this, suppose that we use rate p. Let us determine 
the amount of money coming in per hour and subtract from this the 
amount going out each hour. This will give us our profit per hour, and we 
can choose p so as to maximize this. 

Now, potential customers arrive at a rate A. However, a certain 
proportion of them do not join the system; namely, those who arrive 
when there are N customers already in the system. Hence, since P, is the 
proportion of time that the system is full, it follows that entering 
customers arrive at a rate of A ( l  - PN). Since each customer pays %A, it 
follows that money comes in at an hourly rate of A ( l  - PN)A and since 
it goes out at an hourly rate of cp, it follows that our total profit per 
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hour is given by 

Profit per hour = A(l - PN)A - cp 

For instance if N = 2, A = 1, A = 10, c = 1, then 

10[1 - ( 1 / ~ ) ~ ]  
Profit per hour = 

i - ( 1 1 ~ ) ~  - P 

in order to maximize profit we differentiate to obtain 

d (2p3 - 3~~ + 1) 
- [Profit per hour] = 10 - 1 
d~ (p3 - 11, 

The value of p that maximizes our profit now can be obtained by 
equating to zero and solving numerically. + 
In the previous two models, it has been quite easy to define the state of 

the system. Namely, it was defined as the number of people in the system. 
Now we shall consider some examples where a more detailed state space is 
necessary. 

8.3.3. A Shoeshine Shop 

Consider a shoeshine shop consisting of two chairs. Suppose that an 
entering customer first will go to chair 1. When his work is completed in 
chair 1, he will go either to chair 2 if that chair is empty or else wait in 
chair 1 until chair 2 becomes empty. Suppose that a potential customer will 
enter this shop as long as chair 1 is empty. (Thus, for instance, a potential 
customer might enter even if there is a customer in chair 2). 

If we suppose that potential customers arrive in accordance with a 
Poisson process at rate I, and that the service times for the two chairs are 
independent and have respective exponential rates of p, and p,, then 

(a) what proportion of potential customers enters the system? 
(b) what is the mean number of customers in the system? 
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(c) what is the average amount of time that an entering customer spends 
in the system? 

To begin we must first decide upon an appropriate state space. It is clear 
that the state of the system must include more information than merely the 
number of customers in the system. For instance, it would not be enough to 
specify that there is one customer in the system as we would also have to 
know which chair he was in. Further, if we only know that there are two 
customers in the system, then we would not know if the man in chair 1 is 
still being served or if he is just waiting for the person in chair 2 to finish. 
To account for these points, the following state space, consisting of the five 
states, (0, O), (1, O), (0, I), (1, I), and (b, I), will be used. The states have the 
following interpretation: 

State Interpretation 

(0,O) There are no customers in the system. 
(1,O) There is one customer in the system, and he is in chair 1. 
(0, 1) There is one customer in the system, and he is in chair 2. 
(1, 1) There are two customers in the system, and both are 

presently being served. 
(b, 1) There are two customers in the system, but the customer in 

the first chair has completed his work in that chair and is 
waiting. for the second chair to become free. 

It should be noted that when the system is in state (b, I), the person in 
chair 1, though not being served, is nevertheless "blocking" potential 
arrivals from entering the system. 

As a prelude to writing down the balance equations, it is usually worth- 
while to make a transition diagram. This is done by first drawing a circle for 
each state and then drawing an arrow labeled by the rate at which the 
process goes from one state to another. The transition diagram for this 
model is shown in Figure 8.1. The explanation for the diagram is as follows: 

The arrow from state (0,O) to state (1,O) which is labeled 1 means that 
when the process is in state (0, 0), that is, when the system is empty, then it 
goes to state (1,O) at a rate 1, that is via an arrival. The arrow from (0, 1) 
to (1, 1) is similarly explained. 

When the process is in state (1, 0), it will go to state (0, 1) when the 
customer in chair 1 is finished and this occurs at a rate p, ; hence the arrow 
from (1,O) to (0, 1) labeled p, . The arrow from (1, 1) to (b, 1) is similarly 
explained. 

When in state (b, 1) the process will go to state (0, 1) when the customer 
in chair 2 completes his service (which occurs at rate p,); hence the arrow 
from (b, 1) to (0, 1) labeled p,. Also when in state (1, 1) the process will 
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Figure 8.1. A transition diagram. 

go to state (1,O) when the man in chair 2 finishes and hence the arrow from 
(1,l) to (1,O) labeled p2. Finally, if the process is in state (0, I), then it will 
go to state (0,O) when the man in chair 2 completes his service, hence the 
arrow from (0, 1) to (0,O) labeled p2. 

Because there are no other possible transitions, this completes the 
transition diagram. 

To write the balance equations we equate the sum of the arrows 
(multiplied by the probability of the states where they originate) coming 
into a state with the sum of the arrows (multiplied by the probability of the 
state) going out of that state. This gives 

State Rate that the process leaves = rate that it enters 

(0, 0) APoo = ~ z P o 1  

(1,O) ~ l P l 0  = APoo + c(2Pl l  

(0, 1) ( A  + ~2)Pol = plPl0 + ~ 2 ~ b l  

(1,1) (PI + 112)Pll = AP0l 

(b, 1) h P b l  = plp1l 

These along with the equation 

may be solved to determine the limiting probabilities. Though it is easy to 
solve the preceding equations, the resulting solutions are quite involved and 
hence will not be explicitly presented. However, it is easy to answer our 
questions in terms of these limiting probabilities. First, since a potential 
customer will enter the system when the state is either (0,O) or (0, I), it 
follows that the proportion of customers entering the system is Po, + Pol. 
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Secondly, since there is one customer in the system whenever the state is 
(0, 1) or (1,O) and two customers in the system whenever the state is (1, 1) 
or (b, I), it follows that L,  the average number in the system, is given by 

To derive the average amount of time that an entering customer spends in 
the system, we use the relationship W = L/Aa. Since a potential customer 
will enter the system when in state (0,O) or (0, l), it follows that 
La = A(Poo + Pol) and hence 

Example 8.4 (a) If A = 1, p, = 1, p, = 2, then calculate the preceding 
quantities of interest. 

(b) If A = 1, p l  = 2, p2 = 1, then calculate the preceding. 

Solution: (a) Solving the balance equations yields 

Po0 = 4% PIO = 4% Pll = &, Pol = &, Pbl = -jS- 
Hence, 

L = % ,  w = +  
(b) Solving the balance equations yields 

1 Po0 = A ,  p10 = &, 5 1  = m, p b l  = &, P O 1  = A 
Hence, 

L = 1 ,  w = +  + 

8.3.4. A Queueing System with Bulk Service 

In this model, we consider a single-server exponential queueing system in 
which the server is able to serve two customers at the same time. Whenever 
the server completes a service, he then serves the next two customers at 
the same time. However, if there is only one customer in line, then he 
serves that customer by himself. We shall assume that his service time is 
exponential at rate p whether he is serving one or two customers. As usual, 
we suppose that customers arrive at an exponential rate A. One example of 
such a system might be an elevator or a cable car which can take at most two 
passengers at any time. 

It would seem that the state of the system would have to tell us not only 
how many customers there are in the system, but also whether one or two 
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Figure 8.2. 

are presently being served. However, it turns out that we can solve the 
problem easier not by concentrating on the number of customers in the 
system, but rather on the number in queue. So let us define the state as 
the number of customers waiting in queue, with two states when there is no 
one in queue. That is, let us have as a state space 0', 0, 1, 2, ..., with the 
interpretation 

State Interpretation 
0' No one in service 
0 Server busy; no one waiting 

n , n > O  n customers waiting 

The transition diagram is shown in Figure 8.2 and the balance equations are 

State Rate at  which the process leaves = rate at  which it enters 
of np0, = pp0 
0 (A + p)Po = APor + pP1 + pPZ 

n , n r  1 ( A  + p)Pn = en-, + pPn+2 

Now the set of equations 

has a solution of the form 
Pn = anPo 

To see this, substitute the preceding in Equation (8.13) to obtain 

Solving this for a yields the three roots: 

a = 1 ,  ff= 
- 1  - 

, and a = 
- 1  + 

2 2 
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As the first two are clearly not possible, it follows that 

Hence, 

where the bottom equation follows from the first balance equation. (We can 
ignore the second balance equation as one of these equations is always 
redundant.) To obtain Po,  we use 

or 

and thus 

where 

Note that for the preceding to be valid we need a < 1, or equivalently 
1 /p  < 2, which is intuitive since the maximum service rate is 2p, which must 
be larger than the arrival rate 1 to avoid overloading the system. 

All the relevant quantities of interest now can be determined. For 
instance, to determine the proportion of customers that are served alone, 
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we first note that the rate at which customers are served alone is 
IPof + pPl , since when the system is empty a customer will be served alone 
upon the next arrival and when there is one customer in queue he will be 
served alone upon a departure. As the rate at which customers are served is 
I ,  it follows that 

IPOI + pP1 
proportion of customers that are served alone = 

I 

Also, 

- - A(l - a )  " 
nan from Equation (8.14) 

A + ~ ( 1  - a ) n = l  

la  w 

- a - by algebraic identity nan = 
(1 - a)[A + ~ ( 1  - all 1 (1 - a)2 

and 

8.4. Network of Queues 

8.4.1. Open Systems 

Consider a two-server system in which customers arrive at a Poisson rate A 
at server 1. After being served by server 1 they then join the queue in front 
of server 2. We suppose there is infinite waiting space at both servers. Each 
server serves one customer at a time with server i taking an exponential 
time with rate pi for a service, i = 1,2. Such a system is called a tandem or 
sequential system (see Figure 8.3). 

To analyze this system we need to keep track of the number of customers 
at server 1 and the number at server 2. So let us define the state by the pair 
(n, m)-meaning that there are n customers at server 1 and m at server 2. 
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leaves 
system 

Figure 8.3. A tandem queue. 

The balance equations are 

State Rate that the process leaves = rate that it enters 

Rather than directly attempting to solve these (along with the equation 
E n , ,  Pn,, = 1) we shall guess at a solution and then verify that it indeed 
satisfies the preceding. We first note that the situation at server 1 is just as 
in an M/M/l model. Similarly, as it was shown in Section 6.6 that the 
departure process of an M/M/l queue is a Poisson process with rate I, it 
follows that what server 2 faces is also an M/M/l queue. Hence, the 
probability that there are n customers at server 1 is 

P(n at server 1) = (;?;YC - 3 
and, similarly, 

P [ m  at server 2) = (in! - ;) 
Now if the numbers of customers at servers 1 and 2 were independent 
random variables, then it would follow that . 

To verify that P,,, is indeed equal to the preceding (and thus that the 
number of customers at server 1. is independent of the number at server 2), 
all we need do is verify that the preceding satisfies the set of Equations 
(8.15)-this suffices since we know that the Pn,, are the unique solution of 
Equations (8.15). Now, for instance, if we consider the first equation of 
(8.15), we need to show that 
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which is easily verified. We leave it as an exercise to show that the P,,, , as 
given by Equation (8.16), satisfy all of the Equations (8.15), and are thus 
the limiting probabilities. 

From the preceding we see that L, the average number of customers in the 
system, is given by 

and from this we see that the average time a customer spends in the system is 

Remarks (i) The result (Equation 8.15) could have been obtained as a 
direct consequence of the time reversibility of an M/M/l (see Section 6.6). 
For not only does time reversibility imply that the output from server 1 is a 
Poisson process, but it also implies (Exercise 26 of Chapter 6) that the 
number of customers at server 1 is independent of the past departure times 
from server 1. As these past departure times constitute the arrival process to 
server 2, the independence of the numbers of customers in the two systems 
follows. 

(ii) Since a Poisson arrival sees time averages, it follows that in a tandem 
queue the numbers of customers an arrival (to server 1) sees at the two servers 
are independent random variables. However, it should be noted that this does 
not imply that the waiting times of a given customer at the two servers are 
independent. For a counter example suppose that A is very small with respect 
to ,u, = p2; and thus almost all customers have zero wait in queue at both 
servers. However, given that the wait in queue of a customer at server 1 is 
positive, his wait in queue at server 2 also will be positive with probability 
at least as large as 5 (why?). Hence, the waiting times in queue are not 
independent. Remarkably enough, however, it turns out that the total times 
(that is, service time plus wait in queue) that an arrival spends at the two 
servers are indeed independent random variables. 

The preceding result can be substantially generalized. To do so, consider a 
system of k servers. Customers arrive from outside the system to server i, 
i = 1 ,  . . . , k, in accordance with independent Poisson process at rate ri; they 
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then join the queue at i until their turn at service comes. Once a customer is 
served by server i, he then joins the queue in front of server j, j = 1, . . . , k, 
with probability P". Hence, ~ i k _ ,  Pii 5 I ,  and I - ~ i k _  , PC represents 
the probability that a customer departs the system after being served by 
server i. 

If we let Aj denote the total arrival rate of customers to server j ,  then the 
Aj can be obtained as the solution of 

Equation (8.17) follows since rj is the arrival rate of customers to j coming 
from outside the system and, as Ai is the rate at which customers depart 
server i (rate in must equal rate out), liej is the arrival rate to j of those 
coming from server i. 

It turns out that the number of customers at each of the servers is 
independent and of the form 

P(n customers at server j j  = ( )  n t l  
pj pj 

where pj is the exponential service rate at server j and the Aj are the solution 
to Equation (8.17). Of course, it is necessary that $/pj < 1 for all j. 
To prove this, we first note that it is equivalent to asserting that the limiting 
probabilities P(nl , n,, . . . , nk) = P(nj  at server j ,  j = 1,  . . . , k] are given by 

which can be verified by showing that it satisfies the balance equations for 
this model. 

The average number of customers in the system is 

k 

L = average number at server j 
j =  1 

The average time a customer spends in the system can be obtained from 
L = 1 W with 1 = c;= rj. (Why not 1 = ~ j k =  Aj?) This yields 
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Remarks The result embodied in Equation (8.18) is rather remarkable 
in that it says that the distribution of the number of customers at server i 
is the same as in an M/M/l system with rates Ai and pi. What is 
remarkable is that in the network model the arrival process at node i need 
not be a Poisson process. For if there is a possibility that a customer 
may visit a server more than once (a situation called feedback), then the 
arrival process will not be Poisson. An easy example illustrating this is to 
suppose that there is a single server whose service rate is very large with 
respect to the arrival rate from outside. Suppose also that with probability 
p = 0.9 a customer upon completion of service is fed back into the system. 
Hence, at an arrival time epoch there is a large probability of another 
arrival in a short time (namely, the feedback arrival); whereas at an 
arbitrary time point there will be only a very slight chance of an arrival 
occurring shortly (since A is so very small). Hence, the arrival process does 
not possess independent increments and so cannot be Poisson. In fact even 
though it is straightforward to verify Equation (8.18) there does 
not appear to be, at present, any simple explanation as to why it is, in 
fact, true. 

Thus, we see that when feedback is allowed the steady-state probabilities 
of the number of customers at any given station have the same distribution 
as in an M/M/l model even though the model is not M/M/l. (Presumably 
such quantities as the joint distribution of the number at the station at two 
different time points will not be the same as for an M/M/l.) 

Example 8.5 Consider a system of two servers where customers from 
outside the system arrive at server 1 at a Poisson rate 4 and at server 2 
at a Poisson rate 5. The service rates of 1 and 2 are respectively 8 and 10. 
A customer upon completion of service at server 1 is equally likely to go to 
server 2 or to leave the system (i.e., PI, = 0, PI, = 3); whereas a departure 
from server 2 will go 25 percent of the time to server 1 and will depart 
the system otherwise (i.e., P,, = a, P,, = 0). Determine the limiting 
probabilities, L, and W. 

Solution: The total arrival rates to servers 1 and 2-call them A ,  and 
A,-can be obtained from Equation (8.17). That is, we have 

A, = 5 + $1, 
implying that 

I ,  = 6 ,  1, = 8 
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Hence, 

P(n at server 1, m at server 2) = ($)n)(f)mf 

= a$>"($>" 
and 

8.4.2. Closed Systems 

The queueing systems described in Section 8.4.1 are called open systems 
since customers are able to enter and depart the system. A system in which 
new customers never enter and existing ones never depart is called a closed 
system. 

Let us suppose that we have m customers moving among a system of k 
servers. When a customer completes service at server i, she then joins the 
queue in front of server j ,  j = 1, . . . , k, with probability P" , where we now 
suppose that c:=, ej = 1 for all i = 1, . . ., k. That is, P = [Po] is Markov 
transition probability matrix, which we shall assume is irreducible. Let 
n: = (n, , . . . , nk) denote the stationary probabilities for this Markov chain; 
that is, sr is the unique positive solution of 

If we denote the average arrival rate (or equivalently the average service 
completion rate) at server j by A,(j), j = 1, . . . , k then, analogous to 
Equation (8.17), the Am(j) satisfy 

Hence, from (8.19) we can conclude that 

Am(j) = Amnj, j =  1 ,2  ,..., k 
where 
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From Equation (8.21), we see that A, is the average service completion rate 
of the entire system, that is, it is the system throughput rate.* 

If we let Pm(nl , n2 , . . . , nk) denote the limiting probabilities 

Pm(nl , nZ , . . . , nk) = P[nj customers at server j ,  j  = 1 ,  . . . , k ]  

then, by verifying that they satisfy the balance equation, it can be shown 
that 

k k 

nz, . . . , nk) = 
[ j= 1 j j n  if j= r 1 t = m 

otherwise 

But from Equation (8.20) we thus obtain that 

t 0, 
where 

otherwise 

Equation (8.22) is not as useful as one might suppose, for in order to utilize 
it we must determine the normalizing constant C, given by Equation (8.23) 
which requires summing the products nr= (nj/pj)"j over all the feasible 

k vectors (n, , . . . , n,): Cj= nj = m. Hence, since there are 

vectors this is only computationally feasible for relatively small values 
of rn and k. 

We will now present an approach that will enable us to determine 
recursively many of the quantities of interest in this model without first 
computing the normalizing constants. To begin, consider a customer who 
has just left server i and is headed to server j, and let us determine the 
probability of the system as seen by this customer. In particular, let us 
determine the probability that this customer observes, at that moment, 

k n, customers at server I, I = 1, . . ., k, El= ,  nl = m - 1. This is done 

* We are using the notation of A,(j) and 1, to indicate the dependence on the number 
of customers in the closed system. This will be used in recursive relations we will develop. 
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as follows: 

P(customer observes n, at server I, 

1 = 1, . . . , k I customer goes from i to j) 

- P(state is (n, , . . . , ni + 1, . . . , nj, . . . , nk), customer goes from i to j) - 
P(customer goes from i to j ]  

- - (ni /pi) nr= 1 (~ j / / J j )~j  
K 

from (8.22) 

where C does not depend on n, , . . . , n,. But because the above is a 
k probability density on the set of vectors (n, , . . . , nk), Cj= nj = m - I,  

it follows from (8.22) that it must equal Pm-,(n1, . . . , n,). Hence, 

P(customer observes n, at server I, 

I = 1, ..., klcustomer goes from i to j) 
k 

= P m l n 1 ,  . . . n ) ,  C ni = m - 1 (8.24) 
i =  1 

As (8.24) is true for all i, we thus have proven the following proposition, 
known as the arrival theorem. 

Proposition 8.3 (The Arrival Theorem). In the closed network system 
with m customers, the system as seen by arrivals to server j is distributed as 
the stationary distribution in the same network system when there are only 
m - 1 customers. 

Denote by Lm(j)  and Wm(j) the average number of customers and the 
average time a customer spends at server j when there are m customers in 
the network. Upon conditioning on the number of customers found at 
server j by an arrival to that server, it follows that 

1 + E,[number at server j as seen by an arrival] 
Wm(j) = 

p.i 
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where the last equality follows from the arrival theorem. Now when there 
are rn - 1 customers in the system, then, from Equation (8.20), Am-,(j), 
the average arrival rate to server jj, satisfies 

Now, applying the basic cost identity Equation (8.1) with the cost rule being 
that each customer in the network system of rn - 1 customers pays one unit 
time while at server j, we obtain 

L m - ~ ( j )  = Am-1 njWm-i(j) (8.26) 

Using Equation (8.25), this yields 

Also using the fact that ~ j k =  Lm-l(j) = m - 1 (why?) we obtain, from 
Equation (8.26): 

k 

Hence, from Equation (8.27), we obtain the recursion 

1 (rn - l)njWm-i(j) Wm(j) = - + 
cij cij E;= 1 ni Wm-l(i) 

Starting with the stationary probabilities nj, j = 1, . . . , k, and Wl(j) = l/pj 
we can now use Equation (8.29) to determine recursively W,(j), 
W,(j), . . . , Wm(j). We can then determine the throughput rate Am by using 
Equation (8.28), and this will determine Lm( j )  by Equation (8.26). This 
recursive approach is called mean value analysis. 

Example 8.6 Consider a k-server network in which the customers move 
in a cyclic permutation. That is, 

+ = 1 i 1 , 2  k -  1 Pk,l= 1 

Let us determine the average number of customers at server j when there 
are two customers in the system. Now, for this network 

ni = l/k, i = 1, ..., k 
and as 
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we obtain from Equation (8.29) that 

1 1 = - +  2 k 

Pj Pj Ci = 1 l/Pi 
Hence, from Equation (8.28), 

2 2k 

I =  1 

and finally, using Equation (8.26), 

1 
L A j )  = A2 Wz(j) 

Another approach to learning about the stationary probabilities specified 
by Equation (8.22), which finesses the computational difficulties of 
computing the constant C,, is to use the Gibbs sampler of Section 4.9 to 
generate a Markov chain having these stationary probabilities. To begin, 
note that since there are always a total of rn customers in the system, 
Equation (8.22) may equivalently be written as a joint mass function of the 
numbers of customers at each of the servers 1, . . . , k - 1, as follows: 

k -  1 k-1 

= K n (aj)"], E nj s m 
j =  1 j =  1 

where aj = (njpk)/(nkpj), j = 1, .. . , k - 1. NOW, if N = (Nl, .. . , Nk-l) 
has the preceding joint mass function then, 
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It follows from the preceding that we may use the Gibbs sampler to 
generate the values of a Markov chain whose limiting probability mass 
function is Pm(nl , . . . , nk-,) as follows: 

1. Let (n,, ..., nk-,) be arbitrary nonnegative integers satisfying .. - 

$;inj I rn. 
2. Generate a random variable I that is equally likely to be any of 

1, ..., k - 1. 
3. If I = i, set s = rn - Cj,i nj, and generate the value of a random 

variable X having probability mass function 

4. Let ni = X and go to step 2. 

The successive values of the state vector (n, , . . . , n,-,, rn - Z ~ Z :  nj) 
constitute the sequence of states of a Markov chain with the limiting 
distribution P,. All quantities of interest can be estimated from this 
sequence. For instance, the average of the values of the j th  coordinate of 
these vectors will converge to the mean number of individuals at station j, 
the proportion of vectors whose j th coordinate is less than r will converge 
to the limiting probability that the number of individuals at station j is less 
than r, and so on. 

8.5. The System M/G/1 

8.5.1. Preliminaries: Work and Another Cost Identity 

For an arbitrary queueing system, let us define the work in the system at any 
time t to be the sum of the remaining service times of all customers in the 
system at time t. For instance, suppose there are three customers in the 
system-the one in service having been there for three of his required five 
units of service time, and both people in queue having service times of six 
units. Then the work at that time is 2 + 6 + 6 = 14. Let V denote the 
(time) average work in the system. 

Now recall the fundamental cost Equation (8.1), which states that the 

average rate at which the system earns 

= 1, x average amount a customer pays 
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and consider the following cost rule: Each customer pays at a rate of 
y/unit time when his remaining service time is y ,  whether he is in queue or 
in service. Thus, the rate at which the system earns is just the work in the 
system; so the basic identity yields that 

V = A,E[amount paid by a customer] 

Now, let S and Wif denote respectively the service time and the time a given 
customer spends waiting in queue. Then, since the customer pays at a con- 
stant rate of S per unit time while he waits in queue and at a rate of S - x 
after spending an amount of time x in service, we have 

E [amount paid by a customer] = E 

and thus 

It should be noted that the preceding is a basic queueing identity [like 
Equations (8.2)-(8.4)] and as such valid in almost all models. In addition, 
if a customer's service time is independent of his wait in queue (as is usually, 
but not always the case),+ then we have from Equation (8.30) that 

8.5.2. Application of Work to M/G/1 

The M/G/l model assumes (i) Poisson arrivals at rate A; (ii) a general 
service distribution; and (iii) a single server. In addition, we will suppose 
that customers are served in the order of their arrival. 

Now, for an arbitrary customer in an M/G/l system, 

Customer's wait in queue = work in the system when he arrives (8.32) 

this follows since there is only a single server (think about it!). Taking 
expectations of both sides of Equation (8.32) yields 

WQ = average work as seen by an arrival 

But, due to Poisson arrivals, the average work as seen by an arrival will 
equal V, the time average work in the system. Hence, for the model M/G/l, 

WQ = V 

' For an example where it is not true, see Section 8.6.2. 
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The preceding in conjunction with the identity 

yields the so-called Pollaczek-Khintchine formula, 

where E[S] and E[s2] are the first two moments of the service distribution. 
The quantities L,  LQ, and W can be obtained from Equation (8.33) as 

L Q = I W  - 
I ~ E  [s2] 

- 2(1 - IE [S]) ' 

Remarks (i) For the preceding quantities to be finite, we need 
IE [S] < 1. This condition is intutitive since we know from renewal theory 
that if the server was always busy, then the departure rate would be l/E[S] 
(see Section 7.3), which must be larger than the arrival rate I to keep things 
finite. 

(ii) Since E[S2] = Var(S) + (E[s])~, we see from Equations (8.33) and 
(8.34) that, for fixed mean service time, L, LQ, W, and WQ all increase as 
the variance of the service distribution increases. 

(iii) Another approach to obtain WQ is presented in Exercise 34. 

8.5.3. Busy Periods 

The system alternates between idle periods (when there are no customers in 
the system, and so the server is idle) and busy periods (when there is at least 
one customer in the system, and so the server is busy). 

Let us denote by I, and B,, respectively, the lengths of the nth idle and 
the nth busy period, n 1 1. Hence, in the first C J = ,  (4 + Bj) time units the 
server will be idle for a time C J = ,  I j ,  and so the proportion of time that the 
server will be idle, which of course is just Po, can be expressed as 

Po = proportion of idle time 

Il + ... + I, 
= lim 

n - m  Il + ... + I, + B1 + ... + B, 
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Now it is easy to see that the I , ,  I,, . . . are independent and identically 
distributed as are the B, , B, , . . . . Hence, by dividing the numerator and the 
denominator of the right side of the above by n, and then applying the 
strong law of large numbers, we obtain 

(I, + . , . + In)/n 
Po = lim 

n + m  (I, + - - + In)/n + (B, + - - + B,)/n 

where I and B represent idle and busy time random variables. 
Now I represents the time from when a customer departs and leaves the 

system empty until the next arrival. Hence, from Poisson arrivals, it follows 
that I is exponential with rate A, and so 

1 
E[I] = - 

1 
(8.36) 

To compute Po,  we note from Equation (8.4) (obtained from the funda- 
mental cost equation by supposing that a customer pays at a rate of one per 
unit time while in service) that 

average number of busy servers = AE[S] 

However, as the left-hand side of the above equals 1 - Po (why?), we have 

Po = 1 - I E [ S ]  (8.37) 

and, from Equations (8.35)-(8.37), 

Another quantity of interest is C, the number of customers served in a 
busy period. The mean of C can be computed by noting that, on the 
average, for every E [ C ]  arrivals exactly one will find the system empty 
(namely, the first customer in the busy period). Hence, 

and, as a. = Po = 1 - AE[S] because of Poisson arrivals, we see that 
4 
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8.6. Variations on the M/G/1 

8.6.1. The M/G/1 with Random-Sized Batch Arrivals 

Suppose that, as in the M/G/l, arrivals occur in accordance with a Poisson 
process having rate A. But now suppose that each arrival consists not of a 
single customer but of a random number of customers. As before there is a 
single server whose service times have distribution G. 

Let us denote by aj, j 2 1, the probability that an arbitrary batch consists 
of j customers; and let N denote a random variable representing the size of 
a batch and so P[N = jJ = ofi. Since 1, = ,IE(N), the basic formula for 
work [Equation (8.3 I)] becomes 

To obtain a second equation relating V to WQ, consider an average 
customer. We have that 

his wait in queue = work in system when he arrives 
+ his waiting time due to those in his batch 

Taking expectations and using the fact that Poisson arrivals see time 
averages yields 

WQ = V + E[waiting time due to those in his batch] 

Now, E(WB) can be computed by conditioning on the number in the batch, 
but we must be careful. For the probability that our average customer 
comes from a batch of size j is not ofi. For aj is the proportion of batches 
which are of size j ,  and if we pick a customer at random, it is more likely 
that he comes from a larger rather than a smaller batch. (For instance, 
suppose crl = crloo = t ,  then half the batches are of size 1 but 100/101 of 
the customers will come from a batch of size loo!) 

To determine the probability that our average customer came from a 
batch of size j we reason as follows: Let M be a large number. Then of the 
first M batches approximately M q  will be of size j ,  j 1 1, and thus there 
would have been approximately jMaj customers that arrived in a batch of 
size j. Hence, the proportion of arrivals in the first M batches that were 
from batches of size j is approximately jMaj/Cj jMaj. This proportion 
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becomes exact as M -, 00, and so we see that 

jq 
proportion of customers from batches of size j = - 

Cj j% 

We are now ready to compute E(WB), the exp.ected wait in queue due to 
others in the batch: 

E [WB] = E E [WB ( batch of size j ]  
i E [Nl 

Now if there are j customers in his batch, then our customer would have to 
wait for i - 1 of them to be served if he was ith in line among his batch 
members. As he is equally likely to be either lst, 2nd, . . ., or j th  in line 
we see that 

i 1 
E[WB I batch is of size j ]  = E (i - l)E(S) 7 

i = l  J 

Substituting this in Equation (8.40) yields 

and from Equations (8.38) and (8.39) we obtain 

Remarks (i) Note that the condition for WQ to be finite is that 

which again says that the arrival rate must be less than the service rate 
(when the server is busy). 
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(ii) For fixed value of E [N], WQ is increasing in Var[N], again indicating 
that "single-server queues do not like variation." 

(iii) The other quantities L, LQ, and W can be obtained by using 

W =  WQ + E[S], 

L = L,W = IE[N]W, 

LQ = IE [N] WQ 

8.6.2. Priority Queues 

Priority queuing systems are ones in which customers are classified into 
types and then given service priority according to their type. Consider the 
situation where there are two types of customers, which arrive according to 
independent Poisson processes with respective rates A, and I , ,  and have 
service distributions GI and G2. We suppose that type 1 customers are given 
service priority, in that service will never begin on a type 2 customer if a type 
1 is waiting. However, if a type 2 is being served and a type 1 arrives, we 
assume that the service of the type 2 is continued until completion. That is, 
there is no preemption once service has begun. 

Let W& denote the average wait in queue of a type i customer, i = 1,2. 
Our objective is to compute the W;. 

First, note that the total work in the system at any time would be exactly 
the same no matter what priority rule was employed (as long as the server 
is always busy whenever there are customers in the system). This is so since 
the work will always decrease at a rate of one per unit time when the 
server is busy (no matter who is in service) and will always jump by the 
service time of an arrival. Hence, the work in the system is exactly as 
it would be if there was no priority rule but rather a first-come, first-served 
(called FIFO) ordering. However, under FIFO the above model is just 
M/G/l with 

I = I, + I, 

which follows since the combination of two independent Poisson processes 
is itself a Poisson process whose rate is the sum of the rates of the 
component processes. The service distribution G can be obtained by 
conditioning on which priority class the arrival is from-as is done in 
Equation (8.41). 
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Hence, from the results of Section 8.5, it follows that V, the average work 
in the priority queueing system, is given by 

where Si has distribution Gi, i = 1,2. 
Continuing in our quest for Wh, let us note that S and W6, the service 

and wait in queue of an arbitrary customer, are not independent in the 
priority model since knowledge about S gives us information as to the type 
of customer which in turn gives us information about W6. To get around 
this we will compute separately the average amount of type 1 and type 2 
work in the system. Denoting V' as the average amount of type i work we 
have, exactly as in Section 8.5.1, 

If we define 

V& = AiE[si] w&, 

then we may interpret V& as the average amount of type i work in queue, 
and V; as the average amount of type i work in service (why?). 

Now we are ready to compute ~ 4 .  To do so, consider an arbitrary type 
1 arrival. Then 

his delay = amount of type 1 work in the system when he arrives 
+ amounts of type 2 work in service when he arrives 

Taking expectations and using the fact that Poisson arrivals see time 
averages yields 
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or 

To obtain W; we first note that since V = V' + v 2 ,  we have from 
Equations (8.42) and (8.43) that 

= W: + A2E[S2] W: [from Equation (8.44)] 

Now, using Equation (8.45), we obtain 

Remarks (i) Note that from Equation (8.45), the condition for W; to 
be finite is that A, E [S,] < 1, which is independent of the type 2 parameters. 
(Is this intuitive?) For W; to be finite, we need, from Equation (8.46), that 

Since the arrival rate of all customers is A = A, + A,, and the average 
service time of a customer is (A,/A)E[S,] + (A,/A)E[S,], the preceding 
condition is just that the average arrival rate be less than the average 
service rate. 

(ii) If there are n types of customers, we can solve for vj, j = 1, . . . , n;  
in a similar fashion. First, note that the total amount of work in the system 
of customers of types 1, . . . , j is independent of the internal priority rule 
concerning types 1, . . . , j and only depends on the fact that each of them is 
given priority over any customers of types j + 1, ..., n. (Why is this? 
Reason it out!) Hence, V' + + vj is the same as it would be if types 
1, . . . , j were considered as a single type I priority class and types 
j + 1, . . . , n as a single type I1 priority class. Now, from Equations (8.43) 
and (8.45), 

v1 = AIE[S:I + AIAIIE[SIIE[S~I 
2(1 - A,E[S,I) 
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where 

j li 
E [s:] = - E [Sf], 

i = 1  AI 
" Ai 

E [ s~]  = C - E[s~]  
i = j +  1 AII 

Hence, as V' = V' + . . . + Vj, we have an expression for V' + ... + Vj, 
for each j = 1, . . . , n, which then can be solved for the individual 
V1, v*, . . . , Vn. We now can obtain W& from Equation (8.43). The result of 
all this (which we leave for an exercise) is that 

8.7. The Model G/M/1 

The model G/M/l assumes that the times between successive arrivals have 
an arbitrary distribution G. The service times are exponentially distributed 
with rate ,u and there is a single server. 

The immediate difficulty in analyzing this model stems from the fact that 
the number of customers in the system is not informative enough to serve as 
a state space. For in summarizing what has occurred up to the present we 
would need to know not only the number in the system, but also the amount 
of time that has elapsed since the last arrival (since G is not memoryless). 
(Why need we not be concerned with the amount of time the person being 
served has already spent in service?) To get around this problem we shall 
only look at the system when a customer arrives; and so let us define X,, 
n 2 1, by 

Xn E the number in the system as seen by the nth arrival 

It is easy to see that the process (X,, n 2 1) is a Markov chain. To 
compute the transition probabilities PU for this Markov chain let us first 
note that, as long as there are customers to be served, the number of services 
in any length of time t is a Poisson random variable with mean pt. This is 
true since the time between successive services is exponential and, as we 
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know, this implies that the number of services thus constitutes a Poisson 

which follows since if an arrival finds i in the system, then the next arrival 
will find i + 1 minus the number served, and the probability that j will be 
served is easily seen to equal the right side of the above (by conditioning on 
the time between the successive arrivals). 

The formula for 8, is a little different (it is the probability that at least 
i + 1 Poisson events occur in a random length of time having distribution 
G) and can be obtained from 

i 

Pio = 1 - C esi+l-j 
j = O  

The limiting probabilities nk,  k = 0, 1, . . . , can be obtained as the unique 
solution of 

n k = C n i e k y  k L O  
i 

C n k = l  
k 

which, in this case, reduce to 

(We have not included the equation no = C n ie0  since one of the equations 
is always redundant.) 

To solve the above, let us try a solution of the form nk = cpk. Substi- 
tution into Equation (8.48) leads to 

m m i+l-k 

i = k - l  0 (i + 1 - k)! 
dG(t) 

m 

= 1 .-pip.-' 
0 

C 
i = k - l  (i + 1 - k)! 

However, - (ppt)i+1-k 
C - - 

i = k - l  (i + 1 - k)! 
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and thus Equation (8.49) reduces to 

The constant c can be obtained from C k  nk = 1, which implies that 
00 

c C p k =  1 
0 

As the nk is the unique solution to Equation (8.48), and nk = (1 - P)pk 
satisfies, it follows that 

where is the solution of Equation (8.50). [It can be shown that if the mean 
of G is greater than the mean service time l/p, then there is a unique value 
of /3 satisfying Equation (8.50) which is between 0 and 1 .] The exact value 
of /3 usually can only be obtained by numerical methods. 

As nk is the limiting probability that an arrival sees k customers, it is just 
the a, as defined in Section 8.2. Hence, 

We can obtain W by conditioning on the number in the system when a 
customer arrives. This yields 

W = z E[time in system I arrival sees k](l - /3)pk 
k 

k +  l (Since if an arrival sees k, then he spends 
= k -(I P - ')'* k + 1 service periods in the system.) 

00 
X 

by using kxk = -) ( 0 (1 - x)  
and 
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where 3, is the reciprocal of the mean interamval time. That is, 

In fact, in exactly the same manner as shown for the M/M/l in Section 
8.3.1 and Exercise 4 we can show that 

W* is exponential with rate p(1 - fl), 

0 with probability 1 - /j w,. = 
exponential with rate p(1 - 8 )  with probability /3 

where W* and W6 are the amounts of time that a customer spends in 
system and queue, respectively (their means are W and WQ). 

Whereas ak = (1 - /3)flk is the probability that an arrival sees k in the 
system, it is not equal to the proportion of time during which there are k in 
the system (since the arrival process is not Poisson). To obtain the Pk we 
first note that the rate at which the number in the system changes from 
k - 1 to k must equal the rate at which it changes from k to k - 1 (why?). 
Now the rate at which it changes from k - 1 to k is equal to the arrival rate 
I multiplied by the proportion of arrivals finding k - 1 in the system. 
That is, 

rate number in system goes from k - 1 to k = Lak-, 

Similarly, the rate at which the number in the system changes from k to 
k - 1 is equal to the proportion of time during which there are k in the 
system multiplied by the (constant) service rate. That is, 

rate number in system goes from k to k - 1 = Pk,u 

Equating these rates yields 

and so, from Equation (8.51), 

and, as Po = 1 - IT=, Pk, we obtain 
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Remark In the foregoing analysis we guessed at a solution of the 
stationary probabilities of the Markov chain of the form nk = cBk, then 
verified such a solution by substituting in the stationary Equation (8.48). 
However, it could have been argued directly that the stationary probabilities 
of the Markov chain are of this form. To do so, define to be the expected 
number of times that state i + 1 is visited in the Markov chain between two 
successive visits to state i, i r 0. Now it is not difficult to see (and we will 
let the reader argue it out for him or herself) that 

Now it can be shown by using renewal reward processes that 

E [number of visits to state i + 1 in an i - i cycle] 
ni+l = E [number of transitions in an i - i cycle] 

and so, 

implying, since C t  ni = 1 ,  that 

8.7.1. The G/M/1 Busy and Idle Periods 

Suppose that an arrival has just found the system empty-and so initiates a 
busy period-and let N denote the number of customers served in that busy 
period. Since the Nth arrival (after the initiator of the busy period) will also 
find the system empty, it follows that N is the number of transitions for the 
Markov chain (of Section 8.7) to go from state 0 to state 0. Hence, l/E[N] 
is the proportion of transitions that take the Markov chain into state 0; or 
equivalently, it is the proportion of arrivals that find the system empty. 
Therefore, 

Also, as the next busy period begins after the Nth interarrival, it follows 
that the cycle time (that is, the sum of a busy and idle period) is equal to the 
time until the Nth interarrival. In other words, the sum of a busy and idle 
period can be expressed as the sum of N interarrival times. Thus, if is the 
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ith interarrival time after the busy period begins, then 

E [Busy] + E[Idlel = E 
i 1 

= E [N]E [TI (by Wald's equation) 

For a second relation between EIBusy] and E[Idle], we can use the same 
argument as in Section 8.5.3 to conclude that 

1 - P o =  E [Busy1 
E [Idle] + E [Busy] 

and since Po = 1 - A/p, we obtain, upon combining this with (8.53), that 

8.8. Multiserver Queues 

By and large, systems that have more than one server are much more 
difficult to analyze than those with a single server. In Section 8.8.1 we start 
first with a Poisson arrival system in which no queue is allowed, and then 
consider in Section 8.8.2 the infinite capacity M/M/k system. For both of 
these models we are able to present the limiting probabilities. In Section 
8.8.3 we consider the model G/M/k. The analysis here is similar to that of 
the G/M/l (Section 7) except that in place of a single quantity /3 given as the 
solution of an integral equation, we have k such quantities. We end in 
Section 8.8.4 with the model M/G/k for which unfortunately our previous 
technique (used in M/G/l) no longer enables us to derive WQ, and we 
content ourselves with an approximation. 

