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Figure 2 Coordinate inversion. (a) A vector A is shown together with a set of orthogonal
coordinates. (b) A second set of coordinates is shown, related to the first set by inversion.

Polar and Axial Vectors. A second kind of coordinate transformation is shown in
Figure 2. The operation that takes the unprimed into the primed coordinates is called
inversion. If A is invariant under inversion, its components will be related by

A= —Ay Ay=—A, A,=—A, (13)

A vector that transforms according to (13) is called a polar vector, the simplest
example of which is a displacement.

It may be surprising that there exists a second class of vectors that do not
transform in this way. The simplest example of this class is a rotation.

We show in Figure 3a a particle moving counterclockwise on a circle of radius
R in the xy plane. It is convenient to characterize the motion of the particle by an
angular frequency w = v/R.

We regard o as a vector along the axis about which the particle rotates. In order
to relate a vector to a rotation we must use the “handedness” of the coordinate
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Figure 3 Axial vector. (a) The vector @ represents positive (or counterclockwise) retation
in the x-y plane. (b) the vector ® now represents positive (or clockwise) rotation in the x'-v
plane.



epresentation. Thus, in Figure 3a if we orient the fingers of our right hand in the
ounterclockwise direction (from X to §), our thumb points along Z. For X, ¥, and Z in
yclic order, such a coordinate system is called righthanded. In order to generate '
rom X' and ¥’ as shown in Figure 3b, we must use our left hand and such a coordinate
ystem is called lefthanded.

Now, the direction that we take for @ is dictated by the handedness of the
oordinate representation. In Figure 3a we would take ® in the positive Z direction:

0= wi (14)

n Figure 3b, however, where the coordinate representation is lefthanded, we must take
» in the positive Z' direction:

o= w? (15)
For ® in some general direction we have the transformation:

L= W, (16)

fa) ()

Yigure 4 Law of triangles. (a) A pair of vectors A and B are added by forming a triangle
s shown. (b) The resultant vector C is the same when A and B are interchanged,
stablishing that vector addition is commutative.

\ vector that transforms according to (16) under coordinate inversion is called an
xial vector. The laws of physics may be expressed in terms of both polar and axial
'ectors although there are some restrictions imposed by the requirement that the laws
hemselves be invariant under coordinate transformation.?

\ddition of Vectors. Two vectors A and B are added by the geometrical construction
hown in Figure 4a. The result of summing A and B is written as:

> C=A+B (17)

Note that the vector formed in Figure 4b by adding A onto B is also C. We write this
:onstruction as:

B C=B+A (18)

* A special situation is evidently presented by beta decay. See footnote 1.
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uals the product of the area of its base and its altitude. For the parallelepiped
the vectors A, B, and € shown in Fig. 1-11, the area of the base, which is the
ea of the parallelogram formed by the vectors B and C, is given by the formula

Area = BC'sin¢ = |B X C|. (1-29)
The altitude h can be seen to be expressed by
h=A-n= Acosé,

1ere n is a unit vector perpendicular to the base. Thus we have for the volume
the parallelepiped the formula

Volume = |B X C|A cos6 = |[A-B X C|. (1-30)

aere exists another useful triple product, the triple vector product A X (B X C).
is left as an exercise for the reader (Problem 1-5) to show that

AX(BXC)=(A-CB— (A-B)C. (1-31)
by
3 b
A ik Fiec. 1-12. Decomposition of a

vector into the sum of two component
vectors coplanar with the first.

ath,

-5 Nonorthogonal coordinate systems

It is of course not necessary and not always the most convenient choice to
present a vector in terms of its components along three mutually perpendicular
1t veetors. We therefore digress to discuss the representation of a vector A
terms of a linear sum of three noncoplanar vectors by, by, and by (Fig. 1-12).
If we set

A = alb; + ath; + ashg, (1-32)
here the a!’s are constants, then by Eq. (1-17)
A:c = C!Tbu + ﬂ-';bih: + ﬂf;bax,
Av s If!’l'blg.l =+ ﬂ;b% o C‘;bsy, (1_33)
A, = aiby; + adby; + a3bs..

quations (1-33) are three simultaneous linear equations which we may solve
r the three constants af, a3, and «j. The solutions may be expressed in
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determinant notation. Thus we obtain

[cHAP. 1

|4 A, A,
bax b2t.‘ bs:
* bg: b;;y ba, A-bs X by "

- = . 1-34
T o buy by  BroBaXhs R

b2: b2y '52:

b3z bSy b3z

The last step follows from Eq. (1-27). Similarly, we obtain

« _ A-byXb v AbByXby g
a2_b1'b2>{b3 and as_bl'b2Xb3 (1-35)

We realize, of course, that Egs. (1-34) and (1-35) are uniquely soluble only if
the scalar triple product of the three base vectors does not vanish,

b]‘h2><h3?£0.