8.8.1. Erlang's Loss System 

A loss system is a queueing system in which arrivals that find all servers 
busy do not enter but rather are lost to the system. The simplest such system 
is the M/M/k loss system in which customers arrive according to a Poisson 
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ith interarrival time after the busy period begins, then 
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process having rate 1 ,  enter the system if at least one of the k servers is free, 
and then spend an exponential amount of time with rate p being served. 
The balance equations for this system are 

State Rate leave = rate enter 
0 AP, = p ~ ,  

1 (n + PIP, = 2pp2 + AP, 
2 (n + 2p)p2 = 3pp3 + AP, 

i, 0 < i < k ( A  + ip)fi = (i + l ) ~ f i + ~  + 
k kpPk = APk-, 

Rewriting gives 

npo = PP, , 

and using ~ $ 4  = 1, we obtain 

Since E [S]  = 1/p,  where E [S]  is the mean service time, the preceding can 
be written as 
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Consider now the same system except that the service distribution is 
general-that is, consider the M / G / k  with no queue allowed. This model is 
sometimes called the Erlang loss system. It can be shown (though the proof 
is advanced) that Equation (8.54) (which is called Erlang's loss formula) 
remains valid for this more general system. 

8.8.2. The M/M/k Queue 

The M/M/k infinite capacity queue can be analyzed by the balance equation 
technique. We leave it for the reader to verify that 

We see from the preceding that we need to impose the condition A < kp. 

8.8.3. The G/M/k Queue 

In this model we again suppose that there are k  servers, each of which 
serves at an exponential rate p. However, we now allow the time between 
successive arrivals to have an arbitrary distribution G. To ensure that 
a steady-state (or limiting) distribution exists, we assume the condition 
l /pG < kp where pG is the mean of G.* 

The analysis for this model is similar to that presented in Section 8.7 for 
the case k  = 1. Namely, to avoid having to keep track of the time since the 
last arrival, we look at the system only at arrival epochs. Once again, if we 
define Xn as the number in the system at the moment of the nth arrival, then 
{X,, n r 0) is a Markov chain. 

To derive the transition probabilities of the Markov chain, it helps to first 
note the relationship 

* It follows from renewal theory (Proposition 7 .1 )  that customers arrive at rate l / p G ,  and 
as the maximum service rate is kp ,  we clearly need that l / p G  < k p  for limiting probabilities 
to exist. 
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where Y, denotes the number of departures during the interarrival time 
between the nth and (n + 1)st arrival. The transition probabilities Pu can 
now be calculated as follows: 

Case(i) j>  i +  1. 
In this case it easily follows that ej = 0. 

Case (ii) j 5 i  + 1 5 k. 
In this case if an arrival finds i  in the system, then as i  < k the new arrival 

will also immediately enter service. Hence, the next arrival will find j if of 
the i + 1 services exactly i + 1 - j are completed during the interarrival 
time. Conditioning on the length of this interarrival time yields 

Pu = P(i  + 1 - j of i  + 1 services are completed in an interarrival time) 

= J Pli + 1 - j of i + 1 are completed 1 interarrival time is t )  dG(t) 
0 

where the last equality follows since the number of service completions in a 
time t will have a binomial distribution. 

Case(iii) i + l z j z k  
To evaluate Pii in this case we first note that when all servers are busy, the 

departure process is a Poisson process with rate kp (why?). Hence, again 
conditioning on the interarrival time we have 

Po = P ( i  + 1 - j departures) 

= 1: P( i  + 1 - j departures in time t )  dG(t) 

(kpt)i+ 1 -J 
e - k ~ t  

(i + 1 - j)! dG(t) 

Case (iv) i + 1 r k > j 
In this case since when all servers are busy the departure process is a 

Poisson process, it follows that the length of time until there will only be k 
in the system will have a gamma distribution with parameters i  + 1 - k, kp 
(the time until i  + 1 - k event of a Poisson process with rate kp occur is 
gamma distributed with parameters i + 1 - k, kp). Conditioning first on 
the interarrival time and then on the time until there are only k in the system 
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(call this latter random variable Tk) yields 

= P(i + 1 - j departures in time t )  dG(t) i: 
t (k,!ls))'- 

= j: So P{i  + 1 - j departures in t / = ~ ) k ~ e - ~ " '  - 
( i  - k)! 

ds dG(t) 

= S: C (3 (1 - e-pO-'))k-j(e-fiU-G)jkpe-kcS ds d(i(r) 
(i - k)! 

where the last equality follows since of the k people in service at time s the 
number whose service will end by time t is binomial with parameters k and 
1 - e-~(t-s). 

We now can verify either by a direct substitution into the equations 
nj = Ei n ie j ,  or by the same argument as presented in the remark at the 
end of Section 8.7, that the limiting probabilities of this Markov chain are 
of the form 

~ ~ - ~ + ~ = c f i j ;  j = O , l ,  .... 
Substitution into any of the equations nj = Ei nipu when j > k yields that 
fi is given as the solution of 

fi = jW e-*pt(l-m dG(t) 
0 

The values no, n, , . . . , n k - ~ ,  can be obtained by recursively solving the first 
k - 1 of the steady-state equations, and c can then be computed by using 
E r n i  = 1. 

If we let WQ* denote the amount of time that a customer spends in queue, 
then in exactly the same manner as in G/M/1 we can show that 

k-1 ~8 with probability ni = 1 - - 
0 

WQ* = 
1 - 8  

w 
cP Exp(kp(1 - B)), with probability ni = - 

k 1 - 8  

where Exp(kp(1 - 8)) is an exponential random variable with rate kp(1 - fi). 

8.8.4. The M/G/k Queue 

In this section we consider the M / G / ~  system in which customers arrive at 
a Poisson rate A and are served by any of k servers, each of whom has the 
service distribution G. If we attempt to mimic the analysis presented in 



8.8. Multiserver Queues 461 

Section 8.5 for the M/G/l system, then we would start with the basic identity 

V = AE[S] WQ + A E [ s ~ ] / ~  (8.55) 

and then attempt to derive a second equation relating V  and WQ. 
Now if we consider an arbitrary arrival, then we have the following 

identity: 
work in system when customer arrives 

= k x time customer spends in queue + R (8.56) 

where R is the sum of the remaining service times of all other customers in 
service at the moment when our arrival enters service. 

The foregoing follows since while the arrival is waiting in queue, work is 
being processed at a rate k per unit time (since all servers are busy). Thus, 
an amount of work k x time in queue is processed while he waits in queue. 
Now, all of this work was present when he arrived and in addition the 
remaining work on those still being served when he enters service was also 
present when he arrived-so we obtain Equation (8.56). For an illustration, 
suppose that there are three servers all of whom are busy when the customer 
arrives. Suppose, in addition, that there are no other customers in the 
system and also that the remaining service times of the three people in 
service are 3, 6 ,  and 7. Hence, the work seen by the arrival is 
3 + 6 + 7 = 16. Now the arrival will spend 3 time units in queue, and at the 
moment he enters service, the remaining times of the other two customers 
are 6 - 3 = 3 and 7 - 3 = 4. Hence, R = 3 + 4 = 7 and as a check of 
Equation (8.56) we see that 16 = 3 x 3 + 7. 

Taking expectations of Equation (8.55) and using the fact that Poisson 
arrivals see time averages, we obtain 

V =  kWQ + E [ R ]  

which, along with Equation (8.55), would enable us to solve for WQ if we 
could compute E [ R ] .  However there is no known method for computing 
E [ R ]  and in fact, there is no known exact formula for WQ. The following 
approximation for WQ was obtained in Reference 6 by using the foregoing 
approach and then approximating E [ R ] :  

The preceding approximation has been shown to be quite close to the WQ 
when the service distribution is gamma. It is also exact when G is 
exponential. 
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Exercises 

1. For the M/M/l queue, compute 

(a) the expected number of arrivals during a service period and 
@) the probability that no customers arrive during a service period. 

Hint: "Condition." 

*2. Machines in a factory break down at an exponential rate of six per 
hour. There is a single repairman who fixes machines at an exponential rate 
of eight per hour. The cost incurred in lost production when machines are 
out of service is $10 per hour per machine. What is the average cost rate 
incurred due to failed machines? 

3. The manager of a market can hire either Mary or Alice. Mary, who 
gives service at an exponential rate of 20 customers per hour, can be hired 
at a rate of $3 per hour. Alice, who gives service at an exponential rate of 
30 customers per hour, can be hired at a rate of $C per hour. The manager 
estimates that, on the average, each customer's time is worth $1 per hour 
and should be accounted for in the model. If customers arrive at a Poisson 
rate of 10 per hour, then 

(a) what is the average cost per hour if Mary is hired? if Alice is hired? 
(b) find C if the average cost per hour is the same for Mary and Alice. 

4. For the M/M/l queue, show that the probability that a customer 
spends an amount of time x or less in queue is given by 

5. Two customers move about among three servers. Upon completion 
of service at server i, the customer leaves that server and enters service at 
whichever of the other two servers is free. (Therefore, there are always two 
busy servers.) If the service times at server i are exponential with rate pi, 
i = 1,2,3,  what proportion of time is server i idle? 

' 6 .  Show that W is smaller in an M/M/l model having arrivals at 
rate I and service at rate 2p than it is in a two-server M/M/2 model with 
arrivals at rate A and with each server at rate p. Can you give an intuitive 
explanation for this result? Would it also be true for WQ? 
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7. A group of n customers moves around among two servers. Upon 
completion of service, the served customer then joins the queue (or enters 
service if the server is free) at the other server. All service times are 
exponential with rate p. Find the proportion of time that there are j 
customers at server 1, j = 0, ..., n. 
8. A facility produces items according to a Poisson process with rate A. 
However, it has shelf space for only k items and so it shuts down production 
whenever k items are present. Customers arrive at the facility according 
to a Poisson process with rate p. Each customer wants one item and will 
immediately depart either with the item or empty handed if there is no item 
available. 

(a) Find the proportion of customers that go away empty handed. 
(b) Find the average time that an item is on the shelf. 
(c) Find the average number of items on the shelf. 

Suppose now that when a customer does not find any available items it joins 
the "customers' queue" as long as there are no more than n - 1 other 
customers waiting at that time. If there are n waiting customers then the 
new arrival departs without an item. 

(d) Set up the balance equations. 
(e) In terms of the solution of the balance equations, what is the average 
number of customers in the system. 

9. A group of m customers frequents a single-server station in the 
following manner. When a customer arrives, he or she either enters service 
if the server is free or joins the queue otherwise. Upon completing service 
the customer departs the system, but then returns after an exponential time 
with rate 8. All service times are exponentially distributed with rate p. 

(a) Define states and set up the balance equations. 

In terms of the solution of the balance equations, find 

(b) the average rate at which customers enter the station. 
(c) the average time that a customer spends in the station per visit. 

10. Consider a single-server queue with Poisson arrivals and exponential 
service times having the following variation: Whenever a service is 
completed a departure occurs only with probability a. With probability 
1 - a the customer, instead of leaving, joins the end of the queue. Note 
that a customer may be serviced more than once. 

(a) Set up the balance equations and solve for the steady-state 
probabilities, stating conditions for it to exist. 
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(b) Find the expected waiting time of a customer from the time he arrives 
until he enters service for the first time. 
(c) What is the probability that a customer enters service exactly n times, 
for n = 1,2, ... ? 
(d) What is the expected amount of time that a customer spends in 
service (which does not include the time he spends waiting in line)? 

Hint: Use (c). 

(e) What is the distribution of the total length of time a customer spends 
being served? 

Hint: Is it memoryless? 

"11. A supermarket has two exponential checkout counters, each 
operating at rate p. Arrivals are Poisson at rate A. The counters operate in 
the following way: 

(i) One queue feeds both counters. 
(ii) One counter is operated by a permanent checker and the other by a 
stock clerk who instantaneously begins checking whenever there are two 
or more customers in the system. The clerk returns to stocking whenever 
he completes a service, and there are fewer than two customers in the 
system. 

(a) Let P,, = proportion of time there are n in the system. Set up 
equations for P, and solve. 
(b) At what rate does the number in the system go from 0 to l ?  from 2 
to l ?  
(c) What proportion of time is the stock clerk checking? 

Hint: Be a little careful when there is one in the system. 

12. Customers arrive at a single-service facility at a Poisson rate of 40 per 
hour. When two or fewer customers are present, a single attendant operates 
the facility, and the service time for each customer is exponentually 
distributed with a mean value of two minutes. However, when there are 
three or more customers at the facility, the attendant is joined by an 
assistant and, working together, they reduce the mean service time to one 
minute. Assuming a system capacity of four customers, 

(a) what proportion of time are both servers free? 
(b) each man is to receive a salary proportional to the amount of time he 
is actually at work servicing customers, the rate being the same for both. 
If together they earn $100 per day, how should this money be split? 



13. Consider a sequential-service system consisting of two servers, A and 
B. Arriving customers will enter this system only if server A is free. If a 
customer does enter, then he is immediately served by server A. When his 
service by A is completed, he then goes to B if B is free, or if B is busy, he 
leaves the system. Upon completion of service at  server B, the customer 
departs. Assuming that the (Poisson) arrival rate is two customers an hour, 
and that A and B serve at respective (exponential) rates of four and two 
customers an hour, 

(a) what proportion of customers enter the system? 
(b) what proportion of entering customers receive service from B? 
(c) what is the average number of customers in the system? 
(d) what is the average amount of time that an entering customer spends 
in the system? 

14. Customers arrive at a two-server system according to a Poisson 
process having rate 1 = 5. An arrival finding server 1 free will begin service 
with that server. An arrival finding server 1 busy and server 2 free will enter 
service with server 2. An arrival finding both servers busy goes away. Once 
a customer is served by either server, he departs the system. The service 
times at server i are exponential with rates pi ,  where p1 = 4, p2 = 2. 

(a) What is the average time an entering customer spends in the system? 
(b) What proportion of time is server 2 busy? 

15. Customers arrive at a two-server station in accordance with a Poisson 
process with a rate of two per hour. Arrivals finding server 1 free begin 
service with that server. Arrivals finding server 1 busy and server 2 free begin 
service with server 2. Arrivals finding both servers busy are lost. When a 
customer is served by server 1, she then either enters service with server 2 if 
2 is free or departs the system if 2 is busy. A customer completing service at 
server 2 departs the system. The service times at server 1 and server 2 are 
exponential random variables with respective rates of four and six per hour. 

(a) What fraction of customers do not enter the system? 
(b) What is the average amount of time that an entering customer spends 
in the system? 
(c) What fraction of entering customers receive service from server l ?  

16. Customers arrive at a two-server system at a Poisson rate A. An 
arrival finding the system empty is equally likely to enter service with either 
server. An arrival finding one customer in the system will enter service with 
the idle server. An arrival finding two others in the system will wait in line 
for the first free server. An arrival finding three in the system will not enter. 
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All service times are exponential with rate p,  and once a customer is served 
(by either server), he departs the system. 

(a) Define the states. 
(b) Find the long-run probabilities. 
(c) Suppose a customer arrives and finds two others in the system. What 
is the expected time he spends in the system? 
(d) What proportion of customers enter the system? 
(e) What is the average time an entering customer spends in the system? 

17. There are two types of customers. Type i customers arrive in accord- 
ance with independent Poisson processes with respective rate I, and I,. 
There are two servers. A type 1 arrival will enter service with server 1 if that 
server is free; if server 1 is busy and server 2 is free, then the type 1 arrival 
will enter service with server 2. If both servers are busy, then the type 1 
arrival will go away. A type 2 customer can only be served by server 2; if 
server 2 is free when a type 2 customer arrives, then the customer enters 
service with that server. If server 2 is busy when a type 2 arrives, then that 
customer goes away. Once a customer is served by either server, he departs 
the system. Service times at server i are exponential with rate pi ,  i = 1,2. 

Suppose we want to find the average number of customers in the system. 

(a) Define states. 
(b) Give the balance equations. Do not attempt to solve them. 

In terms of the long-run probabilities, what is 

(c) the average number of customers in the system? 
(d) the average time a customer spends in the system? 

"18. Suppose in Exercise 17 we want to find out the proportion of time 
there is a type 1 customer with server 2. In terms of the long-run 
probabilities given in Exercise 17, what is 

(a) the rate at which a type 1 customer enters service with server 2? 
(b) the rate at which a type 2 customer enters service with server 2? 
(c) the fraction of server 2's customers that are type l? 
(d) the proportion of time that a type 1 customer is with server 2? 

19. Customers arrive at a single-server station in accordance with a Poisson 
process with rate I. All arrivals that find the server free immediately enter 
service. All service times are exponentially distributed with rate p. An 
arrival that finds the server busy will leave the system and roam around "in 
orbit" for an exponential time with rate 0 at which time it will then return. 
If the server is busy when an orbiting customer returns, then that customer 
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returns to orbit for another exponential time with rate 8 before returning 
again. An arrival that finds the server busy and N other customers in orbit 
will depart and not return. That is, N is the maximum number of customers 
in orbit. 

(a) Define states. 
(b) Give the balance equations. 

In terms of the solution of the balance equations, find. 

(c) the proportion of all customers that are eventually served. 
(d) the average time that a served customer spends waiting in orbit. 

20. Consider the M / M / l  system in which customers arrive at rate A and 
the server serves at rate p. However, suppose that in any interval of length 
h in which the server is busy there is a probability ah  + o(h) that the server 
will experience a breakdown, which causes the system to shut down. All 
customers that are in the system depart, and no additional arrivals are 
allowed to enter until the breakdown is fixed. The time to fix a breakdown 
is exponentially distributed with rate 8. 

(a) Define appropriate states. 
(b) Give the balance equations. 

In terms of the long-run probabilities, 

(c) what is the average amount of time that an entering customer spends 
in the system? 
(d) what proportion of entering customers complete their service? 
(e) what proportion of customers arrive during a breakdown? 

*21. Reconsider Exercise 20, but this time suppose that a customer that is 
in the system when a breakdown occurs remains there while the server is 
being fixed. In addition, suppose that new arrivals during a breakdown 
period are allowed to enter the system. What is the average time a customer 
spends in the system? 

22. Poisson (A) arrivals join a queue in front of two parallel servers A and 
B, having exponential service rates and p,. When the system is empty, 
arrivals go into server A with probability a and into B with probability 
1 - a. Otherwise, the head of the queue takes the first free server. 

Figure 8.4. 
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(a) Define states and set up the balance equations. Do not solve. 
(b) In terms of the probabilities in part (a), what is the average number 
in the system? Average number of servers idle? 
(c) In terms of the probabilities in part (a), what is the probability that 
an arbitrary arrival will get serviced in A? 

23. In a queue with unlimited waiting space, arrivals are Poisson 
(parameter A) and service times are exponentially distributed (parameter p). 
However, the server waits until K people are present before beginning 
service on the first customer; thereafter, he services one at a time until all K 
units, and all subsequent arrivals, are serviced. The server is then "idle" 
until K new arrivals have occurred. 

(a) Define an appropriate state space, draw the transition diagram, and 
set up the balance equations. 
(b) In terms of the limiting probabilities, what is the average time a 
customer spends in queue? 
(c) What conditions on A and p are necessary? 

24. Consider a single-server exponential system in which ordinary 
customers arrive at a rate A and have service rate p. In addition, there is a 
special customer who has a service rate p, . Whenever this special customer 
arrives, it goes directly into service (if anyone else is in service, then this 
person is bumped back into queue). When the special customer is not being 
serviced, the customer spends an exponential amount of time (with mean 
1/0) out of the system. 

(a) What is the average arrival rate of the special customer? 
(b) Define an appropriate state space and set up balance equations. 
(c) Find the probability that an ordinary customer is bumped n time. 

*25. Let D denote the time between successive departures in a stationary 
M/M/l queue with A < p. Show, by conditioning on whether or not a 
departure has left the system empty, that D is exponential with rate A. 

Hint: By conditioning on whether or not the departure has left the 
system empty we see that 

Exponential (p), with probability A/p 
D =  

Exponential (A) * Exponential (p), with probability 1 - A/p 

where Exponential (A) * Exponential (p) represents the sum of two inde- 
pendent exponential random variables having rates p and A. Now use 
moment-generating functions to show that D has the required distribution. 
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Note that the above does not prove that the departure process is Poisson. 
To prove this we need show not only that the interdeparture times are all 
exponential with rate A, but also that they are independent. 

26. For the tandem queue model verify that 

satisfies the balance equation (8.15). 

27. Verify Equation (8.18) for a system of two servers by showing that it 
satisfies the balance equations for this model. 

28. Consider a network of three stations. Customers arrive at stations 1, 
2, 3 in accordance with Poisson processes having respective rates 5, 10, 15. 
The service times at the three stations are exponential with respective rates 
10, 50, 100. A customer completing service at station 1 is equally likely to 
(a) go to station 2, (b) go to station 3, or (c) leave the system. A customer 
departing service at station 2 always goes to station 3. A departure from 
service at station 3 is equally likely to either go to station 2 or leave the 
system. 

(i) What is the average number of customers in the system (consisting of 
all three stations)? 
(ii) What is the average time a customer spends in the system? 

29. Consider a closed queueing network consisting of two customers 
moving among two servers, and suppose that after each service completion 
the customer is equally likely to go to either server-that is, PI,, = P2,1 = *. 
Let pi denote the exponential service rate at server i, i = 1,2. 

(a) Determine the average number of customers at each server. 
(b) Determine the service completion rate for each server. 

30. State and prove the equivalent of the arrival theorem for open 
queueing networks. 

31. Customers arrive at a single-server station in accordance with a 
Poisson process having rate A. Each customer has a value. The successive 
values of customers are independent and come from a uniform distribution 
on (0, 1). The service time of a customer having value x is a random variable 
with mean 3 + 4x and variance 5. 

(a) What is the average time a customer spends in the system? 
(b) What is the average time a customer having value x spends in the 
system? 
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*32. Compare the M / G / 1  system for first-come, first-served queue 
discipline with one of last-come, first-served (for instance, in which units 
for service are taken from the top of a stack). Would you think that the 
queue size, waiting time, and busy-period distribution differ? What about 
their means? What if the queue discipline was always to choose at random 
among those waiting? Intuitively which discipline would result in the 
smallest variance in the waiting time distribution? 

33. In an M / G / l  queue, 

(a) what proportion of departures leave behind 0 work? 
(b) what is the average work in the system as seen by a departure? 

34. For the M / G / l  queue, let X, denote the number in the system left 
behind by the nth departure. 

what does Y, represent? 
(b) Rewrite the preceding as 

where 

Take expectations and let n -+ oo in Equation (8.58) to obtain 

(c) Square both sides of Equation (8.58)' takes expectations, and then let 
n -+ oo to obtain 

(d) Argue that E[X,], the average number as seen by a departure, is 
equal to L. 

*35. Consider an M / G / l  system in which the first customer in a busy 
period has service distribution GI and all others have distribution G2. Let 
C denote the number of customers in a busy period, and let S denote the 
service time of a customer chosen at random. 
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Argue that 

(a) a. = Po = 1 - AE[S]. 
(b) E [S] = aoE [S,] + (1 - ao)E [S2] where Si has distribution Gi . 
(c) Use (a) and (b) to show that E[B], the expected length of a busy 
period, is given by 

(d) Find E [C]. 

36. Consider a M/G/l system with AE [S] < 1. 

(a) Suppose that service is about to begin at a moment when there are n 
customers in the system. 

(i) Argue that the additional time until there are only n - 1 customers 
in the system has the same distribution as a busy period. 
(ii) What is the expected additional time until the system is empty? 

(b) Suppose that the work in the system at some moment is A. We are 
interested in the expected additional time until the system is empty- 
call it E[T]. Let N denote the number of arrivals during the first A units 
of time. 

(i) Compute E [T ( N]. 
(ii) Compute E[T]. 

37. Carloads of customers arrive at a single-server station in accord- 
ance to a Poisson process with rate 4 per hour. The service times are 
exponentially distributed with rate 20 per hour. If each carload contains 
either 1,2,  or 3 customers with respective probabilities *, 3, $, compute the 
average customer delay in queue. 

38. In the two-class priority queueing model of Section 8.6.2, what is 
WQ? Show that WQ is less than it would be under FIFO if EISl] < E[S2] 
and greater than under FIFO if E [S,] > E[S2]. 

39. In a two-class priority queueing model suppose that a cost of Ci 
per unit time is incurred for each type i customer that waits in queue, 
i = 1,2. Show that type 1 customers should be given priority over type 2 
(as opposed to the reverse) if 
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40. Consider the priority queuing model of Section 8.6.2 but now suppose 
that if a type 2 customer is being served when a type 1 arrives then the type 
2 customer is bumped out of service. This is called the preemptive case. 
Suppose that when a bumped type 2 customer goes back in service his 
service begins at the point where it left off when he was bumped. 

(a) Argue that the work in the system at any time is the same as in the 
nonpreemptive case. 
(b) Derive w;. 

Hint: How do type 2 customers affect type l's? 

(c) Why is it not true that 

(d) Argue that the work seen by a type 2 arrival is the same as in the 
nonpreemptive case, and so 

W; = ~; (non~reem~t ive )  + E[extra time] 

where the extra time is due to the fact that he may be bumped. 
(e) Let N denote the number of times a type 2 customer is bumped. 
Why is 

E [extra time I N] = NE[S11 
1 - 11E[SlI 

Hint: When a type 2 is bumped, relate the time until he gets back in 
service to a "busy period." 

(f) Let S2 denote the service time of a type 2. What is E[N I S2]? 
(g) Combine the preceding to obtain 

'41. Calculate explicitly (not in terms of limiting probabilities) the 
average time a customer spends in the system in Exercise 21. 

42. In the G/M/l model if G is exponential with rate 1 show that 
p = u p .  

43. Verify Erlang's loss formula, Equation (8.54), when k = 1. 

44. Verify the formula given for the 4 of the M/M/k. 

45. In the Erlang loss system suppose the Poisson arrival rate is 1 = 2, 
and suppose there are three servers each of whom has a service distribution 
that is uniformly distributed over (0,2). What proportion of potential 
customers is lost? 
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46. In the M/M/k  system, 

(a) what is the probability that a customer will have to wait in queue? 
(b) determine L and W. 

47. Verify the formula for the distribution of W6 given for the G / M / k  
model. 

*48. Consider a system where the interarrival times have an arbitrary 
distribution F, and there is a single server whose service distribution is G. 
Let D, denote the amount of time the nth customers spends waiting in 
queue. Interpret S, , T, so that 

D , + S , -  T,, i f D , + S , -  T,zO 
Dn+l = i f D , + S , -  T , < O  

49. Consider a model in which the interarrival times have an arbitrary 
distribution F, and there are k  servers each having service distribution G.  
What condition on F and G  do you think would be necessary for there to 
exist limiting probabilities? 
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Chapter 9 
Reliability Theory 

9.1. Introduction 

Reliability theory is concerned with determining the probability that a 
system, possibly consisting of many components, will function. We shall 
suppose that whether or not the system functions is determined solely from 
a knowledge of which components are functioning. For instance, a series 
system will function if and only if all of its components are functioning, 
while a parallel system will function if and only if at least one of its 
components is functioning. In Section 9.2, we explore the possible ways in 
which the functioning of the system may depend upon the functioning of its 
components. In Section 9.3, we suppose that each component will function 
with some known probability (independently of each other) and show how 
to obtain the probability that the system will function. As this probability 
often is difficult to explicitly compute, we also present useful upper and 
lower bounds in Section 9.4. In Section 9.5 we look at a system dynamically 
over time by supposing that each component initially functions and does so 
for a random length of time at which it fails. We then discuss the relation- 
ship between the distribution of the amount of time that a system functions 
and the distributions of the component lifetimes. In particular, it turns out 
that if the amount of time that a component functions has an increasing 
failure rate on the average (IFRA) distribution, then so does the distribution 
of system lifetime. In Section 9.6 we consider the problem of obtaining the 
mean lifetime of a system. In the final section we analyze the system when 
failed components are subjected to repair. 

475 
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9.2. Structure Functions 

Consider a system consisting of n components, and suppose that each 
component is either functioning or has failed. To indicate whether or not 
the ith component is functioning, we define the indicator variable xi by 

I 1, if the ith component is functioning 
xi = 

0, if the ith component has failed 

The vector x = (xl , . . . , xn) is called the state vector. It indicates which of 
the components are functioning and which have failed. 

We further suppose that whether or not the system as a whole is 
functioning is completely determined by the state vector x. Specifically, it is 
supposed that there exists a function +(x) such that 

1, if the system is functioning when the state vector is x 
'(') = (0, if the system has failed when the state vector is x 

The function +(x) is called the structure function of the system. 

Example 9.1 (The Series Structure): A series system functions if and 
only if all of its components are functioning. Hence, its structure function 
is given by 

n 

+(x) = min(x, , . . . , xn) = n xi 
i =  1 

We shall find it useful to represent the structure of a system in terms of a 
diagram. The relevant diagram for the series structure is shown in Figure 
9.1. The idea is that if a signal is initiated at the left end of the diagram then 
in order for it to successfully reach the right end, it must pass through all of 
the components; hence, they must all be functioning. 4 

Figure 9.1. 

Example 9.2 (The Parallel Structure): A parallel system functions if 
and only if at least one of its components is functioning. Hence its structure 
function is given by 

A parallel structure may be pictorially illustrated by Figure 9.2. This follows 
since a signal at the left end can successfully reach the right end as long as 
at least one component is functioning. + 
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Figure 9.2. 

Example 9.3 (The k-Out-of-n Structure): The series and parallel 
systems are both special cases of a k-out-of-n system. Such a system 
functions if and only if at least k of the n components are functioning. 
As C;=, xi equals the number of functioning components, the structure 
function of a k-out-of-n system is given by 

Series and parallel systems are respectively n-out-of-n and 1-out-of-n 
system. 

The two-out-of-three system may be diagramed as shown in Figure 9.3. + 

u 
Figure 9.3. 

Example 9.4 (A Four-Component Structure): Consider a system con- 
sisting of four components, and suppose that the system functions if and 
only if components 1 and 2 both function and at least one of components 
3 and 4 function. Its structure function is given by 

Pictorially, the system is as shown in Figure 9.4. A useful identity, easily 
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Figure 9.4. 

checked, is that for binary variables,* xi,  i = 1, ..., n, 
n 

max(xl , . . . , x,,) = 1 - n (1 - xi) 
i =  1 

When n = 2, this yields 

max(x,, x2) = 1 - (1 - x,)(l - x2) = x, + x2 - x,x, 

Hence, the structure function in the example may be written as 

It is natural to assume that replacing a failed component by a functioning 
one will never lead to a deterioration of the system. In other words, it is 
natural to assume that the structure function +(x) is an increasing function 
of x, that is, if xi I y,, i = 1, . . . , n, then +(x) I +(y). Such an assumption 
shall be made in this chapter and the system will be called monotone. 

9.2.1. Minimal Path and Minimal Cut Sets 

In this section, we show how any system can be represented both as a series 
arrangement of parallel structures and as a parallel arrangement of series 
structures. As a preliminary, we need the following concepts. 

A state vector x is called a path vector if +(x) = 1. If, in addition, 
+(y) = 0 for all y < x, then x is said to be a minimalpath vector.+ If x is a 
minimal path vector, then the set A = (i: xi = 1) is called a minimal path 
set. In other words, a minimal path set is a minimal set of components 
whose functioning ensures the functioning of the system. 

Example 9.5 Consider a five-component system whose structure is 
illustrated by Figure 9.5. Its structure function equals 

= (x, + x2 - x1x2)(x3x4 + x, - x3x,x,) 

There are four minimal path sets, namely, (1,3,4), (2,3,4), (1,5), (2,5). 
* A  binary variable is one which assumes either the value 0 or 1 .  
'wesaythaty  c x i f y i s x i , i =  1,  ..., n ,wi thy i<x i forsomei .  
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Figure 9.5. 

Example 9.6 In a k-out-of-n system, there are minimal path sets, (2 
namely, all of the sets consisting of exactly k components. + 

Let A , ,  . . . , A, denote the minimal path sets of a given system. We define 
aj(x), the indicator function of the j th  minimal path set, by 

1, if all the components of Aj are functioning 
ffj(x) = 

0, otherwise 

By definition, it follows that the system will function if all the components 
of at least one minimal path set are functioning. That is, if aj(x) = 1 for 
some j. On the other hand, if the system functions, then the set of function- 
ing components must include a minimal path set. Therefore, a system wiN 
function if and only i f  all the components of at least one minimal path set 
are functioning. Hence, 

if q(x)  = 1 for some j 
'(') = [:: if aj(x) = o for all j 

or equivalently 

Since aj(x) is a series structure function of the components of the j th  
minimal path set, Equation (9.1) expresses an arbitrary system as a parallel 
arrangement of series systems. 

Example 9.7 Consider the system of Example 9.5. Because its minimal 
path sets are Al = (1,3,4), A, = (2,3,4), A, = (1,5], and A4 = (2,5), we 
have by Equation (9.1) that 
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Figure 9.6. 

The reader should verify that this equals the value of +(x) given in Example 
9.5. (Make use of the fact that, since xi equals 0 or 1, xi2 = xi.) This 
representation may be pictured as shown in Figure 9.6. 4 

Figure 9.7. 

Example 9.8 The system whose structure is as pictured in Figure 9.7 is 
called the bridge system. Its minimal path sets are (1,4], (1,3, 51, (2,5], 
and (2,3,4). Hence, by Equation (9.1), its structure function may be 
expressed as 

This representation +(x) is diagramed as shown in Figure 9.8. 4 

Figure 9.8. 

A state vector x is called a cut vector if +(x) = 0. If, in addition, +(y) = 1 
for all y > x, then x is said to be a minimal cut vector. If x is a minimal cut 
vector, then the set C = (i: xi = 0) is called a minimal cut set. In other 
words, a minimal cut set is a minimal set of components whose failure 
ensures the failure of the system. 
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Let Cl , . . . , Ck denote the minimal cut sets of a given system. We defined 
/Ij@), the indicator function of the j th  minimal cut set, by 

1, if at least one component of the j th  minimal 
cut set is functioning 

Sj (XI = 
0, if all of the components of the j th  minimal 

cut set are not functioning 

= m a x i  
i s Cj 

Since a system is not functioning if and only if all the components of at least 
one minimal cut set are not functioning, it follows that 

k k 

Since Pj(x) is a parallel structure function of the components of the j th  
minimal cut set, Equation (9.2) represents an arbitrary system as a series 
arrangement of parallel systems. 

Figure 9.9. 

Example 9.9 The minimal cut sets of the bridge structure shown in 
Figure 9.9 are (1,2], (1,3,5], (2,3,4), and 14, 51. Hence, from Equation 
(9.2), we may express Q(x) by 

+(x) = mm(x1, ~ 2 )  mm(xl, x3, x5) mm(x2, x3, x4) mm(x4, x5) 

= [l - (1 - x&(l - x2)][1 - (1 - xl)(l - x3)(l - x5)] 

x - (1 - x2)(1 - x d l  - ~4)][1 - (1 - - XS)] 

This representation of d(x) is pictorially expressed as Figure 9.10. + 

Figure 9.10. 
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9.3. Reliability of Systems of Independent Components 

In this section, we suppose that Xi, the state of the ith component, is a 
random variable such that 

The value pi ,  which equals the probability that the ith component is 
functioning, is called the reliability of the ith component. If we define r by 

then r is called the reliability of the system. When the components, that is, 
the random variables Xi, i = 1, . . . , n, are independent, we may express r as 
a function of the component reliabilities. That is, 

r = r(p), where p = (pl , ...,pa) 

The function r(p) is called the reliability function. We shall assume through- 
out the remainder of this chapter that the components are independent. 

Example 9.1 0 (The Series System): The reliability function of the series 
system of n independent components is given by 

= P(X,. = 1 for a l l i  = 1, ..., n) 

Example 9.1 1 (The Parallel System): The reliability function of the 
parallel system of n independent components is given by 

= P[Xi = 1 for some i = 1, ..., n] 

= 1 - P(Xi = 0 for all i = 1, ..., nl 

Example 9.12 (The k-out-of-n System with Equal Probabilities): Con- 
sider a k-out-of-n system. If pi = p for all i = 1, . . . , n, then the reliability 
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9.3. Reliability of Systems of Independent Components 

In this section, we suppose that Xi, the state of the ith component, is a 
random variable such that 

The value pi ,  which equals the probability that the ith component is 
functioning, is called the reliability of the ith component. If we define r by 

then r is called the reliability of the system. When the components, that is, 
the random variables Xi, i = 1, . . . , n, are independent, we may express r as 
a function of the component reliabilities. That is, 

r = r(p), where P = (p l ,  . . . , P,) 

The function r(p) is called the reliability function. We shall assume through- 
out the remainder of this chapter that the components are independent. 

Example 9.10 (The Series System): The reliability function of the series 
system of n independent components is given by 

= P(Xi  = 1 for all i = 1, ..., n] 

Example 9.1 1 (The Parallel System): The reliability function of the 
parallel system of n independent components is given by 

= P [ X i  = 1 for some i = 1, ..., n] 

Example 9.12 (The k-out-of-n System with Equal Probabilities): Con- 
sider a k-out-of-n system. If pi = p  for all i = 1, . . . , n, then the reliability 
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9.3. Reliability of Systems of Independent Components 

In this section, we suppose that Xi, the state of the ith component, is a 
random variable such that 

P(Xi = 1) = pi = 1 - P(Xi = 0) 

The value pi ,  which equals the probability that the ith component is 
functioning, is called the reliability of the ith component. If we define r by 

r = P(4(X) = 11, where X = (XI, . . . , X,) 
then r is called the reliability of the system. When the components, that is, 
the random variables Xi, i = 1, . . . , n, are independent, we may express r as 
a function of the component reliabilities. That is, 

r = r ( ~ ) ,  where P = (p l ,  . . . , P,) 
The function r(p) is called the reliability function. We shall assume through- 
out the remainder of this chapter that the components are independent. 

Example 9.1 0 (The Series System): The reliability function of the series 
system of n independent components is given by 

= P(Xi = 1 for all i = 1, ..., n) 

Example 9.1 1 (The Parallel System): The reliability function of the 
parallel system of n independent components is given by 

= P(Xi = 1 for some i = 1, . . . , nJ 

= 1 - P(Xi = 0 for all i = 1, ..., n] 

Example 9.1 2 (The k-out-of-n System with Equal Probabilities): Con- 
sider a k-out-of-n system. If pi = p for all i = 1, . . . , n, then the reliability 
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function is given by 

r@, ..., P) = P(+(X) = 11 

Example 9.1 3 (The Two-out-of-Three System): The reliability function 
of a two-out-of-three system is given by 

r(p) = P(+(X) = 1) 

= P(X = (1,1,1)) + P ( X  = (1,1,0)) + P ( X  = (1,0,1)) 

+ P(X = (0, 1, 1)) 

= PlP2P3 +  PIP?(^ - ~ 3 )  + Pl(1 - pzlp3 + (1 - P ~ ) P Z P ~  

= PlP2 + PlP3 + P2P3 - 2 ~ 1 ~ 2 ~ 3  + 
Example 9.1 4 (The Three-out-of-Four System): The reliability function 
of a three-out-of-four system is given by 

r(p) = P(X = (1, 1, 1, 1)) + P ( X  = (1, 1, 1,O)) + P ( X  = (1, 1,0, 1)) 

+ P ( X  = (1,0,1,1)] + P ( X  = (0,1,1, 1)) 

= PlP2P3P4 + ~ 1 ~ 2 ~ 3 ( 1  - ~ 4 )  + PlP2(1 - P3)~4  

+ Pl(1 - ~ 2 1 ~ 3 ~ 4  + (1 - P I I P ~ P ~ P ~  
= PlP2P3 +PlP2P4 +PlP3P4 +P2P3P4 - 3 ~ 1 ~ 2 ~ 3 ~ 4  + 

Example 9.15 (A Five-Component System): Consider a five-component 
system that functions if an only if component 1, component 2, and at least 
one of the remaining components function. Its reliability function is given by 

= P(Xl = l]P(X2 = l]P(max(X,, X4, X,) = 1) 

Since +(X) is a 0 - 1 (that is, a Bernoulli) random variable, we may also 
compute r(p) by taking its expectation. That is, 

r(p) = P(+(X) = 11 

= E[+(X)I 
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Example 9.1 6 (A Four-Component System): A four-component system 
that functions when both components 1, 4, and at least one of the other 
components function has its structure function given by 

4 ( ~ )  = X1 X4 max(x2 ~ 3 )  
Hence, 

r(p) = E t4(X)I 

An important and intuitive property of the reliability function r(p) is 
given by the following proposition. 

Proposition 9.1 If r(p) is the reliability function of a system of inde- 
pendent components, then r(p) is an increasing function of p. 

Proof By conditioning on Xi and using the independence of the com- 
ponents, we obtain 

(Oi, X) = (XI, ---,Xi-l,O,Xi+l, ..*,Xn) 
Thus, 

r(p) = PiE[+(li X) - d(Oi , XI1 + E[4(Oi , XI1 

However, since 4 is an increasing function, it follows that 

and so the preceding is increasing in pi for all i. Hence the result is 
proven. + 

Let us now consider the following situation: A system consisting of n 
different components is to be built from a stockpile containing exactly two 
of each type of component. How should we use the stock-pile so as to 
maximize our probability of attaining a functioning system? In particular, 
should we build two separate systems, in which case the probability of 
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attaining a functioning one would be 

P(at  least one of the two systems function) 

= 1 - P(neither of the systems function) 

= 1 - [(I - r(p))(l - r(p1))1 

where pi@:) is the probability that the first (second) number i component 
functions; or should we build a single system whose ith component func- 
tions if at least one of the number i components function? In this latter 
case, the probability that the system will function equals 

- (1 - p)(l - P')] 

since 1 - (1 - p,)(l - pi)  equals the probability that the ith component 
in the single system will function.* We now show that replication at the 
component level is more effective than replication at the system level. 

Theorem 9.1 For any reliability function r and vectors p, p', 

r [ l  - (1 - p)(l - p')] 2 1 - [1 - r(p)][l - r(pl)] 

Proof Let XI, ..., X,, X i ,  ..., X; be mutually independent 0 - 1 
random variables with 

pi = P(Xi = l ) ,  pf = P(X/ = 1) 

Since P(max(Xi, Xi) = 1) = 1 - (1 - pi)(l - pi), it follows that 

r [ l  - (1 - p)(l - p')l = E(+[max(X, X1)l) 

However, by the monotonicity of +, we have that +[max(X, X')] is greater 
than or equal to both +(X) and +(XI) and hence is at least as large as 
max[+(X), +(X1)]. Hence, from the preceding we have that 

where the first equality follows from the fact that max[+(X), +(X1)] is a 
0 - 1 random variable and hence its expectation equals the probability of 
its equaling 1. + 

*Notation: If x = (x, , . .., x,), y = ( y ,  , . . ., y,), then xy = (x, y ,  , . . ., x, y,). Also, 
max(x, Y )  = (max(x, , Y,) ,  . . . , maxDr, , Y,)) and m i n k  Y )  = (min(x, , Y,), . . . , m i n k ,  Y,)). 
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As an illustration of the preceding theorem, suppose that we want to 
build a series system of two different types of components from a stockpile 
consisting of two of each of the kinds of components. Suppose that the 
reliability of each component is i. If we use the stockpile to build two 
separate systems, then the probability of attaining a working system is 

1 - (+)2 = & 
while if we build a single system, replicating components, then the prob- 
ability of attaining a working system is 

( 1 2 = . %  4) 16 

Hence, replicating components leads to a higher reliability than replicating 
systems (as, of course, it must by Theorem 9.1). 

9.4. Bounds on the Reliability Function 

Consider the bridge system of Example 9.8, which is represented by Figure 
9.11. Using the minimal path representation, we have that 

4(x) = 1 - (1 - x1 x4)(1 - X, x3x5)(1 - x2x5)(l - ~ 2 x 3 ~ ~ )  
Hence, 

r ( ~ )  = 1 -E[(1 - XIX~)( I  - X1X3X5)(1 - XzX,)(l - X Z X ~ X ~ ) ]  

However, since the minimal path sets overlap (that is, they have components 
in common), the random variables (1 - X1 X,), (1 - X, X3 X5), (1 - X2X5), 
and (1 - X2X3X4) are not independent, and thus the expected value of 
their product is not equal to the product of their expected values. Therefore, 
in order to compute r(p), we must first multiply the four random variables 
and take the expected value. Doing so, we obtain 

r(p) = E[X,X4 + X2X5 + X,X3X5 + X2X3X4 - X,X2X3X4 

- X1X2X3X5 - X1X2X4X5 - x,x3x4x5 - x2x3x4x5 
+ % X ~ X ~ X ~ X S ]  

= P1P4 + P2P5 + PlP3P5 + P2P3P4 - PlP2P3P4 - PlP2P3P5 

- PlP2P4P5 - PlP3P4P5 - P2P3P4Ps + 2 ~ 1 ~ 2 ~ 3 ~ 4 ~ 5  

Figure 9.1 1. 
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As can be seen by the above example, it is often quite tedious to evaluate 
r(p), and thus it would be useful if we had a simple way of obtaining 
bounds. We now consider two methods for this. 

9.4.1. Method of Inclusion and Exclusion 

The following is a well-known formula for the probability of the union of 
the events E l ,  E2, . . . , En : 

P(Ei> - CCP(EiEj) + CCCP(EiEjEk) 
ic j  i c j c k  

A result, not as well known, is the following set of inequalities: 

- CCP(EiEj) + CCCP(EiEjEk), 
i c j  i c j c k  

where the inequality always changes direction as we add an additional term 
of expansion of P(UI= Ei). 

The equality (9.3) is usually proven by induction on the number of events. 
However, let us now present another approach that will not only prove 
Equation (9.3) but also establish the inequalities (9.4). 

To begin, define the indicator variables 5, j = 1, . . . , n, by 

, = [ 1 if Ej occurs 
0, otherwise 

Letting 
n 

N =  C 5 
j= 1 

then N denotes the number of the Ej, 1 5 j 5 n, that occur. Also, let 
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Then, as 

1 - z = (1 - l)N 

we obtain, upon application of the binomial theorem, that 

We now make use of the following combinatorial identity (which is easily 
established by induction on i): 

(:)-( i +  1 ) + . - - 2 ( 3 = ( " - ' ) r o ,  i -  1 
i a n  

The preceding thus implies that 

From Equations (9.5) and (9.6) we obtain 

Z 5 N, by letting i = 2 in (9.6) 

by letting i = 3 in (9.6) 

and so on. Now, since N r n and = 0 whenever i > m, we can rewrite 

Equation (9.5) as 

The equality (9.3) and inequalities (9.4) now follow upon taking expecta- 
tions of (9.7) and (9.8). This is the case since 

E[Z] = P{N > 0) = P(at  least one of the Ej occurs) = P 

E [N] = E 4 = P(Ej) 
j 1 j : I  
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Also, 

E [c ) ]  = =[number of pairs of the Ej that occur] 

= C C P(EiEj) 
i < j 

and, in general 

E[C>I = E[number of sets of size i that occur] 

The bounds expressed in Equation (9.4) are commonly called the 
inclusion-exclusion bounds. To apply them in order to obtain bounds on 
the reliability function, let A, ,  A,, . . . , A, denote the minimal path sets of 
a given structure 4, and define the events El, E,, . . ., E, by 

E, = (all components in Ai function) 

Now, since the system functions if and only if at least one of the events Ei 
occurs, we have 

Applying (9.4) yields the desired bounds on r(p). The terms in the summa- 
tion are computed thusly: 

and so forth for intersections of more than three of the events. (The 
preceding follows since, for instance, in order for the event EiEj to occur, 
all of the components in A, and all of them in Aj must function; or, in other 
words, all components in A, U Aj must function.) 
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When the pi's are small the probabilities of the intersection of many of 
the events Ei should be quite small and the convergence should be relatively 
rapid. 

Example 9.17 Consider the bridge structure with identical component 
probabilities. That is, take pi to equal p for all i. Letting A, = (1,4), 
A, = (1,3,5), A3 = (2,5), and A4 = (2,3,4] denote the minimal path 
sets, we have that 

P(E1) = P(E3) = p2, 

Also, because exactly five of the six = unions of Ai and Aj contain C) 
four components (the exception being A; U A4 which contains all five 
components), we have 

Hence, the first two inclusion-exclusion bounds yield 

where 0 )  = r(p,p,p,p,p). For instance, when p = 0.4, we have 

0.3098 5 r(0.4) r 0.448 

and, when p = 0.3, 

0.191 I r(0.3) r 0.234 + 
Just as we can define events in terms of the minimal path sets whose 

union is the event that the system functions, so can we define events in terms 
of the minimal cut sets whose union is the event that the system fails. 
Let C,, C2, . . ., C, denote the minimal cut sets and define the events 
Fi, . - - , & b y  

E;I. = [all components in Ci are failed) 

Now, because the system is failed if and only if all of the components of at 
least one minimal cut set are failed, we have that 
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and so on. As 

P(4) = n (1 - PI), 
I Ci 

the convergence should be relatively rapid when the pi's are large. 

Example 9.18 (A Random Graph): Let us recall from Section 3.6.2 
that a graph consists of a set N of nodes and a set A of pairs of nodes, 
called arcs. For any two nodes i and j we say that the sequence of arcs 
(i, il)(il, i2), . . . , (ik , j )  constitutes an i - j path. If there is an i - j path 

between all the pairs of nodes i and j, i # j ,  then the graph is said C) 
to be connected. If we think of the nodes of a graph as representing 
geographical locations and the arcs as representing direct communication 
links between the nodes, then the graph will be connected if any two nodes 
can communicate with each other-if not directly, then at least through the 
use of intermediary nodes. 

A graph can always be subdivided into nonoverlapping connected 
subgraphs called components. For instance, the graph in Figure 9.12 with 
nodes N = (1,2, 3,4, 5,6) and arcs A = ((1,2), (1, 3), (2,3), (4,5)) consists 
of three components (a graph consisting of a single node is considered to be 
connected). 

Consider now the random graph having nodes 1,2, . . . , n which is such 
that there is an arc from node i to node j with probability Pu. Assume in 
addition that the occurrences of these arcs constitute independent events. 

Figure 9.12. 
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That is, assume that the random variables Xu, i # j, are independent t) . . 
where 

1, if (i, j) is an arc 
0, otherwise 

We are interested in the probability that this graph will be connected. 

We can think of the preceding as being a reliability system of 

components-each component corresponding to a potential arc. The 
component is said to work if the corresponding arc is indeed an arc of the 
network, and the system is said to work if the corresponding graph is 
connected. As the addition of an arc to a connected graph cannot discon- 
nect the graph, it follows that the structure so defined is monotone. 

Let us start by determining the minimal path and minimal cut sets. It is 
easy to see that a graph will not be connected if and only if the sets of arcs 
can be partitioned into two nonempty subsets X and Xc in such a way that 
there is no arc connecting a node from X with one from Xc. For instance, 
if there are six nodes and if there are no arcs connecting any of the nodes 
1, 2, 3, 4 with either 5 or 6, then clearly the graph will not be connected. 
Thus, we see that any partition of the nodes into two nonempty subsets X 
and Xc corresponds to the minimal cut set defined by 

((i, j): i E X, j E Xc J 

, Is  there are 2"-' - 1 such partitions (there are 2" - 2 ways of choosing a 
nonempty proper subset X and, as the partition X, XC is the same as XC, X, 
we must divide by 2) there are therefore this number of minimal cut sets. 

To determine the minimal path sets, we must characterize a minimal set 
of arcs which result in a connected graph. Now the graph in Figure 9.13 is 
connected but it would remain connected if any one of the arcs from the 
cycle shown in Figure 9.14 were removed. In fact it is not difficult to see 
that the minimal path sets are exactly those sets of arcs which result in a 
graph being connected but not having any cycles (a cycle being a path from 
a node to itself). Such sets of arcs are called spanning trees (Figure 9.15). 

Figure 9.13. Figure 9.14. 
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Figure 9.13. Figure 9.14. 
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Figure 9.15. Two spanning trees (minimal path sets) when n = 4. 

It is easily verified that any spanning tree contains exactly n - 1 arcs, and 
it is a famous result in graph theory (due to Cayley) that there are exactly 
,,"-z of these minimal path sets. 

Because of the large number of minimal path and minimal cut sets (nn-' 
and 2"-' - 1, respectively), it is difficult to obtain any useful bounds 
without making further restrictions. So, let us assume that all the iq,. equal 
the common value p. That is, we suppose that each of the possible arcs 
exists, independently, with the same probability p. We shall start by 
deriving a recursive formula for the probability that the graph is connected, 
which is computationally useful when n is not too large, and then we shall 
present an asymptotic formula for this probability when n is large. 

Let us denote by P, the probability that the random graph having n nodes 
is connected. To derive a recursive formula for Pn we first concentrate 
attention on a single node-say, node 1-and try to determine the prob- 
ability that node 1 will be part of a component of size k in the resultant 
graph. Now for a given set of k - 1 other nodes these nodes along with 
node 1 will form a component if 

(i) there are no arcs connecting any of these k nodes with any of the 
remaining n - k nodes: 

(ii) the random graph, restricted to these k nodes [and (i) potential 

arcs-each independently appearing with probability p] is connected. 

The probability that (i) and (ii) both occur is 

k(n - k ) p  
k 

where q = 1 - p. As there are (F I :) ways of choosing k - 1 other 

nodes (to form along with node 1 a component of size k) we see that 

P(node 1 is part of a component of size k] 

Now since the sum of the foregoing probabilities as k ranges from 1 thru n 
clearly must equal 1, and as the graph is connected if and only if node 1 
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is part of a component of size n, we see that 

Starting with PI = 1, P2 = p, Equation (9.9) can be used to determine Pn 
recursively when n is not too large. It is particularly suited for numerical 
computation. 

To determine an asymptotic formula for Pn when n is large, first note 
from Equation (9.9) that since Pk I 1, we have 

As it can be shown that for q < 1 and n sufficiently large 

we have that for n large 

I - P, I (n + l)qn-' 

To obtain a bound in the other dirrection, we concentrate our attention on 
a particular type of minimal cut set-namely, those that separate one node 
from all others in the graph. Specifically, define the minimal cut set Ci as 

Ci = [(i, j):  j # i] 

and define F, to be the event that all arcs in Ci are not working (and thus, 
node i is isolated from the other nodes). Now, 

1 - P, = P(graph is not connected) 2 P Ue 
( i  > 

since, if any of the events 4 occur, then the graph will be disconnected. 
By the inclusion-exclusion bounds, we have that 

As P ( 4 )  and P(&l$) are just the respective probabilities that a given set of 
n - 1 arcs and that a given set of 2n - 3 arcs are not in the graph (why?), 
it follows that 

P (4 )  = qn-l, 

P(F,e) = q2n-3, i # j 
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and so 

Combining this with Equation (9.10) yields that for n sufficiently large 

and as 

as n -, a, we see that, for large n, 

1 - P, = nqn-' 

Thus, for instance, when n = 20 and p = i ,  the probability that the 
random graph will be connected is approximately given by 

P,, = 1 - 2o(i)l9 = 0.99998 + 

9.4.2. Second Method for Obtaining Bounds on r(p) 

Our second approach to obtaining bounds on r(p) is based on expressing the 
desired probability as the probability of the intersection of events. To do so, 
let A, , A,, . . . , A, denote the minimal path sets as before, and define the 
events, Di, i = 1, ... by 

Di = (at least one component in Ai has failed) 

Now since the system will have failed if and only if at least one component 
in each of the minimal path sets has failed we have that 

1 - r(p) = P(D, D, . . . D,) 

= P(D,)P(D, ( D,) . . . P(D, ID,  D, . . . D,-,) (9.11) 

Now it is quite intuitive that the information that at least one component of 
A, is down can only increase the probability that at least one component of 
A, is down (or else leave the probability unchanged if A, and A, do not 
overlap). Hence, intuitively 

P(D2 I Dl) 2 P(D2) 

To prove this inequality, we write 

P(D2) = P(D2 I D1)P(D1) + P(D2 I Df)(l - P(D1)) (9.12) 
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and note that 

P(D2 I Df) = P(at  least one failed in A, I all functioning in A,)  

Hence, from Equation (9.12) we see that 

By the same reasoning, it also follows that 

and so from Equation (9.1 1) we have 

1 - r(p) 2 n P(Di) 
i 

or, equivalently, 

To obtain a bound in the other direction, let C,  , . . . , Cr denote the 
minimal cut sets and define the events U, , . . . , Ur by 

Ui = (at least one component in Ci is functioning) 

Then, since the system will function if and only if all of the events Ui occur, 
we have 

r(p) = P(Ul U, . . . U,) 

where the last inequality is established in exactly the same manner as for the 
Di.  Hence, 

r 1 
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and we thus have the following bounds for the reliability function 

It is to be expected that the upper bound should be close to the actual r(p) 
if there is not too much overlap in the minimal path sets, and the lower 
bound to be close if there is not too much overlap in the minimal cut sets. 

Example 9.19 For the three-out-of-four system the minimal path sets 
are Al = (1,2,3), A, = (1,2,4), A, = (1,3,4), and A4 = (2,3,4); and the 
minimal cut sets are C, = (1,2], C2 = ( l ,3) ,  C3 = (1,4), C4 = (2,3), 
C, = (2,4), and C, = (3,4). Hence, by Equation (9.13) we have 

where qi E 1 - pi. For instance, if pi = 4 for all i, then the preceding 
yields that 

0.18 5 r(4, ..., 4) 5 0.59 

The exact value for this structure is easily computed to be 

9.5. System Life as a Function of Component Lives 

For a random variable having distribution function G, we define 
c(a) E 1 - G(a) to be the probability that the random variable is greater 
than a. 

Consider a system in which the ith component functions for a random 
length of time having distribution 4 and then fails. Once failed it remains 
in that state forever. Assuming that the individual component lifetimes 
are independent, how can we express the distribution of system lifetime 
as a function of the system reliability function r(p) and the individual 
component lifetime distributions Fi , i = 1, . . . , n ? 

To answer the above we first note that the system will function for a 
length of time t or greater if and only if it is still functioning at time t. That 
is, letting F denote the distribution of system lifetime, we have 

F(t) = P(system life > t )  

= PIsystem is functioning at time t )  
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But, by the definition of r(p) we have that 

P(system is functioning at time t )  = r(P,(t), . . ., Pn(t)) 

where 
e ( t )  = P{component i is functioning at t )  

Hence we see that 
F(t) = r(Fl(t), . . . , Fn(t)) 

Example 9.20 In a series system, r(p) = n:p i  and so from Equation 
(9.14) 

n 
F(t) = n E(t )  

1 

which is, of course, quite obvious since for a series system the system life is 
equal to the minimum of the component lives and so will be greater than t 
if and only if all component lives are greater than t. + 
Example 9.21 In a parallel system r(p) = 1 - n: (1 - pi) and so 

The preceding is also easily derived by noting that, in the case of a parallel 
system, the system life is equal to the maximum of the component lives. + 

For a continuous distribution G, we define 1(t), the failure rate function 
of G, by 

where g(t) = d/dt G(t). In Section 5.2.2, it is shown that if G is the 
distribution of the lifetime of an item, then 1(t) represents the probability 
intensity that a t-year-old item will fail. We say that G is an increasing 
failure rate (IFR) distribution if 1(t) is an increasing function of t. 
Similarly, we say that G is a decreasing failure rate (DFR) distribution if 
I(t) is a decreasing function of t. 

Example 9.22 (The Weibull Distribution): A random variable is said to 
have the Weibull distribution if its distribution is given, for some 1 > 0, 
a > 0, by 

G(t) = 1 - e-'Xt)", t r 0 
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The failure rate function for a Weibull distribution equals 

Thus, the Weibull distribution is IFR when a r 1, and DFR when 
0 < a! I 1; when a = 1, G(t) = 1 - e-", the exponential distribution, 
which is both IFR and DFR. + 
Example 9.23 (The Gamma Distribution): A random variable is said to 
have a gamma distribution if its density is given, for some I > 0, a > 0, by 

Ie-"(It)"-' 
g(t) = for t 2 0 

r (a )  
where 

For the gamma distribution, 

With the change of variables u = x - t, we obtain 

Hence, G is IFR when a r 1 and is DFR when 0 < a I 1. + 
Suppose that the lifetime distribution of each component in a monotone 

system is IFR. Does this imply that the system lifetime is also IFR? To 
answer this, let us at first suppose that each component has the same 
lifetime distribution, which we denote by G. That is, 4 ( t )  = G(t), 
i = 1, . . . , n. To determine whether the system lifetime is IFR, we must 
compute IF(t), the failure rate function of F. Now, by definition, 
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where 

Hence, 

- - d(t)rl(d(t)) G '(t) 
f l a t ) )  m 

Since G(t) is a decreasing function of t, it fallows from Equation (9.15) 
that if each component of a coherent system has the same IFR lifetime 
distribution, then the distribution of system lifetime will be IFR if 
prt(p)/r(p) is a decreasing function of p. 

Example 9.24 (The k-out-of-n System with Identical Components): 
Consider the k-out-of-n system which will function if and only if k or more 
components function. When each component has the same probability p of 
functioning, the number of functioning components will have a binomial 
distribution with parameters n and p. Hence, 

which, by continual integration by parts, can be shown to be equal to 

n! 
0 )  = S' xk-'(1 - x)"-~ dx 

(k - l)!(n - k)! 

Upon differentiation, we obtain 

n! pk-l(l - py-k 
r'b) = (k - l)!(n - k)! 

Therefore, 
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Letting y = x/p, yields 

Since (1 - yp)/(l - p)  is increasing in p ,  it follows that prl(p)/r(p) is 
decreasing in p. Thus, if a k-out-of-n system is composed of independent, 
like components having an increasing failure rate, the system itself has an 
increasing failure rate. + 

It turns out, however, that for k-out-of-n system, in which the inde- 
pendent components have different IFR lifetime distributions, the system 
lifetime need not be IFR. Consider the following example of a two-out-of- 
two (that is, a parallel) system. 

Example 9.25 (A Parallel System That Is Not IFR): The life distri- 
bution of a parallel system of two independent components, the ith 
component having an exponential distribution with mean l/i, i = 1,2, is 
given by 

F(t) = 1 - (1 - e-t)(l - e-2t) 

- - e-2t + e-t - e-3t 

Therefore, 

It easily follows upon differentiation, that the sign of l l ( t )  is determined by 
e-5t - e-3t + 3e-4t, which is positive for small values and negative for large 
values of t. Therefore, L(t) is initially strictly increasing, and then strictly 
decreasing. Hence, F is not IFR. + 
Remark The result of the preceding example is quite surprising at first 
glance. To obtain a better feel for it we need the concept of a mixture of 
distribution functions. The distribution function G is said to be a mixture 
of the distributions G1 and G2 if for some p ,  0 < p < 1, 

Mixtures occur when we sample from a population made up of two distinct 
groups. For example, suppose we have a stockpile of items of which the 
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fraction p are type 1 and the fraction 1 - p are type 2. Suppose that the 
lifetime distribution of type 1 items is G,  and of type 2 items is G,. If we 
choose an item at random from the stockpile, then its life distribution is as 
given by Equation (9.16). 

Consider now a mixture of two exponential distributions having rates I, 
and A, where A, < I,. We are interested in determining whether or not this 
mixture distribution is IFR. To do so, we note that if the item selected has 
survived up to time t, then its distribution of remaining life is still a mixture 
of the two exponential distributions. This is so since its remaining life will 
still be exponential with rate I, if it is type 1 or with rate I, if it is a type 2 
item. However, the probability that it is a type 1 item is no longer the (prior) 
probability p but is now a conditional probability given that it has survived 
to time t. In fact, its probability of being a type 1 is 

Pltype 1, life > t )  
P(type 1 1 life > t )  = 

P(1ife > t ]  

As the preceding is increasing in t, it follows that the larger t is, the more 
likely it is that the item in use is a type 1 (the better one, since A, < I,). 
Hence, the older the item is, the less likely it is to fail, and thus the mixture 
of exponentials far from being IFR is, in fact, DFR. 

Now, let us return to the parallel system of two exponential components 
having respective rates I, and A,. The lifetime of such a system can be 
expressed as the sum of two independent random variables, namely, 

1 2  Exp(I,) with probability - 
system life = Exp(i, + I,) + I1 + I 2  

A1 Exp(i,) with probability - 
I1 + I 2  

The first random variable whose distribution is exponential with rate 
A,  + I, represents the time until one of the components fails, and the 
second, which is a mixture of exponentials, is the additional time until the 
other component fails. (Why are these two random variables independent?) 

Now, given that the system has survived a time t, it is very unlikely when 
t is large that both components are still functioning, but instead it is far 
more likely that one of the components has failed. Hence, for large t, the 
distribution of remaining life is basically a mixture of two exponentials- 
and so as t becomes even larger its failure rate should decrease (as indeed 
occurs). 4 
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Recall that the failure rate function of a distribution F(t)  having density 
f ( t )  = F1(t )  is defined by 

By integrating both sides, we obtain 

Hence, 

where 

A(t) = J I (s) ds 
0 

The function A(t)  is called the hazard function of the distribution F. 

Definition 9.1 A distribution F is said to have increasing failure on the 
average (IFRA) if 

A(t) 5; 4 s )  ds -- - (9.18) 
t t 

increases in t for t r 0. 

In other words, Equation (9.18) states that the average failure rate up to 
time t increases as t increases. It is not difficult to show that if F is IFR, then 
F is IFRA; but the reverse need not be true. 

Note that F is IFRA if A(s)/s I A( t ) / t  whenever 0 I s I t ,  which is 
equivalent to 

But by Equation (9.17) we see that A(t)  = -log p(t) ,  and so the preceding 
is equivalent to 

-log F(at) I - CY log F(t) 
or equivalently 

log F(at) r log Fa(t)  

which, since log x is a monotone function of x, shows that F is IFRA i f  and 
only i f  

F(at) 1 P"(t) for 0 I a I 1 ,  all t r 0 (9.19) 
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For a vector p = (p,, ..., p,) we define pa = (pp, ..., p,"). We shall 
need the following proposition. 

Proposition 9.2 Any reliability function r@) satisfies 

Proof We prove this by induction on n, the number of components in the 
system. If n = 1, then either r(p) = 0, r(p) I 1, or a) I p. Hence, the 
proposition follows in this case. 

So assume that Proposition 9.2 is valid for all monotone systems of n - 1 
components and consider a system of n components having structure 
function 4. By conditioning upon whether or not the nth component is 
functioning, we obtain 

Now consider a system of components 1 through n - 1 having a structure 
function $,(x) = 4(l,, x). The reliability function for this system is given by 
r , (p)  = r(l,, p); hence, from the induction assumption (valid for all 
monotone systems of n - 1 components), we have 

Similarly, by considering the system of components 1 through n - 1 and 
structure function &(x) = 4(On, x), .we obtain 

Thus, from Equation (9.20), we obtain 

which, by using the lemma to follow [with I = p,, x = dl , ,  p), 
y = r(O,, p)], implies that 

which proves the result. + 
Lemma 9.3 If 0 i a I 1, 0 i I i  1, then 

h(y) = laxa + (1 - I")ya - (AX + (1 - A)y)* 1 0 

for all 0 i y I x. 

Proof The proof is left as an exercise. + 
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We are now ready to prove the following important theorem. 

Theorem 9.2 For a monotone system of independent components, if 
each component has an IFRA lifetime distribution, then the distribution of 
system lifetime is itself IFRA. 

Proof The distribution of system lifetime F is given by 

Hence, since r is a monotone function, and since each of the component 
distributions 8 is IFRA, we obtain from Equation (9.19) 

which by Equation (9.19) proves the theorem. The last inequality followed, 
of course, from Proposition 9.2. + 

9.6. Expected System Lifetime 

In this section, we show how the mean lifetime of a system can be deter- 
mined, at least in theory, from a knowledge of the reliability function r(p) 
and the component lifetime distributions 5, i = 1, . . . , n. 

Since the system's lifetime will be t or larger if and only if the system is 
still functioning at time t, we have that 

Plsystem life 2 t )  = @(t)) 

where p(t) = (Fl(t), . . . , Rn(t)). Hence, by a well-known formula that states 
that for any nonnegative random variable X, 

E [ X ] =  P ( X r x ) d x ,  

we see that* 
l: 

OD 

EIsystem life] = @(t)) dt (9.21) 
0 

* That E [ X ]  = I," P(X a x)  dx can be shown as follows when X has density f: 
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Example 9.26 (A Series System of Uniformly Distributed Components): 
Consider a series system of three independent components each of which 
functions for an amount of time (in hours) uniformly distributed over 
(0, 10). Hence, r(p) = p,p2p3 and 

Therefore, 

and so from Equation (9.21) we obtain 

E [system life] = 1; ( 9 7  dt 

Example 9.27 (A Two-out-of-Three System): Consider a two-out-of- 
three system of independent components, in which each component's 
lifetime is (in months) uniformly distributed over (0, 1). As was shown in 
Example 9.13, the reliability of such a system is given by 

r(p) = PIP, + PlP3 + P2P3 - 2 ~ 1  ~ 2 ~ 3  

Since 

we see from Equation (9.21) that 

E[system life] = [3(1 - t)2 - 2(1 - t)3] dt l: 
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Example 9.28 (A Four-Component System): Consider the four- 
component system that functions when components 1 and 2 and at least one 
of components 3 and 4 functions. Its structure function is given by 

and thus its reliability function equals 

Let us compute the mean system lifetime when the ith component is 
uniformly distributed over (0, i), i = 1,2,3,4.  Now, 

O r t s l  
Fl(t) = 

t >  1 

Hence, 

Therefore, 

E[system life] = (1 - t)(2 - t)(12 - t2) dl 

We end this section by obtaining the mean lifetime of a k-out-of-n system 
of independent identically distributed exponential components. If B is the 
mean lifetime of each component, then 
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Hence, since for a k-out-of-n system, 

we obtain from Equation (9.21) 

E[system life] = 1; i!k @)(e-'")'(l - e-t'@)n-i dt 

Making the substitution 

E[system life] = 8 C 
i = k  

Now, it is not difficult to show that* 

Thus, the foregoing equals 
n n! ( i - l ) ! (n - i ) !  

E[system life] = 8 C 
i = k  (n - i)!i! n! 

Remark Equation (9.23) could have been proven directly by making use 
of special properties of the exponential distribution. First note that the 
lifetime of a k-out-of-n system can be written as T, + .-. + &-k+l, where 

represents the time between the (i - 1)st and ith failure. This is true since 
7i + - - -  + q-k+l equals the time at which the (n - k + 1)st component 
fails, which is also the first time that the number of functioning components 
is less than k. Now, when all n components are functioning, the rate at 
which failures occur is n/B. That is, T, is exponentially distributed with 
mean B/n. Similarly, since represents the time until the next failure 

* Let 

C(n, m) = yn(l - y)m dy s: 
Integration by parts yields that C(n, m) = [m/(n + l)]C(n + 1,m - 1). Starting with 
C(n, 0) = l / (n  + I ) ,  Equation (9.22) follows by mathematical induction. 



9.6. Expected System Lifetime 509 

when there are n - (i - 1) functioning components, it follows that z is 
exponentially distributed with mean B/(n - i + 1). Hence, the mean system 

Note also that it follows, from the lack of memory of the exponential, 
that the z ,  i = 1, ..., n - k + 1, are independent random variables. 

9.6.1. An Upper Bound on the Expected Life 
of a Parallel System 

Consider a parallel system of n components, whose lifetimes are not 
necessarily independent. The system lifetime can be expressed as 

system life = max Xi 
i 

where Xi is the lifetime of component i, i = 1, . . . , n. We can bound 
the expected system lifetime by making use of the following inequality. 
Namely, for any constant c 

n 

max Xi s c + C (Xi - c)' 
i i =  1 

where x', the positive part of x, is equal to x if x > 0 and is equal to 0 if 
x s 0. The validity of inequality (9.24) is immediate since if max Xi < c 
then the left side is equal to max Xi and the right side is equal to c. On the 
other hand, if X(,,, = maxXi > c then the right side is at least as large 
as c + (Xcnl - c) = X(,, . It follows from inequality (9.24), upon taking 
expectations, that 

n 

Now, (Xi - c)+ is a nonnegative random variable and so 

E[(Xi - c)+] = P((Xi - c)+ > X ]  dx So 
= SIp(xi - c > .qdx 

= 1: p(xi > YI dy 
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Thus, we obtain 

E max Xi I c + 
[ i  I i = l  

(9.26) 

Because the preceding is true for all c, it follows that we obtain the best 
bound by letting c equal the value that minimizes the right side of the above. 
To determine that value, differentiate the right side of the preceding and set 
the result equal to 0, to obtain: 

n 

1 - C P(Xi > CJ = 0 
i =  1 

That is, the minimizing value of c is that value c* for which 
n 

C P(Xi > c*) = 1 
i =  1 

Since CY=, P(Xi > c) is a decreasing function of c, the value of c* can 
be easily approximated and then utilized in inequality (9.26). Also, it is 
interesting to note that c* is such that the expected number of the Xi that 
exceed c* is equal to 1 (see Exercise 32). That the optimal value of c has this 
property is interesting and somewhat intuitive inasmuch as inequality 9.24 
is an equality when exactly one of the Xi exceeds c. 

Example 9.29 Suppose the lifetime of component i is exponentially 
distributed with rate Ai ,  i = 1, . . . , n. Then the minimizing value of c is 
such that 

and the resulting bound on the mean system life is 

I C* + E[(Xi - c*)'] 
i = l  

In the special case where all the rates are equal, say, Ai = 1 ,  i = 1, . . . , n, then 
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Thus, we obtain 

(9.26) 

Because the preceding is true for all c, it follows that we obtain the best 
bound by letting c equal the value that minimizes the right side of the above. 
To determine that value, differentiate the right side of the preceding and set 
the result equal to 0, to obtain: 

That is, the minimizing value of c is that value c* for which 
n 

C P[Xi > c*) = 1 
i =  1 

Since CI=, P(Xi > c) is a decreasing function of c, the value of c* can 
be easily approximated and then utilized in inequality (9.26). Also, it is 
interesting to note that c* is such that the expected number of the Xi that 
exceed c* is equal to 1 (see Exercise 32). That the optimal value of c has this 
property is interesting and somewhat intuitive inasmuch as inequality 9.24 
is an equality when exactly one of the Xi exceeds c. 

Example 9.29 Suppose the lifetime of component i is exponentially 
distributed with rate l i ,  i = 1, . . . , n. Then the minimizing value of c is 
such that 

and the resulting bound on the mean system life is 
n 

E max Xi I c* + E[(Xi - c*)+] 
[ i  I i = l  

n 

= C* + (E[(Xi - c*)+ I Xi > c*]P(Xi > c*] 
i =  1 

In the special case where all the rates are equal, say, li = A, i = 1, . . . , n, then 
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Thus, we obtain 

E max Xi I c + 
[ i  I i .1  

(9.26) 

Because the preceding is true for all c, it follows that we obtain the best 
bound by letting c equal the value that minimizes the right side of the above. 
To determine that value, differentiate the right side of the preceding and set 
the result equal to 0, to obtain: 

n 

1 - C P(Xi > c) = 0 
i =  1 

That is, the minimizing value of c is that value c* for which 

Since C;=, P(Xi > c] is a decreasing function of c, the value of c* can 
be easily approximated and then utilized in inequality (9.26). Also, it is 
interesting to note that c* is such that the expected number of the Xi that 
exceed c* is equal to 1 (see Exercise 32). That the optimal value of c has this 
property is interesting and somewhat intuitive inasmuch as inequality 9.24 
is an equality when exactly one of the Xi exceeds c. 

Example 9.29 Suppose the lifetime of component i is exponentially 
distributed with rate Ai, i = 1, . . . , n. Then the minimizing value of c is 
such that 

and the resulting bound on the mean system life is 
n 

E max Xi I c* + C E[(Xi - c*)'] 
l i  I i =  1 

In the special case where all the rates are equal, say, Ai = A, i = 1, . . . , n, then 
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and the bound is 

That is, if XI, . . . , X, are identically distributed exponential random 
variables with rate A, then the preceding gives a bound on the expected value 
of their maximum. In the special case where these random variables are also 
independent, the following exact expression, given by Equation (9.25), is 
not much less than the preceding upper bound: 

9.7. Systems with Repair 

Consider an n component system having reliability function r(p). Suppose 
that component i functions for an exponentially distributed time with rate 
Ai and then fails; once failed it takes an exponential time with rate pi to be 
repaired, i = 1, . . . , n. All components act independently. 

Let us suppose that all components are initially working, and let 

A(t) = P[system is working at t J  

A(t) is called the availability at time t. Since the components act independ- 
ently, A(t) can be expressed in terms of the reliability function as follows: 

A(t) = r(Al(t), . . . ,An ( t ) )  (9.27) 
where 

Ai(t) = P(component i is functioning at t )  

Now the state of component i-either on or off-changes in accordance 
with a two-state continuous time Markov chain. Hence, from the results of 
Example 6.12 we have 

Thus, we obtain 

If we let t approach oo, then we obtain the limiting availability-call it A- 
which is given by 

A = Iim A(t) = r 
t'oo 
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Remarks (i) If the on and off distributions for component i are 
arbitrary continuous distributions with respective means l / l i  and l/pi, 
i = 1, . . . , n, then it follows from the theory of alternating renewal 
processes (see Section 7.5.1) that 

and thus using the continuity of the reliability function, it follows from 
(9.27) that the limiting availability is 

A = lim A(t) = r 
t + m  

Hence, A depends only on the on and off distributions through their 
means. 

(ii) It can be shown (using the theory of regenerative processes as 
presented in Section 7.5) that A will also equal the long-run proportion of 
time that the system will be functioning. 

Example 9.30 For a series system, r@) = nY=, pi and so 

and 

Example 9.31 For a parallel system, r@) = 1 - nY=, (1 -pi) and thus 

and 

The preceding system will alternate between periods when it is up and 
periods when it is down. Let us denote by Ui and Di, i 1 1, the lengths of 
the ith up and down period respectively. For instance in a two-of-three 
system, Ul will be the time until two components are down; D l ,  the 
additional time until two are up; U, the additional time until two are down, 
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and so on. Let 
u1 + ... + u, 0 = lim , 

Dl  + -.. + D, 
D = lim 

n + m  n 

denote the average length of an up and down period respectively.* 
To determine 0 and 6 ,  note first that in the first n up-down cycles-that 

is in time C;= (Ui + Di)-the system will be up for a time Cy=, Ui. Hence, 
the proportion of time the system will be up in the first n up-down cycles is 

As n + oo, this must converge to A, the long-run proportion of time the 
system is up. Hence, 

However, to solve for 0 and 6 we need a second equation. To obtain one 
consider the rate at which the system fails. As there will be n failures in time 
Cy= (Ui + Di), it follows that the rate at which the system fails is 

n 
rate at which system fails = lim 

n-m C: Ui + Dl 

= lim 
1 I 

=- 
n--C:Ui/n+C~Di/n  0 + 6  (9.29) 

That is, the foregoing yields the intuitive result that, on average, there is one 
failure every 0 + 6 time units. To utilize this, let us determine the rate at 
which a failure of component i causes the system to go from up to down. 
Now, the system will go from up to down when component i fails if the 
states of the other components xl , . . . , xi-l, xi-l, . . . , x, are such that 
$(lit X) = 1, q5(Oi, X) = 0. That is the states of the other components must 
be such that 

q5(1i , XI - 4(Oi , X) = 1 (9.30) 

Since component i will, on average, have one failure every l/Ai + l/pi time 
units, it follows that the rate at which component i fails is equal to 
(l/Ai + l/pi)-' = lip,/(& + pi). In addition, the states of the other 

* It can be shown using the theory of regenerative processes that, with probability 1,  the 
preceding limits will exist and will be constants. 
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components will be such that (9.30) holds with probability 

= E[+(li, X(W)) - +(Oi, X(w))l since W i ,  X(w)) - +(Oi, X(W)) 
is a Bernoulli random variable 

Hence, putting the preceding together we see that 

rate at which component = L) - r t i ,  L)] i causes the system to fail li + pi A + P  L + P  

Summing this over all components i thus gives 

" K  [ r ( l i , f i )  - r@i,&)] rate at which system fails = - 
i l i  + Pi 

Finally, equating the preceding with (9.29) yields 

Solving (9.28) and (9.31), we obtain 

Also, (9.31) yields the rate at which the system fails. 

Remark In establishing the formulas for 0 and b, we did not make 
use of the assumption of exponential on and off times, and, in fact our 
derivation is valid and (9.32) and (9.33) hold whenever and b are 
well defined (a sufficient condition is that all on and off distributions are 
continuous). The quantities Ai , pi, i = 1, . . . , n, will represent, respectively, 
the reciprocals of the mean lifetimes and mean repair times. 
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Example 9.32 For a series system, 

whereas for a parallel system, 

The preceding formulas hold for arbitrary continuous up and down 
distributions with l/Ai and l/pi denoting respectively the mean up and 
down times of component i, i = 1, ..., n. + 
Remark The model of this section would arise when the components are 
separately maintained with each having its own repair facility. For models 
having a common repair facility, the interested reader should see Examples 
6.16 and 6.17. 

Exercises 

1. Prove that, for any structure function +, 

+(x) = xi+(li , X) + (1 - xi)d(Oi, X) 

where 

( l i , ~ )  = (XI, ---,xi-l, 1, xi+l, *--,xn), 

(Oitx) = (XI, ...,X i-1, 0, Xi+l,  ...,xn) 
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2. Show that 

(a) if +(0,0, .. ., 0) = 0 and +(I, 1, .. ., 1) = 1, then 

min xi I p(x) I max xi 

3. For any structure function 9, we define the dual structure +D by 

(a) Show that the dual of a parallel (series) system is a series (parallel) 
system. 
(b) Show that the dual of a dual structure is the original structure. 
(c) What is the dual of a k-out-of-n structure? 
(d) Show that a minimal path (cut) set of the dual system is a minimal cut 
(path) set of the original structure. 

*4. Write the structure function corresponding to the following: 

Figure 9.16. 

Figure 9.17. 

Figure 9.1 8. 
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5. Find the minimal path and minimal cut sets for: 

Figure 9.19. 

Figure 9.20. 

'6. The minimal path sets are (1,2,4], (1,3, 51, and (5,6]. Give the 
minimal cut sets. 

7. The minimal cut sets are (1,2, 31, (2,3,4) ,  and (3,5]. What are the 
minimal path sets? 

8. Give the minimal path sets and the minimal cut sets for the structure 
given by Figure 9.21. 

Figure 9.21. 
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9. Component i is said to be relevant to the system if for some state 
vector x, 

4 = 1, 4(0i,x) = 0 

Otherwise, it is said to be irrelevant. 