This condition is satisfied if the three base vectors are noncoplanar.
Equations (1-34) and (1-35) may be expressed more concisely in terms of
the vectors b;, bg, and by, which are defined by the equations
by = (bz X b3) + (by * by X by),
b2 = (b3 X by) + (by - by X by), (1-36)
bz = (b1 X b2) + (by - by X by),

and which satisfy the relations

b]'bl = bg'b2= b3'b3 =1
and (1-37)

bl‘b2=b1‘b3=bg'bl=b2'ba=b3'b1=b3'h2=0.

The scalar products of the vectors by, by, bz and the vectors by, by, by are

concisely expressed by the equation
b b; = b8, £ = 1,2:3, (1-38)

where §;; is the Kronecker delta having the value zero when ¢ # j and the
value one when ¢ = j, or

0 £ 77,
sl 25 (1-39)
In terms of the vectors b,
o) = A- by,
as = A- by, (1-40)

a3 = A~ ba.
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The three vectors by, by, and by are referred to as the inverse or reciprocal
ectors of the three vectors by, by, and bg, and the coordinate system formed by
he vectors b, bs, and by is referred to as the coordinate system reciprocal to
he coordinate system formed by the vectors b, by, and by (Fig. 1-13). We
ote that a set of mutually orthogonal unit vectors is its own reciprocal set.

Fie. 1-13. Reciprocal sets of base
vectors:

by L b, by bal by, by; bz L by, b
by L bg, b3; ba L bs, by; b3 L by, bo.

Through use of the definition of the inverse base vectors and Eq. (1-31), we
btain the important relation

(kg X bg) : [(bg X by) X (b; X by)]
(by - by X by)?

_ (bz X bg) - [(bg X by - by)b,]

5 (b~ by X by)? =
1

" by - by Xby

b['bzx b3=

Those familiar with the multiplication of determinants could have obtained this
ame result through the product of the determinant

blx bly bl:
b1 bz X bz = |b2: z7’2r.' b2,
bs: ba, bas
ind the determinant _
bl bly bl  [ble b bie

b: v b;y b; v
Bl. b2 bis

by-byX bs = |bs; b3, b2 =
b3z b3y bi:

Chat is,
biz by, bis| [blz b2: b3 |bi-bi by-bz by-bs
.62, boy ba.|- b:, b;v b;y ba:b; ba-bs ba-bz| =1
[bae bay ba.l [b1. b2, b3. by by bz-b2 by-bs



12 VECTORS [cHaAR. 1

» As an example, we consider the vector
A = 5i — 3] + 8k,

which we seek to express as a linear sum of the vectors

by = 3i — 4j,
by = 3j + 4k,
bg = —I + J + 2k.

We first verify that the three vectors b; are noncoplanar by evaluating their
scalar triple produect,

3 —4 0
by -bs X by = 0 3 4| = 22.
—1 1 2

Since the scalar triple product does not vanish, we can find a unique solution
for the of. Itis
af = A- b,

Through use of Eq. (1-36), the reciprocal vectors b; are found to be the vectors

gl ¥k
bi=g5| 0 3 4 = H2i — 4j+ 3|,
-1 1 2
il ¥ 3&
by =a5|—1 1 2| = (81 + 6]+ Kk,
2|7, _
iy 1k
by =553 —4 0| = A{—16i — 12] + 9Kk},
0 3 4

yielding, by Eq. (1-40),

5X2+ (—3) X (—4) +8x3 _ 23

gyl = 22 '’
v a . _5X8+(—3)X(6)+8X1_ 15
ag = A=l = 22 = T
. 5% (—16) + (—3) X (—12) +8Xx 9 _ 14
iy < SRR R E LERY 1L,

We have thus found that we can set

A = ajb; + azby + azby
= ﬁ bl + ﬁbg + ﬁbs.
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Checking, we find that this indeed yields
A= HGi — 4)) + BE + 4k) + H(—i +]+ 2k)
= 5i — 3j | 8k. 4