(a) Explain in words what it means for a component to be irrelevant. 
(b) Let A,,  ..., A, be the minimal path sets of a system, and let S denote 
the set of components. Show that S = U;=, Ai if and only if all 
components are relevant. 
(c) Let C, , . . . , Ck denote the minimal cut sets. Show that S = Uf= Ci if 
and only if all components are relevant. 

10. Let ti denote the time of failure of the ith component; let r,(t) 
denote the time to failure of the system 4 as a function of the vector 
t = (t, , . . . ,. t,). Show that 

max min ti = 7,(t) = min max ti 
l s j s s  i e A j  l s j s k  i c C j  

where C,, ..., Ck are the minimal cut sets, and A, ,  ..., As the minimal 
path sets. 

11. Give the reliability function of the structure of Exercise 8. 

*12. Give the minimal path sets and the reliability function for the 
structure in Figure 9.22. 

Figure 9.22. 

13. Let r@) be the reliability function. Show that 

14. Compute the reliability function of the bridge system (see Figure 9.1 1) 
by conditioning upon whether or not component 3 is working. 
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15. Compute upper and lower bounds of the reliability function (using 
Method 2) for the systems given in Exercise 4, and compare them with the 
exact values when pi E $. 
16. Compute the upper and lower bounds of r@) using both methods 
for the 

(a) two-out-of-three system and 
(b) two-out-of-four-system. 
(c) Compare these bounds with the exact reliability when 

(i) pi = 0.5 
(ii) pi z 0.8 
(iii) pi = 0.2 

' 17. Let N be a nonnegative, integer-valued random variable. Show that 

and explain how this inequality can be used to derive additional bounds on 
a reliability function. 

Hint: 
E [ N ~ ]  = E [ N ~  I N > O]P[N > 0) (Why?) 

2 (E[NI N > o])~P(N > 0) (Why?) 

Now multiply both sides by P ( N  > 0). 

18. Consider a structure in which the minimal path sets are (1,2,3) and 
(3,4,51. 

(a) What are the minimal cut sets? 
(b) If the component lifetimes are independent uniform (0,l)  random 
variables, determine the probability that the system life will be less than *. 

19. Let XI, X2 , . . . , X,, denote independent and identically distributed 
random variables and define the order statistics X(l,, . . . , X(,, by 

X(,, = ith smallest of X I ,  . . . , X, 
Show that if the distribution of Xj is IFR, then so is the distribution of X(il. 

Hint: Relate this to one of the examples of this chapter. 

20. Let F be a continuous distribution function. For some positive a, 
define the distribution function G by 

G(?) = (F(t))u 

Find the relationship between lo(t) and rl,(t), the respective failure rate 
functions of G and F. 
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21. Consider the following four structures: 

0) (ii) 

I 2 3 

Figure 9.23. Figure 9.24. 

(iii) 

(iv) 

Figure 9.25. Figure 9.26. 

Let Fl , F2 , and F, be the corresponding component failure distributions; 
each of which is assumed to be IFR (increasing failure rate). Let F be the 
system failure distribution. All components are independent. 

(a) For which structures is F necessarily IFR if F, = F, = F3? Give 
reasons. 
(b) For which structures if F necessarily IFR if F, = F3? Give reasons. 
(c) For which structures is F necessarily IFR if Fl # F2 # F3? Give 
reasons. 

'22. Let X denote the lifetime of an item. Suppose the item has reached 
the age of t. Let X, denote its remaining life and define 

In words, &(a) is the probability that a t-year-old item survives an 
additional time a. Show that 

(a) Ft(a) = F(t + a)/F(t) where F is the distribution function of X.  
(b) Another definition of IFR is to say that F is IFR if &(a) decreases in 
t, for all a. Show that this definition is equivalent to the one given in the 
text when F has a density. 
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23. Show that if each (independent) component of a series system has an 
IFR distribution, then the system lifetime is itself IFR by 

(a) showing that 

LF(~) = C Li(t) 
i 

where LF(t) is the failure rate function of the system; and l i ( t )  the failure 
rate function of the lifetime of component i. 
@) using the definition of IFR given in Exercise 22. 

24. Show that if F is IFR, then it is also IFRA, and show by counter- 
example that the reverse is not true. 

*25. We say that [is ap-percentile of the distribution F if F(r) = p. Show 
that if ( is a p-percentile of the IFRA distribution F, then 

where 

26. Prove Lemma 9.3. 

Hint: Let x = y + 6. Note that f(t) = ta is a concave function when 
0 5 CY s 1, and use the fact that for a concave function f(t + h) - f(t) is 
decreasing in t. 

27. Let r(p) = r(p,p, . . . ,p). Show that if a,) = po,  then 

Hint: Use Proposition 9.2. 

28. Find the mean lifetime of a series system of two components when the 
component lifetimes are respectively uniform on (0, 1) and uniform on 
(0,2). Repeat for a parallel system. 

29. Show that the mean lifetime of a parallel system of two components is 

when the first component is exponentially distributed with mean l/pl and 
the second is exponential with mean 1/p2. 
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*30. Compute the expected system lifetime of a three-out-of-four system 
when the first two component lifetimes are uniform on (0, 1) and the second 
two are uniform on (0,2). 

31. Show that the variance of the lifetime of a k-out-of-n system of 
components, each of whose lifetimes is exponential with mean 8, is given by 

32. In Section 9.6.1 show that the expected number of Xi that exceed c* 
is equal to 1. 

33. Let Xi be an exponential random variable with mean 8 + 2i, for 
i = 1,2,3.  Use the results of Section 9.6.1 to obtain an upper bound on 
E[max Xi], and then compare this with the exact result when the Xi are 
independent. 

34. For the model of Section 9.7, compute (i) the average up time, (ii) the 
average down time, and (iii) the system failure rate for a k-out-of-n 
structure. 

35. Prove the combinatorial identity 

(a) by induction on i 
(b) by a backwards induction argument on i-that is, prove it first for 
i = n, then assume it for i = k and show that this implies that it is true for 
i = k - I .  
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Chapter 10 
Brownian Motion and 
Stationary Processes 

10.1. Brownian Motion 

Let us start by considering the symmetric random walk which in each time 
unit is equally likely to take a unit step either to the left or to the right. That 
is, it is a Markov chain with P,,i+l = 4 = P,,i-l, i = 0, st 1, . . . . Now 
suppose that we speed up this process by taking smaller and smaller steps in 
smaller and smaller time intervals. If we now go to the limit in the right 
manner what we obtain is Brownian motion. 

More precisely, suppose that each At time unit we take a step of size A x  
either to the left or the right with equal probabilities. If we let X(t) denote 
the position at time t then 

X(t) = AX (XI + . . . + XIt,Atl) (10.1) 
where 

+1, if the ith step of length Ax is to the right xi = 
-1, if it is to the left 

and [t/At] is the largest integer less than or equal to t/At, and where the Xi 
are assumed independent with 

As E[Xi] = 0, Var(Xi) = E [xi2] = 1, we see from Equation (10.1) that 
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We shall now let Ax and At go to 0. However, we must do it in a way such 
that the resulting limiting process is nontrivial (for instance, if we let 
Ax = At and let At -+ 0, then from the preceding we see that E[X(t)] and 
Var(X(t)) would both converge to 0 and thus X(t) would equal 0 with 
probability 1). If we let Ax = o a f o r  some positive constant o then from 
Equation (10.2) we see that as At + 0 

We now list some intuitive properties of this limiting process obtained by 
taking Ax = om and then letting At -, 0. From Equation (10.1) and the 
central limit theorem the following seems reasonable: 

(i) X(t) is normal with 
changes of value of the 
independent, we have 

mean 0 and variance a2t. In addition, because the 
random walk in nonoverlapping time intervals are 

(ii) (X(t), t 2 0) has independent increments, in that for all t1 C t2 < . . . 
c tn 

X(tn) - X(tn-J, X(tn-1) - X(tn-2)9 .*-,X(t2) - X(t1)9 X(t1) 

are independent. Finally, because the distribution of the change in position 
of the random walk over any time interval depends only on the length of 
that interval, it would appear that 
(iii) (X(t), t r 0) has stationary increments, in that the distribution 
of X(t + s) - X(t) does not depend on t. We are now ready for the 
following formal definition. 

Definition 10.1 A stochastic process (X(t), t 2 0) is said to be a 
Brownian motion process if 

(i) X(0) = 0; 
(ii) (X(t), t 1 0) has stationary and independent increments; 

(iii) for every t > 0, X(t) is normally distributed with mean 0 and 
variance a2t. 

The Brownian motion process, sometimes called the Wiener process, is 
one of the most useful stochastic processes in applied probability theory. 
It originated in physics as a description of Brownian motion. This 
phenomenon, named after the English botanist Robert Brown who 
discovered it, is the motion exhibited by a small particle which is totally 
immersed in a liquid or gas. Since then, the process has been used 
beneficially in such areas as statistical testing of goodness of fit, analyzing 
the price levels on the stock market, and quantum mechanics. 
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The first explanation of the phenomenon of Brownian motion was 
given by Einstein in 1905. He showed that Brownian motion could be 
explained by assuming that the immersed particle was continually being 
subjected to bombardment by the molecules of the surrounding medium. 
However, the preceding concise definition of this stochastic process 
underlying Brownian motion was given by Wiener in a series of papers 
originating in 19 18. 

When a = 1, the process is called standard Brownian motion. Because 
any Brownian motion can be converted to the standard process by letting 
B(t) = X(t)/a we shall, unless otherwise stated, suppose throughout this 
chapter that a = 1. 

The interpretation of Brownian motion as the limit of the random walks 
[Equation (10.1)] suggests that X(t) should be a continuous function of t. 
This turns out to be the case, and it may be proven that, with probability 1, 
X(t) is indeed a continuous function of t. This fact is quite deep, and no 
proof shall be attempted. 

As X(t) is normal with mean 0 and variance t, its density function is 
given by 

To obtain the joint density function of X(tl), X(t2), . . . , X(tn) for 
t1 < < t,, note first that the set of equalities 

is equivalent to 

However, by the independent increment assumption it follows that 
X(tl), X(t2) - X(tl), . . . , X(tn) - X(tn- ,), are independent and, by the 
stationary increment assumption, that X(tk) - X(tk-l) is normal with mean 
0 and variance tk - tk-,. Hence, the joint density of X(t,), . . . , X(tn) is 
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given by 

+ ... + (xn - xn- 112 

- - tz - tl tn - 4 - 1  

(2n)n'2[tl(t2 - tl) ' ' ' (t,, - t,,- l)] l'Z 

I I 
(10.3) 

From this equation, we can compute in principle any desired probabilities. 
For instance, suppose we require the conditional distribution of X(s) given 
that X(t) = B where s < t. The conditional density is 

= K1 exp( -x2/2s - (B - x)'/2(t - s)] 

= K3 exp [- (& rS!tZ] 
where Kl , Kz, and K3 do not depend on x. Hence, we see from the above 
that the conditional distribution of X(s) given that X(t) = B is, for s < t, 
normal with mean and variance given by 

Example 10.1 In a bicycle race between two competil.ors, let Y(t) 
denote the amount of time (in seconds) by which the racer that started in the 
inside position is ahead when lOOt percent of the race has been completed, 
and suppose that (Y(t), 0 s t 5 1) can be effectively modeled as a Brownian 
motion process with variance parameter a2. 

(a) If the inside racer is leading by a seconds at the midpoint of the race, 
what is the probability that she is the winner? 
(b) If the inside racer wins the race by a margin of a seconds, what is the 
probability that she was ahead at the midpoint? 
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Solution: 

(a) P(Y(1) > 0 I Y(1/2) = a)  

= P(Y(1) - Y(1/2) > -a) by independent increments 

= P(Y(1/2) > -a) by stationary increments 

where @(x) = P(N(0, 1 )  I x)  is the standard normal distribution function. 
(b) Because we must compute P(Y(1/2) > 0 ( Y( l )  = a] ,  let us first 
determine the conditional distribution of Y(s) given that Y(t) = C, when 
s < t. Now, since (X(t),  t r 0) is standard Brownian motion when 
X(t) = Y(t)/a, we obtain from Equation (10.4) that the conditional 
distribution of X(s), given that X(t) = C/o,  is normal with meansC/ta and 
variance s(t - s)/t. Hence, the conditional distribution of Y(s) = aX(s) 
given that Y(t) = C is normal with mean sC/t and variance a2s(t - s)/t. 
Hence, 

P(Y(1/2) > 0 I Y( l )  = a ]  = P(N(a/2, a2/4) > 0) 

10.2. Hitting Times, Maximum Variable, and the 
Gambler's Ruin Problem 

Let us denote by T, the first time the Brownian motion process hits a. 
When a > 0 we will compute PIT, 5 t ]  by considering P(X(t) r a] and 
conditioning on whether or not T, I t. This gives 
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Now if T, I t, then the process hits a at some point in [0, t] and, by 
symmetry, it is just as likely to be above a or below a at time t. That is 

As the second right-hand term of Equation (10.5) is clearly equal to 0 
(since, by continuity, the process value cannot be greater than a without 
having yet hit a), we see that 

For a < 0, the distribution of T, is, by symmetry, the same as that of T-, . 
Hence, from Equation (10.6) we obtain 

Another random variable of interest is the maximum value the process 
attains in [0, t]. Its distribution is obtained as follows: For a > 0 

= P[T, I t )  by continuity 
ossst 

= 2P[X(t) r a] from (10.6) 

Let us now consider the probability that Brownian motion hits A before 
- B where A > 0, B > 0. To compute this we shall make use of the inter- 
pretation of Brownian motion as being a limit of the symmetric random 
walk. To start let us recall from the results of the gambler's ruin problem 
(see Section 4.5.1) that the probability that the symmetric random walk goes 
up A before going down B when each step is equally likely to be either up 
or down a distance Ax is (by Equation (4.12) with N = (A + B)/Ax, 
i = B/Ax) equal to B &/(A + B) Ax = B/(A + B). 

Hence, upon letting Ax -, 0, we see that 

B 
P(up A before down B)  = - 

A + B  
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10.3. Variations on Brownian Motion 

10.3.1. Brownian Motion with Drift 

We say that (X(t), t r 0) is a Brownian motion process with drift coefficient 
p and variance parameter d if 

(i) X(0) = 0; 
(ii) [X(t), t r 0) has stationary and independent increments; 
(iii) X(t) is normally distributed with mean pt and variance t d .  

An equivalent definition is to let (B(t), t 1 0) be standard Brownian 
motion and then define 

10.3.2. Geometric Brownian Motion 

If (Y(t), t 2 0) is a Brownian motion process with drift coefficient p and 
variance parameter d, then the process (X(t), t r 0) defined by 

X(t) = e '(') 

is called geometric Brownian motion. 
For a geometric Brownian motion process (X(t)J, let us compute the 

expected value of the process at time t given the history of the process up to 
time s. That is, for s < t, consider E[X(t)(X(u), 0 5 u I s]. Now, 

where the next to last equality follows from the fact that Y(s) is given, and 
the last equality from the independent increment property of Brownian 
motion. Now, the moment generating function of a normal random 
variable W is given by 

E [ea Wl = e a ~ [ ~ ] + a 2  Var(W)/2 

Hence, since Y(t) - Y(s) is normal with means p(t - s) and variance 
(t - s ) d ,  it follows by setting a = 1 that 

E[~Y(~)- Y(s)] = elr(f-s)+(f-s)&/2 
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Thus, we obtain 

E [ ~ ( t )  I ~ ( u ) ,  0 I u 5 s] = ~ ( s ) e ( ' - ~ ) ~ + " ~ )  (10.8) 

Geometric Brownian motion is useful in the modeling of stock prices over 
time when one feels that the percentage changes are independent and 
identically distributed. For instance, suppose that Xn is the price of some 
stock at time n. Then, it might be reasonable to suppose that Xn/Xn_, , 
n r 1, are independent and identically distributed. Let 

yn = Xn/Xn-1 
and so 

xn = ynXn-1 
Iterating this equality gives 

xn = ynyn-Ixn-2 
= GK-1 G-2Xn-3 

= Yn 5 - 1  . . . Y,Xo 

Thus, 
n 

log(Xn) = C log(K) + log(X0) 
i =  1 

Since log(q), i r 1, are independent and identically distributed, [log(Xn)j 
will when suitably normalized approximately be Brownian motion with a 
drift, and so [X,) will be approximately geometric Brownian motion. 

10.4. Pricing Stock Options 

10.4.1. An Example in Options Pricing 

In situations in which money is to be received or paid out in differing time 
periods, one must take into account the time value of money. That is, to be 
given the amount v a time t in the future is not worth as much as being given 
v immediately. The reason for this is that if one was immediately given v, 
then it could be loaned out with interest and so be worth more than v at time 
t. To take this into account, we will suppose that the time 0 value, also 
called the present value, of the amount v to be earned at time t is ve-"'. The 
quantity a is often called the discount factor. In economic terms, the 
assumption of the discount function e-"' is equivalent to the assumption 
that one can earn interest at a continuously compounded rate of 100a 
percent per unit time. 
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time 0 price time 1 price 

Figure 10.1. 

We will now consider a simple model for pricing an option to purchase a 
stock at a future time at a fixed price. 

Suppose the present price of a stock is $100 per unit share, and suppose 
we know that after one time period it will be, in present value dollars, either 
$200 or $50 (see Figure 10.1). It should be noted that the prices at time 1 are 
the present value (or time 0) prices. That is, if the discount factor is a, then 
the actual possible prices at time 1 are either 200ea or 50ea. To keep the 
notation simple, we will suppose that all prices given are time 0 prices. 

Suppose that for any y, at a cost of cy, you can purchase at time 0 the 
option to buy y shares of the stock at time 1 at a (time 0) cost of $150 per 
share. Thus, for instance, if you do purchase this option and the stock rises 
to $200, then you would exercise the option at time 1 and realize a gain of 
$200 - 150 = $50 for each of they option units purchased. On the other 
hand, if the price at time 1 was $50, then the option would be worthless at 
time 1. In addition, at a cost of l00x you can purchase x units of the stock 
at time 0, and this will be worth either 200x or SOX at time 1. 

We will suppose that both x or y can be either positive or negative (or 
zero). That is, you can either buy or sell both the stock and the option. For 
instance, if x were negative then you would be selling -x shares of the 
stock, yielding you a return of -100x, and you would then be responsible 
for buying - x shares of the stock at time 1 at a cost of either $200 or $50 
per share. 

We are interested in determining the appropriate value of c, the unit cost 
of an option. Specifically, we will show that unless c = 50/3 there will be a 
combination of purchases that will always result in a positive gain. 

To show this, suppose that at time 0 we 

buy x units of stock, and 

buy y units of options 

where x and y (which can be either positive or negative) are to be determined. 
The value of our holding at time 1 depends on the price of the stock at that 
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time; and it is given by the following 

200x + 50y, if price is 200 
value = [  OX, if price is 50 

The preceding formula follows by noting that if the price is 200 then the x 
units of the stock are worth 200x, and they units of the option to buy the 
stock at a unit price of 150 are worth (200 - 150)y. On the other hand, if 
the stock price is 50, then the x units are worth 50x and they units of the 
option are worthless. Now, suppose we choose y to be such that the 
preceding value is the same no matter what the price at time 1. That is, we 
choose y so that 

200x + 50y = 50x 
or 

y =  -3x 

(Note that y has the opposite sign of x, and so if x is positive and as a result 
x units of the stock are purchased at time 0, then 3x units of stock options 
are also sold at that time. Similarly, if x is negative, then -x units of stock 
are sold and -3x units of stock options are purchased at time 0.) 

Thus, with y = - 3x, the value of our holding at time 1 is 

value = 50x 

Since the original cost of purchasing x units of the stock and - 3x units of 
options is 

original cost = lOOx - 3xc, 

we see that our gain on the transaction is 

gain = 50x - (100x - 3xc) = x(3c - 50) 

Thus, if 3c = 50, then the gain is 0; on the other hand if 3c # 50, we can 
guarantee a positive gain (no matter what the price of the stock at time 1) 
by letting x be positive when 3c > 50 and letting it be negative when 
3c < 50. 

For instance, if the unit cost per option is c = 20, then purchasing 1 unit 
of the stock (x = 1) and simultaneously selling 3 units of the option 
(y = -3) initially costs us 100 - 60 = 40. However, the value of this 
holding at time 1 is 50 whether the stock goes up to 200 or down to 50. 
Thus, a guaranteed profit of 10 is attained. Similarly, if the unit cost per 
option is c = 15, then selling 1 unit of the stock (x = -1) and buying 3 units 
of the option (y = 3) leads to an initial gain of 100 - 45 = 55. On the other 
hand, the value of this holding at time 1 is -50. Thus, a guaranteed profit 
of 5 is attained. 

A sure win betting scheme is called an arbitrage. Thus, as we have just 
seen, the only option cost c that does not result in an arbitrage is c = 50/3. 
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10.4.2. The Arbitrage Theorem 

Consider an experiment whose set of possible outcomes is S = (1,2, . . . , m]. 
Suppose that n wagers are available. If the amount x is  bet on wager i, then 
the return xri(j) is earned if the outcome of the experiment is j. In other 
words, ri(.) is the return function for a unit bet on wager i. The amount bet 
on a wager is allowed to be either positive or negative or zero. 

A betting scheme is a vector x = (x, , . . . , xn) with the interpretation that 
xl is bet on wager 1, x2 on wager 2, . . . , and x, on wager n. If the outcome 
of the experiment is j, then the return from the betting scheme x is 

return from x = z xiri(j) 
i = l  

The following theorem states that either there exists a probability vector 
p = (pl, . . . , pm) on the set of possible outcomes of the experiment under 
which each of the wagers has expected return 0, or else there is a betting 
scheme that guarantees a positive win. 

Theorem 10.1 (The Arbitrage Theorem). Exactly one of the following 
is true: Either 

(i) there exists a probability vector p = (p, , . . . , p,) for which 
m z pjri(j) = 0, for all i = 1, ..., n 

j =  1 
or 

(ii) there exists a betting scheme x = (x, , . . . , x,) for which 

In other words, if X is the outcome of the experiment, then the arbitrage 
theorem states that either there is a probability vector p for X such that 

Ep[ri(X)]=O, f o r a l l i = l ,  ..., n 

or else there is a betting scheme that leads to a sure win. 

Remark This theorem is a consequence of the (linear algebra) theorem 
of the separating hyperplane, which is often used as a mechanism to prove 
the duality theorem of linear programming. 

The theory of linear programming can be used to determine a betting 
strategy that guarantees the greatest return. Suppose that the absolute 
value of the amount bet on each wager must be less than or equal to 1. 
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To determine the vector x that yields the greatest guaranteed win-call this 
win v-we need to choose x and v so as to maximize v, subject to the 
constraints 

n 

z xiri(j) r v, for j = 1, ..., m 
i = l  

-1 I xi I 1, i = 1, ..., n 
This optimization problem is a linear program and can be solved by 
standard techniques (such as by using the simplex algorithm). The arbitrage 
theorem yields that the optimal v will be positive unless there is a probability 
vector p for which I;=, pjri(j) = 0 for all i = 1, ..., n. 

Example 10.2 In some situations, the only type of wagers allowed are 
to choose one of the outcomes i, i = 1, . . . , m, and bet that i is the outcome 
of the experiment. The return from such a bet is often quoted in terms of 
"odds." If the odds for outcome i are oi (often written as "oi to 1") then 
a 1 unit bet will return oi if the outcome of the experiment is i and will 
return - 1 otherwise. That is, 

oi, i f j = i  
ri(j) = - 1, otherwise 

Suppose the odds 01, . . . , om are posted. In order for there not to be a sure 
win there must be a probability vector p = ( p ,  , . . . , pm) such that 

That is, we must have 
1 

pi = - 
1 + oi 

Since the pi must sum to 1, this means that the condition for there not to be 
an arbitrage is that 

m 

Thus, if the posted odds are such that Ci (1 + oi)-' # 1, then a sure win is 
possible. For instance, suppose there are three possible outcomes and the 
odds are as follows: 

outcome odds 
1 1 
2 2 
3 3 
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That is, the odds for outcome 1 are 1-1, the odds for outcome 2 are 2-1, 
and that for outcome 3 are 3-1. Since 

a sure win is possible. One possibility is to bet - 1 on outcome 1 (and so you 
either win 1 if the outcome is not-1 and lose 1 if the outcome is 1) and bet 
-0.7 on outcome 2, and -0.5 on outcome 3. If the experiment results in 
outcome 1, then we win -1 + 0.7 + 0.5 = 0.2; if it results in outcome 2, 
then we win 1 - 1.4 + 0.5 = 0.1; if it results in outcome 3, then we win 
1 + 0.7 - 1.5 = 0.2. Hence, in all cases we win a positive amount. + 
Remark If Ci  (1 + 0,)-' # 1, then the betting scheme 

will always yield a gain of exactly 1. 

Example 10.3 Let us reconsider the option pricing example of the 
previous section, where the initial price of a stock is 100 and the present 
value of the price at time 1 is either 200 or 50. At a cost of c per share we 
can purchase at time 0 the option to buy the stock at time 1 at a present 
value price of 150 per share. The problem is to set the value of c so that no 
sure win is possible. 

In the context of this section, the outcome of the experiment is the value 
of the stock at time 1. Thus, there are two possible outcomes. There are also 
two different wagers: to buy (or sell) the stock, and to buy (or sell) the 
option. By the arbitrage theorem, there will be no sure win if there is a prob- 
ability vector (p, 1 - p) that makes the expected return under both wagers 
equal to 0. 

Now, the return from purchasing 1 unit of the stock is 

200 - 100 = 100, if the price is 200 at time 1 
return = 

50 - 100 = -50, if the price is 50 at time 1 

Hence, if p is the probability that the price is 200 at time 1, then 

Setting this equal to 0 yields that 

That is, the only probability vector (p, 1 - p) for which wager 1 yields an 
expected return 0 is the vector (+, 3). 
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Now, the return from purchasing one share of the option is 

50 - c, if price is 200 
return = 

if price is 50 

Hence, the expected return when p = f is 

Thus, it follows from the arbitrage theorem that the only value of c for 
which there will not be a sure win is c = $; which verifies the result of 
Section 10.4.1. + 

10.4.3. The Black-Scholes Option Pricing Formula 

Suppose the present price of a stock is X(0) = x,, and let X(t) denote its 
price at time t. Suppose we are interested in the stock over the time interval 
0 to T. Assume that the discount factor is cr (equivalently, the interest rate 
is 100a percent compounded continuously), and so the present value of the 
stock price at time t is e-*'X(t). 

We can regard the evolution of the price of the stock over time as our 
experiment, and thus the outcome of the experiment is the value of the 
function X(t), 0 I t I T. The types of wagers available are that for any 
s < t we can observe the process for a time s and then buy (or sell) shares 
of the stock at price X(s) and then sell (or buy) these shares at time t for the 
price X(t). In addition, we will suppose that we may purchase any of N 
different options at time 0. Option i, costing ci per share, gives us the option 
of purchasing shares of the stock at time ti for the fixed price of Ki per 
share, i = 1, .. ., N. 

Suppose we want to determine values of the ci for which there is no 
betting strategy that leads to a sure win. Assuming that the arbitrage 
theorem can be generalized (to handle the preceding situation, where the 
outcome of the experiment is a function), it follows that there will be no 
sure win if and only if there exists a probability measure over the set of 
outcomes under which all of the wagers have expected return 0. Let P be a 
probability measure on the set of outcomes. Consider first the wager of 
observing the stock for a time s and then purchasing (or selling) one share 
with the intention of selling (or purchasing) it at time t, 0 I s < t I T. 
The present value of the amount paid for the stock is e-*"X(s), whereas 
the present value of the amount received is e-"'X(t). Hence, in order for the 
expected return of this wager to be 0 when P is the probability measure 
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Now, the return from purchasing one share of the option is 

50 - c, if price is 200 
return = 

L C ,  if price is 50 

Hence, the expected return when p = f is 

Thus, it follows from the arbitrage theorem that the only value of c for 
which there will not be a sure win is c = $; which verifies the result of 
Section 10.4.1. + 

10.4.3. The Black-Scholes Option Pricing Formula 

Suppose the present price of a stock is X(0) = x,, and let X(t) denote its 
price at time t. Suppose we are interested in the stock over the time interval 
0 to T. Assume that the discount factor is a! (equivalently, the interest rate 
is 100a percent compounded continuously), and so the present value of the 
stock price at time t is e-"'X(t). 

We can regard the evolution of the price of the stock over time as our 
experiment, and thus the outcome of the experiment is the value of the 
function X(t), 0 I t I T. The types of wagers available are that for any 
s < t we can observe the process for a time s and then buy (or sell) shares 
of the stock at price X(s) and then sell (or buy) these shares at time t for the 
price X(t). In addition, we will suppose that we may purchase any of N 
different options at time 0. Option i, costing ci per share, gives us the option 
of purchasing shares of the stock at time ti for the fixed price of Ki per 
share, i = 1, ..., N. 

Suppose we want to determine values of the ci for which there is no 
betting strategy that leads to a sure win. Assuming that the arbitrage 
theorem can be generalized (to handle the preceding situation, where the 
outcome of the experiment is a function), it follows that there will be no 
sure win if and only if there exists a probability measure over the set of 
outcomes under which all of the wagers have expected return 0. Let P be a 
probability measure on the set of outcomes. Consider first the wager of 
observing the stock for a time s and then purchasing (or selling) one share 
with the intention of selling (or purchasing) it at time t, 0 I s < t I T. 
The present value of the amount paid for the stock is e-"'X(s), whereas 
the present value of the amount received is e-"'X(t). Hence, in order for the 
expected return of this wager to be 0 when P is the probability measure 
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Now, the return from purchasing one share of the option is 

50 - c, if price is 200 
return = 

I-c, if price is 50 

Hence, the expected return when p = f is 

E[return] = (50 - cH - c$ 

= y - C  

Thus, it follows from the arbitrage theorem that the only value of c for 
which there will not be a sure win is c = $; .which verifies the result of 
Section 10.4.1. + 

10.4.3. The Black-Scholes Option Pricing Formula 

Suppose the present price of a stock is X(0) = x,,, and let X(t) denote its 
price at time t. Suppose we are interested in the stock over the time interval 
0 to T. Assume that the discount factor is a! (equivalently, the interest rate 
is l00a percent compounded continuously), and so the present value of the 
stock price at time t is e-"'X(t). 

We can regard the evolution of the price of the stock over time as our 
experiment, and thus the outcome of the experiment is the value of the 
function X(t), 0 I t I T. The types of wagers available are that for any 
s < t we can observe the process for a time s and then buy (or sell) shares 
of the stock at price X(s) and then sell (or buy) these shares at time t for the 
price X(t). In addition, we will suppose that we may purchase any of N 
different options at time 0. Option i, costing ci per share, gives us the option 
of purchasing shares of the stock at time ti for the fixed price of Ki per 
share, i = 1, ..., N. 

Suppose we want to determine values of the ci for which there is no 
betting strategy that leads to a sure win. Assuming that the arbitrage 
theorem can be generalized (to handle the preceding situation, where the 
outcome of the experiment is a function), it follows that there will be no 
sure win if and only if there exists a probability measure over the set of 
outcomes under which all of the wagers have expected return 0. Let P be a 
probability measure on the set of outcomes. Consider first the wager of 
observing the stock for a time s and then purchasing (or selling) one share 
with the intention of selling (or purchasing) it at time t, 0 s s < t 5 T. 
The present value of the amount paid for the stock is e-"'X(s), whereas 
the present value of the amount received is e-*'X(t). Hence, in order for the 
expected return of this wager to be 0 when P is the probability measure 
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on X(t), 0 I t I T, we must have that 

Ep[e-"'X(t) I X(U), 0 I u I S] = e-"'X(s) (10.9) 

Consider now the wager of purchasing an option. Suppose the option gives 
one the right to buy one share of the stock at time t for a price K. At time 
t, the worth of this option will be as follows: 

worth of option at t = 
[T) - K, if X(t) r K 

if X(t) < K 

That is, the time t worth of the option is (X(t) - K)'. Hence, the present 
value of the worth of the option is e-"'(X(t) - K)'. If c is the (time 0) cost 
of the option, we see that, in order for purchasing the option to have 
expected (present value) return 0, we must have that 

Ep[e-"'(X(t) - K)'] = c (10.10) 

By the arbitrage theorem, if we can find a probability measure P on the set 
of outcomes that satisfies Equation (10.9), then if c, the cost of an option 
to purchase one share at time t at the fixed price K, is as given in Equation 
(10.10), then no arbitrage is possible. On the other hand, if for given prices 
ci , i = 1, . . . , N, there is no probability measure P that satisfies both (10.9) 
and the equality 

then a sure win is possible. 
We will now present a probability measure P on the outcome X(t), 

0 I t s T, that satisfies Equation (10.9). 
Suppose that 

X(t) = xo e Y(') 

where (Y(t), t 2 0) is a Brownian motion process with drift coefficient p and 
variance parameter d. That is, (X(t), t r 0) is a geometric Brownian motion 
process (see Section 10.3.2). From Equation (10.8) we have that, for s < t, 

E[x(~) I ~ ( u ) ,  0 I u r s) = ~(s)e('-~)@+"~) 

Hence, if we choose p and d so that 

then Equation (10.9) will be satisfied. That is, by letting P be the probability 
measure governing the stochastic process (xoeY('), 0 I t s TI, where (Y(t)] 
is Brownian motion with drift parameter p and variance parameter d, and 
where p + d / 2  = a ,  Equation (10.9) is satisfied. 

It follows from the preceding that if we price an option to purchase a 
share of the stock at time t for a fixed price K by 

c = Ep[e-"'(X(t) - K)'] 
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then no arbitrage is possible. Since X(t) = x,eY('), where Y(t) is normal 
with mean pt  and variance t d ,  we see that 

Making the change of variable w = (y - pt)/ofiyields 

where 

Now, 

where N(m, v) is a normal random variable with mean m and variance v, 
and + is the standard normal distribution function. 

Thus, we see from Equation (10.11) that 

Using that 
p + a2/2 = a 

and letting b = -a ,  we can write this as follows: 

c = x o + ( a f i  + b) - Ke-*'+(b) 

where 
crt - d t / 2  - log(K/xo) 

b = 
0 4  
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The option price formula given by Equation (10.12) depends on the initial 
price of the stock xo, the option exercise time t, the option exercise price K, 
the discount (or interest rate) factor a, and the value 4. Note that for any 
value of 2, if the options are priced according to the formula of Equation 
(10.12) then no arbitrage is possible. However, as many people believe that 
the price of a stock actually follows a geometric Brownian motion-that is, 
X(t) = xoeY(') where Y(t) is Brownian motion with parameters p and d- 
it has been suggested that it is natural to price the option according to 
the formula (10.12) with the parameter d taken equal to the estimated 
value (see the remark that follows) of the variance parameter under the 
assumption of a geometric Brownian motion model. When this is done, the 
formula (10.12) is known as the Black-Scholes option cost valuation. It is 
interesting that this valuation does nQt depend on the value of the drift 
parameter p but only on the variance parameter 2. 

If the option itself can be traded, then the formula of Equation (10.12) 
can be used to set its price in such a way so that no arbitrage is possible. If at 
time s the price of the stock is X(s) = x,, then the price of a (t, K) option- 
that is, an option to purchase one unit of the stock at time t for a price 
K-should be set by replacing t by t - s and xo by x, in Equation (10.12). 

Remark If we observe a Brownian motion process with variance 
parameter 2 over any time interval, then we could theoretically obtain an 
arbitrarily precise estimate of d. For suppose we observe such a process 
(Y(s)) for a time t. Then, for fixed h, let N = [t/h] and set 

Then random variables Wl , . . . , WN are independent and identically 
distributed normal random variables having variance h d .  We now use the 
fact (see Section 3.6.4) that (N - l ) ~ * / ( a ~ h )  has a chi-squared distribution 
with N - 1 degrees of freedom, where s2 is the sample variance defined by 

N 

s2 = 1 (w - w)'/(N - 1) 
i =  1 

Since the expected value and variance of a chi-squared with k degrees of 
freedom are equal to k and 2k, respectively, we see that 

and 
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From this, we see that 
E[s'/~] = c? 

and 
var[s2/h] = 2 a 4 / ( ~  - 1) 

Hence, as we let h become smaller (and so N = [t/h] becomes larger) the 
variance of the unbiased estimator of c? becomes arbitrarily small. 

Equation (10.12) is not the only way in which options can be priced so 
that no arbitrage is possible. Let (X(t), 0 I t I T) be any stochastic process 
satisfying, for s c t, 

[that is, Equation (10.9) is satisfied]. By setting c, the cost of an option to 
purchase one share of the stock at time t for price K, equal to 

it follows that no arbitrage is possible. 
Another type of stochastic process, aside from geometric Brownian 

motion, that satisfies Equation (10.13) is obtained as follows. Let 
Y , ,  G, ... be a sequence of independent random variables having a 
common mean p, and suppose that this process is independent of (NO), 
t r 0), which is a Poisson process with rate A. Let 

N(') 

~ ( t )  = xo n q 
i =  1 

Using the identity 
N(s) N(t )  

~ ( t ) = ~ , n q  n 5 
i = 1  j=N(s )+ l  

and the independent increment assumption of the Poisson process, we see 
that, for s < t, 

N(') 

E [ X ( ~ ) I X ( U ) , O ~ ~ ~ S I  = X ( s ) ~ [  n q] 
j = N(s) + 1 

Conditioning on the number of events between s and t yields 

Hence, 
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Thus, if we choose 1 and p to satisfy 

A(1 - p) = -a 

then Equation (10.13) is satisfied. Therefore, if for any value of L we let the 
have any distributions with a common mean equal to p = 1 + a/L and 

then price the options according to Equation (10.14), then no arbitrage is 
possible. 

Remark If [X(t), t 2 0) satisfies Equation (10.13), the the process 
(e-"'X(t), t 2 0) is called a Martingale. Thus, any pricing of options for 
which the expected gain on the option is equal to 0 when (e-"'X(t)] follows 
the probability law of some Martingale will result in no arbitrage 
possibilities. 

That is, if we choose any Martingale process (Z(t)] and let the cost of a 
(t, K) option be 

c = E[e-*'(ea'Z(t) - K)+] 

= E [(Z(t) - Ke-"')+I 

then there is no sure win. 
In addition, while we did not consider the type of wager where a stock 

that is purchased at time s is sold not at a fixed time t but rather at some 
random time that depends on the movement of the stock, it can be shown 
using results about Martingales that the expected return of such wagers is 
also equal to 0. 

Remark A variation of the arbitrage theorem was first noted by 
de Finetti in 1937. A more general version of de Finetti's result, of which the 
arbitrage theorem is a special case, is given in Reference 3. 

10.5. White Noise 

Let (X(t) ,  t r 0) denote a standard Brownian motion process and let f be a 
function having a continuous derivative in the region [a, b]. The stochastic 
integral jf f(t) dX(t) is defined as follows: 

n 

At) dX(t) = lim f(ti-,)[X(ti) - X(ti- 1)] (10.15) 
n40D i s 1  

where a = to < t, < -. . < tn = b is a partition of the region [a, b].  Using 
the identity (the integration by parts formula applied to sums) 
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we see that 

Equation (10.16) is usually taken as the definition of Sf: f(t) dX(t). 
By using the right side of (10.16) we obtain, upon assuming the inter- 

changeability of expectation and limit, that 

Also, 

where the top equality follows from the independent increments of 
Brownian motion. Hence, we obtain from (10.15) upon taking limits of the 
preceding that 

Remark The above gives operational meaning to the family of quantities 
(dX(t), 0 s t < co] by viewing it as an operator that carries functions f into 
the values If: f(t) dX(t). This is called a white noise transformation, or more 
loosely (dX(t), 0 s t < w )  is called white noise since it can be imagined that 
a time varying function f travels through a white noise medium to yield the 
output (at time b) Sf f(t) dX(t). 

Example 10.4 Consider a particle of unit mass that is suspended in a 
liquid and suppose that, due to the liquid, there is a viscous force that 
retards the velocity of the particle at a rate proportional to its present 
velocity. In addition, let us suppose that the velocity instantaneously 
changes according to a constant multiple of white noise. That is, if V(t) 
denotes the particle's velocity at t suppose that 

where (X(t), t 2 0) is standard Brownian motion. This can be written as 
follows: 

eat[v'(t) + /3V(t)] = creatx'(t) 
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Hence, upon integration, we obtain 

e et ~ ( t )  = V(0) + a e e s ~  '(s) ds !: 
Hence, from Equation (10.16), 

10.6. Gaussian Processes 

We start with the following definition. 

Definition 10.2 A stochastic process X(t), t 1 0 is called a Gaussian, or 
a normal, process if X(tl), . . . , X(t,) has a multivariate normal distribution 
for all t l ,  . .. , t,, . 

If (X(t), t 2 0) is a Brownian motion process, then because each of X(tl), 
X(t2), ..., X(t,) can be expressed as a linear combination of the inde- 
pendent normal random variables X(tl), X(t2) - X(tl), X(t3) - X(t2), . . . , 
X(t,,) - X(t,-,) it follows that Brownian motion is a Gaussian process. 