We could equally as well, of course, start our discussion with the reciprocal
base vectors b;, by, and bg, and set

A = a;b; + asbs + asbs. (1-42)

This would quite analogously lead us to the definition of the set of vectors which
are reciprocal to the vectors by, be, and bz. We find these to be the vectors
(Problem 1-20)

b by X bz
1= B, by X by
. by X b,y 3
bs = 3. by % B3 (1-43)
b. — bl X bg .
37 B, b, X by
Analogously to the solution for the of, it follows that
o] = A hl, g — A bg, g = A - hs‘ (]—44)

P Thus in the previous example we can also set

A = a;1b; + ayby + agby,
and obtain

C\'I=A'bl=27, cx2=A-h2=23, a3=A-b3=8.
That is,
A = 3%(2i — 4j + 3k) + £3(8i + 6j + k) + &H(—16i — 12j + 9k). 4

We have thus arrived at the very important theorem that a three-dimensional
vector is completely specified if its scalar products with three noncoplanar
vectors is known.

It is interesting and extremely useful, as we shall see, to be able to compute
the scalar and vector products of two vectors which are expressed in terms of
their scalar products with three noncoplanar vectors. We find that the scalar
product of two vectors A and B assumes its simplest form if we express one vector
in terms of one set of noncoplanar base vectors and the other vector in terms
of the reciprocal set of base vectors. If we thus set

A = ajb; + azbs + azbs (1-45)
and
B = #1b; + B3by + B3bs,



ve obtain through use of Eq. (1-37)

A-B = 18] + a283 + azfi, (1-46)
r similarly,
B-A = Bia] + Baas + Bzas. (1-47)

» Thus, for example, consider the scalar product of the vector
B—2i4j— 4k

vith the vector A of the previous example. We find that the vector B is expressi-

le in the form
B = 2bl — 13b2 —_ gbg,

shere the b; are the reciprocal vectors of the previous example. Hence by Eq.
1-47) the scalar product of A and B is found to be

B:-A = 23 X2+ H(—13) + }(—9) = —25.

“his result is in agreement with the scalar product found by using the cartesian
omponents of the vectors A and B,

A-B=5%X2+(—3) x(1)+8x(—4) = —25.4

The vector product of two vectors A and B takes its simplest form when both
‘ectors are expressed in terms of the same set of base vectors. Thus if we set

A = aib; + asby + azbg
nd

B = fib; + B3by + Bibs,
hen we find that

by by b3
AXB = (b;-by X b3)|a] a; a3 (1-48)
g1 B3 B3
iimilarly, we find that
% b; by b;
A x B - (bl * bg X% b3} aq [+ 4] ag| - (1—483-)
B1 B2 Bs

P Utilizing once more the vectors A and B of the previous example,

A = 27b; + 23b; + 8b;
nd
B = 2b1 _ 13b3 == gba,



1=9) NUNUNKTHUGUNAL UVUURDINATE SYSUEMS 10

we find by Eq. (1-48a) that the vector product

b, b, b3
A X B = (b by X by)|27 23 8
2 —13 -9

75(—103b; + 259b, — 397hj)
= 4i + 36j + 11k.

This result checks with the vector product found by utilizing the cartesian
components of the vectors A and B,

i i k
AXB=|5 —3 8| = 4i + 36j + 11k. <
2 1l —4

It should be apparent that we shall at times require some notation whereby we
may recognize whether we expressed a vector in terms of the base vectors b;
or their reciprocal vectors b;. To distinguish the two ways of expressing the
vector A we shall whenever necessary let A represent the vector A expressed in
terms of one set of base vectors and A* the same vector A expressed in terms of
the reciprocal base vectors. It does not matter how we choose the correspond-
ence. The choice of the coordinate base vectors for the representation of A
determines the representation of A*. Thus if

A" = aib; + abby + a3bs, (1-49)
then
A = a1b; + asby + asbs.

With this notation the scalar product of two vectors is most concisely repre-
sented by either

A-B" = 8] + B} + 3B (1-50)
or

A" - B = a}f; + a2z + a3Bs.

A*.B = A.B"

That is,

Nonorthogonal base vectors are very important in physics. They are used exten-
sively in problems dealing with the propagation of waves (electromagnetic, elastic,
matter) in materials having a periodic structure as, for example, crystals.

An ideal crystal is a periodic structure, which is the same when viewed with respect
to all points whose position is specified by

r = piby + p2b2 + p3bs,