Because a multivariate normal distribution is completely determined by 
the marginal mean values and the covariance values (see Section 2.6) it 
follows that standard Brownian motion could also be defined as a Gaussian 
process having E [X(t)] = 0 and, for s I t, 

= Cov(X(s), X(s)) by independent increments 

= s since Var(X(s)) = s (10.17) 

Let (X(t), t r 0) be a standard Brownian motion process and consider the 
process values between 0 and 1 conditional on X(l) = 0. That is, consider 
the conditional stochastic process (X(t), 0 I t I 1 I X(l) = 0). Since the 
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conditional distribution of X(t,), . . . , X(t,) is multivariate normal it follows 
that this conditional process, known as the Brownian bridge (as it is tied 
down both at 0 and at I), is a Gaussian process. Let us compute its 
covariance function. As, from Equation (10.4), 

E[X(s)lX(l)=O]=O, f o r s < l  

we have that, for s < t < 1, 

Thus, the Brownian bridge can be defined as a Gaussian process with mean 
value 0 and covariance function s(1 - t), s I t. This leads to an alternative 
approach to obtaining such a process. 

Proposition 10.1 If (X(t), t 1 01 is standard Brownian motion, then 
(Z(t), 0 I t I 1) is a Brownian bridge process when Z(t) = X(t) - tX(1). 

Proof As it is immediate that (Z(t), t r 0) is a Gaussian process, all we 
need verify is that E[Z(t)] = 0 and Cov(Z(s), Z(t)) = s(1 - t), when s I t. 
The former is immediate and the latter follows from 

Cov(Z(s), Z(t)) = Cov(X(s) - sX(l), X(t) - tX(1)) 

= Cov(X(s), X(t)) - t Cov(X(s), X(1)) 

- s Cov(X(l), X(t)) + st Cov(X(l), X(1)) 

= s - s t - s t + s t  

= s(1 - t) 

and the proof is complete. + 
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If (X(t), t 1 0] is Brownian motion, then the process (Z(t), t 1 0) defined 
by 

is called integrated Brownian motion. As an illustration of how such a 
process may arise in practice, suppose we are interested in modelling the 
price of a commodity throughout time. Letting Z(t) denote the price at t 
then, rather than assuming that (Z(t)] is Brownian motion (or that log Z(t) 
is Brownian motion), we might want to assume that the rate of change of 
Z(t) follows a Brownian motion. For instance we might suppose that the 
rate of change of the commodity's price is the current inflation rate which 
is imagined to vary as Brownian motion. Hence, 

It follows from the fact that Brownian motion is a Gaussian process 
that (Z(t), t 1 0) is also Gaussian. To prove this, first recall that Wl , . . . , W, 
is said to have a multivariate normal distribution if they can be represented 

where Uj, j = 1, . . . , m are independent normal random variables. From this 
it follows that any set of partial sums of Wl , . . . , W, are also jointly normal. 
The fact that Z(t,), . . . , Z(t,) is multivariate normal can now be shown by 
writing the integral in Equation (10.18) as a limit of approximating sums. 

As (Z(t), t 1 0) is Gaussian it follows that its distribution is characterized 
by its mean value and covariance function. We now compute these when 
(X(t), t r 0) is standard Brownian motion. 
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For s s t, 

= E [ is 1 x(Y)x(~) dy du] 
0 0 

10.7. Stationary and Weakly Stationary Processes 

A stochastic process (X(t), t r 0) is said to be a stationary process if for all 
n, s, t, . . . , t, the random vectors X(t,), . . . , X(tn) and X(t, + s), . . . , X(tn + s) 
have the same joint distribution. In other words, a process is stationary if, 
in choosing any fixed point s as the origin, the ensuing process has the same 
probability law. Two examples of stationary processes are: 

(i) An ergodic continuous time Markov chain (X(t), t 2 0) when 

where (8, j 2 0) are the limiting probabilities. 
(ii) [X(t), t r 0) when X(t) = N(t + L) - N(t), t r 0, where L > 0 is a 
fixed constant and (N(t), t r 0) is a Poisson process having rate A. 

The first one of the above processes is stationary for it is a Markov chain 
whose initial state is chosen according to the limiting probabilities, and it 
can thus be regarded as an ergodic Markov chain that one starts observing 
at time w. Hence the continuation of this process at time s after observation 
begins is just the continuation of the chain starting at time w + s, which 
clearly has the same probability for all s. That the second example-where 
X(t) represents the number of events of a Poisson process that occur 
between t and t + L-is stationary follows the stationary and independent 
increment assumption of the Poisson process which implies that the 
continuation of a Poisson process at any time s remains a Poisson process. 
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Example 10.5 (The Random Telegraph Signal Process): Let (N(t), 
t r 0) denote a Poisson process, and let Xo be independent of this process 
and be such that P(Xo = 1) = P(Xo = -1) = *. Defining X(t) = Xo(- llN(') 
then (X(t), t r 0) is called random telegraph signal process. To see that it is 
stationary, note first that starting at any time t, no matter what the value of 
N(t), as Xo is equally likely to be either plus or minus 1, it follows that X(t) 
is equally likely to be either plus or minus 1. Hence, because the continuation 
of a Poisson process beyond any time remains a Poisson process, it follows 
that (X(t), t r 0) is a stationary process. 

Let us compute the mean and covariance function of the random 
telegraph signal 

= E [Xo]E [(- I)~")]  by independence 

= 0 since E [X,] = 0, 

Cov[X(t), X(t + s)] = E [X(t)X(t + s)] 

For an application of the random telegraph signal consider a particle 
moving at a constant unit velocity along a straight line and suppose that 
collisions involving this particle occur at a Poisson rate A.  Also suppose that 
each time the particle suffers a collision it reverses direction. Therefore, if 
Xo represents the initial velocity of the particle, then its velocity at time t- 
call it X(t)-is given by X(t) = Xo(- I)~('),  where N(t) denotes the number 
of collisions involving the particle by time t. Hence, if Xo is equally likely 
to be plus or minus 1, and is independent of (N(t), t r 0) then (X(t), t r 0) 
is a random telegraph signal process. If we now let 

then D(t) represents the displacement of the particle at time t from its 
position at time 0. The mean and variance of D(t) are obtained as follows: 
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The condition for a process to be stationary is rather stringent and so we 
define the process (X(t), t 1 0) to be a second-order stationary or a weakly 
stationary process if E[X(t)] = c and Cov[X(t), X(t + s)] does not depend 
on t. That is, a process is second-order stationary if the first two moments 
of X(t) are the same for all t and the covariance between X(s) and X(t) 
depends only on It - sl. For a second-order stationary process, let 

R(s) = Cov[X(t), X(t + s)] 

As the finite dimensional distributions of a Gaussian process (being 
multivariate normal) are determined by their means and covariance, it 
follows that a second-order stationary Gaussian process is stationary. 

Example 10.6 (The Ornstein-Uhlenbeck Process): Let (X(t), t 2 0) be 
a standard Brownian motion process, and define, for cr > 0, 

The process (V(t), t r 0) is called the Ornstein-Uhlenbeck process. It has 
been proposed as a model for describing the velocity of a particle immersed 
in a liquid or gas, and as such is useful in statistical mechanics. Let us 
compute its mean and covariance function. 

E[V(t)l = 0, 
Cov[V(t), V(t + s)] = e-at/2e-a(t+s)'2 C ov[X(eat), ~ ( e " ( ' + ~ ) ]  

- - e-at e - a d 2  e at by Equation (10.17) 
- - e-as/2 
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Hence, [V(t), t 2 0) is weakly stationary and as it is clearly a Gaussian 
process (since Brownian motion is Gaussian) we can conclude that it is 
stationary. It is interesting to note that (with a = 41) it has the same mean 
and covariance function as the random telegraph signal process, thus 
illustrating that two quite different processes can have the same second- 
order properties. (Of course, if two Gaussian processes have the same mean 
and covariance functions then they are identically distributed.) + 

As the following examples show, there are many types of second-order 
stationary processes that are not stationary. 

Example 10.7 (An Autoregressive Process): Let Zo, Z, , Z2 , . . . , be 
uncorrelated random variables with E[Zn] = 0, n 2 0 and 

1 - 1 ,  n = 0 
Var(Zn) = 

n r l  
where 12 < 1. Define 

The process (Xn , n r 0)  is called afirst-order autoregressive process. It says 
that the state at time n (that is, Xn) is a constant multiple of the state at time 
n - 1 plus a random error term 2,. 

Iterating Equation (10.20) yields 

and so 
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where the preceding uses the fact that Zi and Zj are uncorrelated when i # j .  
As E[X,] = 0, we see that (X, , n r 0) is weakly stationary (the definition 
for a discrete time process is the obvious analog of that given for continuous 
time processes). + 
Example 10.8 If, in the random telegraph signal process, we drop the 
requirement that P(Xo = 1) = P(X, = -1) =*  and only require that 
EIXo] = 0, then the process (X(t), t 1 0 )  need no longer be stationary. 
(It will remain stationary if X, has a symmetric distribution in the sense that 
-Xo has the same distribution as X,.) However, the process will be weakly 
stationary since 

E [X(t)] = E[x,IE[(- l)N(')] = 0, 

Cov[X(t), X(t + s)] = E [X(t)X(t + s)] 
= E   xi]^ [(- l)N(t)'N(t+s)] 

= E [ ~ i ] e - ~ ~ ~  from (10.19) + 
Example 10.9 Let W,, W, , W,, . . . be uncorrelated with E[W,] = p 
and Var(W,) = 2, n r 0, and for some positive integer k define 

W, + Wn-1 + + Wnek x, = 
k +  1 

, n r k  

The process (X,, n r k], which at each time keeps track of the arithmetic 
average of the most recent k + 1 values of the W's, is called a moving average 
process. Using the fact that the W,, n 1 0 are uncorrelated, we see that 

Hence, (X,, n r k) is a second-order stationary process. + 
Let (X,, n r 1) be a second-order stationary process with E[X,] = p. An 

important question is when, if ever, does x,, I C;=, Xi/n converge to p? 
The following proposition, which we state without proof, shows that 
E[(X, - p12] -, 0 if and only if C7= R(i)/n -+ 0. That is, the expected 
square of the difference between x,, and p will converge to 0 if and only if 
the limiting average value of R(i) converges to 0. 

Proposition 10.2 Let (X,, n 2 l ]  be a second-order stationary 
process having mean p and covariance function R(i) = Cov(X,, X,,,), 
and let x,, = Cy, Xi/n. Then lim,,, ~ [ ( x ,  - p)'] = 0 if and only if 
lim,, , Cy= R(i)/n = 0. 
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10.8. Harmonic Analysis of Weakly 
Stationary Processes 

Suppose that the stochastic processes (X(t), -a < t < co] and [Y(t), 
-a c t < a ]  are related as follows: 

(10.21) 

We can imagine that a signal, whose value at time t is X(t), is passed 
through a physical system that distorts its value so that Y(t), the received 
value at t, is given by Equation (10.21). The processes (X(t)) and [Y(t)] are 
called respectively the input and output processes. The function h is called 
the impulse response function. If h(s) = 0 whenever s < 0, then h is also 
called a weighting function since Equation (10.21) expresses the output at t 
as a weighted integral of all the inputs prior to t with h(s) representing the 
weight given the input s time units ago. 

The relationship expressed by Equation (10.21) is a special case of a time 
invariant linear filter. It is called a filter because we can imagine that the 
input process (X(t)) is passed through a medium and then filtered to yield 
the output process (Y(t)). It is a linear filter because if the input processes 
(Xi(t)], i = 1,2, result in the output processes (q(t))-that is, if X(t) = 
j:Xi(t - s)h(s) ds-then the output process corresponding to the input 
process [aX,(t) + bX2(t)] is just (a Y,(t) + b Y2(t)]. It is called time invariant 
since lagging the input process by a time r-that is, considering the new 
input process x(t) = X(t + 7)-results in a lag of 7 in the output process 
since 

1: ~ ( t  - s)h(s) ds = X(t + r - s)h(s) ds = Y(t + r) 

Let us now suppose that the input process (X(t), -a < t < co) is weakly 
stationary with E[X(t)] = 0 and covariance function 

Let us compute the mean value and covariance function of the output 
process [Y(t)]. 

Assuming that we can interchange the expectation and integration opera- 
tions (a sufficient condition being that j Ih(s)l ds < co * and, for some 
M < co, E IX(t) 1 < M for all t) we obtain 

E [Y(t)] = E [X(t - s)]h(s) ds = 0 S 
* The range of all integrals in this section is from -w  to +w. 
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Similarly, 

Cov[Y(t,), Y(t2)l = COV X(tl - sl)h(sl) ds, , S X(t2 - s2)h(sz) ds, 1 

Hence, Cov[Y(tl), Y(t2)] depends on t,, t2 only through t, - t l ;  thus, 
showing that [Y(t)) is also weakly stationary. 

The preceding expression for RY(t2 - t,) = Cov[Y(t,), Y(t2)] is, however, 
more compactly and usefully expressed in terms of Fourier transforms of 
Rx and Ry. Let, for i = a, 

and 

denote the Fourier transforms respectively of Rx and Ry. The function 
Xx(w) is also called the power spectral density of the process (X( t ) ] .  
Also, let 

h(w) = 1 eviWsh(s) ds 

denote the Fourier transform of the function h. Then, from Equation 
(10.22), 

Ry(w) = f 1 e-iws~x(s - s2 + sl)h(sl)h(s2) ds, ds, ds 

Now, using the representation 

e" = cos x + i sin x, 

e-' = cos(-x) + i sin(-x) = cos x - i sin x 



Exercises 553 

we obtain 

Hence, from Equation (10.23) we obtain 

In words, the Fourier transform of the covariance function of the output 
process is equal to the square of the amplitude of the Fourier transform of 
the impulse function multiplied by the Fourier transform of the covariance 
function of the input process. 

Exercises 

In the following exercises (B(t), t 1 0) is a standard Brownian motion 
process and T, denotes the time it takes this process to hit a. 

1. What is the distribution of B(s) + B(t), s I t? 

2. Compute the conditional distribution of B(s) given that B(t,) = A,  
B(t2) = B, where 0 < t, c s c t2. 

"3. Compute E[.B(tl)B(t2)B(t3)] for t, < t2 < t,. 
4. Show that 

P(T,  c a) = 1, 

E[T,]=oo,  a # O  

*5. What is P(T; < T-, < T,)? 
6. Suppose you own one share of a stock whose price changes according 
to a standard Brownian motion process. Suppose that you purchased the 
stock at a price b + c, c > 0, and the present price is b. You have decided 
to sell the stock either when it reaches the price b + c or when an additional 
time t goes by (whichever occurs first). What is the probability that you do 
not recover your purchase price? 
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7. Compute an expression for 

8. Consider the random walk which in each At time unit either goes up 
or down the amount f i  with respective probabilities p and 1 - p where 
p = +(l + p&). 

(a) Argue that as At -, 0 the resulting limiting process is a Brownian 
motion process with drift rate p. 
(b) Using part (a) and the results of the gambler's ruin problem (Section 
4.5.1), compute the probability that a Brownian motion process with 
drift rate p goes up A before going down B, A > 0, B > 0. 

9. Let [X(t), t 1 0) be a Brownian motion with drift coefficient p and 
variance parameter d. What is the joint density function of X(s) and X(t), 
s < t? 

'10. Let (X(t), t r 0) be a Brownian motion with drift coefficient p and 
variance parameter 2. What is the conditional distribution of X(t) given 
that X(s) = c when 

(a) s < t ?  
(b) t < s ?  

11. A stock is presently selling at a price of $50 per share. After one time 
period, its selling price will (in present value dollars) be either $150 or $25. 
An option to purchase y units of the stock at time 1 can be purchased at 
cost cy. 

(a) What should c be in order for there to be no sure win? 
(b) If c = 4, explain how you could guarantee a sure win. 
(c) If c = 10, explain how you could guarantee a sure win. 

12. Verify the statement made in the remark following Example 10.2. 

13. Use the arbitrage theorem to verify your answer to part (a) of 
Exercise 11. 

14. The present price of a stock is 100. The price at time 1 will be either 
50, 100, or 200. An option to purchase y shares of the stock at time 1 for 
the (present value) price ky costs cy. 

(a) If k = 120, show that an arbitrage opportunity occurs if and only if 
c > 80/3. 
(b) If k = 80, show that there is not an arbitrage opportunity if and only 
if 20 I c 5 40. 
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15. The current price of a stock is 100. Suppose that the logarithm of the 
price of the stock changes according to a Brownian motion with drift 
coefficient p = 2 and variance parameter c? = 1. Give the Black-Scholes 
cost of an option to buy the stock at time 10 for a cost of 

(a) 100 per unit. 
(b) 120 per unit. 
(c) 80 per unit. 

Assume that the continuously compounded interest rate is 5 percent. 

A stochastic process (Y(t), t r 0) is said to be a Martingale process if, 
for s < t, 

E [Y(t) I Y(u), 0 5 u 5 s] = Y(s) 

16. If [Y(t), t r O j  is a Martingale, show that 

17. Show that standard Brownian motion is a Martingale. 

18. Show that (Y(t), t r 0) is a Martingale when 

Y(t) = ~ ~ ( t )  - t 
What is E [Y(t)] ? 

Hint: First compute E [Y(t) I B(u), 0 I u 5 s]. 

'19. Show that (Y(t), t r 0) is a Martingale when 

where c is an arbitrary constant. What is E[Y(t)]? 

An important property of a Martingale is that if you continually observe 
the process and then stop at some time T, then, subject to some technical 
conditions (which will hold in the problems to be considered), 

The time T usually depends on the values of the process and is known as a 
stopping time for the Martingale. This result, that the expected value of the 
stopped Martingale is equal to its fixed time expectation, is known as the 
Martingale stopping theorem. 

"20. Let 
T = Min(t: B(t) = 2 - 4t) 

That is, T is the first time that standard Brownian motion hits the line 
2 - 4t. Use the Martingale stopping theorem to find E[T]. 
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21. Let (X(t), t r 0) be Brownian motion with drift coefficient p and 
variance parameter $. That is, 

Let ,u > 0, and for a positive constant x let 

That is, T is the first time the process (X(t), t r 0) hits x. Use the 
Martingale stopping theorem to show that 

22. Let X(t) = oB(t) + pt, and for given positive constants A and B, let 
p denote the probability that (X(t), t 1 0) hits A before it hits -B. 

(a) Define the stopping time T to be the first time the process hits 
either A or -B. Use this stopping time and the Martingale defined in 
Exercise 19 to show that 

(b) Let c = - 2p/a, and show that 

E [exp(- 2pX(T)/a)] = 1 

(c) Use part (b) and the definition of T to find p. 

Hint: What are the possible values of ~ X ~ ( - ~ , D X ( T ) / U ~ ) ?  

23. Let X(t) = aB(t) + pt, and define T to be the first time the process 
[X(t), t r 0) hits either A or -B, where A and B are given positive numbers. 
Use the Martingale stopping theorem and part (c) of Exercise 22 to find 
EL'-I. 

'24. Let (X(t), t r 0) be Brownian motion with drift coefficient p and 
variance parameter $. Suppose that p > 0. Let x > 0 and define the 
stopping time T (as in Exercise 21) by 

T = Min(t: X(t) = x) 

Use the Martingale defined in Exercise 18, along with the result of 
Exercise 21, to show that 

Var(T) = xd/p3 
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25. Compute the mean and variance of 

26. Let Y(t) = tB(l/t), t > 0 and Y(0) = 0. 

(a) What is the distribution of Y(t)? 
(b) Compare Cov(Y(s), Y(t)). 
(c) Argue that (Y(t), t 2 0) is a standard Brownian motion process. 

*27. Let Y(t) = l?(a2t)/a for a > 0. Argue that (Y(t)) is a standard 
Brownian motion process. 

28. Let (Z(t), t 2 0) denote a Brownian bridge process. Show that if 

then (Y(t), t r 0) is a standard Brownian motion process. 

29. Let X(t) = N(t + 1) - N(t) where (N(t), t 2 0) is a Poisson process 
with rate I. Compute 

Cov[X(t), X(t + s)] 

'30. Let (N(t), t 2 0) denote a Poisson process with rate I and define Y(t) 
to be the time from t until the next Poisson event. 

(a) Argue that (Y(t), t 2 0) is a stationary process. 
(b) Compute Cov[Y(t), Y(t + s)]. 

31. Let (X(t), -oo < t < oo) be a weakly stationary process having 
covariance function Rx(s) = Cov[X(t), X(t + s)]. 

(a) Show that 

(b) If Y(t) = X(t + 1) - X(t) show that (Y(t), -a < t < oo) is also weakly 
stationary having a covariance function R,(s) = Cov[Y(t), Y(t + s)] that 
satisfies 

R,(s) = 2RX(s) - RX(s - 1) - Rx (S + 1) 

32. Let & and Y, be independent unit normal random variables and for 
some constant w set 

(a) Show that (X(t)) is a weakly stationary process. 
(b) Argue that (X(t)) is a stationary process. 
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33. Let (X(t), -a < t < a] be weakly stationary with covariance function 
R(s) = Cov(X(t), X(t + s)) and let k(w) denote the power spectral density 
of the process. 

(i) Show that X(w) = E(- w). It can be shown that 
4 roo 

(ii) Use the preceding to show that 
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Chapter 11 
Simulation 

11 .I. Introduction 

Let X = (XI, ..., X,) denote a random vector having a given density 
function f(xl , . . . , x,) and suppose we are interested in computing 

for some n-dimensional function g. For instance g could represent the total 
delay in queue of the first [n/2] customers when the X values represent the 
first [n/2] interarrival and service times.* In many situations, it is not 
analytically possible either to compute the above multiple integral exactly or 
even to numerically approximate it within a given accuracy. One possibility 
that remains is to approximate E[g(X)] by means of simulation. 

To approximate E[g(X)], start by generating a random vector x(') = 
(x,('), ..., x:')) having the joint density f(xl, ..., x,) and then compute 
Y") = g ( ~ ( l ) ) .  Now generate a second random vector (independent of the 
first) xC2) and compute Y ( ~ )  = g ( ~ ( ~ ) ) .  Keep on doing this until r, a 
fixed number, of independent and identically distributed random variables 
Y ci )  = g(xCi'), i = 1, . . . , r have been generated. Now by the strong law of 

large numbers, we know that 

y(') + . . . + y(r) 
lim = E [Y (')I = E [g(X)] 
r-OD r 

* We are using the notation [a] to represent the largest integer less than or equal to a. 
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and so we can use the average of the generated Y's as an estimate of 
Ek(X)]. This approach to estimating E[g(X)] is called the Monte Carlo 
simulation approach. 

Clearly there remains the problem of how to generate, or simulate, 
random vectors having a specified joint distribution. The first step in doing 
this is to be able to generate random variables from a uniform distribution 
on (0, 1). One way to do this would be to take 10 identical slips of paper, 
numbered 0, 1, . . . ,9, place them in a hat and then successively select n 
slips, with replacement, from the hat. The sequence of digits obtained (with 
a decimal point in front) can be regarded as the value of a uniform (0, 1) 
random variable rounded off to the nearest (&)". For instance, if the 
sequence of digits selected is 3, 8,7,2, 1, then the value of the uniform (0, 1) 
random variable is 0.38721 (to the nearest 0.00001). Tables of the values of 
uniform (0, 1) random variables, known as random number tables, have 
been extensively published [for instance, see The RAND Corporation, 
A Million Random Digits with 100,000 Normal Deviates (New York: The 
Free Press, 1955)l. Table 11.1 is such a table. 

However, the above is not the way in which digital computers simulate 
uniform (0, 1) random variables. In practice, they use pseudo random 
numbers instead of truly random ones. Most random number generators 
start with an initial value X,, called the seed, and then recursively compute 
values by specifying positive integers a, c, and m, and then letting 

Xn+, = (axn + c) modulo m, n r 0 

where the above means that a x n  + c is divided by m and the remainder is 
taken as the value of Xn+, . Thus each Xn is either O,1, . . . , m - 1 and the 
quantity Xn/m is taken as an approximation to a uniform (0, 1) random 
variable. It can be shown that subject to suitable choices for a, c, m, the 
above gives rise to a sequence of numbers that looks as if it was generated 
from independent uniform (0,l) random variables. 

As our starting point in the simulation of random variables from an 
arbitrary distribution, we shall suppose that we can simulate from the 
uniform (0, 1) distribution, and we shall use the term "random numbers" 
to mean independent random variables from this distribution. In Sections 
11.2 and 11.3 we present both general and special techniques for simulating 
continuous random variables; and in Section 11.4 we do the same for 
discrete random variables. In Section 11.5 we discuss the simulation 
both of jointly distributed random variables and stochastic processes. 
Particular attention is given to the simulation of nonhomogeneous Poisson 
processes, and in fact three different approaches for this are discussed. 
Simulation of two-dimensional Poisson processes is discussed in Section 
11.5.2. In Section 11.6 we discuss various methods for increasing the 
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Table 11.1 A Random Number Table 

precision of the simulation estimates by reducing their variance; and in 
Section 11.7 we consider the problem of choosing the number of simulation 
runs needed to attain a desired level of precision. Before beginning this 
program, however, let us consider two applications of simulation to 
combinatorial problems. 

Example 11.1 (Generating a Random Permutation): Suppose we are 
interested in generating a permutation of the numbers 1,2, . . . , n that is 
such that all n! possible orderings are equally likely. The following 
algorithm will accomplish this by first choosing one of the numbers 1, . . . , n 



at random and then putting that number in position n; it then chooses at 
random one of the remaining n - 1 numbers and puts that number in 
position n - 1; it then chooses at random one of the remaining n - 2 
numbers and puts it in position n - 2, and so on (where choosing a number 
at random means that each of the remaining numbers is equally likely to be 
chosen). However, so that we do not have to consider exactly which of the 
numbers remain to be positioned, it is convenient and efficient to keep the 
numbers in an ordered list and then randomly choose the position of the 
number rather than the number itself. That is, starting with any initial 
orderingp, ,p2 ,  . . . , p, , we pick one of the positions 1, . . . , n at random and 
then interchange the number in that position with the one in position n. 
Now we randomly choose one of the positions 1, . . . , n - 1 and interchange 
the number in this position with the one in position n - 1, and so on. 

To implement the preceding, we need to be able to generate a random 
variable that is equally likely to take on any of the values 1,2, . . . , k. To 
accomplish this, let U denote a random number-that is, U is uniformly 
distributed over (0, 1)-and note that kU is uniform on (0, k) and so 

Hence, if we let Int(kU) denote the largest integer less than or equal to kU, 
then the random variable I = Int(kU) + 1 will be such that 

The preceding algorithm for generating a random permutation can now be 
written as follows: 

Step 1: Let p, ,p,,  . . . , p, be any permutation of 1,2, ..., n (for 
instance, we can choose pj = j ,  j = 1, . . ., n). 

Step 2: Set k = n. 
Step 3: Generate a random number U and let I = Int(kU) + 1. 
Step 4: Interchange the values of p, and pk . 
Step5: Let k = k - 1 and if k > 1 go to Step 3. 
Step 6: p,,  . .., p, is the desired random permutation. 

For instance, suppose n = 4 and the initial permutation is 1,2,3,4. If the 
first value of I (which is equally likely to be either 1,2,3,4) is I = 3, then 
the new permutation is l , 2 ,4 ,3 .  If the next value of I is I = 2 then the new 
permutation is 1,4,2,3. If the final value of I is I = 2, then the final 
permutation is 1,4,2,3,  and this is the value of the random permutation. 
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One very important property of the above algorithm is that it can also be 
used to generate a random subset, say of size r, of the integers 1, . . . , n. 
Namely, just follow the algorithm until the positions n, n - 1, . . . , 
n - r + 1 are filled. The elements in these positions constitute the random 
subset. + 
Example 11.2 (Estimating the Number of Distinct Entries in a Large 
List): Consider a list of n entries where n is very large, and suppose we are 
interested in estimating d, the number of distinct elements in the list. If we 
let mi denote the number of times that the element is position i appears on 
the list, then we can express d  by 

To estimate d, suppose that we generate a random value X equally likely to 
be either 1,2, ..., n (that is, we take X = [nu] + 1) and then let m(X) 
denote the number of times the element in position X appears on the list. 
Then 

Hence, if we generate k such random variables X, , . . . , Xk we can estimate 
d by 

n ~ f = ,  I/m(Xi) 
d =  

k 

Suppose now that each item in the list has a value attached to it-v(i) 
being the value of the ith element. The sum of the values of the distinct 
items-call it v-can be expressed as 

Now if X = [nu] + 1, where U is a random number, then 

Hence, we can estimate v by generating X ,  , . . . , Xk and then estimating v by 

For an important application of the above, let Ai = (ai,,, .. ., ai,,,), 
i = I, . . . , s denote events, and suppose we are interested in estimating 
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P(Ui= Ai). Since 

where m(aiBj) is the number of events to which the point ai,j belongs, the 
above method can be used to estimate P(USAi). 

Note that the above procedure for estimating v can be effected without 
prior knowledge of the set of values (v, , . . . , v,,). That is, it suffices that we 
can determine the value of an element in a specific place and the number of 
times that element appears on the list. When the set of values is a priori 
known, there is a more efficient approach available as will be shown in 
Example 11.1 1. + 

11 -2. General Techniques for Simulating Continuous 
Random Variables 

In this section we present three methods for simulating continuous random 
variables. 

11.2.1. The Inverse Transformation Method 

A general method for simulating a random variable having a continuous 
distribution-called the inverse transformation method-is based on the 
following proposition. 

Proposition 11.1 Let U be a uniform (0,l) random variable. For any 
continuous distribution function F if we define the random variable X by 

X = F-'(u) 

then the random variable X has distribution function F. [F-'(u) is defined 
to equal that value x for which F(x) = u.] 

Proof 
Fx (a) = P ( X  5 a) 

Now, since F(x) is a monotone function, it follows that F 1 ( U )  I a if and 
only if U 5 F(a). Hence, from Equation (1 1.1), we see that 

Fx (a) = P( U 5 F(a)) 

= F(a) + 
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Hence we can simulate a random variable X from the continuous 
distribution F, when F-' is computable, by simulating a random number U 
and then setting X = F-'(u). 

Example 11.3 (Simulating an Exponential Random Variable): If 
F(x) = 1 - e-', then F-'(u) is that value of x such that 

Hence, if U is a uniform (0, 1) variable, then 

is exponentially distributed with mean 1. Since 1 - U is also uniformly 
distributed on (0, 1) it follows that -log U is exponential with mean 1. 
Since cX is exponential with mean c when X is exponential with mean 1, it 
follows that -clog U is exponential with mean c. + 

11.2.2. The Rejection Method 

Suppose that we have a method for simulating a random variable having 
density function g(x). We can use this as the basis for simulating from 
the continuous distribution having density f(x) by simulating Y from g 
and then accepting this simulated value with a probability proportional 
to f(Y)/g(Y). 

Specifically let c be a constant such that 

f (Y) - s c  fora l ly  
g(u) 

We then have the following technique for simulating a random variable 
having density f. 

Rejection Method 

Step 1: Simulate Y having density g and simulate a random number U. 
Step 2: If (I I f(Y)/cg(Y) set X = Y. Otherwise return to Step 1. 

Proposition 1 1.2 The random variable X generated by the rejection 
method has density function f. 
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Proof Let X be the value obtained, and let N denote the number of 
necessary iterations. Then 

where K = P ( U  5 f(Y)/cg(Y)). Letting x + ao shows that K = l /c  and the 
proof is complete. + 
Remarks (i) The preceding method was originally presented by 
Von Neumann in the special case where g was positive only in some finite 
interval (a, b), and Y was chosen to be uniform over (a, b). [That is, 
Y = a + (b - a)U.] 

(ii) Note that the way in which we "accept the value Y with probability 
f(Y)/cg(Y)" is by generating a uniform (0, 1) random variable U and then 
accepting Y if U I f(Y)/cg(Y). 

(iii) Since each iteration of the method will, independently, result in an 
accepted value with probability P ( U  I f(Y)/cg(Y)) = l /c  it follows that 
the number of iterations is geometric with mean c. 

(iv) Actually, it is not necessary to generate a new uniform random 
number when deciding whether or not to accept, since at a cost of some 
additional computation, a single random number, suitably modified at each 
iteration, can be used throughout. To see how, note that the actual value of 
U is not used-only whether or not U < f(Y)/cg(Y). Hence, if Y is rejected- 
that is, if U > f(Y)/cg(Y)-we can use the fact that, given Y, 

is uniform on (0, 1). Hence, this may be used as a uniform random number 
in the next iteration. As this saves the generation of a random number at the 
cost of the computation above, whether it is a net savings depends greatly 
upon the method being used to generate random numbers. 
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Example 11.4 Let us the rejection method to generate a random 
variable having density function 

Since this random variable (which is beta with parameters 2,4) is concen- 
trated in the interval (0, I), let us consider the rejection method with 

To determine the constant c such that f(x)/g(x) I c, we use calculus to 
determine the maximum value of 

-- f(x) - 20x(l - x)' 
g(x) 

Differentiation of this quantity yields 

Setting this equal to 0 shows that the maximal value is attained when x = $, 
and thus 

Hence, 

and thus the rejection procedure is as follows: 

Step I: Generate random numbers Ul and U2. 
Step 2: If U2 i F U , ( 1  - u113, stop and set X = Ul . Otherwise return 

to Step 1. 

The average number of times that Step 1 will be performed is c = w. + 
Example 11.5 (Simulating a Normal Random Variable): To simulate a 
unit normal random variable Z (that is, one with mean 0 and variance 1) 
note first that the absolute value of Z has density function 

We will start by simulating from the above density by using the rejection 
method with 

g(x) = e-X, 0 < x < oo 
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Now, note that 

Hence, using the rejection method we can simulate from Equation (1 1.2) 
as follows: 

(a) Generate independent random variables Y and U, Y being exponen- 
tial with rate 1 and U being uniform on (0, 1). 
(b) If U s exp[-(Y - 1)~/2), or equivalently, if 

set X = Y. Otherwise return to (a). 

Once we have simulated a random variable X having density function (1 1.2) 
we can then generate a unit normal random variable Z be letting Z be 
equally likely to be either X or -X. 

To improve upon the foregoing, note first that from Example 11.3 it 
follows that -log U will also be exponential with rate 1. Hence, steps (a) 
and (b) are equivalent to the following: 

(a') Generate independent exponentials? with rate 1, Y, , and Y, . 
(b') Set X = Y,  if Y2 r (Y, - 112/2. Otherwise return to (a'). 

Now suppose that we accept step (b'). It then follows by the lack of memory 
property of the exponential that the amount by which Y2 exceeds 
(Y, - 1)'/2 will also be exponential with rate 1. 

Hence, summing up, we have the following algorithm which generates an 
exponential with rate 1 and an independent unit normal random variable. 

Step 1: Generate Y, , an exponential random variable with rate 1. 
Step 2: Generate Y2, an exponential with rate 1. 
Step 3: If Y2 - (Y, - 1 ) ~ / 2  > 0, set Y = Y2 - (Y, - 1)'/2 and go to 

Step 4. Otherwise go to Step 1. 
Step 4: Generate a random number U and set 

The random variables Z and Y generated by the above are 
independent with Z being normal with mean 0 and variance 1 
and Y being exponential with rate 1. (If we want the normal 
random variable to have mean p and variance 2, just take 
p + ~ z ) .  4 
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Remarks (i) Since c = = 1.32, the above requires a geometric 
distributed number of iterations of step 2 with mean 1.32. 

(ii) The final random number of step 4 need not be separately simulated 
but rather can be obtained from the first digit of any random number used 
earlier. That is, suppose we generate a random number to simulate an 
exponential; then we can strip off the initial digit of this random number 
and just use the remaining digits (with the decimal point moved one step to 
the right) as the random number. If this initial digit is 0, 1, 2, 3, or 4 (or 0 
if the computer is generating binary digits), then we take the sign of Z to be 
positive and take it to be negative otherwise. 

(iii) If we are generating a sequence of unit normal random variables, 
then we can use the exponential obtained in step 4 as the initial exponential 
needed in step 1 for the next normal to be generated. Hence, on the 
average, we can simulate a unit normal by generating 1.64 exponentials and 
computing 1.32 squares. 

11.2.3. The Hazard Rate Method 

Let F be a continuous distribution function with F(0) = 1. Recall that 1(t), 
the hazard rate function of F, is defined by 

[where f(t) = Fr(t) is the density function]. Recall also that 1(t) represents 
the instantaneous probability intensity that an item having life distribution 
F will fail at time t given it has survived to that time. 

Suppose now that we are given a bounded function A(t), such that 
j; 1(t) dt = 00, and we desire to simulate a random variable S having 1(t) 
as its hazard rate function. 

To do so let 1 be such that 

To simulate from A(t), t r 0,  we will 

(a) simulate a Poisson process having rate 1. We will then only "accept" 
or "count" certain of these Poisson events. Specifically we will 
(b) count an event that occurs at time t, independently of all else, with 
probability I( t) / l .  

We now have the following proposition. 
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Proposition 11.3 The time of the first counted event-call it S-is a 
random variable whose distribution has hazard rate function I(t), t 2 0. 

Proof 

= P(first counted event in (t, t + dt) I no counted events prior to t )  

= P(Poisson event in (t, t + dt), it is counted I 
no counted events prior to t )  

= P(Poisson event in (t, t + dt), it is counted) 

which completes the proof. Note that the next to last equality follows from 
the independent increment property of Poisson processes. + 

Because the interarrival times of a Poisson process having rate I are 
exponential with rate 1 ,  it thus follows from Example 11.3 and the previous 
proposition that the following algorithm will generate a random variable 
having hazard rate function I(t), t r 0. 

Hazard Rate Method for Generating S: I s ( t )  = I ( t )  

Let I be such that I( t)  I I for all t r 0. Generate pairs of random variables 
Ui , Xi,  i r 1, with Xi being exponential with rate I and Ui being uniform 
(0, I), stopping at 

Set 
N 

To compute E [ N ]  we need the result, known as Wald's equation, which 
states that if XI , X, , . . . are independent and identically distributed random 
variables that are observed in sequence up to some random time N then 

More precisely let X I ,  X I ,  . . . denote a sequence of independent random 
variables and consider the following definition. 
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Definition 11.1 An integer-valued random variable N is said to be 
a stopping time for the sequence XI, X2, . . . if the event ( N  = n) is 
independent of Xn+, , Xn+, , . .. for all n = 1,2, . .. . 

Intuitively, we observe the Xn's in sequential order and N denotes 
the number observed before stopping. If N = n, then we have stopped 
after observing X I ,  . . . , X,, and before observing Xn+, , Xn+, , .. . for all 
n = l ,2 ,  .... 

Example 1 1.6 Let X,, , n = 1,2, . . . , be independent and such that 

P(Xn = 0) =PIX,, = 1) =*, n = 1,2, ... 
If we let 

N = min(n: XI + ... + X,, = 10) 

then N is a stopping time. We may regard N as being the stopping time of 
an experiment that successively flips a fair coin and then stops when the 
number of heads reaches 10. + 

Proposition 1 1.4 (Wald's Equation): If XI ,  X2, . . . are independent 
and identically distributed random variables having finite expectations, and 
if N is a stopping time for X I ,  X, , . . . such that E [N] < a, then 

Proof Letting 
i f N z n  

0, i f N < n  
we have that 

Hence, 

However, I, = 1 if and only if we have not stopped after successively 
observing XI , . . . , Xn-, . Therefore, I,, is determined by XI , . . . , Xn-, and is 



572 11 Simulation 

thus independent of Xn . From Equation (1 1.3) we thus obtain 

Returning to the hazard rate method, we have that 

As N = min(n: Un 5 1(Crf Xi)/A] it follows that the event that N = n is 
independent of Xn+, , Xn+, , . . . . Hence, by Wald's equation, 

where E [ S ]  is the mean of the desired random variable. 

11.3. Special Techniques for Simulating Continuous 
Random Variables 

Special techniques have been devised to  simulate from most of the common 
continuous distributions. We now present certain of these. 

11.3.1. The Normal Distribution 

Let X and Y denote independent unit normal random variables and thus 
have the joint density function 
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Figure 11 .l. 

Consider now the polar coordinates of the point (X, Y). As shown in 
Figure 11 .l, 

R 2  = x2 + y2, 

O = tan-' Y/X 

To obtain the joint density of R~ and 0, consider the transformation 

The Jacobian of this transformation is 

Hence, from Section 2.5.3 the joint density of R~ and O is given by 

Thus, we can conclude that R 2  and O are independent with R 2  having an 
exponential distribution with rate and O being uniform on (O,2n). 
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Let us now go in reverse from the polar to the rectangular coordinates. 
From the preceding if we start with W, an exponential random variable 
with rate (W plays the role of R') and with V, independent of W 
and uniformly distributed over (0,2n) (V plays the role of 43) then 
X = f l  cos V, Y = f l  sin V will be independent unit normals. Hence 
using the results of Example 11.3 we see that if Ul and U2 are independent 
uniform (0, 1) random numbers, then 

X = (- 2 log u,)'" cos(2n U2), 

Y = (- 2 log u1)'l2 sin(2nU2) 

are independent unit normal random variables. 

Remark The fact that x2 + y2 has an exponential distribution with rate 
3 is quite interesting for, by the definition of the chi-square distribution, 
x2 + y2 has a chi-squared distribution with 2 degrees of freedom. Hence, 
these two distributions are identical. 

The preceding approach to generating unit normal random variables is 
called the Box-Muller approach. Its efficiency suffers somewhat from its 
need to compute the above sine and cosine values. There is, however, a way 
to get around this potentially time-consuming difficulty. To begin, note that 
if U is uniform on (0, l), then 2U is uniform on (0,2), and so 2U - 1 is 
uniform on (- 1,l). Thus, if we generate random numbers Ul and U2 and set 

v, = 2U1 - 1, 

v, = 2U2 - 1 

then (6, b) is uniformly distributed in the square of area 4 centered at (0,O) 
(see Figure 11.2). 

Suppose now that we continually generate such pairs (V;, b) until we 
obtain one that is contained in the circle of radius 1 centered at (0, 0)-that 
is, until (V;, 6) is such that V: + V: 5 1. It now follows that such a 
pair (V;, h) is uniformly distributed in the circle. If we let 1, d denote 
the polar coordinates of this pair, then it is easy to verify that 1 and d 
are independent, with R 2  being uniformly distributed on (0, I), and @ 
uniformly distributed on (O,2n). 

Since 

s ind  = 611 = v, m' 
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Figure 11.2. 

it follows from Equation (11.4) that we can generate independent unit 
normals X and Y by generating another random number U and setting 

X = (- 2 log U)'/~V;/R, 

Y = (-2 log u)"'v,/R 

In fact, since (conditional on V: + V: I 1) R2 is uniform on (0, 1) and is 
independent of 6, we can use it instead of generating a new random number 
U; thus showing that 

-2 log S x = (-2 log R2)1/2V,/~ - = J v,. 

-2 log S 
Y = ( - 2 1 0 g R ~ ) l / ~ ~ , / R  = 

are independent unit normals, where 

s = R 2 = v : +  V: 
Summing up, we thus have the following approach to generating a pair of 

independent unit normals: 

Step I: Generate random numbers Ul and U2. 
Step2: Set V, = 2U1 - 1, V, = 2U2 - 1, S =  V: + v:. 
Step 3: If S > 1, return to step 1. 
Step 4: Return the independent unit normals 



576 11 Simulation 

The preceding is called the polar method. Since the probability that 
a random point in the square will fall within the circle is equal to n/4 
(the area of the circle divided by the area of the square), it follows that, on 
average, the polar method will require 4/72 = 1.273 iterations of step 1. 
Hence, it will, on average, require 2.546 random numbers, 1 logarithm, 
1 square root, 1 division, and 4.546 multiplications to generate 2 indepen- 
dent unit normals. 

11.3.2. The Gamma Distribution 

To simulate from a gamma distribution with parameters (n, A), when n is an 
integer, we use the fact that the sum of n independent exponential random 
variables each having rate A has this distribution. Hence, if U, , . . . , U, are 
independent uniform (0, 1) random variables, 

has the desired distribution. 
When n is large, there are other techniques available that do not require 

so many random numbers. One possibility is to use the rejection procedure 
with g(x) being taken as the density of an exponential random variable with 
mean n/A (as this is the mean of the gamma). It can be shown that for large 
n the average number of iterations needed by the rejection algorithm is 
e[(n - 1) /2~]"~ .  In addition, if we wanted to generate a series of gammas, 
then, just as in Example 11.4, we can arrange things so that upon 
acceptance we obtain not only a gamma random variable but also, for free, 
an exponential random variable that can then be used in obtaining the next 
gamma (see Exercise 8). 

11.3.3. The Chi-Squared Distribution 

The chi-squared distribution with n degrees of freedom is the distribution of 
X: = 2: + . . - + 2: where Zi , i = 1, . . . , n are independent unit normals. 
Using the fact noted in the remark at the end of Section 3.1 we see that 
2: + Z; has an exponential distribution with rate i. Hence, when n is 
even-say n = 2k-xik has a gamma distribution with parameters (k, i ) .  
Hence, -2 log (nf=, Ui) has a chi-squared distribution with 2k degrees of 
freedom. We can simulate a chi-squared random variable with 2k + 1 
degrees of freedom by first simulating a unit normal random variable Z 
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and then adding Z2 to the preceding. That is, 

where Z, U, , . . . , Un are independent with Z being a unit normal and the 
others being uniform (0, 1) random variables. 

11.3.4. The Beta (n, m )  Distribution 

The random variable X is said to have a beta distribution with parameters 
n, rn if its density is given by 

One approach to simulating from the above distribution is to let 
U,, ..., Un+,-, be independent uniform (0, 1) random variables and 
consider the nth smallest value of this set-call it U(,, . Now Ucn) will equal 
x if, of the n + rn - 1 variables, 

(i) n - 1 are smaller than x 
(ii) one equals x 
(iii) rn - 1 are greater than x 

Hence, if the n + rn - 1 uniform random variables are partitioned into 
three subsects of sizes n - 1, 1, and m - 1 the probability (density) that 
each of the variables in the first set is less than x, the variable in the second 
set equals x, and all the variables in the third set are greater than x is 
given by 

(P(U < x))"-'~,(x)(P(u > xj)"'-] = xn-l(l - x),-l 

Hence, as there are (n + rn - l)!/(n - l)!(rn - I)! possible partitions, 
it follows that Ucn) is beta with parameters (n, rn). 

Thus, one way to simulate from the beta distribution is to find the nth 
smallest of a set of n + rn - 1 random numbers. However, when n and rn 
are large, this procedure is not particularly efficient. 

For another approach consider a Poisson process with rate 1, and recall 
that given S,,,, the time of the (n + m)th event, the set of the first 
n + rn - 1 event times is distributed independently and uniformly on 
(0, Sn+,). Hence, given S,,, , the nth smallest of the first n + rn - 1 event 
times-that is Sn-is distributed as the nth smallest of a set of n + rn - 1 
uniform (0, S,,,) random variables. But from the above we can thus 
conclude that Sn/Sn+, has a beta distribution with parameters (n, rn). 
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Therefore, if U,, . .., U,,, are random numbers, 

-log n := , ui 
is Beta with parameters (n, m) 

-log fl yl" ui 
By writing the preceding as 

-log fly= 1 Ui 
-log nl Ui - log nit? ui 

we see that it has the same distribution as X/(X + Y) where X and Y are 
independent gamma random variables with respective parameters (n, 1) and 
(m, 1). Hence, when n and m are large, we can efficiently simulate a beta 
by first simulating two gamma random variables. 

11.3.5. The Exponential Distribution-The Von Neumann 
Algorithm 

As we have seen, an exponential random variable with rate 1 can be 
simulated by computing the negative of the logarithm of a random number. 
Most computer programs for computing a logarithm, however, involve a 
power series expansion, and so it might be useful to have at hand a second 
method that is computationally easier. We now present such a method due 
to Von Neumann. 

To begin let Ul , U2, . . . be independent uniform (0, 1) random variables 
and define N, N r 2, by 

That is, N is the first random number that is greater than its predecessor. 
Let us now compute the joint distribution of N and U, : 

Now, given that Ul = x, N will be greater than n if x r U2 2 1 U, 
or, equivalently, if 

(a) Ui I x, i = 2, ..., n 
and 

(b) U2 1 "' 1 Un 
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Now, (a) has probability xn-' of occurring and given (a), since all of the 
(n - I)! possible rankings of U,, . . . , U,, are equally likely, (b) has prob- 
ability l/(n - I)! of occurring. Hence, 

..n- 1 

and so 

which yields that 

Upon summing over all the even integers, we see that 

y2 y3 y4 P I N  is even, U, r y] = y - - + - - - - ... 
2!  3! 4! 

We are now ready for the following algorithm for generating an 
exponential random variable with rate 1. 

Step I: Generate uniform random numbers Ul , UZ, . . . stopping at 
N = min(n: U1 r 1 Un-, < U,]. 

Step 2: If N is even accept that run, and go to step 3. If N is odd reject 
the run, and return to step 1. 

Step 3: Set X equal to the number of failed runs plus the first random 
number in the successful run. 

To show that X is exponential with rate 1, first note that the probability 
of a successful run is, from Equation (1 1.5) with y = 1, 

P ( N  is even) = 1 - e-' 

Now, in order for X to exceed x, the first [x] runs must all be unsuccessful 
and the next run must either be unsuccessful or be successful but have 
U, > x - [x] (where [x] is the largest integer not exceeding x). As 

P I N  even, Ul > y) = P I N  even) - P I N  even, Ul 5 yj 
= 1 - e-' - (1 - e-y) = e-y - e-' 

we see that 
P(X > X] = e-[xl[e-' + e-(x-[XI) - e-'1 = e-X 

which yields the result. 
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Let T denote the number of trials needed to generate a successful run. As 
each trial is a success with probability 1 - e-' it follows that T is geometric 
with mean 1/(1 - e-I). If we let Ni denote the number of uniform random 
variables used on the ith run, i r 1, then T (being the first run i for which 
Ni is even) is a stopping time for this sequence. Hence, by Wald's equation, 
the mean number of uniform random variables needed by this algorithm is 
given by 

Now, 
m 

E[N] = 1 PIN > n) 
n = 0 

m 

= 1 + C P[U1 2 ... 1 U,) 
n = l  

and so 

Hence, this algorithm, which computationally speaking is quite easy to 
perform, requires on the average about 4.3 random numbers to execute. 

Remark Since in any run the actual value of UN is not utilized but 
only the fact that UN > UN-l we can, for any failed run, use (UN - UN-J 
(1 - UN-,) as a uniform random number in the next run. This will result in 
a saving of one random number on each run, after the initial one, and 
thus will reduce the expected number of random numbers that needs to be 
generated by the amount 

11.4. Simulating from Discrete Distributions 

All of the general methods for simulating from continuous distributions 
have analogs in the discrete case. For instance, if we want to simulate a 
random variable X having probability mass function 
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We can use the following discrete time analog of the inverse transform 
technique. 

To simulate X for which PIX = xi) = 4 
let U be uniformly distributed over (0, I), and set 

x,, i f U < P ,  

x, , if Pl < U < Pl + P, 

j- 1 j 

xj, if C P,< U <  Cpi 
1 i 

As. 

we see that X has the desired distribution. 

Example 11.7 (The Geometric Distribution): Suppose we want to 
simulate X such that 

we can simulate such a random variable by generating a random number U 
and then setting X equal to that value j for which 

or, equivalently, for which 

As 1 - U has the same distribution as U, we can thus define X by 

X = min(j: (1 - p)' < U] = min 

log U 
= I + [  ] . 

log(l - P) 

As in the continuous case, special simulation techniques have been developed 
for the more common discrete distributions. We now present certain of these. 
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Example 11.8 (Simulating a Binomial Random Variable): A binomial 
(n, p)  random variable can be most easily simulated by recalling that it can 
be expressed as the sum of n independent Bernoulli random variables. That 
is, if U1 , . . . , U, are independent uniform (0, 1) variables, then letting 

x i u i [ l ,  i f U i < P  
0, otherwise 

it follows that X = Xi is a binomial random variable with parameters 
n and p. 

One difficulty with the above procedure is that it requires the generation 
of n random numbers. To show how to reduce the number of random 
numbers needed, note first that the above procedure does not use the actual 
value of a random number U but only whether or not it exceeds p. Using 
this and the result that the conditional distribution of U given that U < p 
is uniform on (0, p) and the conditional distribution of U given that U > p 
is uniform on (p, I), we now show how we can simulate a binomial (n,p) 
random variable using only a single random number: 

Step 1: Let cr = l/p, P = 1/(1 - p). 
Step 2: Set k = 0. 
Step 3: Generate a uniform random number U. 
Step 4: If k = n stop. Otherwise reset k to equal k + 1. 
Step 5: If U I p set Xk = 1 and reset U to equal crU. If U > p set 

Xk = 0 and reset U to equal b(U - p). Return to step 4. 

This procedure generates X I ,  ..., X, and X = CI=,  Xi is the desired 
random variable. It works by noting whether Uk I p or Uk > p ;  in the 
former case it takes Uk+, to equal Uk/p, and in the latter case it takes Uk+l 
to equal (Uk - p)/(l - p).* + 
Example 11.9 (Simulating a Poisson Random Variable): To simulate a 
Poisson random variable with mean 1, generate independent uniform (0, 1) 
random variables Ul , U2, . . . stopping at 

Because of computer roundoff errors, a single random number should not be continuously 
used when n is large. 
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The random variable N has the desired distribution, which can be seen by 
noting that 

But -log Ui is exponential with rate 1, and so if we interpret -log Ui, 
i 2 1, as the interarrival times of a Poisson process having rate 1, we 
see that N = N(A) would equal the number of events by time A.  Hence N is 
Poisson with mean A. 

When 1 is large we can reduce the amount of computation in the above 
simulation of N(A), the number of events by time A of a Poisson process 
having rate 1, by first choosing an integer m and simulating S, , the time of 
the mth event of the Poisson process and then simulating N(A) according to 
the conditional distribution of N(A) given S,. Now the conditional 
distribution of N(A) given S, is as follows: 

N(A) 1 S, = s - m + Poisson(2 - s), i f s < A  

where - means "has the distribution of." This follows since if the mth 
event occurs at times, where s < 1 ,  then the number of events by time A is 
m plus the number of events in (s, A). On the other hand given that S, = s 
the set of times at which the first m - 1 events occur has the same distribu- 
tion as a set of m - 1 uniform (0, s) random variables (see Section 5.3.5). 
Hence, when A < s, the number of these which occur by time A is binomial 
with parameters m - 1 and Us. Hence, we can simulate N(l) by first 
simulating S, and then simulate either P(A - S,), a Poisson random 
variable with mean il - S, when S, < A, or simulate Bin(m - 1, US,), a 
binomial random variable with parameters m - 1, and US,,, , when S, > A; 
and then setting 

m + P(A - S,), if S,,, < 1 
N(A) = 

Bin(m - 1, US,), if S, > A 

In the preceding it has been found computationally effective to let m be 
approximately $1. Of course, S, is simulated by simulating from a gamma 
(m, A) distribution via an approach that is computationally fast when m is 
large (see Section 11.3.3). + 

There are also rejection and hazard rate methods for discrete distri- 
butions but we leave their development as exercises. However, there is a 
technique available for simulating finite discrete random variables-called 
the alias method-which, though requiring some setup time, is very fast 
to implement. 
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11.4.1. The Alias Method 

In what follows, the quantities P, P'~), Q(~) ,  k 5 n - 1 will represent 
probability mass functions on the integers 1,2, . . . , n-that is, they will be 
n-vectors of nonnegative numbers summing to 1. In addition, the vector 
pCk) will have at most k nonzero components, and each of the Q ( ~ )  will 
have at most two nonzero components. We show that any probability 
mass function P can be represented as an equally weighted mixture of 
n - 1 probability mass functions Q (each having at most two nonzero 
components). That is, we show that for suitably defined Q"), . . . , Q("-'), 
P can be expressed as 

As a prelude to presenting the method for obtaining this representation, we 
will need the following simple lemma whose proof is left as an exercise. 

Lemma 11.5 Let P = ( f i ,  i = 1, . . . , n) denote a probability mass 
function, then 

(a) there exists an i ,  1 I i 5 n, such that f i  < l/(n - I), and 
(b) for this i, there exists a j, j # i, such that Pi + 4 r l/(n - I). 

Before presenting the general technique for obtaining the representation 
of Equation (1 1.6), let us illustrate it by an example. 

Example 11.1 0 Consider the three-point distribution P with Pl = A, 
P2 = *, P3 = -i$. We start by choosing i and j such that they satisfy the 
conditions of Lemma 11.1. As P3 < 3 and P, + P2 > i, we can work with 
i = 3 and j = 2. We will now define a 2-point mass function Q(') putting all 
of its weight on 3 and 2 and such that P will be expressible as an equally 
weighted mixture between Q(') and a second 2-point mass function QC2). 
Secondly, all of the mass of point 3 will be contained in Q"). As we 
will have 

P ~ = ~ ( Q J ( " + Q ~ ' ) ,  j = 1 , 2 , 3  (1 1.7) 

and, by the preceding, QS2) is supposed to equal 0, we must therefore take 

Q$" = 2P3 = +, Q$" = 1 - Q?' = , Q$" = 0 

To satisfy Equation (1 1.7), we must then set 

Q ~ = o ,  Q $ Z ) = ~ , - ~ - L  8 - 8 ,  Q i 2 ) = 2 P I = g  
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Hence, we have the desired representation in this case. Suppose now that 
the original distribution was the following Cpoint mass function: 

Now, P3 < f and P3 + Pl > f .  Hence our initial 2-point mass function- 
Q(')-will concentrate on points 3 and 1 (giving no weights to 2 and 4). As 
the final representation will give weight to Q(') and in addition the other 
Qti), j = 2,3, will not give any mass to the value 3, we must have that 

1 ( l )=p  -1 
3Q3 3 - 8  

Hence, 

~ $ 1 )  = g, ~ ( 1 )  = 1 - g = r 1 8 

Also, we can write 

p = *Q(') + ip(3) 

where P ( ~ ) ,  to satisfy the above, must be the vector 

Note that P'~) gives no mass to the value 3. We can now express the mass 
function P ( ~ )  as an equally weighted mixture of two point mass functions 
Q(~ )  and Q(~), and we will end up with 

(We leave it as an exercise for the reader to fill in the details.) + 
The preceding example outlines the following general procedure for 

writing the n-point mass function P in the form of Equation (11.6) where 
each of the Q(') are mass functions giving all their mass to at most 2 points. 
To start, we choose i and j satisfying the conditions of Lemma 11.5. 
We now define the mass function Q(') concentrating on the points i and j 
and which will contain all of the mass for point i by noting that, in the 
representation of Equation (1 1.6), Qfk) = 0 for k = 2, . . . , n - 1, implying 
that 

Q j l ) = ( n - 1 ) 4 ,  a n d s o Q j " ) = l - ( n - 1 ) f i  
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Writing 

where P("-') represents the remaining mass, we see that 

That the foregoing is indeed a probability mass function is easily checked- 
for instance, the nonnegativity of en-') follows from the fact that j was 
chosen so that fi + P j  2 l / ( n  - 1). 

We may now repeat the foregoing procedure in the (n - 1)-point 
probability mass function P("-') to obtain 

and thus from Equation ( 1  1.8) we have 

We now repeat the procedure on P("-~) and so on until we finally obtain 

In this way we are able to represent P as an equally weighted mixture of 
n  - 1 two-point mass functions. We can now easily simulate from P by first 
generating a random integer N equally likely to be either 1,2, . . . , n  - 1. 
If the resulting value N is such that Q ( ~  puts positive weight only on the 
points iN and j N ,  then we can set X equal to iN if a second random number 
is less than Q!? and equal to jN otherwise. The random variable X will 
have probability mass function P. That is, we have the following procedure 
for simulating from P. 

Stap I:  Generate Ul and set N = 1 + [(n - l )U , ] .  
Step 2: Generate U2 and set 

if U2 < Q$' 
jN, otherwise 
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Remarks (i) The above is called the alias method because by a 
renumbering of the Q's we can always arrange things so that for each k, 
eLk) > 0. (That is, we can arrange things so that the kth 2-point mass 
function gives positive weight to the value k.) Hence, the procedure calls for 
simulating N, equally likely to be 1,2, . . . , n - 1, and then if N = k it either 
accepts k as the value of X, or it accepts for the value of X the "alias" of 
k (namely, the other value that Q ( ~ )  gives positive weight). 

(ii) Actually, it is not necessary to generate a new random number in 
step 2. Because N - 1 is the integer part of (n - l)Ul, it follows that the 
remainder (n - l)Ul - (N - 1) is independent of Ul and is uniformly 
distributed in (0, 1). Hence, rather than generating a new random number 
U, in step 2, we can use (n - l)U1 - (N - 1) = (n - l)Ul - [(n - l)Ul]. 

Example 11 .I 1 Let us return to the problem of Example 11.1 which 
considers a list of n, not necessarily distinct, items. Each item has a value- 
v(i) being the value of the item in position i-and we are interested in 
estimating 

n 

v = v(i)/m(i) 
i = l  

where m(i) is the number of times the item in position i appears on the list. 
In words, v is the sum of the values of the (distinct) items on the list. 

To estimate v, note that if X is a random variable such that 

i = 1 ,  ..., n 

then 

Hence, we can estimate v by using the alias (or any other) method to 
generate independent random variables Xl , . . . , Xk having the same 
distribution as X and then estimating v by 

1 1.5. Stochastic Processes 

One can usually simulate a stochastic process by simulating a sequence of 
random variables. For instance, to simulate the first t time units of a renewal 
process having interarrival distribution F we can simulate independent 



random variables X, , X, , . . . having distribution F stopping at 

The Xi, i 2 1, represent the interarrival times of the renewal process and so 
the preceding simulation yields N - 1 events by time t-the events occurr- 
ing at times XI, XI + X,, ..., XI + + X,-,. 

Actually there is another approach for simulating a Poisson process that 
is quite efficient. Suppose we want to simulate the first t time units of a 
Poisson process having rate A. To do so we can first simulate N(t), the 
number of events by t, and then use the result that given the value of N(t), 
the set of N(t) event times is distributed as a set of n independent uniform 
(0, t) random variables. Hence, we start by simulating N(t), a Poisson 
random variable with mean I t  (by one of the methods given in Example 
11.9). Then, if N(t) = n, generate a new set of n random numbers-call 
them U,, ..., Un-and (tU,, ..., tun]  will represent the set of N(t) event 
times. If we could stop here this would be much more efficient than 
simulating the exponentially distributed interarrival times. However, we 
usually desire the event times in increasing order-for instance, for s < t, 

N(s) = number of Ui: tUi r s 

and so to compute the function N(s), s I t, it is best to first order the values 
Ui, i = 1, . . . , n before multiplying by t. However, in doing so one should 
not use an all-purpose sorting algorithm, such as quick sort (see Example 
3.14), but rather one that takes into account that the elements to be sorted 
come from a uniform (0, 1) population. Such a sorting algorithm, of n 
uniform (0, 1) variables is as follows: Rather than a single list to  be sorted 
of length n we will consider n ordered, or linked, lists of random size. The 
value U will be put in list i if its value is between (i - l)/n and i/n-that is, 
U is put in list [nu]  + 1. The individual lists are then ordered and the total 
linkage of all the lists is the desired ordering. As almost all of the n lists will 
be of relatively small size [for instance, if n = 1000 the mean number of lists 
of size greater than 4 is (using the Poisson approximation to the binomial) 
approximately equal to 1000(1 - Be-') = 41 the sorting of individual lists 
will be quite quick, and so the running time of such an algorithm will be 
proportional to n (rather than to n log n as in the best all-purpose sorting 
algorithms). 

An extremely important counting process for modeling purposes is the 
nonhomogeneous Poisson process, which relaxes the Poisson process 
assumption of stationary increments. Thus it allows for the possibility that 
the arrival rate need not be constant but can vary with time. However, 
there are few analytical studies that assume a nonhomogeneous Poisson 
arrival process for the simple reason that such models are not usually 



11.5. Stochastic Processes 589 

mathematically tractable. (For example, there is no known expression for 
the average customer delay in the single server exponential service distribu- 
tion queueing model which assumes a nonhomogeneous arrival process.)* 
Clearly such models are strong candidates for simulation studies. 

11.5.1. Simulating a Nonhomogeneous Poisson Process 

We now present three methods for simulating a nonhomogeneous Poisson 
process having intensity function A(t), 0 s t < 00. 

Method 1. Sampling a Poisson Process 

To simulate the first T time units of a nonhomogeneous Poisson process 
with intensity function L( t ) ,  let I be such that 

I( t)  5 I for all t 5 T 

Now as shown in Chapter 5, such a nonhomogeneous Poisson process can 
be generated by a random selection of the event times of a Poisson process 
having rate A. That is, if an event of a Poisson process with rate A that 
occurs at time t is counted (independently of what has transpired 
previously) with probability I( t) /I  then the process of counted events is a 
nonhomogeneous Poisson process with intensity function I(t), 0 5 t 5 T. 
Hence, by simulating a Poisson process and then randomly counting its 
events, we can generate the desired nonhomogeneous Poisson process. We 
thus have the following procedure: 

Generate independent random variables XI, Ul , X2, Uz , . . . where the Xi 
are exponential with rate L and the Ui are random numbers, stopping at 

i = l  

Now let, for j = 1, ..., N - 1, 

(0, otherwise 
and set 

J  = ( j :  Zj = 1 )  

Thus, the counting process having events at the set of times (c{, , Xi: j E J )  
constitutes the desired process. 

* One queueing model that assumes a nonhomogeneous Poisson arrival process and is 
mathematically tractable is the infinite server model. 



The foregoing procedure, referred to as the thinning algorithm (because 
it "thins" the homogeneous Poisson points) will clearly be most efficient, 
in the sense of having the fewest number of rejected event times, when A(t) 
is near A throughout the interval. Thus, an obvious improvement is to break 
up the interval into subintervals and then use the procedure over each sub- 
interval. That is, determine appropriate values k, 0 < t1 < t2 < . . - < tk < T, 
A1, . . . , Ak+l, such that 

A(s) s Ai when tidl I S <  ti, i = 1 ,..., k + 1 

(where to = 0, tk+l = T) (1 1.9) 

Now simulate the nonhomogeneous Poisson process over the interval 
(ti-, , ti) by generating exponential random variables with rate Ai and 
accepting the generated event occurring at time s, s E (ti-l, ti), with 
probability A(s)/Ai. Because of the memoryless property of the exponential 
and the fact that the rate of an exponential can be changed upon multi- 
plication by a constant, it follows that there is no loss of efficiency in going 
from one subinterval to the next. In other words, if we are at t E [ti-l ,ti) 
and generate X, an exponential with rate Ai, which is such that t + X > ti 
then we can use l i [ X  - (ti - t)]/Ai+, as the next exponential with rate Ai+, . 
Thus, we have the following algorithm for generating the first t time units 
of a nonhomogeneous Poisson process with intensity function A(s) when the 
relations (1 1.9) are satisfied. In the algorithm, t will represent the present 
time and I the present interval (that is, I = i when ti-l I t < ti). 

Step I: t = 0, I =  1. 
Step 2: Generate an exponential random variable X having rate A,. 
Step 3: If t + X < tI, reset t = t + X, generate a random number U, 

and accept the event time t if U s A(t)/lI. Return to step 2. 
Step 4: Step reached if t + X 2 t,. Stop if I = k + 1. Otherwise, reset 

X = (X - tI + t)LI/lI+, . Also reset t = t, and I = I + 1, and 
go to step 3. 

Suppose now that over some subinterval (ti-l, ti) it follows that di > 0 
where 

di = infimum(l(s): ti-, 5 s < ti). 

In such a situation, we should not use the thinning algorithm directly but 
rather should first simulate a Poisson process with rate di over the desired 
interval and then simulate a nonhomogeneous Poisson process with the 
intensity function A(s) = A(s) - di when s E (ti-l, ti). (The final exponen- 
tial generated for the Poisson process, which carries one beyond the desired 
boundary, need not be wasted but can be suitably transformed so as to be 
reusable.) The superposition (or, merging) of the two processes yields the 
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desired process over the interval. The reason for doing it this way is that 
it saves the need to generate uniform random variables for a Poisson 
distributed number, with mean &(ti - ti-,) of the event times. For instance, 
consider the case where 

Using the thinning method with A = 11 would generate an expected number 
of 11 events each of which would require a random number to determine 
whether or not to accept it. On the other hand, to generate a Poisson 
process with rate 10 and then merge it with a generated nonhomogeneous 
Poisson process with rate A(s) = s, 0 < s < 1, would yield an equally 
distributed number of event times but with the expected number needing to 
be checked to determine acceptance being equal to 1. 

Another way to make the simulation of nonhomogeneous Poisson 
processes more efficient is to make use of superpositions. For instance, 
consider the process where 

A plot of this intensity function is given in Figure 11.3. One way of 
simulating this process up to time 4 is to first generate a Poisson process 

Figure 1 1.3. 
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with rate 1 over this interval; then generate a Poisson process with rate e - 1 
over this interval and accept all events in (1,3) and only accept an event at 
time t which is not contained in (1,3) with probability [A(t) - l]/(e - 1); 
then generate a Poisson process with rate e2." - e over the interval (l,3), 
accepting all event times between 1.5 and 2.5 and any event time t outside 
this interval with probability [I(t) - e~/(e'.'~ - e). The superposition of 
these processes is the desired nonhomogeneous Poisson process. In other 
words, what we have done is to break up I(t) into the following nonnegative 
parts 

n(t) = Al(t) + I,(t) + 13(t), 0 < t < 4 
where 

Il(t) = 1, 

A(t) - e, 1 < t .< 3 
otherwise 

and where the thinning algorithm (with a single interval in each case) was 
used to simulate the constituent nonhomogeneous processes. 

Method 2. Conditional Distribution of the Arrival Times 

Recall the result for a Poisson process having rate A that given the number 
of events by time T the set of event times are independent and identically 
distributed uniform (0, T) random variables. Now suppose that each of 
these events is independently counted with a probability that is equal to 
L(t)/A when the event occurred at time t. Hence, given the number of 
counted events, it follows that the set of times of these counted events are 
independent with a common distribution given by F(s), where 

F(s) = P(time I s 1 counted) 

- - P(time I s,  counted] 
P (counted] 

- - j t ~ ( t i m e  I s ,  counted I time = x] dx/T 
P(counted) 
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The preceding (somewhat heuristic) argument thus shows that given n 
events of a nonhomogeneous Poisson process by time T the n event times 
are independent with a common density function 

Since N(T), the number of events by time T, is Poisson distributed with 
mean m(T), we can simulate the nonhomogeneous Poisson process by first 
simulating N(T) and then simulating N(T) random variables from the 
density (11.10). 

Example 1 1.1 2 If A(s) = cs, then we can simulate the first T time units 
of the nonhomogeneous Poisson process by first simulating N(T), a 
Poisson random variable having mean m(T) = jzcs ds = C T ~ / ~ ,  and then 
simulating N(T) random variables having distribution 

s2 
F(s) = -, 0 < S <  T 

T~ 

Random variables having the preceding distribution either can be simulated 
by use of the inverse transform method (since F-'(u) = ~ m )  or by 
noting that F is the distribution function of max(TUl, TU2) when Ul and 
U2 are independent random numbers. + 

If the distribution function specified by Equation (1 1.10) is not easily 
invertible, we can always simulate from (11.10) by using the rejection 
method where we either accept or reject simulated values of uniform (0, T)  
random variables. That is, let h(s) = 1/T, 0 < s < T. Then 

where 1 is a bound on 1(s), 0 I s 5 T. Hence, the rejection method is to 
generate random numbers Ul and U2 and then accept TUl if 

or, equivalently, if 

Method 3. Simulating the Event Times 

The third method we shall present for simulating a nonhomogeneous 
Poisson process having intensity function 1(t), t r 0 is probably the most 



basic approach-namely, to simulate the successive event times. So let 
XI, X2, . . . denote the event times of such a process. As these random 
variables are dependent we will use the conditional distribution approach to 
simulation. Hence, we need the conditional distribution of Xi given 
x1 , . . . , xi-, . 

To start, note that if an event occurs at time x then, independent of what 
has occurred prior to x, the time until the next event has the distribution F, 
given by 

F.(t) = P I O  events in (x, x + t) 1 event at x) 

= P(0 events in (x, x + t)) by independent increments 

Differentiation yields that the density corresponding to Fx is 

implying that the hazard rate function of F, is 

We can now simulate the event times XI ,  X, , . . . by simulating XI from 
F,; then if the simulated value of X1 is 81, simulate X2 by adding x, to a 
value generated from Fx, , and if this sum is x2 simulate X, by adding x2 to 
a value generated from F,, and so on. The method used to simulate from 
these distributions should depend, of course, on the form of these distribu- 
tions. However, it is interesting to note that if we let il be such that L(t) s il 
and use the hazard rate method to simulate, then we end up with the 
approach of Method 1 (we leave the verification of this fact as an exercise). 
Sometimes, however, the distributions F, can be easily inverted and so the 
inverse transform method can be applied. 

Example 5.13 Suppose that A(x) = l/(x + a), x 2 0. Then 

jl A(x + y) dy = log (Xz:]:t) 
Hence, 
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and so 
U 

F;'(u) = (x + a) - 
1-24 

We can, therefore, simulate the successive event times XI, X2 , . . . by 
generating Ul , U2, . . . and then setting 

u2 + XI X2 = (XI + a)- 
1 - u2 

and, in general, 

uj Xj = (Xj-l + a)- +Xj-l, j r 2  + 
1 - uj 

11 5 2 .  Simulating a Two-Dimensional Poisson Process 

A point process consisting of randomly occurring points in the plane is said 
to be a two-dimensional Poisson process having rate 1 if 

(a) the number of points in any given region of area A is Poisson 
distributed with mean AA; and 
(b) the numbers of points in disjoint regions are independent. 

For a given fixed point 0 in the plane, we now show how to simulate 
events occurring according to a two-dimensional Poisson process with rate 
I in a circular region of radius r centered about 0. Let Ri, i r 1, denote the 
distance between 0 and its ith nearest Poisson point, and let C(a) denote the 
circle of radius a centered at 0. Then 

P ( ~ R :  > b) = P b l  > J ]  = P(no points in c ( G ) )  = e-" 

Also, with C(a2) - C(al) denoting the region between C(a2) and C(al): 

P(RR; - n ~ :  > b 1 Rl  = r] 

= P(R2 > d(b + nr2)/n I R1 = r] 

= P(no  points in ~ ( d ( b  + nr2)/n) - C(r) I R1 = r) 

= P(no  points in ~ ( d ( b  + nr2)/n) - C(r)) by (b) 

= e-" 

In fact, the same argument can be repeated to obtain the following. 
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Proposition 1 1.6 With R, = 0, 

are independent exponentials with rate A. 

In other words, the amount of area that needs to be traversed to 
encompass a Poisson point is exponential with rate A. Since, by symmetry, 
the respective angles of the Poisson points are independent and uniformly 
distributed over (O,2n), we thus have the following algorithm for simulating 
the Poisson process over a circular region of radius r about 0: 

Step I: Generate independent exponentials with rate 1, XI, X2, . . . , 
stopping at 

XI + + x,, > r2 1 
Step 2: If N = 1, stop. There are no points in C(r). Otherwise, for 

i = 1, ..., N - 1, set 

Step 3: Generate independent uniform (0, 1) random variables 
u l ,  ..., Uii-1. 

Step 4: Return the N - 1 Poisson points in C(r) whose polar coordinates 
are 

R i i  i = l ,  ..., N - 1  

The preceding algorithm requires, on average, 1 + 1nr2 exponentials and 
an equal number of uniform random numbers. Another approach to 
simulating points in C(r) is to first simulate N, the number of such points, 
and then use the fact that, given N, the points are uniformly distributed in 
C(r). This latter procedure requires the simulation of N, a Poisson random 
variable with mean r2nr2; we must then simulate N uniform points on C(r), 
by simulating R from the distribution F'(a) = a2/r2 (see Exercise 25) and 
0 from uniform (O,2n) and must then sort these N uniform values in 
increasing order of R. The main advantage of the first procedure is that it 
eliminates the need to sort. 

The preceding algorithm can be thought of as the fanning out of a circle 
centered at 0 with a radius that expands continuously from 0 to r. The 
successive radii at which Poisson points are encountered is simulated by 
noting that the additional area necessary to encompass a Poisson point is 
always, independent of the past, exponential with rate A. This technique can 
be used to simulate the process over noncircular regions. For instance, 



11.5. Stochastic Processes 597 

Figure 11.4. 

consider a nonnegative function g(x), and suppose we are interested in 
simulating the Poisson process in the region between the x-axis and g with 
x going from 0 to T (see Figure 11.4). To do so we can start at the left-hand 
end and fan vertically to the right by considering the successive areas 
50,g(x) dx. Now if Xl < X2 < - - -  denote the successive projections of the 
Poisson points on the x-axis, then analogous to Proposition 11.6, it will 
follow that (with Xo = 0) I j2-, g(x) dx, i 2 1, will be independent expo- 
nential~ with rate 1. Hence, we should simulate E, , E, , . . . , independent 
exponentials with rate 1, stopping at 

N = min n :  + --. + E,, > I ioTg(X)dX] I 
and determine X I ,  . . . , XN-, by 

If we now simulate Ul , . . . , U,-,-independent uniform (0, 1) random 
numbers-then as the projection on the y-axis of the Poisson point whose 
x-coordinate is Xi, is uniform on (0, g(Xi)), it follows that the simulated 
Poisson points in the interval are (Xi, Uig(X,)), i = 1, . . . , N - 1. 

Of course, the preceding technique is most useful when g is regular 
enough so that the foregoing equations can be solved for the Xi. For 
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instance, if g(x) = y (and so the region of interest is a rectangle), then 

El + + Ei 
Xi = , i = 1, ..., N - 1 

AY 
and the Poisson points are 

(Xi,yUi), i = l ,  ..., N - 1  

11.6. Variance Reduction Techniques 

Let X I ,  ..., X, have a given joint distribution, and suppose we are 
interested in computing 

e = E [g(x,, . . . , x,)] 

where g is some specified function. It is often the case that it is not possible 
to analytically compute the above, and when such is the case we can 
attempt to use simulation to estimate 8. This is done as follows: Generate 
xi1) . . ., x,") having the same joint distribution as X I ,  . . ., X, and set 

Now, simulate a second set of random variables (independent of the first 
set) x?, . . . , x:') having the distribution of X I ,  . . ., X,, and set 

Continue this until you have generated k (some predetermined number) 
sets, and so have also computed Y , ,  &, ..., Yk. Now, &, ..., Yk are 
independent and identically distributed random variables each having the 
same distribution of g(Xl , . . . , X,). Thus, if we let P denote the average of 
these k random variables-that is, 

then 

Hence, we can use as an estimate of 8. As the expected square of the 
difference between P and 8 is equal to the variance of Y, we would like this 
quantity to be as small as possible. [In the preceding situation, 
Var(F) = Var(&)/k, which is usually not known in advance but must be 
estimated from the generated values Y,  , . . . , Y, .] We now present three 
general techniques for reducing the variance of our estimator. 
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11.6.1. Use of Antithetic Variables 

In the preceding situation, suppose that we have generated Y, and Y,, 
identically distributed random variables having mean 0. Now, 

Hence, it would be advantageous (in the sense that the variance would be 
reduced) if Y, and Y, rather than being independent were negatively 
correlated. To see how we could arrange this, let us suppose that the 
random variables XI, . . . , X, are independent and, in addition, that each is 
simulated via the inverse transform technique. That is Xi is simulated from 
&-'(Ui) where Ui is a random number and I;;: is the distribution of Xi. 
Hence, Y, can be expressed as 

Now, since 1 - U is also uniform over (0, 1) whenever U is a random 
number (and is negatively correlated with U) it follows that Y, defined by 

will have the same distribution as Y, . Hence, if Y, and Y, were negatively 
correlated, then generating Y, by this means would lead to a smaller 
variance than if it were generated by a new set of random numbers. 
(In addition, there is a computational savings since rather than having to 
generate n additional random numbers, we need only subtract each of the 
previous n from 1.) The following theorem will be the key to showing that 
this technique-known as the use of antithetic variables-will lead to a 
reduction in variance whenever g is a monotone function. 

Theorem 1 1.1 If X I ,  . . . , X, are independent, then, for any increasing 
functions f and g of n variables, 

E [ f  (X)g(X)I 2 E [f (X)IE [g(X)I (11.11) 

where X = (XI , . . . , X,). 

Proof The proof is by induction on n. To prove it when n = 1, let f and 
g be increasing functions of a single variable. Then, for any x and y, 

(f(x) - f(y))(g(x) - g(y)) = 0 
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since if x r y (x r y) then both factors are nonnegative (nonpositive). 
Hence, for any random variables X and Y, 

(f(X) - f(Y))k(X) - g(Y)) 1 0 
implying that 

E [(f(X) - f(Y))k(X) - g(Y))I 2 0 
or, equivalently, 

If we suppose that X and Y are independent and identically distributed 
then, as in this case, 

we obtain the result when n = 1. 
So assume that (1 1.11) holds for n - 1 variables, and now suppose that 

X I ,  . . . , Xn are independent and f and g are increasing functions. Then 

= E[f(Xl, ... ,X,-,,xn)g(X1, . . . ,Kt -1,xn)l 
by independence 

1 E[f(Xl, .-.,Xn-i ,xn)lEk(Xi, -.-,Xn-i,xn)I 
by the induction hypothesis 

= E [ f  (XI I Xn = xnlE [g(X) I X n  = xnl 
Hence, 

E [f(Xlg(X) I X n 1  2 E[f(X) I XnIE k(X) I Xn1 

and, upon taking expectations of both sides, 

The last inequality follows because E [ f(X) I Xn ] and E [g(X) I x,] are both 
increasing functions of Xn,  and so, by the result for n = 1, 



11.6. Variance Reduction Techniques 601 

Corollary 1 1.7 If Ul , . . ., U, are independent, and k is either an 
increasing or decreasing function, then 

Proof Suppose k is increasing. As - k(l - Ul , . . . , 1 - U,) is increasing 
in Ul , . . . , U,, then, from Theorem 11 . l ,  

C0v(k(Ul, .. ., U,), -k(l - Ul , .. ., 1 - U,)) 2 0 

When k is decreasing just replace k by its negative. 

Since &-'(u,) is increasing in Ui (as &, being a distribution function, 
is increasing) it follows that g(Fy1(U1), . . . , F;'(u,)) is a monotone 
function of Ul , . . . , U, whenever g is monotone. Hence, if g is monotone 
the antithetic variable approach of twice using each set of random 
numbers Ul , . . . , U, by first computing g(F;'(U1), . . . , F;'(u,)) and then 
g(Fcl(l - Ul), . . . , F;'(l - U,)) will reduce the variance of the estimate of 
E[g(Xl , . . . , X,)]. That is, rather than generating k sets of n random 
numbers, we should generate k/2 sets and use each set twice. 

Example 11.14 (Simulating the Reliability Function): Consider a 
system of n components in which component i, independently of other 
components, works with probability pi, i = 1, . . . , n. Letting 

if component i works 
0, otherwise 

suppose there is a monotone structure function + such that 

1, if the system works under X I ,  . . . , X, 
+(XI, ...,xn 1 = 0, otherwise 

We are interested in using simulation to estimate 

Now, we can simulate the Xi by generating uniform random numbers 
U, , . . . , U, and then setting 

xi= (1, i f u i < ~ i  
0, otherwise 

Hence, we see that 

4(Xl, ...,X, ) = k(U1, ..., Un) 

where k is a decreasing function of Ul , . . . , U, . Hence, 

Cov(k(U), k(l - U)) I 0 
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and so the antithetic variable approach of using Ul , . . . , U, to generate 
both k(Ul , . . . , U,) and k(l - Ul, . . . , 1 - U,) results in a smaller variance 
than if an independent set of random numbers was used to generate the 
second k. + 
Example 11.15 (Simulating a Queueing System): Consider agiven queue- 
ing system, and let Di denote the delay in queue of the ith arriving customer, 
and suppose we are interested in simulating the system so as to estimate 

8 = EIDl + + D,] 

Let X I ,  . . . , X, denote the first n interarrival times and Sl , . . . , S, the first 
n service times of this system, and suppose these random variables are 
all independent. Now in most systems Dl  + + D, will be a function of 
XI, ..., X,, S1, . . ., &-say, 

Also g will usually be increasing in Si and decreasing in Xi, i = 1, . . . , n. 
If we use the inverse transform method to simulate Xi, Si, i = 1, . . . , n-say, 
Xi = F,-'(l - Ui), Si = G;'(oi) where Ul, ..., U,, ol, ..., 0, are 
independent uniform random numbers-then we may write 

- 
Dl + - - -  + O n =  k(Ul, ..., U,,, U,, ..., Q) 

where k is increasing in its variates. Hence, the antithetic variable approach 
will reduce the variance of the estimator of 8. (Thus, we would generate 
Ui , o i ,  i = 1, . . . , n and set Xi = &-'(I - Ui) and = G;'(Ui) for the 
first run, and Xi = F,-'(ui) and = G;'(l - oi)  for the second.) As all 
the Ui and oi are independent, however, this is equivalent to setting 
Xi = F,-'(ui), Y;. = G;'(U~) in the first run and using 1 - Ui for Ui and 
1 - oi for oi in the second. + 

11.6.2. Variance Reduction by Conditioning 

Let us start by recalling (see Exercise 37 of Chapter 3) the conditional 
variance formula 

Var(Y) = E [Var(Y ) Z)] + Var(E [Y I Z]) (11.12) 

Now suppose we are interested in estimating E [g(Xl , . . . , X,)] by simulating 
X = (XI, ..., Xn) and then computing Y = g(X,, ..., X,). Now, if for 
some random variable Z we can compute E [Y I Z] then, as Var(Y I Z) z 0, 
it follows from the conditional variance formula that 

Var(E [Y I 21) 1 Var(Y) 
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implying, since E [E [Y ( z]] = E [Y], that E [Y 1 Z] is a better estimator of 
E[Y]  than is Y.  

In many situations, there are a variety of Zi that can be conditioned on to 
obtain an improved estimator. Each of these estimators E[Y 1 Zi] will have 
mean E [ Y ]  and smaller variance than does the raw estimator Y. We now 
show that for any choice of weights A i ,  Ai 2 0, CiAi  = 1, Ci L,E[Y ( Z i ]  is 
also an improvement over Y.  

Proposition 11.8 For any Ai r 0, C?= di = 1 ,  

Proof The proof of (a) is immediate. To prove (b), let N denote an 
integer valued random variable independent of all the other random 
variables under consideration and such that 

Applying the conditional variance formula twice, yields 

= Var 1 AiEIYIZi] + 
i 

Example 11.1 6 Consider a queueing system having Poisson arrivals 
and suppose that any customer arriving when there are already N others 
in the system is lost. Suppose that we are interested in using simulation 
to estimate the expected number of lost customers by time t. The raw 
simulation approach would be to simulate the system up to time t and 
determine L, the number of lost customers for that run. A better estimate, 
however, can be obtained by conditioning on the total time in [0, t] that the 
system is at capacity. Indeed, if we let T denote the time in [0, t] that there 
are N in the system, then 

E[LIT]  = AT 

where A is the Poisson arrival rate. Hence, a better estimate for E[L] 
than the average value of L over all simulation runs can be obtained by 
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multiplying the average value of T per simulation run by A. If the arrival 
process were a nonhomogeneous Poisson process, then we could improve 
over the raw estimator L by keeping track of those time periods for which 
the system is at capacity. If we let I,, . . . , I,  denote the time intervals in 
[0, t] in which there are N in the system, then 

C 

E [ L ,  . Z ]  
i =  1 

where A(s) is the intensity function of the nonhomogeneous Poisson arrival 
process. The use of the right side of the preceding would thus lead to a 
better estimate of E[L] than the raw estimator L. + 
Example 11.1 7 Suppose that we wanted to estimate the expected sum 
of the times in the system of the first n customers in a queueing system. That 
is, if % is the time that the ith customer spends in the system, then we are 
interested in estimating 

Let Y;, denote the "state of the system" at the moment at which the ith 
customer arrives. It can be shown* that for a wide class of models the 
estimator Cy= , E [ q  1 Y;,] has (the same mean and) a smaller variance than 
the estimator C;= , WI:. (It should be noted that whereas it is immediate that 
E [ w  I Yi] has smaller variance than Fq , because of the covariance terms 
involved, it is not immediately apparent that Cy=, E [ w  1 I] has smaller 
variance than Cy=, K.) For instance, in the model G / M / l  

E [ ~ ( Y ; : ]  = (N~ + i)/p 

where Ni is the number in the system encountered by the ith arrival and l /p  
is the mean service time; and the result implies that Cy=, (Ni + 1)/p is a 
better estimate of the expected total time in the system of the first n 
customers than is the raw estimator Cy=, W;.. + 
Example 1 1.18 (Estimating the Renewal Function by Simulation): 
Consider a queueing model in which customers arrive daily in accordance 
with a renewal process having interarrival distribution F. However, suppose 
that at some fixed time T, for instance 5 P.M., no additional arrivals are 
permitted and those customers that are still in the system are serviced. At 
the start of the next, and each succeeding day, customers again begin to 
arrive in accordance with the renewal process. Suppose we are interested in 

* S. M. Ross, "Simulating Average Delay-Variance Reduction by Conditioning," 
Probability in the Engineering and Informational Sciences 2(3), (1988), pp. 309-312. 
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determining the average time that a customer spends in the system. Upon 
using the theory of renewal reward processes (with a cycle starting every T 
time units), it can be shown that 

average time that a customer spends in the system 

- - E [sum of the times in the system of arrivals in (0, T ) ]  
m(T) 

where m(T) is the expected number of renewals in (0, T). 
If we were to use simulation to estimate the preceding quantity, a run 

would consist of simulating a single day, and as part of a simulation run, we 
would observe the quantity N(T), the number of arrivals by time T. Since 
E[N(T)] = m(T), the natural simulation estimator of m(T) would be the 
average (over all simulated days) value of N(T) obtained. However, 
Var(N(T)) is, for large T, proportional to T (its asymptotic form being 
~a?/p',  where a? is the variance and p the mean of the interarrival distribu- 
tion F), and so for large T, the variance of our estimator would be large. A 
considerable improvement can be obtained by using the analytic formula 
(see Section 7.3) 

where Y(T) denotes the time from T until the next renewal-that is, it is the 
excess life at T. Since the variance of Y(T)  does not grow with T (indeed, 
it converges to a finite value provided the moments of F are finite), it 
follows that for T large, we would do much better by using the simulation 
to estimate E[Y(T)] and then use Equation (1 1.13) to estimate m(T). 

However, by employing conditioning, we can improve further on our 
estimate of m(T). To do so, let A(T) denote the age of the renewal process 
at time T-that is, it is the time at T since the last renewal. Then, rather 
than using the value of Y(T), we can reduce the variance by considering 
E[Y(T) I A(T)]. Now knowing that the age at T is equal to x is equivalent 
to knowing that there was a renewal at time T - x and the next interarrival 
time X is greater than x. Since the excess at T will equal X - x (see 
Figure 1 IS), it follows that 

which can be numerically evaluated if necessary. 



606 11 Simulation 

Figure 11.5. A(T)  = x. 

As an illustration of the preceding note that if the renewal process is a 
Poisson process with rate A, then the raw simulation estimator N(T) will 
have variance AT, whereas Y(T) will be exponential with rate A,  the esti- 
mator based on (1 1.13) will have variance A2 Var(Y(T)) = 1. On the other 
hand, since Y(T) will be independent of A(T) (and E[Y(T) I A(T)] = 1/1), 
it follows that the variance of the improved estimator E[Y(T) I A(T)] is 0. 
That is, conditioning on the age at time T yields, in this case, the exact 
answer. + 
Example 1 1.1 9 (Reliability): Suppose as in Example 11.14 that Xi, 
j = 1, ..., n are independent with P(Xj = 1) = 4 = 1 - P(Xj = 01, and 
suppose we are interested in estimating E [+(XI, . . . , X,)], where + is a 
monotone binary function. If we simulate X I ,  . . . , X, , an improvement 
over the raw estimator, +(XI, . . . , X,) is to take its conditional expectation 
given all the Xj except one. That is, for fixed i, E[4(X) I ei(X)] is an 
improved estimator where X = (XI, ..., X,) and ei(X) = (XI, ..., Xi-], 
Xi+ , . . . , X,). E [$I@) I ei (X)] will have three possible values-either it will 
equal 1 (if ei(X) is such that the system will function even if Xi = 0), or 0 
(if ei(X) is such that the system will be failed even if Xi = I), or 8 (if q(X) 
is such that the system will function if Xi = 1 and will be failed otherwise). 
Also, by Proposition 11.8 any estimator of the form 

is an improvement over +(X). + 

11.6.3. Control Variates 

Again suppose we want to use simulation to estimate E[g(X)] where 
X = (XI, . . . , X,). But now suppose that for some function f the expected 
value of f(X) is known-say, E [  f(X)] = p. Then for any constant a we can 
also use 

w = g(X) + a(f(X) - P) 

as an estimator of E [g(X)]. Now, 
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Simple calculus shows that the preceding is minimized when 

and, for this value of a, 

Because Var( f(X)) and Cov( f(X), g(X)) are usually unknown, the 
simulated data should be used to estimate these quantities. 

Example 11.20 (A Queueing System): Let D,+, denote the delay in 
queue of the n + 1 customer in a queueing system in which the interarrival 
times are independent and identically distributed (i.i.d.) with distribution F 
having mean pF and are independent of the service times which are i.i.d. 
with distribution G having mean p,. If Xi is the interarrival time between 
arrival i and i + 1, and if Si is the service time of customer i, i r 1, we 
may write 

To take into account the possibility that the simulated variables Xi, Si may 
by chance be quite different from what might be expected we can let 

n 

f(X1, . . . ,Xn,sl ,  ...,sn) = C (si - Xi) 
i =  1 

As E [  f(X, S)] = n(pG - ~ c , )  we could use 

as an estimator of E[D,+,]. Since D,,, and f are both increasing functions 
of Si, -Xi, i = 1, . . . , n it follows from Theorem 11.1 that f(X, S) and D,,, 
are positively correlated, and so the simulated estimate of a should turn out 
to be negative. 

If in the above, we wanted to estimate the expected sum of the delays in 
queue of the first N(T) arrivals (see Example 11.18 for the motivation), then 
we could use Si as our control variable. Indeed as the arrival process 
is usually assumed independent of the service times, it follows that 
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where E[N(T)] can neither be computed by the method suggested in 
Section 7.8 or it can be estimated from the simulation as in Example 1 1.18. 
This control variable could also be used if the arrival process were a 
nonhomogeneous Poisson with rate I( t)  for, in this case, 

T 

E [N(T)] = 1 I(t)  df 
0 

11.6.4. Importance Sampling 

Let X = (XI, . . . , X,,) denote a vector of random variables having a joint 
density function (or joint mass function in the discrete case) f(x) = 
f (xl , . . . , x,,), and suppose that we are interested in estimating 

e = E[~(x)I  = h(x)f(~) dx S 
where the preceding is an n-dimensional integral. (If the Xi are discrete, 
then interpret the integral as an n-fold summation.) 

Suppose that a direct simulation of the random vector X, so as to 
compute values of h(X), is inefficient, possibly because (a) it is difficult to 
simulate a random vector having density function f(x), or (b) the variance 
of h(X) is large, or (c) a combination of (a) and (b). 

Another way in which we can use simulation to estimate 8 is to note that 
if g(x) is another probability density such that g(x) = 0 whenever f(x) = 0, 
then we can express 8 as 

where we have written E, to emphasize that the random vector X has joint 
density g(x). 

It follows from Equation (1 1.14) that 8 can be estimated by successively 
generating values of a random vector X having density function g(x) and 
then using as the estimator the average of the values of h-) f(X)/g(X). 
If a density function g(x) can be chosen so that the random variable 
h(X) f(X)/g(X) has a small variance then this approach-referred to as 
importance sampling-can result in an efficient estimator of 8. 

Let us now try to obtain a feel for why importance sampling can be 
useful. To begin, note that f (X) and g(X) represent the respective likelihoods 
of obtaining the vector X when X is a random vector with respective 
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densities f and g. Hence, if X is distributed according to g, then it will 
usually be the case that f (X) will be small in relation to g(X) and thus when 
X is simulated according to g the likelihood ratio f(X)/g(X) will usually be 
small in comparison to 1. However, it is easy to check that its mean is 1: 

(') g(x) dx = f (x) dx = 1 S 
Thus we see that even though f(X)/g(X) is usually smaller than 1, its mean 
is equal to 1; thus implying that it is occasionally large and so will tend to 
have a large variance. So how can h(X) f(X)/g(X) have a small variance? 
The answer is that we can sometimes arrange to choose a density g such that 
those values of x for which f(x)/g(x) is large are precisely the values for 
which h(x) is exceedingly small, and thus the ratio h(X) f(X)/g(X) is always 
small. Since this will require that h(x) sometimes be small, importance 
sampling seems to work best when estimating a small probability; for in 
this case the function h(x) is equal to 1 when x lies in some set and is equal 
to 0 otherwise. 

We will now consider how to select an appropriate density g. We will find 
that the so-called tilted densities are useful. Let M(t) = ~ ~ [ e ~ ]  = 1 et"f(x) dx 
be the moment generating function corresponding to a one-dimensional 
density f. 

Definition 1 1.1 A density function 

is called a tilted density off, - eo < t < eo. 

A random variable with density f, tends to be larger than one with density 
f when t > 0 and tends to be smaller when t < 0. 

In certain cases the tilted distributions ft have the same parametric form 
as does f. 

Example 1 1.21 Iff is the exponential density with rate IZ then 

where C = l/M(t) does not depend on x. Therefore, for t I A,  f, is an 
exponential density with rate IZ - t. 

Iff is a Bernoulli probability mass function with parameter p ,  then 

f (x) = pX(l - p)'-, x = 0, 1 
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Hence, M(t) = ~ ~ [ e ~ ]  = pet + 1 - p and so 

That is, ft is the probability mass function of a Bernoulli random variable 
with parameter 

We leave it as an exercise to show that if f is a normal density with 
parameters p and 02 then ft is a normal density having mean p + a2t  and 
variance 02. + 

In certain situations the quantity of interest is the sum of the independent 
random variables XI, . . . , X, . In this case the joint density f is the product 
of one-dimensional densities. That is, 

where fi is the density function of Xi. In this situation it is often useful to 
generate the Xi according to their tilted densities, with a common choice of 
t employed. 

Example 1 1.22 Let XI ,  . . . , X, be independent random variables having 
respective probability density (or mass) functions fi , for i = 1, . . . , n. 
Suppose we are interested in approximating the probability that their sum is 
at least as large as a, where a is much larger than the mean of the sum. That 
is, we are interested in 

0 = P(S  2 a) 

where S = I;=, Xi, and where a > I;=, E[Xi]. Letting I ( S  r a] equal 1 if 
S r a and letting it be 0 otherwise, we have that 

0 = Ef[I(S r a]] 

where f = (f, , . . . , f,). Suppose now that we simulate Xi according to the 
tilted mass function fist , i = 1, . . . , n, with the value of t, t > 0 left to be 
determined. The importance sampling estimator of 0 would then be 
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Now, 

h W i )  - Mi(t)e-q -- 
h, t (Xi) 

and so 

8 = I ( S  2 a ] ~ ( t ) e - ' ~  

where M(t) = n Mi(t) is the moment generating function of S. Since t > 0 
and I ( S  r a) is equal to 0 when S  < a, it follows that 

and so 
6 I M(t)e-" 

To make the bound on the estimator as small as possible we thus choose t, 
t > 0, to minimize M(t)e-ta. In doing so, we will obtain an estimator whose 
value on each iteration is between 0 and mint M(t)e-'". It can be shown that 
the minimizing t, call it t*, is such that 

where, in the preceding, we mean that the expected value is to be taken 
under the assumption that the distribution of Xi is A,, . for i = 1, . . . , n. 

For instance, suppose that XI ,  . . . , Xn are independent Bernoulli random 
variables having respective parameters pi, for i = 1, . . . , n. Then, if we 
generate the Xi according to their tilted mass functions pi , t ,  i = 1, . . . , n 
then the importance sampling estimator of 8 = P ( S  2 a) is 

Since pi,, is the mass function of a Bernoulli random variable with 
parameter pi et/(piet + 1 - pi) it follows that 

The value of t that makes the preceding equal to a can be numerically 
approximated and then utilized in the simulation. 

As an illustration, suppose that n = 20, pi = 0.4, and a = 16. Then 
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Setting this equal to 16 yields, after a little algebra, 

Thus, if we generate the Bernoullis using the parameter 

then because 

- (1/61S M( t* )=(0 .4e '*+0 .6 )~~  and e-'*'- 

we see that the importance sampling estimator is 

It follows from the preceding that 

That is, on each iteration the value of the estimator is between 0 and 
0.001236. Since, in this case, 8 is the probability that a binomial random 
variable with parameters 20, 0.4 is at least 16, it can be explicitly computed 
with the result 8 = 0.000317. Hence, the raw simulation estimator I ,  which 
on each iteration takes the value 0 if the sum of the Bernoulli's with 
parameter 0.4 is less than 16 and takes the value 1 otherwise, will have 
variance 

Var(I) = 8(1 - 8) = 3.169 x 

On the other hand, it follows from the fact that 0 I 8 I 0.001236 that 
(see Exercise 33) 

~ a r ( 8 )  s 2.9131 x lo-' 4 

Example 11.23 Consider a single-server queue in which the times 
between successive customer arrivals have density function f and the service 
times have density g. Let Dn denote the amount of time that the nth arrival 
spends waiting in queue and suppose we are interested in estimating 
a = P(Dn 2 a] when a is much larger than E[D,]. Rather than generating the 
successive interarrival and service times according to f and g respectively, 
they should be generated according to the densities f-, and g,, where t is a 
positive number to be determined. Note that using these distributions as 
opposed to f and g will result in smaller interarrival times (since -t < 0) and 
larger service times. Hence, there will be a greater chance that D, > a than 
if we had simulated using the densities f and g. The importance sampling 
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estimator of cr would then be 

where S,, is the sum of the first n interarrival times, Y,  is the sum of the first 
n service times, and Mf and Mg are the moment generating functions of the 
densities f and g respectively. The value of t used should be determined by 
experimenting with a variety of different choices. 

11.7. Determining the Number of Runs 

Suppose that we are going to use simulation to generate r independent and 
identically distributed random variables Y('), . . . , Y") having mean p and 
variance 2. We are then going to use 

as an estimate of p. The precision of this estimate can be measured by its 
variance 

Var(c) = E[(C - P ) ~ ]  

= d / r  

Hence we would want to choose r, the number of necessary runs, large 
enough so that c?/r is acceptably small. However, the difficulty is that c? 
is not known in advance. To get around this, one should initially simulate 
k runs (where k 2 30) and then use the simulated values Y('), .. . , Y ( ~ )  to 
estimate 2 by the sample variance 

k 

Based on this estimate of d the value of r which attains the desired level of 
precision can now be determined and an additional r - k runs can be 
generated. 

Exercises 

1. Suppose it is relatively easy to simulate from the distributions F, , 
i = 1, . . . , n. If n is small, how can we simulate from 
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Give a method for simulating from 

2. Give a method for simulating a negative binomial random variable. 

*3. Give a method for simulating a hypergeometric random variable. 

4. Suppose we want to simulate a point located at random in a circle of 
radius r centered at the origin. That is, we want to simulate X, Y having 
joint density 

(a) Let R = m, 0 = tan-' Y/X denote the polar coordinates. 
Compute the joint density of R,  0 and use this to give a simulation method. 
Another method for simulating X, Y is as follows: 

Step 1: Generate independent random numbers U,, U2 and set 
Z, = 2rU1 - r, Z2 = 2rU2 - r. Then Z, , Z2 is uniform in the 
square whose sides are of length 2r and which encloses the 
circle of radius r (see Figure 11.6). 

Step 2: If (Z, ,Z2) lies in the circle of radius r-that is, if Z? + 2; s r2 
-set (X, Y )  = (Z, , Z2). Otherwise return to Step 1. 

(b) Prove that this method works, and compute the distribution of the 
number of random numbers it requires. 

Figure 11.6. 
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5. Suppose it is relatively easy to simulate from F; for each i = 1, . . . , n. 
How can we simulate from 

(a) F(x) = n := 4 (x)? 
(b) F(X) = 1 - n:=, (1 - fi(x))? 
(c) Give two methods for simulating from the distribution F(x) = xn, 
o c x c  1. 

"6. In Example 11.4 we simulated the absolute value of a unit normal by 
using the Von Neumann rejection procedure on exponential random 
variables with rate 1. This raises the question of whether we could obtain a 
more efficient algorithm by using a different exponential density-that is, 
we could use the density g(x) = ~ e - ~ .  Show that the mean number of 
iterations needed in the rejection scheme is minimized when 1 = 1. 

7. Give an algorithm for simulating a random variable having density 
function 

f(x) = 30(x2 - 2x3 + x4), 0 < x C 1 

8. Consider the technique of simulating a gamma (n, A)  random variable 
by using the rejection method with g being an exponential density with rate 
A/n. 

(a) Show that the average number of iterations of the algorithm needed 
to generate a gamma is nnel-"/(n - I)!. 
(b) Use Stirling's approximation to show that for large n the answer 
to (a) is approximately equal to e[(n - 1)/(2n)1''~. 
(c) Show that the procedure is equivalent to the following: 

Step 1: Generate Y,  and Y,, independent exponentials with rate 1. 
Step 2: If Y,  c (n - 1)[Y, - log(%) - 11, return to step 1. 
Step3: S e t X =  nY,/A. 

(d) Explain how to obtain an independent exponential along with a 
gamma from the preceding algorithm. 

9. Set up the alias method for simulating from a binomial random 
variable with parameters n = 6, p = 0.4. 

10. Explain how we can number the Q'~) in the alias method so that k is 
one of the two points that Q ( ~ )  gives weight. 

Hint: Rather than name the initial Q, Q''' what else could we call it? 

1 1. Complete the details of Example I1  .lo. 
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12. Let X, , . . . , Xk be independent with 

If D is the number of distinct values among X I ,  . . . , Xk show that 

k2 k2 = k - - when - is small 
2n n 

13. The Discrete Rejection Method: Suppose we want to simulate X 
having probability mass function P ( X  = i )  = 8,  i = 1, . . . , n and suppose 
we can easily simulate from the probability mass function Qi, x i  Qi = 1, 
Qi r 0. Let C be such that P, I CQi, i = 1, ..., n. Show that the following 
algorithm generates the desired random variable: 

Step I: Generate Y having mass function Q and U an independent 
random number. 

Step 2: If U I P,/CQ,, set X = Y. Otherwise return to step 1. 

14. The Discrete Hazard Rate Method: Let X denote a nonnegative 
integer valued random variable. The function A(n) = P ( X  = n ( X  2 n], 
n r 0, is called the discrete hazard rate function. 

(a) Show that P I X  = n) = I(n) ny;,' (1 - I(i)). 
(b) Show that we can simulate X by generating random numbers 
U, , U, , . . . stopping at 

X = min(n: U,, I I(n)) 

(c) Apply this method to simulating a geometric random variable. 
Explain, intuitively, why it works. 
(d) Suppose that I(n) s p  < 1 for all n. Consider the following 
algorithm for simulating X and explain why it works: Simulate Xi, Ui, 
i r 1 where Xi is geometric with mean l /p  and Ui is a random number. 
Set Sk = XI + ... + Xk and let 

15. Suppose you have just simulated a normal random variable X with 
mean p and variance d .  Give an easy way to generate a second normal 
variable with the same mean and variance that is negatively correlated 
with X. 
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16. Suppose n balls having weights w, , w2 , . . . , w, are in an urn. These 
balls are sequentially removed from an urn in the following manner: 
At each selection, a given ball in the urn is chosen with a probability equal 
to its weight divided by the sum of the weights of the other balls that are still 
in the urn. Let I,, I,, . . . , I, denote the order in which the balls are 
removed-thus I,, . . . , I, is a random permutation with weights. 

(a) Give a method for simulating I, , . . . , I,. 
(b) Let Xi be independent exponentials with rates wi, i = I,  . . . , n. 
Explain how Xi can be utilized to simulate I, , . . . , I,. 

17. Order Statistics: Let Xl , . . . , X, be i.i.d. from a continuous distri- 
bution F, and let X(i,. denote the ith smallest of XI, ..., X,, i = 1, ..., n. 
Suppose we want to simulate X(,) < Xc2, < < X(,,. One approach is to 
simulate n values from F, and then order these values. However, this 
ordering, or sorting, can be time consuming when n is large. 

(a) Suppose that I ( t ) ,  the hazard rate function of F, is bounded. Show 
how the hazard rate method can be applied to generate the n variables in 
such a manner that no sorting is necessary. 

Suppose now that F-' is easily computed. 

(b) Argue that X(,, , . . . , X(,, can be generated by simulating U(,, < 
UC2) < ... < U(,,-the ordered values of n independent random 
numbers-and then setting X(i, = F-'(Uti,). Explain why this means that 
XCi, can be generated from F-'(&) where pi is beta with parameters i, 
n + i + l .  
(c) Argue that U(,, , . . . , U(,, can be generated, without any need for 
sorting, by simulating i.i.d. exponentials Yl , . . . , Y,,, and then setting 

Hint: Given the time of the (n + ])st event of a Poisson process, 
what can be said about the set of times of the first n events? 

(d) Show that if U(n, = y then U(,,, . . . , U(,-,, has the same joint 
distribution as the order statistics of a set of n - I uniform (0, y) random 
variables. 
(e) Use (d) to show that U(,, , . . . , U(,, can be generated as follows: 
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Step 1: Generate random numbers U, , . . . , U, . 
Step 2: Set 

U(,) = uyn, U(,,-,) = u ( , ) ( ~ ~ ) l / ( ~ - l ) ,  

Uti-l, = u ~ ) ( u , - ~ + ~ ) ~ ' ~ - ~ ) ,  j = 2, . .., n - 1 

18. Let X, , . . . , X, be independent exponential random variables each 
having rate 1. Set 

Explain why W, , . . . , W, has the same joint distribution as the order 
statistics of a sample of n exponentials each having rate 1. 

19. Suppose we want to simulate a large number n of independent 
exponentials with rate 1-call them X,  , X2, . . . , X,  . If we were to employ 
the inverse transform technique we would require one logarithmic 
computation for each exponential generated. One way to avoid this is to 
first simulate S,, a gamma random variable with parameters (n, 1) (say, by 
the method of Section 11.3.3). Now interpret S, as the time of the nth event 
of a Poisson process with rate 1 and use the result that given S, the set of 
the first n - 1 event times is distributed as the set of n - 1 independent 
uniform (0, S,) random variables. Based on this, explain why the following 
algorithm simulates n independent exponentials: 

Step I: Generate S,, a gamma random variable with parameters (n, 1). 
Step 2: Generate n - 1 random numbers Ul, U2, . . . , U,-,. 
Step 3: Order the Ui , i = 1, . . . , n - 1 to obtain U(,, < UC2, < < 

U(n- 1) - 
Step 4: Let Uco) = 0, U(,, = 1, and set Xi = Sn(U(,, - U+,,), i = 1, . . . , n. 

When the ordering (step 3) is performed according to the algorithm 
described in Section 11.5, the above is an efficient method for simulating n 
exponentials when all n are simultaneously required. If memory space 
is limited, however, and the exponentials can be employed sequentially, 
discarding each exponential from memory once it has been used, then the 
above may not be appropriate. 

20. Consider the following procedure for randomly choosing a subset of 
size k from the numbers 1,2, . . . , n: Fixp and generate the first n time units 
of a renewal process whose interarrival distribution is geometric with mean 
l/p-that is, Plinterarrival time = k) = p(l - p)k-l, k = 1,2, . . . . Suppose 
events occur at times i, < i2 < -- .  < im 5 n. If m = k stop; i,, ..., im is 
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the desired set. If m > k, then randomly choose (by some method) a subset 
of size k from i,, ..., i, and then stop. If m < k, take i,, ..., i, as part 
of the subset of size k and then select (by some method) a random subset 
of size k - m from the set (1,2, ..., nJ - (il, ..., i,). Explain why this 
algorithm works. As E[N(n)] = np a reasonable choice of p is to take 
p = k/n. (This approach is due to Dieter.) 

21. Consider the following algorithm for generating a random permuta- 
tion of the elements 1,2, . . . , n. In this algorithm, P(i) can be interpreted 
as the element in position i 

Step I: Set k = 1. 
Step 2: Set P(l) = 1. 
Step 3: If k = n, stop. Otherwise, let k = k + 1. 
Step 4: Generate a random number U, and let 

P(k) = [kU] + 1, 

P([kU] + 1) = k. 

Go to step 3 

(a) Explain in words what the algorithm is doing. 
(b) Show that at iteration k-that is, when the value of P(k) is initially 
set-that P(l), P(2), .. ., P(k) is a random permutation of 1,2, . . ., k. 

Hint: Use induction and argue that 

1 
= - by the induction hypothesis 
k ! 

The preceding algorithm can be used even if n is not initially known. 

22. Verify that if we use the hazard rate approach to simulate the event 
times of a nonhomogeneous Poisson process whose intensity function A(t) 
is such that A(t) I A, then we end up with the approach given in method 1 
of Section 1 1.5. 

'23. For a nonhomogeneous Poisson process with intensity function I(t), 
t 2 0, where A(t) dt = oo, let X I ,  X, , . . . denote the sequence of times at 
which events occur. 

(a) Show that j3 A(t) dt is exponential with rate 1. 
(b) Show that j%-, A(t)dt, i r 1, are independent exponentials with 
rate 1, where X, = 0. 
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In words, independent of the past, the additional amount of hazard that 
must be experienced until an event occurs is exponential with rate 1. 

24. Give an efficient method for simulating a nonhomogeneous Poisson 
process with intensity function 

25. Let (X, Y) be uniformly distributed in a circle of radius r about the 
origin. That is, their joint density is given by 

Let R = and 8 = arc tan Y/X denote their polar coordinates. 
Show that R and 8 are independent with 8 being uniform on (O,2n) and 
P(R < a) = a2/r2, 0 < a < r. 
26. Let R denote a region in the two-dimensional plane. Show that for a 
two-dimensional Poisson process, given that there are n points located in R, 
the points are independently and uniformly distributed in R-that is, their 
density is f(x, y) = c, (x, y) E R where c is the inverse of the area of R. 

27. Let X, , . . . , X, be independent random variables with E [Xi] = 8, 
Var(Xi) = a:, i = 1, .. ., n, and consider estimates of 0 of the form 
C;= &Xi where Cy= li = 1. Show that Var(C:,, &Xi) is minimized when 

Ai = ( l / a ~ ) / ( ~ ~ = l  I/$), i = 1, ..., n. 

Possible Hint: If you cannot do this for general n, try it first when 
n = 2. 

The following two problems are concerned with the estimation of 
ji g(x) dx = E[g(U)] where U is uniform (0, 1). 

28. The Hit-Miss Method: Suppose g is bounded in [O, I]-for instance, 
suppose 0 s g(x) I b for x E [O, 11. Let U, , U2 be independent random 
numbers and set X = U,, Y = bU2-so the point (X, Y) is uniformly 
distributed in a rectangle of length 1 and height b. Now set 

1, if Y < g(X) 
0, otherwise 

That is accept (X, Y) if it falls in the shaded area of Figure 11.7. 

(a) Show that E [bI] = ji g(x) dx. 
(b) Show that Var(bI) 2 Var(g(U)), and so hit-miss has larger variance 
than simply computing g of a random number. 
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Figure 11.7. 

29. Stratified Sampling: Let U, , . . . , U, be independent random numbers 
and set ui = (Ui + i - l)/n, i = 1, .. . , n. Hence, oi, i r 1, is uniform on 
((i - l)/n, i/n). C;=, g(ui)/n is called the stratified sampling estimator of 
s; g(x) dx. 

(a) Show that E g(ui)/n] = j: g(x) dx. 
(b) Show that Var[CY, g(Di)/n] s VarICY, g(Ui)/nl. 

Hint: Let U be uniform (0, 1) and define N by N = i if 
(i - l)/n c U c i/n, i = 1, . . . , n. Now use the conditional variance 
formula to obtain 

30. Iff is the density function of a normal random variable with mean p 
and variance a2, show that the tilted density f, is the density of a normal 
random variable with mean p + a2t  and variance a'. 

31. Consider a queueing system in which each service time, independent 
of the past, has mean p. Let W, and D, denote respectively the amounts of 
time customer n spends in the system and in queue respectively. Hence, 
D, = W, - S, where S, is the service time of customer n. Therefore, 

If we use simulation to estimate E[D,], should we 

(a) use the simulated data to determine D, which is then used as an 
estimate of E[D,]; or 
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(b) use the simulated data to determine W, and then use this quantity 
minus p as an estimate of E [D,]. 

Repeat if we want to estimate E [W,] 

*32. Show that if X and Y have the same distribution then 

Hence, conclude that the use of antithetic variables can never increase 
variance (though it need not be as efficient as generating an independent set 
of random numbers). 

33. If 0 s X I a,  show that 

(a) E[x'] I aE[X] 
(b) Var(X) I E[X](a - E[X]) 
(c) Var (X) I a2/4 
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Appendix 
Solutions to 

Starred Exercises 

Chapter 1 

2. S = Nr, g), (r, b), (g, r), (g, 4, (b, r), (b, g)) where, for instance, (r, g) 
means that the first marble drawn was red and the second one green. The 
probability of each one of these outcomes is i .  
5. a. If he wins, he only wins $1, while if he loses, he loses $3. 

9. F = E U FEc, implying since E and FEc are disjoint that P(F) = 
P(E) + P(FEc). 

= 1 - [Prob(H, H, H )  + Prob(T, T, T)] 

Fair coin: P[end) = 1 - - . - - - +- . - . -  [: t : :: :] 

Biased coin: P[end] = 1 - - . - - + - - . - [::: :::I 
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19. E = event at least 1 six 

number of ways to get E 11 
= - 

p(E) = number of sample pts 36 

D = event two faces are different 

6 5 
P(D) = 1 - P(two faces the same) = 1 - - = - 

36 6 

25. (a) P[pairj = P(second card is same denomination as first] 

= A  
Plpair, different suits] 

(b) P[pair I different suits] = 
P(different suits] 

- - P(pair ) 
Pldifferent suits] 

since 12 cards are in the ace of spades pile and 39 are not. 

since 24 cards are in the piles of the two aces and 26 are in the other two 
piles. 

P(E4 I E I E ~ E ~ )  = % 
So 

P(each pile has an ace) = (%)(%)(%) 
P(George, not Bill] 

30. (a) p(George I exactly 1 hit] = 
P(exact1y 1) 

- - P(G, not B)  
P(G, not B] + P(B, not GI 
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P[G I hit) = 
PIG, hit) 

P[hit) 

32. Let Ei = event person i selects own hat. 

P(no one selects own hat) 

Let k E (1,2, . . . , n). P(EiIEi2E,,) = number of ways k specific men can select 
own hats i total number of ways hats can be arranged = (n - k)!/n!. 
Number of terms in summation Cil < ... < ik = number of ways to choose 

k variables out of n variables = = n!/k!(n - k)!. Thus, 
(k) 

C 
(n - k)! 

C P(Eil Ei2 -. Elk) = 
iI < ... <ik il < ... < ik n! 

1 1 1  1 :. P(no one selects own hat) = 1 - - + - - - + + (- 1)" - 
l! 2! 3! n! 

40. (a) F = event fair coin flipped; U = event two-headed coin flipped. 
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(c) P(F ] HHT) = 
P(HHT I F)P(F) 

P(HHT ( F)P(F) + P(HHT ( U)P(U) 

since the fair coin is the only one that can show tails. 

45. Let Bi = event ith ball is black; Ri = event ith ball is red. 

Chapter 2 

4. ( i ) l , 2 , 3 , 4 , 5 , 6 .  
(ii) 1 ,2 ,3 ,4 ,5 ,6 .  
(iii) 2, 3, ..., 11, 12. 
(iv) -5, -4, ..., 4, 5. 

23. In order for X to equal n, the first n - 1 flips must have r - 1 heads, 
and then the nth flip must land heads. By independence the desired 
probability is thus 
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27. P(same number of heads) = P(A = i, B = i )  
i 

Another argument is as follows: 

P(# heads of A = # heads of B) 

= P(# tails of A = # heads of B) since coin is fair 

= P ( k  - # heads of A = # heads of B) 

= p ( k  = total # heads) 

46. Let Xi be 1 if trial i is a success and 0 otherwise. 

(a) The largest value is 0.6. If XI = X2 = X , ,  then 

and so P(X = 3) = PIXl = 1) = 0.6. That this is the largest value is seen 
by Markov's inequality which yields that 

(b) The smallest value is 0. To construct a probability scenario for which 
P(X = 3) = 0, let U be a uniform random variable on (0, I), and define 

1 if U I 0.6 
Xl = 0 otherwise 

1 if U 2 0.4 

0 otherwise 

1 if either U I 0.3 or U r 0.7 
x3 = 0 otherwise 

It is easy to see that 
P(X1 = x, = x3 = 1 )  = 0 
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48. E [ x 2 ]  - ( E [ x ] ) ~  = Var(X) = E(X - E [ x ] ) ~  2 0. Equality when 
Var(X) = 0, that is, when X i s  constant. 

56. If X is binomial with parameters n and p, then 

Writing i 2  = i(i - 1 )  + i ,  we have 

Because E [ X ]  = np, we arrive at 

64. See Section 5.23 of Chapter 5. Another way is to use moment 
generating functions. The moment generating function of the sum of n 
independent exponentials with rate A is equal to the product of their 
moment generating functions. That is, it is [A/(A - t)ln. But this is precisely 
the moment generating function of a gamma with parameters n and A .  

70. Let Xi be Poisson with mean 1. Then 

But for n large C;Xi - n has approximately a normal distribution with 
mean 0, and so the result follows. 
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72. For the matching problem, letting X = XI + . .- + XN, where 

I 1 if ith man selects his own hat 
Xi = 0 otherwise 

we obtain 

Since P{Xi = 1) = 1/N, we see 

Also 
Cov(Xi, Xj) = E [Xi Xi] - E[Xi]E[Xj] 

Now, 

I 1 if the ith and j th  men both select their own hats 
X.X.  = 
' ' 0 otherwise 

and thus 
E[XiXj] = P(Xi = l , X j  = 1) 

= P(Xi = l]P(Xj = 1 IXi = 1) 

1 1  =-- 
N N -  1 

Hence, 

Cov(xi, Xj) = 
1 1 

N(N - 1) 

and 

Chapter 3 
2. Intuitively it would seem that the first head would be equally likely to 
occur on either of trials 1, . . . , n - 1. That is, it is intuitive that 
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Formally, 

In the above, the next to last equality uses the independence of X, and X2 
to evaluate the numerator and the fact that Xl + X2 has a negative 
binomial distribution to evaluate the denominator. 

- - P(l white, 3 black, 2 red) 
P(3 black) 

13. The conditional density of X given that X > 1 is 

f(x) - l e x ~ - ~  
/ X I X > I ( X )  = p(x , - when x  > 1 

exp - A  

by integration by parts. This latter result also follows immediately by the 
lack of memory property of the exponential. 
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22. Let X denote the first time a head appears. Let us obtain an equation 
for E[N I XI by conditioning on the next two flips after X.  This gives 

where q  = 1 - p. Now 

E [ N [ x , ~ , ~ ]  = X +  1 ,  E [ N [ x , ~ , ~ ]  = X +  1 

E [ N I X , t , h ]  = X + 2 ,  E [ N I x , t , t ]  = X + 2 + E [ N ]  

Substituting back gives 

E [ N I  XI = (X  + l ) ( ~ '  + pq) + (X  + 2)pq + (X  + 2  + E [ N ] ) ~ '  

Taking expectations, and using the fact that X i s  geometric with mean l / p ,  
we obtain 

E[N]  = 1 + p  + q  + 2pq + q2/p  + 2q2 + ~ ' E [ N ]  

Solving for E[N] yields 
2  + 24 + q2/p  

E[N]  = 
1 - 4 2  
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Hence, 
~ [ v a r ( E  Xi I N)] = E [N] Var(X) 

Var E E Xi 1 N = v~~(N)E'[x] [(: >I 
and the result follows from Exercise 37. 

2 X'(E[Y 1 XI)' = X' 

The inequality follows since for any random variable U, E[U2] r (E[u])' 
and this remains true when conditioning on some other random variable X. 
Taking expectations of the above shows that 

the result follows. 

The results follows since jte- ' tn dt = T(n + 1) = n! 

51. (a) Intuitive that f(p) is increasing in p, since the larger p is the 
greater is the advantage of going first. 
(b) 1 
(c) since the advantage of going first becomes nil. 
(d) Condition on the outcome of the first flip: 

f(p) = P(I wins I h )p  + P(I wins I t)(l  - p) 

= P + [1 - f@)l(l - P) 
Therefore, 
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58. Condition on the value of the sum prior to going over 100. In all cases 
the most likely value is 101. (For instance, if this sum is 98 then the final 
sum is equally likely to be either 101, 102, 103, or 104. If the sum prior to 
going over is 95, then the final sum is 101 with certainty.) 

Chapter 4 

- - - 
4. Let the state space be S = (0, 1,2,0, 1,2], where state i (i) signifies that 
the present value is i, and the present day is even (odd). 

10. If ej were (strictly) positive, then Pi:! would be 0 for all n (otherwise, 
i and j would communicate). But then the process, starting in i, has a 
positive probability of at least P-,. of never returning to i. This contradicts 
the recurrence of i. Hence ej = 0. 

15. (a) 

P = 

(b) As the column sums all equal 1, we can use the results of Exercise 
13 to conclude that ni = f for all i = 0, 1,2,3,4. 

19. The limiting probabilities are obtained from 

and the solution is no = n3 = &. n1 = n2 = $. 
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24. With the state being the number of on switches this is a three-state 
Markov chain. The equations for the long-run proportions are 

no + n1 + n2 = 1 
This gives the solution 

28. (a) The number of transitions into state i by time n, the number of 
transitions originating from state i by time n, and the number of time 
periods the chain is in state i by time n all differ by at most 1. Thus, 
their long-run proportions must be equal. 
(b) nipu is the long-run proportion of transitions that go from state 
i to state j. 
(c) Ci n i e j  is the long-run proportion of transitions that are into 
state j. 
(d) Since q is also the long-run proportion of transitions that are into 
state j ,  it follows that nj = xi ni Pu. 

34. (Y , ,  n 2 1) is a Markov chain with states (i, j). 

where P,, is the transition probability for (X,). 

lim P(Yn = (i, j ) )  = limP(Xn = i, Xn+, = j ]  
n-rw n 

= lim[P(Xn = i]Pu] 
n 

= n.P.. 
1 IJ 

37. (b) 64 + E[time until HH] = 64 + 4 + E[time until HI 
= 70 

45. (a) Since ni = + is equal to the inverse of the expected number of 
transitions to return to state i, it follows that the expected number of 
steps to return to the original position is 5. 
(b) Condition on the first transition. Suppose it is to the right. In this 
case the probability is just the probability that a gambler who always 
bets 1 and wins each bet with probability p will, when starting with 1, 
reach 4 before going broke. By the gambler's ruin problem this 
probability is equal to 

1 - 4/P 
1 - (4/PI4 
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Similarly, if the first move is to the left then the problem is again the 
same gambler's ruin problem but with p and q reversed. The desired 
probability is thus 

51. (a) 

(b) Whether perusing the sequence of states in the forward direction 
of time or in the reverse direction, the proportion of time the state is 
i will be the same. 

Chapter 5 

Dividing through by [I - F,(t)][l - F2(t)] yields the result. (Of course, f i  
and F; are the density and distribution function of Xi, i = 1,2.) To make 
the preceding derivation rigorous, we should replace "= t" by ~ ( t ,  t + e) 
throughout and then let e + 0. 

8. (a) P(min(X, Y) > t ]  = PIX > t, Y > t ]  

= P(X > t)P(Y > t ]  by independence 

Hence, Z is exponential with rate A, + A,. Another way of seeing this 
is to use the lack of memory property. If we are given that Z (equal to 
the minimum of the two exponentials) is larger than s then we are 
given that each of the exponentials is larger than s. But by the lack of 
memory property the amounts of time by which these exponentials 
exceed s have the same distributions as the original exponentials. 
Therefore, the minimum is memoryless and so must be exponential. 
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To see that its rate is A, + A,, note that if both exponentials are greater 
than s (and so Z is greater than s) then the probability that at least one 
will die in the next ds time units is I, ds + 1, ds = (A, + A,) ds, which 
shows that the failure rate of Z is I, + A,. 
(b) P ( z E ( ~ , ~ + E ) [ z = X ] = P ( ~ < X < ~ + & ( X < Y )  

Hence, given Z = X, Z is (still) exponential with rate A,  + A,. 
(c) Given that Z = X, Y - Z represents the additional life from X 
onward from Y. Hence, by the lack of memory of the exponential, it 
must be exponential with mean 1/A2. 

13. (a) 1/(2p). 
(b) 1/(4p2), since the variance of an exponential is its mean squared. 
(c) and (d) By the lack of memory property of the exponential it 
follows that A, the amount by which X(,) exceeds X(,), is exponentially 
distributed with rate p and is independent of X(,, . Therefore, 

17. (a) i. 
(b) (*)"-I. Whenever battery 1 is in use and a failure occurs the 
probability is 5 that it is not battery 1 that has failed. 
(c) ( + ) n - i + l ,  i > 1. 
(d) Tis the sum of n - 1 independent exponentials with rate 2p (since 
each time a failure occurs the time until the next failure is exponential 
with rate 2p). 
(e) Gamma with parameters n - 1 and 2p. 
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28. P[N(t + S) = 0) = P(N(t) = 0, N(t + S) - N(t) = 0) 

= P[N(t) = OJP(N(t + s) - N(t) = 0) by (ii) 

Therefore, P[N(t) = 0) = e-". Hence, 

- - 1 - eVxh - Ah + o(h) by (iii) 

31. The easiest way is to use Definition 3.1. It is easy to see that 
[N(t), t 2 0) will also possess stationary and independent increments. Since 
the sum of two independent Poisson random variables is also Poisson, it 
follows that N(t) is a Poisson random variable with mean (A, + 12)t. 

40. (a) e-2. 
(b)  P.M. 
(c) 1 - 5 e-4. 

43. (a) *. 
(b) % 

47. (a) Since, given N(t), each arrival is uniformly distributed on (0, t) it 
follows that 

(b) Let U, , U, , . . . be independent uniform (0, t) random variables. 
Then 

Var(X I N(t) = n) = Var 

a2 

(c) By parts (a) and (b) and the conditional variance formula, 
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57. Consider a Poisson process with rate 1 in which an event at time t is 
counted with probability 1(t)/1 independently of the past. Clearly such a 
process will have independent increments. In addition, 

P(2  or more counted events in (t, t + h)] 

5 P(2 or more events in (t, t + h)] 

= o(h) 
and 

P ( l  counted event in (t, t + h)] 

= P ( l  counted ( 1 eventjP(1 event) 

+ P(1  counted I r 2 events]P( 2 21 

t+h A(s) ds 
(Ah + o(h)) + o(h) 

62. There is a record whose value is between t and t + dt if the first X 
larger than t lies between t and t + dt. From this we see that, independent 
of all record values less than t, there will be one between t and t + dt with 
probability 1(t) dt where A(t) is the failure rate function given by 

Since the counting process of record values has, by the above, independent 
increments we can conclude (since there cannot be multiple record values 
because the Xi are continuous) that it is a nonhomogeneous Poisson process 
with intensity function L(t). When f is the exponential density, L(t) = 1 and 
so the counting process of record values becomes an ordinary Poisson 
process with rate 1. 

69. To begin, note that 

= (+)"-l by lack of memory 
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Hence, 

Chapter 6 

2. Let NA(t) be the number of organisms in state A and let NB(t) be the 
number of organisms in state B. Then [NA(t); NB(t)) is a continuous-Markov 
chain with 

4. Let N(t) denote the number of customers in the station at time t. Then 
[N(t)] is a birth and death process with 

7. (a) Yes! 
(b) For n = (n,, ..., ni, ni+l, . . ., nk-l) let 

S,(n) = (nl + 1,  ..., ni, ni+l, ..., nk-1). 

Then 

4n,si(n, = nip i = 1, ..., k - 1 

11. (b) Follows from the hint about using the lack of memory property and 
the fact that ei, the minimum of j - (i - 1) independent exponentials 
with rate A,  is exponential with rate ( j  - i + 1)A. 
(c) From parts (a) and (b) 

P I T , +  ...+ I ; . S ~ J = P  
lsisj 
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(d) With all probabilities conditional on X(0) = 1 

(e) The sum of independent geometrics, each having parameter 
p = e-", is a negative binomial with parameters i, p. The result 
follows since starting with an initial population of i is equivalent to 
having i independent Yule processes, each starting with a single 
individual. 

16. Let the state be 

2: an acceptable molecule is attached 
0: no molecule attached 
1: an unacceptable molecule is attached. 

Then this is a birth and death process with balance equations 

112p2 = A d o  

Since C; P, = 1, we get 

where Pz is the percentage of time the site is occupied by an acceptable 
molecule. The percentage of time the site is occupied by an unacceptable 
molecule is 

19. There are 4 states. Let state 0 mean that no machines are down, 
state 1 that machine 1 is down and 2 is up, state 2 that machine 1 is up 
and 2 is down, and 3 that both machines are down. The balance equations 
are as follows: 
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These equations are easily solved and the proportion of time machine 2 is 
down is P2 + P3. 

24. We will let the state be the number of taxis waiting. Then, we get a 
birth and death process with A, = 1, p, = 2. This is an M/M/l . Therefore: 

1 1 
(a) Average number of taxis waiting = - - - 1. 

p - A  2 - 1  

(b) The proportion of arriving customers that get taxis is the proportion 
of arriving customers that find at least one taxi waiting. The rate of 
arrival of such customers is 2(1 - Po). The proportion of such arrivals is 
therefore 

28. Let PG, vf denote the parameters of the X(t) and q;, v r  of the Y(t) 
process; and let the limiting probabilities be qx, e, respectively. By 
independence we have that for the Markov chain (X(t), Y(t)J its parameters 
are 

vi" 
P(i.n.ti.n = ,:.,:PC 

and 
lim P((X(t), Y(t)) = (i, j )] = eXey 
t-ta, 

Hence, we need to show that 
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[That is, rate from (i, I) to (j,  I) equals the rate from ( j ,  I) to (i, I).] But this 
follows from the fact that the rate from i to j in X(t) equals the rate from 
j to i; that is, 

The analysis is similar in looking at pairs (i, I) and (i, k). 

33. Suppose first that the waiting room is of infinite size. Let Xi(t) denote 
the number of customers at server i, i = 1,2. Then since each of the M/M/1 
processes [Xi(t)J is time reversible, it follows from Exercise 28 that the 
vector process ((X,(t), X2(t)), t 1 0) is a time reversible Markov chain. Now 
the process of interest is just the truncation of this vector process to the set 
of states A where 

A = ((0, m) : m 1 41 U ((n, 0) : n 1 4) U ((n, m) : nm > 0, n + m 5 5) 

Hence, the probability that there are n with server 1 and m with server 2 is 

The constant C is determined from 

where the sum is over all (n, m) in A. 

42. (a) The matrix P* can be written as 

and so E$" can be obtained by taking the i, j element of (I + R/v)", 
which gives the result when v = n/t. 
(b) Uniformization shows that e j ( t )  = E[qTN], where N is inde- 
pendent of the Markov chain with transition probabilities P$ and is 
Poisson distributed with mean vt. Since a Poisson random variable 
with mean vt has standard deviation (vt)'I2, it follows that for large 
values of vt it should be near vt. (For instance, a Poisson random 
variable with mean lo6 has standard deviation lo3 and thus will, with 
high probability, be within 3000 of lo6.) Hence, since for fixed i and j ,  
4;" should not vary much for values of m about vt where ut is large, 
it follows that, for large vt, 
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Chapter 7 

3. By the one-to-one correspondence of m(t) and F, it follows that 
(N(t), t r O] is a Poisson process with rate i. Hence, 

6. (a) Consider a Poisson process having rate A and say that an event of 
the renewal process occurs whenever one of the events numbered r, 2r, 
3r, . . . of the Poisson process occurs. Then 

P(N(t) r nj = P(nr or more Poisson events by t )  

8. (a) The number of replaced machines by time t constitutes a renewal 
process. The time between replacements equals T, if lifetime of new 
machine is r T; x, if lifetime of new machine is x, x < T. Hence, 

E[time between replacements] = xf (x) dx + T [l  - F(T)] J 0 

and the result follows by Proposition 3.1. 
(b) The number of machines that have failed in use by time t 
constitutes a renewal process. The mean time between in-use failures, 
E[F], can be calculated by conditioning on the lifetime of the initial 
machine as E[F] = E[E[F I lifetime of initial machine]]. Now 

i f x s  T 
E[F ( lifetime of machine is x] = 

(x ;+E[F] ,  i f x > T  

Hence, 

E [ F ] =  xf(x)dx+(T+E[F])[ l  -F(T)] 

or 
SoT 

E[F] = 
j;xf(x) dx + T[1 - F(T)] 

F[T) 

and the result follows from Proposition 3.1. 
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17. We can imagine that a renewal corresponds to a machine failure, and 
each time a new machine is put in use its life distribution will be exponential 
with rate p1 with probability p ,  and exponential with rate p2 otherwise. 
Hence, if our state is the index of the exponential life distribution of the 
machine presently in use, then this is a two-state continuous-time Markov 
chain with intensity rates 

91.2 = ~ i ( 1  - P) 92,i = P2P 
Hence, 

with similar expressions for the other transition probabilities [Pl,(t) = 
1 - Pll(t), and P2,(t) is the same with p2p  and pl(l - p) switching places]. 
Conditioning on the initial machine now gives 

Finally, we can obtain m(t) from 

where 

is the mean interarrival time. 

21. Cost of a cycle = C1 + CzI - R(T)(l - I )  

i f X c  T 
where X = life of car 

0, i f X z T  

Hence, 
E[cost of a cycle] = C1 + C2H(T) - R(T)[l - H(T)] 

Also, 

E[timeof cycle] = E[timeIX=x]h(x)dx S 
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17. We can imagine that a renewal corresponds to a machine failure, and 
each time a new machine is put in use its life distribution will be exponential 
with rate p1 with probability p, and exponential with rate p2 otherwise. 
Hence, if our state is the index of the exponential life distribution of the 
machine presently in use, then this is a two-state continuous-time Markov 
chain with intensity rates 

41,2 = P1(1 - P) 92.1 = P2P 
Hence, 

with similar expressions for the other transition probabilities [PI2(t) = 
1 - PIl(t), and P2,(t) is the same with ,u2p and pl(l - p) switching places]. 
Conditioning on the initial machine now gives 

Finally, we can obtain m(t) from 

p[m(t) + 11 = t + E[Y(t)] 
where 

is the mean interarrival time. 

21. Cost of a cycle = C1 + C21 - R(T)(l - I) 

i f X <  T 
where X = life of car 

0, if X 2 T 
Hence, 

E[cost of a cycle] = C, + C2H(T) - R(T)[l - H(T)] 
Also, 

E[time of cycle] = E[time I X = x]h(x) dx S 
= joTxh(x) dx + T[l - H(T)] 
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17. We can imagine that a renewal corresponds to a machine failure, and 
each time a new machine is put in use its life distribution will be exponential 
with rate p1 with probability p ,  and exponential with rate p2 otherwise. 
Hence, if our state is the index of the exponential life distribution of the 
machine presently in use, then this is a two-state continuous-time Markov 
chain with intensity rates 

q1,2 = - P) q2,l = r(l2P 

Hence, 

with similar expressions for the other transition probabilities [PlZ(t) = 
1 - Pll(t), and P2,(t) is the same with p 2 p  and pl(l - p) switching places]. 
Conditioning on the initial machine now gives 

Finally, we can obtain m(t) from 

where 

is the mean interarrival time. 

21. Cost of a cycle = C1 + C21 - R(T)(l - I )  

1, i f X < T  

I =  [ where X = life of car 
0, i f X r T  

Hence, 
E[cost of a cycle] = C1 + C2H(T) - R(T)[l - H(T)] 

Also, 

E[time of cycle] = E[time 1 X = x]h(x) dx S 
= ~oTxh(x)dr + T[l - H(T)] 
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Thus the average cost per unit time is given by 

The result follows since SNCt)/N(t) -, p (by the strong law of large numbers) 
and N(t)/t -+ l/p. 

30. (a) We can view this as an M/G/co system where a satellite launching 
corresponds to an arrival and F is the service distribution. Hence, 

P(X(t) = k) = e-'(')[A(t)lk/k! 

where A(t) = A Jk (1 - F(s)) ds. 
(b) By viewing the system as an alternating renewal process that is on 
when there is at least one satellite orbiting, we obtain 

lim P[X(t) = 0) = 
1 /A 

1/A + E [ T ]  

where T, the on time in a cycle, is the quantity of interest. From part (a) 

lim P[X(t) = 0)  = e-b 

wherep = Jr(1 - F(s)) dsis themean time that a satellite orbits. Hence, 

34. (a) 

(c) You will receive a ticket if, starting when you park, an official 
appears within 1 hour. From Example 7.20 the time until the official 
appears has the distribution F, which, by part (a), is the uniform 
distribution on (0,2). Thus, the probability is equal to i. 
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39. Think of each interarrival time as consisting of n independent phases- 
each of which is exponentially distributed with rate A-and consider the 
semi-Markov process whose state at any time is the phase of the present 
interarrival time. Hence, this semi-Markov process goes from state 1 to 2 
to 3 . . . to n to 1, and so on. Also the time spent in each state has the same 
distribution. Thus, clearly the limiting probability of this semi-Markov 
chain is 4 = l/n, i = 1, . . . , n. To compute lim P(Y(t) < x), we condition 
on the phase at time t and note that if it is n - i + 1, which will be the case 
with probability l/n, then the time until a renewal occurs will be sum of 
i exponential phases, which will thus have a gamma distribution with 
parameters i and A. 

Chapter 8 

2. This problem can be modeled by an M/M/l queue in which A = 6, 
p = 8. The average cost rate will be 

$10 per hour per machine x average number of broken machines 

The average number of broken machines is just L,  which can be computed 
from Equation (3.2): 

Hence, the average cost rate = $30/hour. 

6. To compute W for the M/M/2, set up balance equations as follows: 

APo = pP, (each server has rate p) 

These have solutions P, = pn/2"-'P, where p = A/p. The boundary 
condition C:=, P, = 1 implies 



646 Appendix Solutions to Starred Exercises 

39. Think of each interarrival time as consisting of n independent phases- 
each of which is exponentially distributed with rate A-and consider the 
semi-Markov process whose state at any time is the phase of the present 
interarrival time. Hence, this semi-Markov process goes from state 1 to 2 
to 3 . . . to n to 1, and so on. Also the time spent in each state has the same 
distribution. Thus, clearly the limiting probability of this semi-Markov 
chain is e. = l/n, i = 1, . . . , n. To compute lim P(Y(t) < x) ,  we condition 
on the phase at time t and note that if it is n - i + 1, which will be the case 
with probability l/n, then the time until a renewal occurs will be sum of 
i exponential phases, which will thus have a gamma distribution with 
parameters i and A. 

Chapter 8 

2. This problem can be modeled by an M/M/1 queue in which A = 6, 
p = 8. The average cost rate will be 

$10 per hour per machine x average number of broken machines 

The average number of broken machines is just L, which can be computed 
from Equation (3.2): 

Hence, the average cost rate = $30/hour. 

6. To compute W for the M/M/2, set up balance equations as follows: 

AP, = pPl (each server has rate p) 

These have solutions P,, = pn/2"-'~, where p = U p .  The boundary 
condition C:, , P,, = 1 implies 



646 Appendix Solutions to Starred Exercises 

39. Think of each interarrival time as consisting of n independent phases- 
each of which is exponentially distributed with rate A-and consider the 
semi-Markov process whose state at any time is the phase of the present 
interarrival time. Hence, this semi-Markov process goes from state 1 to 2 
to 3 . . . to n to 1, and so on. Also the time spent in each state has the same 
distribution. Thus, clearly the limiting probability of this semi-Markov 
chain is 4 = l/n, i = 1, . . . , n. To compute lim P(Y(t) < x),  we condition 
on the phase at time t and note that if it is n - i + 1, which will be the case 
with probability l/n, then the time until a renewal occurs will be sum of 
i exponential phases, which will thus have a gamma distribution with 
parameters i and A. 

Chapter 8 

2. This problem can be modeled by an M/M/l queue in which A = 6, 
p = 8. The average cost rate will be 

$10 per hour per machine x average number of broken machines 

The average number of broken machines is just L, which can be computed 
from Equation (3.2): 

Hence, the average cost rate = $30/hour. 
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Now we have Pn, so we can compute L, and hence W from L = AW: 

= 2- (2 - ('I2) 
, [See derivation of Eq. (3.2).] 

(2 + P)  ( 1  - p m 2  

From L = AW we have 

The M / M / l  queue with service rate 2p has 

from Equation (3.3). We assume that in the M / M / l  queue, 2p > A so that 
the queue is stable. But then 4p > 2p + A, or 4p/(2p + A )  > 1 ,  which 
implies W(M/M/2)  > W ( M / M / l ) .  The intuitive explanation is that if one 
finds the queue empty in the M/M/2  case, it would do no good to have 
two servers. One would be better off with one faster server. Now let 
W; = WQ(M/M/l)  and W; = WQ(M/M/2). Then, 

and 
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Then, 

Since we assume 1 < 2p for stability in the M/M/l case, W; < W; 
whenever this comparison is possible, that is, whenever 1 < 2p. 

11. (a) 1p0 = pp1 

These are the same balance equations as for the M/M/2 queue and 
have solution 

(b) The system goes from 0 to 1 at rate 

The system goes from 2 to 1 at rate 

(c) Introduce a new state cl to indicate that the stock clerk is checking 
by himself. The balance equation for PC[ is 

(1 + P)PC, = pP2 

Hence 

Finally, the proportion of time the stock clerk is checking is 
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18. (a) ~ l P 1 0  

(b) L2(Po + P10) 
(c) ~ l P 1 0 ~ t ~ l P l 0  + A 2 P o  + P10)l 
(d) This is equal to the fraction of server 2's customers that are 
type 1 multiplied by the proportion of time server 2 is busy. (This is 
true since the amount of time server 2 spends with a customer does not 
depend on which type of customer it is.) By (c) the answer is thus 

21. The states are now n, n 1 0, and n', n r 1 where the state is n when 
there are n in the system and no breakdown, and it is n' when there are n 
in the system and a breakdown is in progress. The balance equations are 

In terms of the solution to the above, 

and so 

25. If a customer leaves the system busy, the time until the next departure 
is the time of a service. If a customer leaves the system empty, the time until 
the next departure is the time until an arrival plus the time of a service. 

Using moment generating functions we get 

A 
E(eSD] = - E(eSD I system left busy) 

c1 

+ 1 - - ~ ( e ' ~  1 system left empty] ( :> 
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where X has the distribution of interarrival times, Y has the distribution of 
service times, and X and Yare independent. Then 

~ [ e " ' ~ ) ]  = E[eSX eSY] 

= E[eSX]~[eSY] by independence 

By the uniqueness of generating functions, it follows that D has an 
exponential distribution with parameter A. 

32. The distributions of the queue size and busy period are the same for 
all three disciplines; that of the waiting time is different. However, the 
means are identical. This can be seen by using W = L/A, since L is the same 
for all. The smallest variance in the waiting time occurs under first-come, 
first-served and the largest under last-come, first-served. 

35. (a) a, = Po due to Poisson arrivals. Assuming that each customer 
pays 1 per unit time while in service the cost identity of Equation (2.1) 
states that 

average number in service = AE[S] 
or 

1 - Po = LE[S] 

(b) Since a, is the proportion of arrivals that have service distribution 
G, and 1 - a, the proportion having service distribution G2, the 
result follows. 
(c) We have 

and E[I]  = 1/L and thus, 
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Now from parts (a) and (b) we have 

Substituting into E[B] = E[S]/(l - 12E[S]) now yields the result. 
(d) a, = l/E[C], implying that 

41. By regarding any breakdowns that occur during a service as being part 
of that service, we see that this is an M/G/l model. We need to calculate the 
first two moments of a service time. Now the time of a service is the time T 
until something happens (either a service completion or a breakdown) 
plus any additional time A. Thus, 

To compute E[A], we condition upon whether the happening is a service or 
a breakdown. This gives 

a 
E [A] = E [A ( service] - + E[A I breakdown] - 

P + a  P  + a 

a 
= E[A 1 breakdown] - 

P + ff 

Since E [ T ]  = l/(a + p) we obtain that 
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We also need E[s'], which is obtained as follows. 

E [s2] = E [(T + A)'] 

The independence of A and T follows because the time of the first 
happening is independent of whether the happening was a service or a 
breakdown. Now, 

ff 
E[A2] = E[A' I breakdown] - 

P + f f  

Hence, 

Now solve for E[s2]. The desired answer is 

In the above, S* is the additional service needed after the breakdown is 
over and S* has the same distribution as S. The above also uses the fact that 
the expected square of an exponential is twice the square of its mean. 

Another way of calculating the moments of S is to use the representation 

where N is the number of breakdowns while a customer is in service, T 
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is the time starting when service commences for the ith time until a 
happening occurs, and Bi is the length of the ith breakdown. We now use 
the fact that, given N, all of the random variables in the representation 
are independent exponentials with the having rate p + CY and the Bi 
having rate 8. This yields 

Therefore, since 1 + N is geometric with mean ( p  + a) /p  [and variance 
a (a  + p)/p2] we obtain 

and, using the conditional variance formula, 

48. S, is the service time of the nth customer; T, is the time between the 
arrival of the nth and (n + 1)st customer. 

Chapter 9 

6. A minimal cut set has to contain at least one component of each 
minimal path set. There are six minimal cut sets: [1,5), [l ,  61, [2, 5), 
t233961, (3, 4, 61, t4,51. 

12. The minimal path sets are [ l ,4) ,  (l ,5], (2,4), (2,5), [3,4), (3,5). With 
qi = 1 - pi ,  the reliability function is 

r(p) = Pieither of 1, 2, or 3 works)P[either of 4 or 5 works] 
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2 (E[N[ N > o])~P[N > 0), since E[x2] 1 (E[x])~ 

Thus, 

E[N~]P[N > 0) 2 (E[N ( N > O]P[N > 0)12 

Let N denote the number of minimal path sets having all of its components 
functioning. Then 0) = P [ N  > 0). Similarly, if we define N as the 
number of minimal cut sets having all of its components failed, then 
1 - r(p) = P ( N  > 0). In both cases we can compute expressions for E[N] 
and E[N2] by writing N as the sum of indicator (i.e., Bernoulli) random 
variables. Then we can use the inequality to derive bounds on r(p). 

22. (a) &(a) = P [ X >  t + ~ I x >  t ]  

(b) Suppose l( t)  is increasing. Recall that 

F(t) = e-lhA(s)ds 

Hence, 

which decreases in t since l( t)  is increasing. To go the other way, 
suppose F(t + a)/F(t) decreases in t. Now when a is small 

Hence, e-"'(') must decrease in t and thus I(t) increases. 

25. F o r x  r <, 

since IFRA. Hence, F(x) s (1 - p)X/E = e-OX. 
For x I t ,  

F(x) = F(t(x/t)) 1 [F(t)lX" 

since IFRA. Hence, F(x) r (1 - = e-OX. 
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Chapter 10 

1 .  B(t) + B(t) = 2B(s) + B(t) - B(s). Now 2B(s) is normal with mean 0 
and variance 4s and B(t) - B(s) is normal with mean 0 and variance t - s.  
Because B(s) and B(t) - B(s) are independent, it follows that B(s) + B(t) 
is normal with mean 0 and variance 4s + t - s = 3s + t .  

where the equality (*) follows since given B(tl),  B(t2) is normal with mean 
B(tl) and variance t2 - t l .  Also, E[B'(~)]  = 0 since B(t) is normal with 
mean 0. 
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5. P(T, < T-, < T,] = P[hit 1 before -1 before 2) 

= P[hit 1 before -1) 

x P(hit - 1 before 2 1 hit 1 before - 1 )  

= iP(down 2 before up 1) 

The next to last equality follows by looking at the Brownian motion when 
it first hits 1. 

10. (a) Writing X(t )  = X(s) + X(t)  - X(s) and using independent 
increments, we see that given X(s) = c, X(t) is distributed as c + 
X(t) - X(s). By stationary increments this has the same distribution 
as c + X(t - s), and is thus normal with mean c + p(t - s) and 
variance (t - s)02. 
(b) Use the representation X(t) = oB(t) + pt, where (B(t)) is standard 
Brownian motion. Using Equation (1.4), but reversing s and t, we see 
that the conditional distribution of B(t) given that B(s) = (c - ps)/a 
is normal with mean t(c - p)/(as)  and variance t(s - t)/s. Thus, the 
conditional distribution of X(t) given that X(s) = c, s > t, is normal 
with mean 

and variance 

02t(s - t )  

19. Since knowing the value of Y(t) is equivalent to knowing B(t), 
we have 

Now, given B(s), the conditional distribution of B(t) is normal with mean 
B(s) and variance t - s. Using the formula for the moment generating 
function of a normal random variable we see that 
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Thus (Y(t)]  is a Martingale. 

20. By. the Martingale stopping theorem 

E[B(T)]  = E[B(O)I = 0 

However, B(T)  = 2 - 4T and so 2 - 4E[T]  = 0,  or E [ T ]  = *. 
24. It follows from the Martingale stopping theorem and the result of 
Exercise 18 that 

E [ B ~ ( T )  - TI = 0 

where T is the stopping time given in this problem and 

Therefore, 

However, X ( T )  = x and so the above gives that 

E[(x - p ~ ) ~ ]  = U ~ E [ T ]  

But, from Exercise 21, E [ T ]  = x /p  and so the above is equivalent to 

27. E[x(a2t ) /a]  = ( l /a)E[x(a2t ) ]  = 0.  For s < t ,  

Because (Y(t)] is clearly Gaussian, the result follows. 

30. (a) Starting at any time t  the continuation of the Poisson process 
remains a Poisson process with rate I. 
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(b) E[Y(t)Y(t + s)] = E[Y(t)Y(t + s) I Y(t) = y ~ l e - ~  dy 1: 

where the above used that 

Y yE(Y(t+s))=-,  i f y e s  
E[Y(t)Y(t + s) I Y(t) = y] = A 

Y(Y - s), i f y >  s 

Hence, 

Chapter 11 

1. (a) Let U be a random number. If C~I: 4 < U I ~ j =  4 then 
simulate from 4.  (In the above ~f:: P j  = 0 when i = 1.) 
(b) Note that 

F(x) = + &(x) 
where 

F,(x) = 1 - e-2X, 0 < x < oo 

Hence, using part (a), let U, , U2, U3 be random numbers and set 

The above uses the fact that -log U2/2 is exponential with rate 2. 
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3. If a random sample of size n is chosen from a set of N + M items of 
which N are acceptable, then X, the number of acceptable items in the 
sample, is such that 

To simulate X, note that if 

1, if the j th  selection is acceptable 

then 

Hence, we can simulate I,, . . . , In by generating random numbers 
U, , . . . , Un and then setting 

(0, otherwise 

and X = I,?= , Ij has the desired distribution. 
Another way is to let 

1, the j th acceptable item is in the sample 

0, otherwise 

and then simulate X,, . . . , X, by generating random numbers U,, . .. , U, 
and then setting 

(0, otherwise 

and X = CK Xj then has the desired distribution. 
The former method is preferable when n I Nand the latter when N 5 n. 

6. Let 

max [+ + ~ x j ]  
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Hence, 

Hence (d/dA)c(A) = 0 when 1 = 1 and it is easy to check that this yields the 
minimal value of c(l). 

16. (a) They can be simulated in the same sequential fashion in which 
they are defined. That is, first generate the value of a random variable 
I, such that 

Then, if I, = k, generate the value of I, where 

and so on. However, the approach given in part (b) is more efficient. 
(b) Let Ij denote the index of the j th  smallest Xi. 

23. Let m(t) = l ( s )  ds, and let m-'(t) be the inverse function. That is, 
m(m-'(t)) = t. 

(a) P(m(X,) > x)  = PIX' > m-'(x)) 

= p(N(m-'(x)) = 0)  
- - e-m(m-l(x)) 

(b) P(m(Xi) - m(Xi-1) > x 1 m(Xl),  . . . , m(Xi-i) - m(Xi-2)1 
= P(m(Xi) - m(Xi-') > x 1 X I ,  . . . , Xi-,) 

= P(m(Xi) - m(Xi-') > xl Xi-,) 

= p(m(Xi) - m(Xi-') > x 1 m(Xi-,)) 
Now, 

P(m(Xi) - m(Xi-') > x 1 Xi-' = y) 

= P(Xi > c 1 Xi-, = y) where 

= P(N(c) - N(y) = OIXi-l = y) 

= P(N(c) - N(y) = 0) 

= exp I-[ L(t) dt] 
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32. Var[(X + Y)/2] = a[Var(X) + Var(Y) + 2 Cov(X, Y)] 

Now it is always true that 

and so when X and Y have the same distribution Cov(X, Y) s Var(X). 
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L = A, W, 413-414 
L Q =  LawQ, 414 
Laplace's rule of succession, 134 
Limiting probabilities of a Markov 

chain, 173-174, 322-323 
Linear filter, 551 
Linear growth model, 307-309, 325 
Linear programming, 187, 220, 

533-534 
List problem, 124-125, 207-209, 

226 

Markov chain, 
continuous time, 304-305 
discrete time, 157 

Markov chain Monte Carlo 
methods, 211-217 

Markov decision process, 217-221, 
232-233 

Markov's inequality, 71 -72 
Markovian property, 304 
Martingales, 541, 555 
Martingale stopping theorem, 555, 

556 
Matching problem, 9, 47, 1 16-1 17 

Matching rounds problem, 103-105 
Mean of a random variable. See 

expected value 
Mean value analysis, 439-440 
Mean value function of a renewal 

process. See renewal 
function 

Memoryless random variable, 237, 
238 

Minimal cut set, 480, 481 
Minimal path set, 478, 479 
Mixture of distributions, 501 
Moment generating function, 

60-6 1 
of binomial random variables, 

6 1-62 
of exponential random variables, 

63 
of normal random variables, 

63-64 
of Poisson random variables, 62 
of the sum of independent 

random variables, 64 
tables of, 65 

Moments, 42-43 
Monte Carlo simulation, 212, 560 
Multinomial distribution, 81 
Mutually exclusive events, 3 
Multivariate normal distribution, 

67-69 

Negative binomial distribution, 82 
Nonhomogeneous Poisson process, 

277-281, 298, 619 
simulation of, 589-595 
mean value function, 278 

Nonstationary Poisson process. See 
nonhomogeneous Poisson 
process 

Normal random variables, 34-37, 
89 
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as approximations to the 
binomial, 74-75 

simulation of, 567-569, 572-576 
sums of independent, 66-67 

Normal process. See Gaussian 
process 

Null event, 3 
Null recurrent state, 173 

Occupation time, 337-338, 349 
Odds, 534-535 
Options, 530-532, 535-539 
Order statistics, 57 

simulation of, 617-61 8 
Ornstein-Uhlenbeck process, 

548-549 

Parallel system, 476, 482, 512 
upper bound on expected system 

life, 509-5 11 
Patterns, 387-398 

mean time until appearance, 
181-182, 360-362, 387-398 

of increasing runs of specified 
size, 397-398 

of maximum run of distinct 
values, 395-396 

variance of time until 
appearance, 387-392 

Period of a state of a Markov 
chain, 173 

Poisson process, 250-252 
conditional distribution of the 

arrival times, 265 
interarrival times, 255 
rate, 250-25 1, 252 
simulation of, 588 

Poisson random variables, 30, 93 
approximation to the binomial, 

30 

maximum probability, 83 
simulation of, 582-583 
sums of independent, 56, 66 

Polar method of simulating normal 
random variables, 574-576 

Pollaczek-Khintchine fomula, 444 
Polya's urn model, 134 
Positive recurrent state, 173, 323 
Power spectral density, 552 
Probability density function, 3 1, 

32 
relation to cumulative distribution 

function, 32 
Probability of an event, 4 
Probability mass function, 25 
Probability model, 1 
Probability of a union of events, 

5, 6 
Pure birth process, 303, 314 

Queues, 
bulk service, 429-432 
cost equations, 412-413 
G/M/k, 458-460 
infinite server, 266-268 

output process, 280-28 1 
loss systems, 456 

G/M/l, 451-455 
busy and idle periods, 455-456 

M/G/k, 460-461 
multiserver exponential queue 

(M/M/s), 310, 325, 346, 
458, 462 

departure process, 33 1, 
468-469 

M/G/l, 442-445, 470 
with batch arrivals, 446-448 
busy and idle periods, 

444-445, 470-47 1 
with priorities, 448-45 1, 47 1, 

472 
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M/G/l , continued 
network of queues, 432-442 

analysis via the Gibbs 
sampler, 44 1-442 

closed systems, 437-442 
open systems, 432-437 
mean value analysis, 439-440 

output process, 331 
single server exponential queue 

(M/M/l), 309-310, 326, 
41 6-423 

with finite capacity, 334, 
423-426 

steady state probabilities, 
414-416 

tandem queues, 346, 432 
Quick-sort algorithm, 107-109 

Random graph, 126-132, 491-495 
Random numbers, 560 
Random permutations, 561-562 
Random subset, 563, 619 
Random telegraph signal process, 

547 
Random variables, 21 

continuous, 24, 3 1 
discrete, 24, 25 

Random walk, 159, 167-168, 
189-193, 202-204, 223 

Rate of exponential random 
variable, 240 

Rate of a renewal process, 358 
Records, 89, 298-299 

k-Record index, 139 
k-Record values, 137 

Recurrent state, 164, 165, 166 
Regenerative process, 373 
Rejection method in simulation, 

565-566, 567 
for discrete random variables, 

616 

Reliability function, 482, 484, 485, 
486, 504 

bounds for, 489, 495-497, 519 
Renewal equation, 356 
Renewal function, 354 

computation of, 384-387 
estimation by simulation, 

604-606 
Renewal process, 35 1 

central limit theorem for, 365 
Renewal reward process, 366, 395 
Residual life of a renewal process. 

See excess life 
Reverse chain, 201, 210-211, 231, 

330 

Sample mean, 51, 71 
Sample space, 1 
Sample variance, 68-69, 71 
Satisfiability problem, 193- 195 
Second order stationary process, 

548, 550 
Semi-Markov process, 379-381, 

407 
limiting probabilities, 379-380, 

38 1 
Series system, 476, 482, 512, 521 
Software reliability, 275-277 
Spanning trees, 492 
Standard normal distribution, 36 

table of probabilities, 76 
Stationary increments, 250 
Stationary probabilities, 180 
Stationary process, 546 
Stirling's approximation, 167, 

171-172 
Stochastic process, 77 

continuous time process, 77 
discrete time, process, 77 
state space of, 78 

Stopping time, 400, 571 
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Stratified sampling, 621 
Strong law of large numbers, 

73-74 
Strong law for renewal processes, 

357 
Structure function, 476, 5 15 

dual, 5 16 
Sufficient statistic, 143 
Symmetric random walk, 168 

in higher dimensions, 168-169 
relation to Brownian motion, 

523-524 

Tilted density function, 609-610 
Throughput rate, 438 
Time reversible Markov chain, 

continuous case, 330-331, 332, 
334, 346, 348, 434 

discrete case, 201-202, 206-208, 
23 1 

Transient state, 164, 165, 166, 
195-197 

Transition probabi le  function, 
313, 338-340 

computation of, 338-340, 349 
Transition probability matrix, 158 
Tree process, 232 
Truncated chain, 334 
Two dimensional Poisson process, 

300-301 
simulation of, 595-596 

Two state continuous time Markov 
chain, 318-320, 336-338 

Uniform random variable, 32-33 
sums of, 55-56 

Uniformization, 335-336 

Union of events, 3 
Unit normal distribution. See 

standard normal 
distribution 

Variance, 43, 44 
of binomial random variables, 

52, 62 
of exponential random variables, 

63 
of geometric random variables, 

100-111 
of normal random variables, 43, 

64 
of Poisson random variables, 62 
of a sum of a random number 

of random variables, 
109-110 

of sums of random variables, 51 
tables of, 65 

Variance reduction techniques, 
598-613 

by conditioning, 602-606 
Von Neumann algorithm, 578-580 

Wald's equation, 400-401, 571 -572 
Weak law of large numbers, 88 
Weakly stationary. See second 

order stationary 
Weibull distribution, 498-499 
Wiener process. See Brownian 

motion 
White noise, 541-542 
Work in queue, 442-443 

Yule process, 3 15, 342-343 




